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We present results for several light hadronic quantities (fπ , fK , BK , mud, ms, t
1=2
0 , w0) obtained from

simulations of 2þ 1 flavor domain wall lattice QCD with large physical volumes and nearly physical pion
masses at two lattice spacings. We perform a short, Oð3Þ%, extrapolation in pion mass to the physical
values by combining our new data in a simultaneous chiral/continuum “global fit” with a number of other
ensembles with heavier pion masses. We use the physical values of mπ , mK and mΩ to determine the two
quark masses and the scale—all other quantities are outputs from our simulations. We obtain results with
subpercent statistical errors and negligible chiral and finite-volume systematics for these light hadronic
quantities, including fπ ¼ 130.2ð9Þ MeV; fK ¼ 155.5ð8Þ MeV; the average up/down quark mass and
strange quark mass in the MS scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the
neutral kaon mixing parameter, BK , in the renormalization group invariant scheme, 0.750(15) and the MS
scheme at 3 GeV, 0.530(11).

DOI: 10.1103/PhysRevD.93.074505

I. INTRODUCTION

The low energy details of the strong interactions,
encapsulated theoretically in the Lagrangian of QCD, are
responsible for producing mesons and hadrons from
quarks, creating most of the mass of the visible universe,
and determining a vacuum state which exhibits symmetry
breaking. For many decades, the methods of numerical
lattice QCD have been used to study these phenomena,
both because of their intrinsic interest and because QCD
effects are important for many precision tests of quark
interactions in the Standard Model. Many theoretical and
computational advances have been made during this time

and, in this paper, we report on the first simulations
of 2þ 1 flavor QCD (i.e. QCD including the fermion
determinant for u, d and s quarks with mu ¼ md) with
essentially physical quark masses using a lattice fermion
formulation which accurately preserves the continuum
global symmetries of QCD at finite lattice spacing: domain
wall fermions (DWF).
This isospin symmetric version of QCD requires three

inputs to perform a simulation at a single lattice spacing: a
bare coupling constant, a degenerate light quark mass
(mu ¼ md), and a strange quark mass. We fix these using
the physical values for mπ, mK , and mΩ. In particular, for a
fixed bare coupling, adjusting mu ¼ md and ms until
mπ=mΩ and mK=mΩ take on their physical values leads
to a determination of the lattice spacing, a, for this
coupling. All other low energy quantities, such as fπ
and fK, are now predictions. By repeating this for different
lattice spacings, physical predictions in the continuum limit
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(a → 0) for other low energy QCD observables are
obtained. In this work, we used results from our earlier
simulations to estimate the input physical quark masses and
then we make a modest correction in our results, using
chiral perturbation theory and simple analytic ansatz, to
adjust to the required quark mass values, a correction of less
than 10% in the quark mass. These physical quark mass
simulations would not have been possible without IBM
Blue Gene/Q resources [1–4].
For the past decade, the RBC and UKQCD collabora-

tions have been steadily approaching the physical quark
mass point with a series of 2þ 1 flavor domain wall
fermion simulations. Recently [5] we reported on a
combined analysis of three of our domain wall fermion
ensembles with the Shamir kernel, namely our 323 × 64

and 243 × 64 ensemble sets with the Iwasaki gauge
action at β ¼ 2.25 and β ¼ 2.13 (a−1 ¼ 2.383ð9Þ GeV
and 1.785(5) GeV) and lightest unitary pion masses of
302(1) MeV and 337(2) MeV respectively, and our coarser
323 × 64 Iwasakiþ DSDR ensemble set with β ¼ 1.75
(a−1 ¼ 1.378ð7Þ GeV) but substantially lighter pion
masses of 143(1) MeV partially quenched and 171(1) MeV
unitary. We refer to these as our 32I, 24I and 32ID
ensembles, respectively. (The lattice spacings and other
results for these ensembles quoted here come from global
fits that include the new, physical quark mass ensembles,
as well as new observable measurements on these older
ensembles. As such, central values have shifted from earlier
published values, generally within the published errors.
Also, the new errors are smaller, because of the increased
data.) For the latter 32ID ensembles, the use of a coarser
lattice represented a compromise between the need to
simulate with a large physical volume in order to keep
finite-volume errors under control in the presence of such
light pions and the prohibitive cost of increasing the lattice
size. The DSDR term was used to suppress the dislocations
in the gauge field that dominate the residual chiral
symmetry breaking in the domain wall formulation at
strong coupling. The addition of this ensemble set resulted
in a factor of two reduction in the chiral extrapolation
systematic error over our earlier analysis of the Iwasaki
ensembles alone (24I and 32I) [6], but the total errors on
our physical predictions remained on the order of 2%. Now,
combining algorithmic advances with the power of the
latest generation of supercomputers, we are finally able to
perform large volume simulations directly at the physical
point without the need for such compromises.
In this paper we present an analysis of two 2þ 1 flavor

domain wall ensembles simulated essentially at the physi-
cal point. The lattice sizes are 483 × 96 and 643 × 128 with
physical volumes of ð5.476ð12Þ fmÞ3 and ð5.354ð16Þ fmÞ3
(mπL ¼ 3.86 and 3.78). Throughout this document we
refer to these ensembles with the labels 48I and 64I
respectively. We utilize the Möbius domain wall action
tuned such that the Möbius and Shamir kernels are identical

up to a numerical factor, which allows us to simulate with a
smaller fifth dimension, and hence a lower cost, for the
same physics. This is discussed in more detail in Sec. II.
The values of Ls are 24 and 12 for the 48I and 64I
ensembles respectively. For the 48I ensemble, Ls would
have to be more than twice as large to achieve the same
residual mass with the Shamir kernel. The corresponding
residual masses, mres, comprise ∼45% of the physical light
quark mass for the 48I ensemble, and ∼30% for the 64I.
We use the Iwasaki gauge action with β ¼ 2.13 and 2.25,
giving inverse lattice spacings of a−1 ¼ 1.730ð4Þ GeV and
2.359(7) GeV, and the degenerate up/down quark masses
were tuned to give (very nearly) physical pion masses of
139.2(4) MeV and 139.2(5) MeV.
We also introduce a third ensemble generated with

Shamir domain wall fermions and the Iwasaki gauge action
at β ¼ 2.37, corresponding to an inverse lattice spacing of
3.148(17) GeV, with a lattice volume of 323 × 64 and with
Ls ¼ 12. The lightest unitary pion mass is 371(5) MeV.
Although these masses are unphysically heavy, this ensem-
ble provides a third lattice spacing for each of the measured
quantities, allowing us to bound the Oða4Þ errors on our
final results. We label this ensemble 32Ifine.
We have taken full advantage of each of our expensive

48I and 64I gauge configurations by developing a meas-
urement package that uses EigCG to produce DWF
eigenvectors in order to deflate subsequent quark mass
solves, and that uses the all-mode-averaging (AMA)
technique of Ref. [7]. In AMA, quark propagators are
generated on every timeslice of the lattice but with reduced
precision, and then corrected with a small number of
precise measurements. To reduce the fractional overhead
of calculating eigenvectors and the large I/O demands of
storing them, we share propagators between mπ , mK , fπ ,
fK , BK , the Kl3 form factor fKπþ ðq2 ¼ 0Þ and the K →
ðππÞI¼2 amplitude. (The last two quantities are not reported
here.) By putting so many measurements into a single job,
the EigCG setup costs are only ∼20% of the total time, and
we find this approach speeds up the measurement of these
quantities by between 5 and 25 times, depending on the
observable. Here again the Blue Gene/Q has been invalu-
able, since it has a large enough memory to store the
required eigenvectors and the reliability to run for sufficient
time to use them in all of the above measurements. In
Sec. III we present the results of these measurements.
As mentioned already, in order to correct for the minor

differences between the simulated and physical pion masses,
we perform a short chiral extrapolation. As these new 48I
and 64I ensembles have essentially the same quark masses,
we must include data with other quark masses in order to
determine the mass dependences. We achieve this by
combining the 64I and 48I ensembles with the aforemen-
tioned 323 × 64 and 243 × 64 Iwasaki gauge action ensem-
ble sets (32I and 24I, respectively), and the 323×
64 Iwasakiþ DSDR ensemble set (32ID), in a simultaneous
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chiral/continuum “global fit.” We also include the new
32Ifine ensemble, to give us a third lattice spacing with
the same action, to improve the continuum extrapolation.We
note that these are the same kinds of fits we have used in our
previous work with the 24I, 32I and 32ID ensembles—here
we have the addition of very accurate data at physical quark
masses. In addition, we also have added Wilson flow
measurements of the scale on all of our ensembles to the
global fits. While the Wilson flow scale in physical units is
an output of our simulations, the relative values on the
various ensembles provide additional accurate data that helps
to constrain the lattice spacing determinations. In Sec. IV we
discuss our fitting strategy in more detail and the fit results
are presented in Sec. V.
Given the length of this paper and the many details

discussed, we present a summary of our physical results in
Table I as the last part of this introduction. These are
continuum results for isospin symmetric 2þ 1 flavor QCD
without electromagnetic effects. Our input values are mπ ,
mK , mΩ, and the results in Table I are outputs from our
simulations. For results quoted in the MS scheme, the first
error is statistical and the second is the error from
renormalization. For other quantities, the error is the
statistical error. The other usual sources of error (finite
volume, chiral extrapolation, continuum limit) have all
been removed through our measurements and any error
estimates we can generate for these possible systematic

errors are dramatically smaller than the (already small)
statistical error quoted. This is discussed at great length in
Sec. V. The Conclusions section (Sec. VI) summarizes our
results and gives comparisons of them with experiment
and/or the results of other lattice simulations.
The layout of this document is as follows: In Sec. II we

present the details of our new ensembles, including a more
general discussion of the Möbius domain wall action. The
associated simulated values of the pseudoscalar masses and
decay constants, the Ω-baryon mass, the vector and axial
current renormalization factors, the neutral kaon mixing
parameter, BK , and the Wilson flow scales, t1=20 and w0, are
given in Sec. III. In Sec. IV we provide an overview of our
global fitting procedure for those quantities, the results of
which are given in Sec. V. Finally, we present our
conclusions in Sec. VI.

II. SIMULATION DETAILS AND
ENSEMBLE PROPERTIES

Substantial difficulties must be overcome in order to
work with physical values of the light quark mass.
Common to all fermion formulations are the challenges
of increasing the physical spacetime volume to avoid the
large finite-volume errors that would result from decreasing
the pion mass at fixed volume. Similarly, the range of
eigenvalues of the Dirac operator increases substantially,
requiring many more iterations for the computation of its
inverse and motivating the use of deflation and all-mode-
averaging to reduce this computational cost. For domain
wall fermions it is also necessary to decrease the size of the
residual chiral symmetry breaking to reduce the size of the
residual mass to a level below that of the physical light
quark masses. While this could have been accomplished
using the Shamir domain wall formulation [8,9] used in
previous RBC and UKQCDwork, this would have required
a doubling or tripling of the length of the fifth dimension,
Ls, at substantial computational cost.
Instead, our new, physical ensembles have been gen-

erated with a modified domain wall fermion action that
suppresses residual chiral symmetry breaking, resulting in
values for the residual mass that lie below that of the
physical light quark, but without the substantial increase in
Ls that would have been required in the original domain
wall framework.
We use the Möbius framework of Brower, Neff and

Orginos [10–12]. Although the action has been changed,
we remain within the subspace of the Möbius parametriza-
tion that preserves the Ls → ∞ limit of domain wall
fermions. The changes to the Symanzik effective action
resulting from this change in fermion formulation can be
made arbitrarily small and are of the same size as the
observed level of residual chiral symmetry breaking. As
discussed in Sec. II A, we are therefore able to combine our
new ensembles in a continuum extrapolation with previous
RBC and UKQCD ensembles.

TABLE I. Summary of results from the simulations reported
here. The first error is the statistical error, which for most
quantities is much larger than any systematic error we can
measure or estimate. The exception is for the quantities in MS
and B̂K . For these quantities, the second error is the systematic
error on the renormalization, which is dominated by the pertur-
bative matching between the continuum RI-MOM scheme and
the continuum MS scheme.

Quantity Value

fπ 130.19� 0.89 MeV
fK 155.51� 0.83 MeV
fK=fπ 1.1945� 0.0045
mu ¼ mdðMS; 3 GeVÞ 2.997� 0.036� 0.033 MeV
msðMS; 3 GeVÞ 81.64� 0.77� 0.88 MeV
ms=mu ¼ ms=md 27.34� 0.21
t1=20

0.7292� 0.0041 GeV−1

w0 0.8742� 0.0046 GeV−1

BKðSMOMðq; qÞ; 3 GeVÞ 0.5341� 0.0018
BKðMS; 3 GeVÞ 0.5293� 0.0017� 0.0106

B̂K 0.7499� 0.0024� 0.0150

Lð2Þ
4 ðΛχPT ¼ 1 GeVÞ −0.000171� 0.000064

Lð2Þ
5 ðΛχPT ¼ 1 GeVÞ 0.000513� 0.000078

Lð2Þ
6 ðΛχPT ¼ 1 GeVÞ −0.000146� 0.000036

Lð2Þ
8 ðΛχPT ¼ 1 GeVÞ 0.000631� 0.000041
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A. Möbius fermion formalism

In this section and in Appendix A we describe the
implementation of Möbius domain wall fermions, and
provide a self-contained derivation of many of the pro-
perties of this formulation on which our calculation
depends.
Of central importance is the degree to which the present

results from the Möbius version of the domain wall
formalism can be combined with those from our earlier
Shamir calculations when taking a continuum limit. As
reviewed below and in Appendix A, the Shamir and
Möbius fermion formalisms result in very similar approxi-
mate sign functions, ϵðHMÞ, having the form given in
Eq. (24) below. In fact, the only differences between the
two functions ϵðHMÞ corresponding to Shamir and Möbius
fermions is the choice of Ls and an overall scale factor
entering the definition of the kernel operator, HM. Thus, in
the limit Ls → ∞ both theories agree with the same,
chirally symmetric, overlap theory. The differences of both
Shamir and Möbius fermions from that theory, and there-
fore from each other, vanish in this chiral limit. Note, this
equivalence in the chiral limit holds for both the fermion
determinant that is used to generate the gauge ensembles
(shown below) and for the 4-D propagators (shown in
Appendix A) which determine all of the Green’s functions
which appear in our measurements and define our lattice
approximation to QCD.
Thus, we expect that all details of the four dimensional

approximation to QCD defined by the Shamir and Möbius
actions must agree in the limit Ls → ∞ and, in our case of
finite Ls, will show differences on the order of the residual
chiral symmetry breaking, the most accessible effect of
finite Ls. Since this constraint holds at finite lattice
spacing, we conclude that the coefficients of the Oða2Þ
corrections which appear in the four-dimensional, effective
Symanzik Lagrangians for the Shamir and Möbius actions
should agree at this same, subpercent level, allowing a
consistent continuum limit to be obtained from a combi-
nation of Shamir and Möbius results.
To understand this argument in greater detail, it is useful

to connect the Shamir and Möbius theories in two steps.
We might first discuss the relation between two Shamir
theories: one with a smaller Ls and larger residual chiral
symmetry breaking, and a second with a larger value of Ls
and a value for mres below the physical light quark mass.
In the second step we can compare this large Ls Shamir
theory with a corresponding Möbius theory that has the
same approximate degree of residual chiral symmetry
breaking. For example, when comparing our β ¼ 2.13
Shamir and Möbius ensembles, we might begin with
our 243 × 64, Ls ¼ 16, 24I ensemble with mresa ¼
0.003154ð15Þ which is larger than the physical light
quark mass. Next we consider a fictitious, Ls ¼ 48
ensemble which should have a value of mres very close
to the 0.0006102(40) value of our 48I Möbius ensemble.

In this comparison we would work with the same Shamir
formalism and simply approach the chiral limit more
closely by increasing Ls from 16 to 48. Clearly the
5× reduction in the light quark mass will produce a
significant change in the theory, which to a large degree
should be equivalent to reducing the input quark mass
in a theory with a large fixed value of Ls. Of course, there
will be smaller changes as well. In addition to reducing the
size of mres, we will also reduce the size of the dimension-
five, OðaÞ Sheikholeslami-Wohlert term (whose effects
are expected to be at the mresa2 ≤ 0.1% level even for the
smaller value of Ls). There will be further small changes
coming from approaching the Ls → ∞ limit, for example
the 3% change in the lattice spacing discussed in
Appendix C.
The second comparison can be made between the

fictitious Ls ¼ 48 Shamir ensemble and our actual 48I
Möbius ensemble with Ls ¼ 24 and bþ c ¼ 2. Since the
product of Lsðbþ cÞ is the same for these two examples,
the approximate sign function will agree for eigenvalues of
the kernelHM which are close to zero. In fact, a study of the
eigenvalues λ of HM for the Shamir normalization shows
that they lie in the range 0 ≤ λ ≤ 1.367ð14Þ for β ¼ 2.13.
One can then examine the ratio of the two approximate
sign functions, which determine the corresponding 4-D
Dirac operators, over this entire eigenvalue range and show
that the approximate Shamir and Möbius sign functions
ϵðHMÞ agree at the 0.1% level. Thus, in this second step we
are comparing two extremely similar theories whose
description of QCD is expected to differ in all aspects at
the 0.1% level. We now turn to a detailed discussion of the
Shamir and Möbius operators and their relation to the
overlap theory.
Our conventions are as follows. The usual Wilson

matrix is

DWðMÞ ¼ M þ 4 −
1

2
Dhop; ð1Þ

where

Dhop ¼ ð1 − γμÞUμðxÞδxþμ;y þ ð1þ γμÞU†
μðyÞδx−μ;y: ð2Þ

For our physical point ensembles we use a generalized form
of the domain wall action [10–12],

S5 ¼ ψD5
GDWψ ; ð3Þ

where
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D5
GDW ¼

0
BBBBBBBBBBBBB@

~D −P− 0 … 0 mPþ

−Pþ . .
. . .

.
0 … 0

0 . .
. . .

. . .
.

0 ..
.

..

.
0 . .

. . .
. . .

.
0

0 … 0 . .
. . .

.
−P−

mP− 0 … 0 −Pþ ~D

1
CCCCCCCCCCCCCA
; ð4Þ

and we define

Dþ ¼ ðbDW þ 1Þ;
D− ¼ ð1 − cDWÞ;
~D ¼ ðD−Þ−1Dþ: ð5Þ

This generalized set of actions reduces to the standard
Shamir action in the limit b ¼ 1, c ¼ 0, and it can also be
taken to give the polar approximation to the Neuberger
overlap action as another limiting case [13,14]. In all of
our simulations we take the coefficients b and c as
constant across the fifth dimension. This setup is well
known to yield a tanh approximation to the overlap sign
function. Coefficients that vary across the fifth dimen-
sion can also be used to introduce other rational approx-
imations to the sign function, such as the Zolotarev
approximation [15–17].
As in the Shamir domain wall fermion formulation we

identify “physical,” four-dimensional quark fields q
and q whose Green’s functions define our domain wall
fermion approximation to continuum QCD. We choose to
construct these as simple chiral projections of the five-
dimensional fields ψ and ψ which appear in the action
given in Eq. (3):

qR ¼ PþψLs
qL ¼ P−ψ1;

qR ¼ ψLs
P− qL ¼ ψ1Pþ: ð6Þ

While there is considerable freedom in this choice of the
physical, four-dimensional quark fields, as is shown in
Appendix A, this choice results in four-dimensional
propagators which agree with those of the corresponding
overlap theory up to a contact term in the Ls → ∞ limit.
This choice is also dictated by the requirement that we be
able to combine results from the present, physical point
calculation with earlier results using Shamir fermions in
taking a continuum limit. With this choice both the Möbius
and Shamir theories will yield four-dimensional fermion
propagators which differ only at the level of the residual
chiral symmetry breaking. The choice of physical quark
fields given in Eq. (6) has the added benefits that the

corresponding four-dimensional propagators satisfy a
simple γ5 Hermiticity relation and a Hermitian, partially
conserved axial current can be easily defined.
In practice, one solves for physical quark propagators

using the linear system

D−D5
GDWψ ¼ D−η: ð7Þ

To find the 4-D effective action which corresponds to our
choice of physical fields we must first perform some
changes to the field basis as follows. We write

S5 ¼ ψD5
GDWψ ¼ χD5

χχ; ð8Þ

where, for now leaving a matrix Q− undefined, χ ¼ P−1ψ ,
χ ¼ ψγ5Q−, D5

χ ¼ Q−1
− γ5D5

GDWP, and

P ¼

0
BBBBBBBBBB@

P− Pþ 0 … 0

0 . .
. . .

.
0 ..

.

..

.
0 . .

. . .
.

0

0 … 0 . .
.

Pþ
Pþ 0 … 0 P−

1
CCCCCCCCCCA
: ð9Þ

Then with

~H ¼ γ5ðD−Þ−1Dþ ¼ γ5ðH−Þ−1Hþ; ð10Þ

and H− ¼ γ5D−, Hþ ¼ γ5Dþ we may write

D5
χ ¼ Q−1

−

2
66666666666664

~H P− 0 … 0 mPþ

−Pþ . .
. . .

.
0 … 0

0 . .
. . .

. . .
.

0 ..
.

..

.
0 . .

. . .
. . .

.
0

0 … 0 . .
. . .

.
P−

−mP− 0 … 0 −Pþ ~H

3
77777777777775
P:

ð11Þ

We may choose Q− to place the matrix D5
χ in a particularly

convenient form as follows,

Q− ¼ ~HP− − Pþ ¼ γ5½H−�−1½HþP− −H−Pþ�
Qþ ¼ ~HPþ þ P− ¼ γ5½H−�−1½HþPþ −H−P−�; ð12Þ

and introduce the so-called transfer matrix as
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T−1 ¼−ðQ−Þ−1Qþ

¼−
�
γ5

ðbþcÞDW

2þðb−cÞDW
−1

�
−1
�
γ5

ðbþcÞDW

2þðb−cÞDW
þ1

�
¼−½HM−1�−1½HMþ1�:

Here the Möbius kernel is

HM ¼ γ5
ðbþ cÞDW

2þ ðb − cÞDW
: ð13Þ

We find D5
χ takes the following form,

D5
χ ¼

2
6666666666664

P−−mPþ −T−1 0 … … 0

0 1 −T−1 0 … ..
.

..

.
0 . .

. . .
.

0 ..
.

..

.
… 0 1 −T−1 0

0 … … 0 1 −T−1

−T−1ðPþ−mP−Þ 0 … … 0 1

3
7777777777775
;

ð14Þ

for which we can perform a UDL decomposition around the
top left block:

�
D C

B A

�
¼
�
1 CA−1

0 1

��
Sχ 0

0 A

��
1 0

A−1B 1

�
: ð15Þ

Here, the Schur complement is Sχ ¼ D − CA−1B, where

A ¼

0
BBBBBBBB@

1 −T−1 0 … ..
.

0 1 −T−1 0 ..
.

0 0 1 −T−1 0

0 … 0 1 −T−1

0 … … 0 1

1
CCCCCCCCA

A−1 ¼

0
BBBBBBBB@

1 T−1 T−2 … T−ðLs−2Þ

0 1 T−1 … T−ðLs−3Þ

0 0 1 T−1 ..
.

0 … 0 1 T−1

0 … … 0 1

1
CCCCCCCCA
; ð16Þ

D ¼ P− −mPþ; ð17Þ

C ¼ ð−T−1 0 … … 0 Þ; ð18Þ

BT ¼ ð 0 … 0 −T−1ðPþ −mP−Þ Þ; ð19Þ

CA−1B ¼ T−LsðPþ −mP−Þ: ð20Þ

Denoting the left and right factors as U and LðmÞ respec-
tively, we write this factorization as D5

χ ¼ UDSðmÞLðmÞ.
The determinants of the U and LðmÞ are unity, and the
determinant of the product is simply

detD5
χ ¼ detA det Sχ ¼ detSχ ; ð21Þ

where

SχðmÞ ¼ −ð1þ T−LsÞγ5
�
1þm
2

þ 1 −m
2

γ5
T−Ls − 1

T−Ls þ 1

�
:

ð22Þ

We can see that after the removal of the determinant of the
Pauli Villars fields with m ¼ 1 in our ensembles we are left
with the determinant of an effective overlap operator, which
is the following rational function of the kernel:

detD−1
PVDðmÞ ¼ detDov

¼ det

�
1þm
2

þ 1 −m
2

γ5

×
ð1þHMÞLs − ð1 −HMÞLs

ð1þHMÞLs þ ð1 −HMÞLs

�
: ð23Þ

We identifyDov as an approximation to the overlap operator
with approximate sign function

ϵðHMÞ ¼
ð1þHMÞLs − ð1 −HMÞLs

ð1þHMÞLs þ ð1 −HMÞLs
; ð24Þ

with

lim
Ls→∞

ϵðHMÞ ¼ sgnðHMÞ: ð25Þ

Note that since sgnðHMÞ ¼ sgnðαHMÞ for all positive α,
changing the Möbius parameters bþ c while keeping
b − c ¼ 1 fixed leaves our kernel HM proportional to the
kernel for the Shamir formulation. This therefore changes
only the approximation to the overlap sign function, but not
the form of the Ls → ∞ limit of the action.
In this way, our new simulations with the Möbius

action will differ from those with Shamir domain wall
fermions only through terms proportional to the residual
chiral symmetry breaking. In particular the change of action
is not fundamentally different from simulating with a
different Ls.
Other, equivalent views of this approximation to the sign

function are useful. Noting

− tanh
1

2
log z ¼ 1 − z

1þ z
; ð26Þ
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we see that since

T−1 ¼ 1þHM

1 −HM
⇔ HM ¼ 1 − T

1þ T
; ð27Þ

we have

T−Ls − 1

T−Ls þ 1
¼ tanh

�
−
Ls

2
log jTj

�
¼ tanh ðLstanh−1HMÞ;

ð28Þ

and for this reason our approximation to the sign function is
often called the tanh approximation.
For eigenvalues of HM near zero, this tanh expression

becomes a poor approximation to the sign function and it is
for these small eigenvalues that the largest contributions to
residual chiral symmetry breaking typically occur. For
small eigenvalues λ of HM, the tanh approximation is a
steep, but not discontinuous, function at λ ¼ 0. Examining
Eq. (24) one can easily see that

ϵðαλÞ ∼ Lsαλ; ð29Þ

which approaches the discontinuity of the sign function
only as Ls → ∞. The quality of the sign function approxi-
mation for small eigenvalues can be improved by either
increasing Ls (at a linear cost) or by increasing the Möbius
scale factor α ¼ bþ c while keeping b − c ¼ 1 (close to
cost-free), or both. One concludes that the scale factor
bþ c should be increased to the maximum extent con-
sistent with keeping the upper edge of the spectrum of HM
within the bounded region in which ϵðHMÞ is a good
approximation to the sign function. In the limit of large Ls a
simulation with ðbþ cÞ > 1 will have the same degree of

chiral symmetry breaking as a simulation in which that
scale factor has been set to one but with Ls increased
to Lsðbþ cÞ.
In Appendix A we continue the above review of the

relation between the DWF and overlap operators, demon-
strating the equality of the Shamir and Möbius four-
dimensional fermion propagators in the limit Ls → ∞.
We also introduce a practical construction of the conserved
vector and axial currents for Möbius fermions, appropriate
for our choice of physical fermion fields.

B. Simulation parameters and ensemble generation

We generated three domain wall ensembles with the
Iwasaki gauge action. The 48I and 64I ensembles were
generated with Möbius domain wall fermions and with
(near-)physical pion masses, and the 32Ifine ensemble was
generated with Shamir DWF and with a heavier mass but
finer lattice spacing. The results from previous fits to our
older ensembles were used to choose the input light and
strange quark masses to the simulations. The input param-
eters are listed in Table II. As discussed above, the Möbius
parameters for the 48I and 64I ensembles are chosen with
b − c ¼ 1 such that the Shamir and Möbius kernels are
identical. The values of α ¼ bþ c, which to a first
approximation gives the ratio of fifth-dimensional extents
between the Möbius and the equivalent Shamir actions, are
listed in the table.

TABLE II. Input parameters and relevant quantities for the
three new Iwasaki ensembles. Here L is the spatial lattice extent
in lattice units, and α ¼ bþ c is Möbius scaling factor (recall the
32Ifine is a Shamir DWF ensemble, and therefore has α ¼ 1.0).
The last three entries are the average plaquette, chiral condensate,
and pseudoscalar condensate respectively. The lattice spacings
are determined in Sec. V of this document.

48I 64I 32Ifine

Size 483 × 96 × 24 643 × 128 × 12 323 × 64 × 12
β 2.13 2.25 2.37
aml 0.00078 0.000678 0.0047
amh 0.0362 0.02661 0.0186
α 2.0 2.0 1.0

a−1ðGeVÞ 1.730(4) 2.359(7) 3.148(17)
L (fm) 5.476(12) 5.354(16) 2.006(11)
mπL 3.863(6) 3.778(8) 3.773(42)
hPi 0.5871119(25) 0.6153342(21) 0.6388238(37)
hψ̄ψi 0.0006385(12) 0.0002928(9) 0.0006707(15)
hψ̄γ5ψi −0.0000043ð31Þ −0.0000000ð34Þ −0.0000013ð26Þ

TABLE III. The number of steps per HMC trajectory, the MD
time-step Δτ, the Metropolis acceptance and the total number of
CG iterations for the three new ensembles.

48I 64I 32Ifine

Steps per trajectory 15 9 6
Δτ 0.067 0.111 0.167
Metropolis acceptance 84% 87% 82%
CG iters per trajectory ∼5.9 × 105 ∼6.1 × 105 ∼8.4 × 104

TABLE IV. The integrator layout for our three ensembles. HereP
SQ and

P
SR are the sum of the quotient and rational quotient

actions used for the light and strange quarks respectively. The
sums are over the intermediate mass listed in the text. SG is the
gauge action, FGI QPQPQ is a particular form of the force
gradient integrator [18], and ni are the number of steps compris-
ing a single update of the corresponding action. The coarsest
time-steps are at level 1, and the step sizes are chosen such that
the total trajectory length is 1 MD time unit. More detail
regarding the notation and integrators can be found in Appendix A
of Ref. [5].

Level (i) Si Integrator ni
Step size

(48I,64I,32Ifine)

1
P

SQ þP
SR FGI QPQPQ 1 1=15, 1=9, 1=6

2 SG FGI QPQPQ 4 …
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We use an exact hybrid Monte Carlo algorithm for our
ensemble generation, with five intermediate Hasenbusch
masses, (0.005, 0.017, 0.07, 0.18, 0.45), for the two flavor
part of the algorithm of both the 48I and 64I ensembles, a
+nd three intermediate masses, (0.005, 0.2, 0.6), for the
32Ifine. A rational approximation was used for the strange
quark determinant. The integrator layout and parameters
are given in Tables III and IV.

Each trajectory of the 48I ensemble required 3.5 hours
on 2 racks of Blue Gene/Q (BG/Q) (2 × 1024 nodes), and
those of the 64I required 0.67 hours on 8 racks of BG/Q.
We generated 2200 and 2850 trajectories for the 48I and 64I
ensembles respectively. The first 1100 trajectories of the
64I ensemble were generated with Ls ¼ 10 and produced a
pion mass of about 170MeV, due to the residual mass being
larger than anticipated. Changing to Ls ¼ 12 reduced the

FIG. 1. Monte Carlo evolution of the average plaquette (first row), light quark chiral condensate (second row), light quark
pseudoscalar condensate (third row), and topological charge (fourth row) after thermalization on the 32Ifine (left column), 48I (middle
column), and 64I (right column) ensembles.
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FIG. 2. Time history plots for the energy density evaluated at the Wilson flow times t0 (top line) and w2
0 (bottom line) on the 32Ifine

(left column), 48I (middle column), and 64I (right column).

FIG. 3. Topological charge distributions for the 32Ifine (top left), 48I (top right), and 64I (bottom) ensembles.
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residual mass, allowing us to simulate at essentially the
physical pion mass. The 32Ifine ensemble required
5 minutes on 1 rack of BG/Q, and we generated 6940
trajectories for this ensemble.

C. Ensemble properties

In Fig. 1 we plot the Monte Carlo evolution of the
topological charge, plaquette, and the light quark scalar and
pseudoscalar condensates, after thermalization. In addition
we plot the time histories of the Clover-form energy density
evaluated at the Wilson flow times w2

0 and t0 in Fig. 2.
We measured the topological charge by cooling the

gauge fields with 60 rounds of APE [19] smearing
(smearing coefficient 0.45), and then measured the field-
theoretic topological charge density using the 5Li discre-
tization of Ref. [20], which eliminates theOða2Þ andOða4Þ
terms at tree level. In Fig. 3 we plot histograms of the
topological charge distributions.

In Figure 4 we plot the integrated autocorrelation time
for the same observables on the 32Ifine, 48I, and 64I
ensembles as a function of the cutoff in molecular dynamics
(MD) time separation, Δcutoff :

τintðΔcutoffÞ ¼ 1þ 2
XΔcutoff

Δ¼1

CðΔÞ; ð30Þ

where

CðΔÞ ¼
�ðYðtÞ − YÞðYðtþ ΔÞ − YÞ

σ2

�
t

ð31Þ

is the autocorrelation function associated with the observ-
able YðtÞ. The mean and variance of YðtÞ are denoted Y and
σ2, and Δ is the lag measured in MD time units. The error
on the integrated autocorrelation time is estimated using a
method discussed in our earlier paper [5]: for each fixed Δ

FIG. 4. The integrated autocorrelation time as a function of the cutoff MD time separation, Δcutoff , for the average plaquette; light
quark scalar and pseudoscalar densities; topological charge Q and its square; and the Clover-form energy densities evaluated at Wilson
flow times t0 and w2

0, Et0 and Ew2
0
respectively. These are plotted for the 32Ifine ensemble (top left), 48I (top right), and 64I (bottom)

ensembles. The data has been binned over 960, 100, and 200 MD time units on the 32Ifine, 48I, and 64I ensemble, respectively.
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in Eq. (31) we bin the set of measurements
ðYðtÞ − YÞðYðtþ ΔÞ − YÞ over neighboring configurations
and estimate the error on the mean h� � �it by bootstrap
resampling. We then increase the bin size until the error
bars stop growing, which we found to correspond to bin
sizes of 960, 100, and 200 MD time units on the 32Ifine,
48I, and 64I ensemble, respectively. The error on τint is then
computed from the bootstrap sum in Eq. (30).
In Table V we tabulate estimates of the autocorrelation

lengths for each of the various quantities included in the
above figures. We can estimate τint from the upper bound
on the error for the slowest mode, which corresponds to the
energy densities on the 64I and 48I ensembles, and the
topological charge on the 32Ifine. This suggests τint ∼ 35
MDTU for the 48I ensemble, τint ∼ 50 MDTU for the 64I
ensemble, and τint ∼ 460 MDTU for the 32Ifine ensemble.
For all quantities considered, we observe that the chosen

bin sizes are sufficient to account for the autocorrelations
suggested by Fig. 4. We also observe a significant decrease
in the rate of tunneling between configurations with
different topological charge as the lattice spacing becomes
finer, as evidenced by the long autocorrelation time on the
32Ifine ensemble.
After generating our ensembles we discovered that there

are spurious correlations between U(1) random numbers
generated by the Columbia Physics System (CPS) random
number generator (RNG) with a new seed. Fortunately, as
discussed in Appendix G, we determined that the corre-
lation present in the freshly seeded RNG state was lost
during thermalization, and consequently that this had no
measurable effect on our thermalized gauge configurations
or measurements.

III. SIMULATION MEASUREMENT RESULTS

In this section we present the results of fitting to a number
of observables on the 48I and 64I ensembles. On the 48I
ensemble we used data from 80 configurations in the range
420–2000 with a separation of 20 MD time units. The 64I
measurements were performed on 40 configurations in the
range 1200–2760 and separated by 40 MD time units. The
data on both ensembles were binned over 5 successive
configurations, corresponding to 100MD time units and 200
MD time units respectively. On the 64I ensemble, we
measured the cheaper Wilson flow scales every 20 configu-
rations (as opposed to every 40 for the other measurements)
in the range 1200–2780 and binned over 10 successive
configurations. We also present similar results computed

on 36 configurations of the 32Ifine ensemble in the range
1000–6600,measuring every 160MD time units and using a
bin size of 6 configurations (960 MD time units).
With the bin sizes given above, the number of binned

samples on the 48I, 64I, and 32Ifine ensembles are 16, 8, and
6 respectively. We emphasize however that each measure-
ment on the 64I ensemble is obtained from an average over
128 timeslices, and those on the 48I and 32Ifine over 96 and
64 timeslices, respectively. Nevertheless, the numbers of
binned samples on the 64I and 32Ifine ensembles are
considerably smaller than those typically encountered in
lattice simulations, and we therefore provide evidence that
our use of this small number of large bins does not lead to an
inaccurate assignment of errors.
First, based on the integrated autocorrelation times

determined in the previous section, the expected effective
time separation between uncorrelated measurements is
∼100 MDTU on the 64I ensemble, half of the actual bin
size chosen. (Recall this is estimated as 2 × τint.) Our
choice is therefore quite conservative. For the 48I and
32Ifine ensembles the time separation between uncorre-
lated measurements is ∼70 and ∼920MDTU, respectively,
which are comparable to our bin sizes of 100 and 960.
However, these estimates are obtained from the energy
densities and topological charge respectively, and the latter
may be misleadingly large for the following reason. In a
study by the ALPHA collaboration [21] the authors point
out that for an HMC algorithm which is invariant under
parity, such as ours, the correlations seen in parity-even
observables, which we study, will correspond to modes in
the HMC evolution which are determined by parity-even
quantities such as Q2. We have included this quantity also
in Fig. 4 and Table V, for which we observe substantially
smaller autocorrelation lengths, suggesting that our 48I and
32Ifine bin sizes are also quite conservative.
Of the 32Ifine and 64I data sets, the latter is the most

important to our analysis. In Fig. 5 we plot the error on the
64I simulated data as a function of increasing bin size,
where we estimate the error on the error as ∼1=

ffiffiffiffi
N

p
were N

is the number of binned samples. In Fig. 19 of Sec. V we
show a similar plot but for the physical predictions of our
global fits, again as a function of the 64I bin size. From
these figures we observe no statistically significant depend-
ence on the 64I bin size, suggesting that we are not
underestimating our errors by making our choice of 100
MDTU bins for this ensemble.
The ability to generate physical mass ensembles forced

us to seek dramatic improvements in our measurement
strategy, since the statistical error for kaon observables
increases with decreasing light quark mass (holding the
strange quark mass fixed). For an example of this behavior,
consider the kaon two-point function,

CðtÞ ¼
X
~y;~x

½su�ð~y; tÞ½us�ð~x; 0Þ; ð32Þ

TABLE V. Estimated integrated autocorrelation times for vari-
ous quantities on the 32Ifine, 48I, and 64I ensembles.

Ensemble hPi Et0 Ew2
0

Q Q2 hψ̄γ5ψi hψ̄ψi
32Ifine 2.9(7) 29(77) 51(66) 340(120) 240(140) 2.6(8) 24(4)
48I 4.1(1.0) 10(26) 10(24) 1.1(1.6) 0.2(5) 1.9(3) 1.4(3)
64I 4.7(1.7) 38(24) 30(22) 19(7) 5(9) 6(8) 2.0(4)
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which in the limit of large t goes as

hCðtÞi ¼ Ae−mKt þ…; ð33Þ

where h…i is the average over the gauge field ensemble.
The standard deviation on this quantity, i.e. its statistical
error, goes as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC2ðtÞi

p
, which contains two strange quark

propagators and two light quark propagators. This quantity
can also be represented as a linear combination of expo-
nentially decaying terms:

hC2ðtÞi ¼ Be−ðmssþmπÞt þ…; ð34Þ

where mss is the mass of the ss state. The signal-to-noise
ratio goes as exp ð−½mK − ðmss þmπÞ=2�tÞ in the large
time limit, and therefore decays faster with lighter pions.
The first component of our measurement strategy

involves maximally reusing propagators for all of our
measurements, which include mπ , mK , mΩ, fπ , fK , BK ,
fKπþ ð0Þ and K → ðππÞI¼2. (Note that the latter two quan-
tities are not reported on in this document.) Reusing
propagators requires choosing a common source for our
propagators that remains satisfactory across the entire range
of measurements. Also, since we measure both two- and
three-point functions, we need to be able to control the
spatial momentum of the sources in order to project out
unwanted momenta. We performed numerous studies of
Coulomb gauge fixed wall sources and Coulomb gauge
fixed box sources for many of these observables. (The box
sources were generically chosen so that an integer multiple
of their linear dimension would fit in the lattice volume,

allowing us to obtain zero momentum projections by using
all possible box sources.) While the box sources showed
faster projection onto the desired ground state, the stat-
istical errors on the wall sources were much smaller, such
that the errors on the measured quantities per unit of
computer time were essentially the same. From these
studies, we chose to use the simple Coulomb gauge fixed
wall sources.
In previous work on the η − η0 mass, which involves

disconnected quark diagrams, we found that translating n-
point functions over all possible temporal source locations
reduced the error essentially as the square-root of the
number of translations [22]. The calculation of such a large
number of quark propagators on a single configuration can
be accomplished much more quickly by a deflation
algorithm. The EigCG algorithm [23] was used for
K → ðππÞI¼0;2 measurements at unphysical kinematics in
Ref. [24], and was adopted for this calculation.
Measurements were again performed for all temporal
translations of the n-point functions, and a factor of 7
speed-up was achieved. The major drawback of EigCG is
the considerable memory footprint. However, BG/Q par-
titions have large memory and therefore this issue can be
managed. In practice we found that only a fraction of the
vectors generated by the EigCG method were good
representations of the true eigenmodes, and in future we
may be able to reduce the CG time further by pre-
calculating exact low-modes using the implicitly restarted
Lanczos algorithm with Chebyshev acceleration [25].
An alternative approach to generating a large number of

quark propagators is to use inexact deflation. [26]. This
approach had not been optimally formulated for the domain
wall operator when the measurements on our new ensem-
bles were begun. However, a new formulation of inexact
deflation appropriate to DWF, known as HDCG [27], has
since been developed, and has been shown to be more
efficient than EigCG; this technique is now being used for
our valence measurements.
The final component of our measurement package is the

use of the all-mode averaging (AMA) [7] method to further
reduce the cost of translating the propagator sources along
the temporal direction. AMA is a generalization of low-
mode averaging, in which one constructs an approximate
propagator using exact low eigenmodes and a polynomial
approximation to the high modes obtained by applying
deflated conjugate gradient (CG) to a source vector on each
temporal slice and averaging over the solutions. The
stopping condition on the deflated conjugate gradient
can generally be relaxed, reducing the iteration count.
The remaining bias in the observable is corrected using a
small number of exact solves obtained using the low modes
and a precise deflated CG solve from a single timeslice for
the high-mode contribution. The benefit of this procedure is
that the CG solves used for the polynomial approximation
can be performed very cheaply using inexact “sloppy”

FIG. 5. The dependence of the error for the simulated data on
the 64I ensemble. The vertical axis plots the ratio σb=σ1 for bin
size b along the horizontal axis, where σ is the statistical error and
the subscript indicates the bin size for which that error was
computed. The upper and lower bounds were obtained by varying
σb by 1=

ffiffiffiffi
N

p
, where N is the number of samples.
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stopping conditions of 10−4 or 10−5 as many of the low
modes are already projected out exactly. The net result of
combining the sloppy translated solution with the (typically
small) bias correction is an exact result calculated many
times more cheaply than if we were to perform precise
deflated solves on every timeslice.
In order to avoid any bias due to the even-odd decom-

posed Dirac operator used in the CG, we calculate the
eigenvectors using EigCG on a volume source spanning the
entire four-dimensional volume, and the temporal slices
where we perform the exact solves are chosen randomly for
each configuration. We calculate low modes in single
precision using EigCG in order to reduce the memory
footprint, and also perform the sloppy solves in single
precision. For the exact solves, we achieve double precision
accuracy throughmultiple restarts of single precision solves,
restarting the solve by correcting the defect as calculated in
double precision. For the zero-momentum strange quark
propagators required, we do a standard, accurate CG solve
for sources on every timeslice. On the 48I, we performed our
measurements using single rack BG/Q partitions (1024
nodes), calculating 600 low modes with EigCG (filling
the memory) and running continuously for 5.5 days. (Note
that this timing includes nonzero momentum light quark
solves for measurements of fKþ and additional light quark
solves for K → ðππÞI¼2, which are not reported in this
document.) For the 64I ensemble, the measurements were
performed on between 8 and 32 rack BG/Q partitions at the
ALCF and 1500 lowmodeswere calculated by EigCG.On a
32 rack partition, the latter took 5.3 hours and the solver
sustained 1 PFlops. (The EigCG setup time is efficiently
amortized in these calculations by using the EigCG eigen-
vectors to deflate a large number of solves.)
The Coulomb gauge-fixing matrices for the 64I ensem-

ble were not computed on the BG/Q and were instead
determined separately (and more quickly) on a cluster,
using the timeslice-by-timeslice Coulomb gauge FASD
algorithm [28].
We simultaneously fit the residual mass, pseudoscalar

masses and decay constants, axial and vector current
renormalization coefficients (ZA and ZV , respectively),
and kaon bag parameter (Blh). A separate fit was performed
for the Ω-baryon mass. The values for these observables
obtained on each lattice, as well as the statistical errors
computed by jackknife resampling, are summarized in
Table VI. The corresponding fit ranges are summarized
in Tables VII and VIII. In the following sections we discuss
the fit procedures and plot effective masses and amplitudes
for each observable.

A. Residual mass

For domain wall fermions, the leading effect of having a
finite fifth dimension is an additive renormalization to the
bare quark masses known as the residual mass, mres. We
extract the residual mass from the ratio

Cmres
ðtÞ ¼ h0jP~xj

a
5qð~x; tÞjπi

h0jP~xj
a
5ð~x; tÞjπi

; ð35Þ

where ja5q is the pseudoscalar density evaluated at the
midpoint of the fifth dimension, and ja5 is the physical
pseudoscalar density constructed from the surface fields
[cf. Ref. [29], Eqs. (8) and (9)]. In Fig. 6 we plot the
effective residual mass, as well as the fit, on each ensemble.

TABLE VI. Summary of fit results in lattice units.

32Ifine 48I 64I

mll 0.11790(131) 0.08049(13) 0.05903(13)
mlh 0.17720(118) 0.28853(14) 0.21531(17)
fll 0.04846(32) 0.07580(8) 0.05550(10)
flh 0.05358(22) 0.09040(9) 0.06653(10)
ZA 0.77779(29) 0.71191(5) 0.74341(5)
ZV 0.77700(8) 0.71076(25) 0.74293(14)
Blh 0.5437(85) 0.5841(6) 0.5620(6)
mhhh 0.5522(29) 0.9702(10) 0.7181(7)
m0

hhh 0.811(49) 1.273(10) 0.937(7)
mres 0.0006296(58) 0.0006102(40) 0.0003116(23)

w0 2.664(16) 1.50125(94) 2.0495(15)
t1=20

2.2860(63) 1.29659(28) 1.74496(62)

mll=mhhh 0.2135(26) 0.08296(17) 0.08220(20)
mlh=mhhh 0.3209(25) 0.29740(32) 0.29983(37)

TABLE VIII. Summary of fit ranges used for each three-point
correlator and ensemble. We simultaneously fit to all source-sink
separations in the given range, where the operator insertion is
evaluated at times which are at least tskip=a time slices away from
the sources and sinks.

Ensemble Quantity jtsource − tsinkj=a tskip=a

32Ifine
ZV 16∶4∶32 8
Blh 52∶4∶56 10

48I
ZV 12∶4∶24 6
Blh 20∶4∶40 10

64I
ZV 15∶5∶40 6
Blh 25∶5∶40 10

TABLE VII. Summary of fit ranges tmin=a ≤ t=a ≤ tmax=a
used for each two-point correlator and ensemble.

Correlator 32Ifine 48I 64I

PPWLðllÞ 10∶31 15∶48 12∶60
PPWWðllÞ 10∶31 10∶35 10∶61
APWLðllÞ 10∶31 10∶46 10∶60
PPWLðlhÞ 10∶31 14∶40 17∶49
PPWWðlhÞ 10∶31 14∶33 14∶45
APWLðlhÞ 10∶31 12∶40 20∶49
ZA 11∶52 6∶89 10∶117
Ω 6∶20 5∶17 5∶19
mres 6∶57 9∶86 10∶117
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B. Pseudoscalar masses

The masses of the pion and kaon at the simulated quark
masses, denotedmll andmlh respectively, were extracted by
fitting to two-point functions of the form

Cs1s2O1O2
ðtÞ ¼ h0jOs1

1 ðtÞOs2
2 ð0Þj0i: ð36Þ

Here the subscripts indicate the interpolating operators
and the superscripts denote the operator smearing used for
the sink and source, respectively. In the following we have
used Coulomb gauge-fixed wall (W) sources, and both
local (L) and Coulomb gauge-fixed wall sinks. We extract
the pseudoscalar meson masses by fitting three correlators
simultaneously: PPLW , PPWW , and APLW , where P is the
pseudoscalar operator and A is the temporal component of
the axial current. These are fit to the following analytic
form for the ground state of a Euclidean two-point
correlation function:

Cs1s2O1O2
ðtÞ ¼ h0jOs1

1 jXihXjOs2
2 j0i

2mXV
ðe−mXt � e−mXðNt−tÞÞ;

ð37Þ

where the þð−Þ sign corresponds to the PP (AP)
correlators, and X denotes the physical state to

which the operators couple. In the following sections
we use

N s1s2
O1O2

≡ h0jOs1
1 jXihXjOs2

2 j0i
2mXV

ð38Þ

to denote the amplitude for a given correlator. The effective
mass plots associated with these correlators, as well as the
fitted masses, are shown in Figs. 7, 8, 9, and 10.

C. Pseudoscalar decay constants and axial
current renormalization

The pseudoscalar decay constants, fπ and fK , are
defined in terms of the coupling of the pseudoscalar meson
fields to the local four-dimensional axial current Aa

μ:(
h0jAa

μðxÞjπbðpÞi ¼ −iδabfπpμeip·x

h0jAa
μðxÞjKbðpÞi ¼ −iδabfKpμeip·x

; ð39Þ

where

Aa
μðxÞ ¼ qðxÞγμγ5λaqðxÞ ð40Þ

is formed from the surface fields qðxÞ. In order to
match this operator to the physically normalized

FIG. 6. Effective mres on the 32Ifine (top left), 48I (top right), and 64I (bottom) ensembles.
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Symanzik-improved axial operator ASa
μ , we must derive the

appropriate renormalization factor, ZA. In the domain wall
fermion formalism it is also possible to define a five-
dimensional current Aa

μ which satisfies the discretized
partially conserved axial current (PCAC) relation,

Δ−
μ hπðxÞjAa

μðyÞi ¼ hπðxÞj2mja5ðyÞ þ 2ja5qðyÞi; ð41Þ

where Δ−
μ is the backwards discretized derivative. The

factor relating this to the Symanzik current is denoted ZA.
In the past, we took advantage of the fact that ZA ¼

1þOðmresÞ to approximate ZA as ZA=ZA, which can be
computed directly via the following ratio:

ZA ≈
ZA

ZA
¼ h0jP~xA

a
μð~x; tÞjπi

h0jP~xA
a
μð~x; tÞjπi

: ð42Þ

The 5-D current Aa
μðxÞ is properly defined as the current

carried by the link between x and xþ μ, whereas the
4-D current Aa

μðxÞ is defined on the lattice site x. The

correlation functions Cðtþ 1
2
Þ ¼ P

~xhAa
0ð~x; tÞπað~0; 0Þi

and LðtÞ ¼ P
~xhAa

0ð~x; tÞπað~0; 0Þi, that one would use to

compute the above ratio, are therefore not defined at the
same temporal coordinate. By taking appropriate combi-
nations of these correlators one can remove the associated
OðaÞ error and reduce the Oða2Þ error. ZA=ZA is then
computed via the following ratio [29]:

RðtÞ ¼ 1

2

�
Cðt − 1

2
Þ þ Cðtþ 1

2
Þ

2LðtÞ þ 2Cðtþ 1
2
Þ

Lðt − 1Þ þ Lðtþ 1Þ
�
:

ð43Þ

While the 1%–2% mres errors associated with the above
determination of ZA could be neglected in our earlier work,
where we were far from the chiral limit and the statistical
errors were larger than in the current work, in Refs. [6] and
[30] it was shown that a better approximation could be
obtained via the vector current. The local vector current
operator formed from the domain wall surface fields is

Va
μðxÞ ¼ qðxÞγμλaqðxÞ; ð44Þ

which is related to the Symanzik vector current VSa
μ by a

renormalization coefficient ZV which was shown to be

FIG. 7. Effective mll on the 32Ifine ensemble. We fit a common value of the mass to all three correlators.
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equal to ZA up to terms Oðm2
resÞ [6]. There is also a five-

dimensional conserved vector current Va
μ for which the

renormalization factor, ZV , is unity, and we can obtain a
significantly better approximation to ZA by computing
ZV=ZV on the lattice:

ZA ≈
ZV

ZV
¼ h0jP~x;iV

a
i ð~x; tÞVa

i ð~0; 0Þj0i
h0jP~x;iV

a
i ð~x; tÞVa

i ð~0; 0Þj0i
: ð45Þ

Below we determine both ZA=ZA and ZV=ZV , but use
only the latter to renormalize our decay constants.

1. Determination of ZA=ZA

We introduce a practical approach to the conserved axial
current for Möbius fermions in Appendix A and Ref. [31].
For the numerical determination of ZA, the explicit con-
struction of the current, used in Eq. (42), can be avoided
with an alternate determination that utilizes the ratio of the

FIG. 8. Effective mll on the 48I (left column) and 64I (right column) ensembles. We fit a common value of the mass to all three
correlators on a given ensemble.
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divergences of the four-dimensional and five-dimensional
axial currents:

ZA ≈
ZA

ZA
¼ h0jP~x∂μAa

μð~x; tÞjπi
h0jP~x∂μAa

μð~x; tÞjπi

¼ 2mh0jP~xj
a
5ð~x; tÞjπi þ 2h0jP~xj

a
5qð~x; tÞjπi

h0jP~x∂μAa
μð~x; tÞjπi

;

ð46Þ

where the last equality follows from the PCAC relation,
Eq. (41). We extract ZA from our lattice data using the
improved ratio8>>>>>>>><

>>>>>>>>:

CAðtÞ≡
�
0

				P
~x
∂μAa

μð~x; tÞ
				π
�

CAðt − 1
2
Þ≡

�
0

				P
~x
∂μAa

μð~x; tÞ
				π
�

Zeff
A ðtÞ ¼ 1

2

h
CAðt−1ÞþCAðtÞ

2CAðt−1
2
Þ þ 2CAðtÞ

CAðtþ1
2
ÞþCAðt−1

2
Þ
i
; ð47Þ

which is also constructed to minimize errors at Oða2Þ [29].
The translation by 1

2
in the argument of the correlation

function associated with Aa
μ arises from the divergence. The

five-dimensional current Aa
μ, by contrast, is defined on the

links between lattice sites, so its divergence is centered on
the lattice. In Fig. 11 we plot the effective ZA and fit on each
ensemble.

2. Determination of ZV=ZV

Since the relatively noisy ρ meson is the lightest state to
which the vector current couples, computing ZV accurately
requires a different approach from that used for ZA
[Eq. (46)]. Instead, we calculate the pion electromagnetic
form factors fþll ðq2Þ and f−llðq2Þ, defined by the matrix
element

hπðp1ÞjVμjπðp2Þi ¼ fþll ðq2Þðp2 þ p1Þμ
þ f−llðq2Þðp2 − p1Þμ; ð48Þ

where q ¼ p2 − p1 is the momentum transfer. Current
conservation implies f−llðq2Þ ¼ 0 for all q2, leaving only
the vector form factor, fþll . For two pions at rest, f

þ
ll ð0Þ ¼ 1,

and we can fit ZV from the temporal component of
Eq. (48). We fit to the ratio

~CWW
PP ðtsnkÞ

CPVPðtsrc; t; tsnkÞ
≅

t;jtsrc−tsnkj≫1
ZV; ð49Þ

where

FIG. 9. Effective mlh on the 32Ifine ensemble. We fit a common value of the mass to all three correlators.
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~CWW
PP ðtÞ ¼ CWW

PP ðtÞ − 1

2
CWW
PP

�
Nt

2

�
e−mllðNt=2−tÞ ð50Þ

is the pion two-point function, Eq. (37), with the around-
the-world state removed using the fitted pion mass, and
CWW
PVPðtsrc; t; tsnkÞ is the three-point function defined by the

matrix element, Eq. (48). On the 32Ifine and 48I ensem-
bles, this matrix element was computed for all π − π
separations, tsink − tsrc, that are a multiple of 4. For the
64I ensemble we computed on separations that are multi-
ples of 5. We determine the ranges of π − π separations to
use in the fit by plotting the midpoint of Eq. (49) as a
function of the π − π separation on each ensemble and

FIG. 10. Effective mlh on the 48I (left column) and 64I (right column) ensembles. We fit a common value of the mass to all three
correlators on a given ensemble.
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FIG. 11. Effective ZA on the 32Ifine (top left), 48I (top right), and 64I (bottom) ensembles.

FIG. 12. Effective ZV on the 32Ifine (top left), 48I (top right), and 64I (bottom) ensembles, for π − π separations of 32 time units, 20
time units, and 40 time units, respectively. Note that in each case the fit is performed using several π − π separations, not just the
separation plotted here.
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looking for a plateau: based on this analysis we chose
to include π − π separations in the range 16–32 on the
32Ifine ensemble, 12–24 on the 48I ensemble, and 15–40
on the 64I ensemble. In Fig. 12 we illustrate this method
by plotting Eq. (49) for a single π − π separation included
in the fit, as well as the fitted value for ZV, on each
ensemble.

3. Determination of the decay constants

The light-light pseudoscalar decay constant can be
computed from ZV and the amplitudes of the PP and
AP correlators as

fll ¼ ZV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

mllV
N LW

AP
2

NWW
PP

s
; ð51Þ

and likewise for the heavy-light pseudoscalar. In Figs. 13
and 14 we plot the effective amplitudes,

8>>><
>>>:

N eff
PPðtÞ ¼ CPPðtÞ

exp ð−mtÞþexp ð−mðNt−tÞÞ

N eff
APðtÞ ¼ CAPðtÞ

exp ð−mtÞ−exp ð−mðNt−tÞÞ
m ¼ meffðtÞ

; ð52Þ

associated with fll and flh.

FIG. 13. Effective amplitudes, defined by Eq. (52), associated with fll on the 32Ifine (top), 48I (middle), and 64I (bottom) ensembles.
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D. Neutral kaon mixing parameter

We compute the neutral kaon mixing parameter, Blh,
from the ratio

hK0jOVVþAAjK0i
8
3
hK0jA0j0ih0jA0jK0i

≅ Blh; ð53Þ

where OVVþAA is the ΔS ¼ 2 four-quark operator respon-
sible for the mixing:

OVVþAA ¼ sγμð1 − γ5Þd · sγμð1 − γ5Þd: ð54Þ

The matrix element in the numerator of Eq. (53) was
computed for K − K separations which are a multiple of
4 (5) on the 32Ifine/48I (64I) ensemble. On the 32Ifine
ensemble we use linear combinations of propagators with
periodic and antiperiodic boundary conditions in the
temporal direction to effectively double the time extent
of the lattice for the Blh correlators, a technique we have
also employed in previous calculations [5]. We determine

FIG. 14. Effective amplitudes, defined by Eq. (52), associated with flh on the 32Ifine (top), 48I (middle), and 64I (bottom)
ensembles.
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appropriate ranges ofK − K separations to include in the fit
using the same procedure as described in the previous
section for ZV. We chose separations of 52 and 56 time
units on the 32Ifine ensemble, 20; 24…40 on the 48I
ensemble, and 25; 30…40 on the 64I ensemble. In
Fig. 15 we plot the Blh effective amplitude for a single
K − K separation included in the fit, as well as the fitted
value for Blh, on each ensemble.

E. Omega baryon mass

We measured the Ω-baryon mass mhhh from the two-
point correlator

Cs1s2ΩΩ ðtÞ ¼
X3
i¼1

h0jOs1
Ω ð~x; tÞiOs2

Ω ð0Þij0i; ð55Þ

using an interpolating operator

OΩðxÞi ¼ εabcðsTaðxÞCγisbðxÞÞscðxÞ; ð56Þ

where C denotes the charge conjugation matrix. We
performed measurements using both Coulomb gauge-
fixed wall sources and Z3 box (Z3B) sources, and, in
both cases, a local (point) sink. The correlator, Eq. (55),

is a 4 × 4 matrix in spin space which couples to both
positive (þ) and negative (−) parity states, and has the
asymptotic form

Cs1s2Ω ðtÞ ≅
t≫1 X

~p

�
1

2
ð1þ γ4ÞAs1s2þ ð~pÞe−Eþ

~p
t

−
1

2
ð1 − γ4ÞAs1s2− ð~pÞe−E−

~p
t
�

ð57Þ

for large t. The fit to extract mhhh is performed by first
projecting onto the positive parity component,

PþC
s1s2
Ω ¼ 1

4
tr



1

2
ð1þ γ4ÞCs1s2Ω

�
; ð58Þ

for each source type, and then performing a simultaneous
fit of both correlators to a sum of two exponential functions
with common mass terms:(

CLWΩΩðtÞ ¼ N LW
ΩΩe

−mhhht þ ~N LW
ΩΩe−m

0
hhht

CLZ3B
ΩΩ ðtÞ ¼ N LZ3B

ΩΩ e−mhhht þ ~N LZ3B
ΩΩ e−m

0
hhht

: ð59Þ

One can also include terms proportional to e−m−ðNt−tÞ,
where m− is the mass of the ground state in the

FIG. 15. Effective Blh on the 32Ifine (top left), 48I (top right), and 64I (bottom) ensembles, for K − K separations of 52 time units, 32
time units, and 40 time units, respectively. Note that in each case the fit is performed using several K − K̄ separations, not just the
separation plotted here.
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FIG. 16. The effective mass of the Omega baryon obtained using both our wall (LW) and Z3 box source (LZ3B) on the 32Ifine (top
left), 48I (top right), and 64I (bottom) ensembles. The correlation functions are simultaneously fit to a two-exponential fit form, and the
effective mass determined from the fit function (obtained by applying the same technique as used to extract the effective mass from the
raw data) is overlayed with the data.

FIG. 17. The stability, as a function of the lower bound on the fit range tmin=a, of our fitted Omega baryon ground state (upper row)
and first-excited state (lower row) for the 32Ifine (left), 48I (middle) and 64I (right) ensembles. The point in red indicates our final value.
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negative parity channel, to account for around-the-world
contamination effects, but we find that our lattices are
sufficiently large and the masses of these states sufficiently
heavy that including these terms has no statistically
significant influence on the fitted Ω mass. Using multiple
source types and double-exponential fits to common
masses allows us to reduce the statistical error on the Ω
baryon mass mhhh, as well as to also fit the mass of the first
excited state in the positive parity channel m0

hhh. Figure 16
plots the effective Ω-baryon mass on each ensemble.
In Fig. 17 we plot the dependence of our fitted ground and

excited state energies on the lower temporal bound of the fit.
The upper bound of the fit window is fixed at 20, 16, and 19
on the 32Ifine, 48I, and 64I ensembles, respectively. We
observe excellent stability for bounds above tmin ¼ 4,
suggesting that we have good resolution on both the ground
and excited states, and that contamination of our results by
higher-energy excited states can be discounted. In practice
we use tmin ¼ 5 for both the 48I and 64I ensembles, and
tmin ¼ 6 for the 32Ifine ensemble.

F. Wilson flow scales

The Wilson flow scales, t1=20 and w0, are quantities
with the dimension of length defined via the following
equations [32]:

t2hEðtÞijt¼t0 ¼ 0.3; ð60Þ

and [33]

t
d
dt

ðt2hEðtÞiÞjt¼w2
0
¼ 0.3; ð61Þ

where E is the discretized Yang-Mills action density,

E ¼ 1

2
trðFμνFμνÞ: ð62Þ

We determine the action density using the clover discretiza-
tion, for which Fμν is estimated at each lattice site from the
clover of four 1 × 1 plaquettes in the μ − ν plane. We find
that this leads to smaller discretization errors (especially for
t0) than estimating Fμν directly from the plaquette via

hPi ¼ 1 −
a4

36
hEi þOða6Þ ð63Þ

which is in agreement with some previous experience [32].
In Fig. 18 we show an example of the interpolation of the
two scales on the 64I ensemble. The final results for all
ensembles are listed in Table VI.

IV. SIMULTANEOUS CHIRAL/CONTINUUM
FITTING PROCEDURE

The bare quark masses for the 48I and 64I ensembles
were chosen based on the results for the physical
quark masses at equivalent bare couplings obtained in
Ref. [5]. The simulated values for the dimensionless
ratios mπ=mΩ and mK=mΩ are shown in Table VI. Since
we are not simulating electromagnetism, we compare to
the following physical values: mπ ¼ 135.0 MeV, mK ¼
495.7 MeV and mΩ ¼ 1.67225 GeV. Clearly our simula-
tions are very close to the physical point, yet we must
perform the very modest extrapolation in order to obtain
precise physical results.

A. Summary of global fit procedure

In Refs. [5,6] we have detailed a strategy for performing
simultaneous chiral and continuum “global” fits to our
lattice data. In this document we perform such fits to the
following quantities: mπ , mK , fπ , fK , mΩ and the Wilson
flow scales t1=20 and w0. We parametrize the mass depend-
ence of each quantity using three ansätze (where appli-
cable): NLO partially quenched chiral perturbation theory

FIG. 18. The interpolation in Wilson flow time t on the 64I ensemble of the functions of the action density used to define t0 and w0

respectively. The red point is the interpolated value.
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with and without finite-volume corrections (i.e. infinite
volume χPT), which we henceforth refer to as the ChPTFV
and ChPT ansätze respectively; and a linear “analytic”
ansatz. For the ChPT and ChPTFV ansätze we use heavy-
meson χPT [34,35] to describe quantities with valence
strange quarks. For the convenience of the reader, we have
collected the various ChPT and analytic fit forms in
Appendix H. In this appendix we also specify the new
fit functions that we use to describe the Wilson flow scales,
t1=20 and w0.
We use the difference between the results obtained for

each ansatz to estimate our systematic errors. In order to
account for discretization effects, we include in each fit
form an a2 term. As discussed in Ref. [5], we neglect higher
order effects including terms in a4 and a2 lnða2Þ. The fits
are performed to dimensionless data, with the parameters
determined in the bare normalization of a reference
ensemble r. The bare lattice quark masses and data on
other ensemble sets are “renormalized” into this scheme via
additional fit parameters: For an ensemble e, these are Ze

l ,
Ze
h for normalizing the light and heavy quark masses

respectively, and Re
a for the scale. These are defined as

follows:

Ze
l=h ¼

1

Re
a

ða ~ml=hÞr
ða ~ml=hÞe

and Re
a ¼ ar=ae; ð64Þ

where a is the lattice spacing and ~m ¼ mþmres. Note that
the scheme used for the quark masses is implicitly mass
dependent, hence we allow for different parameters to
renormalize the heavy (Zh) and light (Zl) quarks. In
practice this dependence is very weak and Zl and Zh differ
only at the percent level even on our coarsest lattices
(cf. Table XVII) despite the order of magnitude difference
in the mass scales. Within a large range of light quark
masses we previously observed no measurable dependence
[6], which motivated our choice to obtain these quantities
as free parameters in the global fit (“generic scaling”) rather
than by matching at a single mass (“fixed trajectory”).
The procedure for obtaining the general dimensionless fit

form for a quantity Q is described in Appendix B.
We choose a continuum scaling trajectory along which

mπ=mΩ and mK=mΩ match their physical values. Here we
include the Ω baryon mass due to the ease of obtaining an
precise lattice measurement and its simple quark mass
dependence. This procedure defines mπ , mK and mΩ as
having no lattice spacing dependence. After performing the
fit, we obtain the lattice spacing for the reference ensemble
by comparing the value of any of the aforementioned
quantities to the corresponding physical value after
extrapolating to the physical quark masses. The lattice
spacings for the other ensembles are then obtained by
dividing this value by Re

a. An alternate choice of scaling
trajectory, for example using fπ in place of mΩ, would
reintroduce the scale dependence onmΩ and remove it from

fπ; the values of each a2 coefficient are therefore dependent
on the choice of scaling trajectory, but the continuum limit
is guaranteed to be the same (up to our ability to measure
and extrapolate the quantities in question). Note that the
inclusion of the Wilson flow data results in significant
improvements in the statistical error on the lattice spacings
compared to our previous determinations due to its influ-
ence on the shared ratios Ra.
While the data on a given ensemble can be expected to be

highly correlated, the estimated correlation matrices tend to
suffer from having a poor condition number preventing
their use in correlated fits. As a result, our global fits are
performed assuming a diagonal correlation matrix. This
approach can result in larger jackknife statistical errors than
for correlated fits; however, in the past [35] we have
experimented with performing partially correlated fits
where increasingly large numbers of leading eigenvectors
were included in the estimate, and found little difference
between the uncorrelated and correlated results. With
uncorrelated fits the χ2=d:o:f may not be a reliable indicator
of the goodness of fit, and to assess their quality we instead
generate histograms of the deviation between the data and
the fit.

B. Details specific to this calculation

Using our simultaneous fit strategy, we combine our 64I
and 48I physical point ensembles with a number of existing
domain wall ensembles: the 24I and 32I ensembles with
lattice volumes 243 × 64 × 16 and 323 × 64 × 16 and
Shamir domain wall fermions with the Iwasaki gauge
action at bare couplings β ¼ 2.13 and 2.25 respectively
(equal to the 48I and 64I bare couplings respectively)
described in Refs. [35] and [6]; the 32ID ensembles with
volume 323 × 64 × 32 and Shamir domain wall fermions
with the Iwasakiþ DSDR gauge action at β ¼ 1.75
described in Ref. [5]; and finally the 32Ifine ensemble
with volume 323 × 64 × 12 and Shamir domain wall
fermions with the Iwasaki gauge action at β ¼ 2.37
described in this document. For the convenience of the
reader, we summarize the input parameters of the 24I, 32I,
and 32ID ensembles along with a number of relevant
quantities including the range of pion masses, the lattice
spacing and physical lattice size, in Table IX.
Following our earlier analyses, we use the 32I ensemble

set as the reference ensemble against which the “scaling
parameters,” Zl=h and Ra, are defined.

1. Ensemble-specific parameters

As discussed in Sec. II, the Möbius parameters of the 48I
and 64I ensembles are chosen to ensure the equivalence of
the Möbius and Shamir kernels; as a result, the ensembles
with the Iwasaki gauge action can all be described by the
same continuum scaling trajectory, i.e. with the same a2

scaling coefficients. As described in Ref. [5], additional
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parameters must be introduced to describe the lattice
spacing dependence of the 32ID ensembles, which use
the Iwasakiþ DSDR gauge action to suppress the dis-
locations that enhance the domain wall residual chiral
symmetry breaking on this coarse lattice.
Note that while the 32ID ensemble is the only data set

with the Iwasakiþ DSDR gauge action, the five additional
a2 terms for fπ, fK , w0, t1=20 and BK , are completely
determined from the overall relative normalization of these
data under the χ2 minimization. This leaves more than
sufficient data to determine Zl, Zh and Ra on this ensemble
set and to help constrain the coefficients of the mass terms
that are common to all ensembles in these fits. Although the
32ID ensemble set is coarse (a−1 ¼ 1.38ð1Þ GeV), we
observe discretization effects only at the 5% level sug-
gesting a discretization systematic error arising from higher
order [Oða4Þ] terms at the 0.25% scale, small enough to be
neglected. The inclusion of these ensembles in the global
fits is discussed at length in Ref. [5].
The 48I and 64I ensembles have identical bare cou-

plings to the 24I and 32I ensembles respectively, yet
differ in their values of the total quark mass, Ls and
Möbius scale parameter α. The change in residual chiral
symmetry breaking resulting from the changes in Ls and α
gives rise to a shift in the bare mass parameter of the low-
energy effective Lagrangian, which we account for at
leading order in our fits by renormalizing the quark
masses as ~m ¼ mþmres. Higher order effects such as
those of ordermresa2 are small enough to be ignored. After
performing this correction we might assume that the
scaling parameters Zl, Zh and Ra (or equivalently the
lattice spacing) for the 48I and 24I ensembles should be
identical, and likewise for the 64I and 32I ensembles.
However when we performed our global fits we found that
the 48I lattice spacing is 3.2ð2Þ% larger than that of the
24I ensemble, and the 64I lattice spacing is 1.1ð2Þ% larger
than the 32I value. We saw no statistically discernible
differences in Zl and Zh.

As we mentioned in Sec. II A and discuss in detail in
Appendix C, the observed change in the lattice spacings
can be expected to originate from the changes in the
effective extent of the fifth dimension, L0

s ¼ αLs, which
differs by a factor of 3 between the 48I/24I ensembles,
and a factor of 1.5 between the 64I/32I. At finite L0

s the
Symanzik effective Lagrangian contains the leading-order
operator βeff trðFμνFμνÞ. A change in L0

s which causes a
0.0025 change in mres should also be expected to cause a
≈0.0025 change βeff , a change which results in an expo-
nentially enhanced change in the resulting lattice spacing.
Recall that the 5.6% change in the coupling between a
β ¼ 2.13, a−1 ¼ 1.75 GeV ensemble and a β ¼ 2.25,
a−1 ¼ 2.38 GeV ensemble, gives rise to a 36% change
in the inverse lattice spacing. Thus, we might expect a 3%
change in a−1 to result from a 0.5% change in the effective
coupling, not far from the change we observe. We discuss
in Appendix C how changes of this size are not unreason-
able, and provide additional numerical evidence for the
observed change in lattice scale.
Finite L0

s effects will also give rise to other higher order
effects of a similar size. For example, we might expect
Oð0.5%Þ shifts in the a2 scaling coefficients of the various
quantities included in our global fits. However, in Sec. V
we find that even on the coarser 48I ensemble, the
discretization effects are only at the 2%-3% level
(cf. Table XIII), suggesting negligible, 0.02% finite L0

s
effects. We again emphasize that for our large values of L0

s,
it is only the exponentially enhanced dependence of the
lattice spacing upon the Symanzik coefficients that gives
rise to observable finite-L0

s dependence in this quantity. We
do not expect any other observable effects.
Additional evidence for the closeness of our Möbius and

Shamir ensembles can be obtained by comparing the
renormalization factors for the quark masses, Zm, and the
kaon bag parameter, ZBK

. The former are computed for
the 32I and24I ensembles inAppendix F, for use in obtaining
renormalized physical quark masses later in this document.

TABLE IX. Input parameters and relevant quantities for the 32I, 24I, and 32ID ensembles. For the action, I stands
for the Iwasaki gauge action, and ID the Iwasaki action with the DSDR term. Here L is the spatial lattice extent and
mπL is given for the lightest partially quenched pion at the simulated strange quark mass. The last two rows list the
range of unitary pion masses and the lightest partially quenched pion mass (PQ) mass, respectively. The full set of
corresponding bare quark masses is given in Table XI. The lattice spacings used here are determined in Sec. V B.

32I 24I 32ID

Size 323 × 64 × 16 243 × 64 × 16 323 × 64 × 32
Action Shamir DWFþ I Shamir DWFþ I Shamir DWFþ ID
β 2.13 2.25 1.75

a−1ðGeVÞ 2.383(9) 1.785(5) 1.378(7)
L (fm) 2.649(10) 2.653(7) 4.581(23)
mπL 3.122(12) 3.339(15) 3.335(7)

mπ unitary (MeV) 302.4(1.2)–360.1(1.4) 339.7(1.3)–339.7(1.3) 172.4(0.9)–315.5(1.6)
mπ lightest PQ (MeV) 232.4(1.1) 248.3(1.2) 143.8(0.8)
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There we do not present the computation of the correspond-
ing factors for the 48I and 64I ensembles as they are not
needed in our later analysis.Nevertheless,we have computed
these values, and we list them alongside the 24I and 32I
numbers in Table X. We observe only tiny, 0.2% scale
differences between the 48I/24I values and even smaller
< 0.1% differences for the 64I/32I ensembles. Comparing
the values for ZBK

in Table XLII we again see differences
only at the 0.25% scale. This strongly suggests that finite-Ls
effects have no significant impact upon theUV physics other
than through the exponentially enhanced dependence of the
lattice spacing upon a shift in the bare coupling at the 0.5%
scale. In addition, these observations justify our fixing both
Zl and Zh to be the same for the 24I and 48I ensembles, and
also for the 32I and 64I ensembles.

2. Weighted global fits

The fits are performed independently for each super-
jackknife sample J by minimizing χ2J under changes
in the set of fit parameters cJ of the function f. χ2J is
defined as

χ2J ¼
X
i

½yiJ − fðxiJ; cJÞ�2
σ2i

ð65Þ

were yiJ is the Jth superjackknife sample of a measurement
i and xiJ are the associated input parameters (quark masses,
etc). σi is the error on the measurement, and provides the
weight of each data point in the fit.
The naïve χ2-minimization procedure weights each data

point according to just its statistical error, and is therefore
unable to account for systematic uncertainties on the fit
function itself. Given that NLO χPT can only be expected
to be accurate to Oð5%Þ in the 200–370 MeV pion-mass
range in which the majority of our data lies, the fits over-
weight the data in this heavy-mass region resulting in
deviations of the fit curve from the light-mass data. In
practice the enhanced precision of the near-physical 64I
and 48I data partially compensates for the larger number
of heavy-mass data points, resulting in only Oð1σ − 2σÞ
deviations between these data and the fit curve. However,

as the intention of these global fits is only to perform a few-
percent mass extrapolation of our near-pristine data, such
deviations are unacceptable.While this can be remedied to a
certain degree by removing data from the heavy-mass
region, there remains pollution from the systematic uncer-
tainty of the fit form. Without going to full NNLO χPT, one
might attempt to reduce this uncertainty by introducing
physically motivated “nuisance parameters,” perhaps along
with Bayesian constraints to confine them within sensible
bounds. While this is certainly a valid approach we feel it to
be beyond the scope of this work, given that we desire only
to perform a small correction to our near-physical data.
With this in mind, we instead adopt an alternative approach
in which we force the fit curve to pass through our near-
physical data by increasing the weight of these data in the
χ2 minimization as follows.
We introduce a measurement-dependent weighting fac-

tor ωi to the χ2 determination:

χ2J ¼
X
i

ωi½yiJ − fðxiJ; cJÞ�2
σ2i

: ð66Þ

Note that only the relative values of ωi matter as the same
parameters that minimize χ2 will also minimize rχ2, where
r is some common factor. (Of course the algorithm itself
has some numerical stopping condition which will need to
be adjusted to take into account the change in normalization
of χ2.) In principle one could tune the relative weights
based on a combination of the measured statistical error and
an estimate of the systematic error of the fit function at each
point, but this runs the risk of becoming too complex and
arbitrary. Instead, as previously mentioned, we weight the
data such that the fit is forced to pass directly through the
data points on the 48I and 64I ensembles. To achieve this,
we set ωi ¼ Ω for those data, where Ω is assumed to be
large, and ωi ¼ 1 for the remainder. This is performed
independently for each superjackknife sample, and does
not change the fluctuations on the data between superjack-
knife samples. As a result, the statistical error from the
overweighted points is unchanged by this procedure. In
Appendix D we demonstrate that the fit results become
independent of Ω in the limit Ω → ∞ and that the

TABLE X. A comparison of the quark mass renormalization factors Zm between the 48I/24I and 64I/32I pairs of
ensembles, giving the values and their percentage difference. The renormalization scale is 3 GeVand the definitions
of the schemes are given in Appendix F alongside details of the computation of the 24I and 32I values. Those for the
48I and 64I are not used later in the analysis and are presented here only for comparison. Note that unlike the 24I and
32I values, those for the 48I and 64I ensembles are not extrapolated to the chiral limit as they are computed at only a
single mass but for other ensembles we have observed no significant mass dependence for these nonexceptional
schemes.

Scheme 48I 24I % diff. 64I 32I % diff.

q 1.43613(80) 1.4386(12) 0.17% 1.43998(80) 1.4396(37) 0.03%
γμ 1.52070(89) 1.5235(13) 0.18% 1.51764(98) 1.5192(39) 0.1%
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procedure has the desired effect of forcing the fit through
the physical point data.
For large values of Ω we must choose small values of the

numerical stopping condition on the minimization algo-
rithm, increasing the time to perform the fit and making it
more susceptible to finite-precision errors. In the afore-
mentioned appendix we determine that Ω ¼ 5000 and a
stopping condition of δχ2min ¼ 1 × 10−4 is sufficient.
We emphasize that this procedure is performed sepa-

rately for each superjackknife sample of our combined data
set, such that the error on the fit function evaluated at the
parameters associated with the 64I and 48I data is exactly
equal to the error on the corresponding data. This can be
seen, for example, in Fig. 23 of Sec. V B, where we see the
1σ width of the fit curve exactly aligns with the error bars
for the 48I and 64I data.

V. FIT RESULTS AND PHYSICAL PREDICTIONS

We performed global fits using the ChPTFV, ChPT and
analytic ansätze. As discussed in Ref. [5], we attempt to
separate the finite-volume and chiral extrapolation effects
by performing the analytic fits to data that is first corrected
to the infinite-volume using the ChPTFV fit results.
Following Ref. [5], the ChPTFV and ChPT fits were
performed with a 370 MeV pion mass cut on the data
[this is set slightly larger than the value used in that paper,
as we wish to include in our fit the 32Ifine data with a
371(5)MeV pion]. The criteria for excluding the other fitted
data are as follows: For fπ we exclude the data if the pion
mass with the same set of partially quenched quark masses
lies above the cut; for fK and mK data points with light
valence quark massmx and heavy mass my, we exclude the
data if the pion withmx ¼ my on that ensemble is above the

pion mass cut; and for mΩ, t
1=2
0 and w0 we exclude the data

only if the unitary pion on that ensemble is also excluded.
We consider two different pion mass cuts for the analytic

fits: the 370 MeV cut used for the ChPTFVand ChPT fits,
and a lower, 260 MeV cut. In our previous work we
determined that the analytic fits were not able to accurately
describe the data over the range from the physical point to
the heaviest data, forcing us to use the lower cut. However,
in the present analysis the fit predictions are dominated by
the near-physical data due to the overweighting procedure,
and these data require only a small, percent-scale, chiral
extrapolation to correct to the physical light quark mass.
This can be seen in Table XIII, in which we list the sizes of
the various corrections required to obtain the physical
prediction. We therefore also perform analytic fits with
the 370 MeV cut, which includes substantially more data,
including a third lattice spacing, that may enable a more
precise determination of the dominant a2 scaling behavior.
In practice we find the results to be highly consistent.
Each of the fits with a 370 MeV pion mass cut have 49

free parameters and use 709 data points, giving 660 degrees

of freedom; similarly, the analytic fits with the 260MeV cut
have 46 free parameters and use 414 data points, giving
368 degrees of freedom. Note that a substantial amount of
the data on the 32ID, 32I and 24I ensembles differ only in
their reweighted sea strange quark mass (for which we use
four separate values including the simulated value) and are
therefore highly correlated. The full set of input quark
masses for the 32I, 24I and 32ID data that we include in the
global fits for each of our two pion mass cuts are
summarized in Tables XI and XII for convenience.

TABLE XI. The bare light quark masses for the mπ and fπ data
on our older 32I, 24I and 32ID ensembles that we included in our
global fits with the 370 MeV pion mass cut. Data in bold are those
included in the fits with the lower, 260 MeV cut. Here ml is the
sea light mass, and mx and my are the (partially quenched)
valence masses. The final column gives the full set of available
mx values. Note, each of these points are computed with four
different sea strange quark masses that are given in Table XII.

Ensemble set ml my fmxg

32I

0.006
0.006 0.006, 0.004, 0.002
0.004 0.004, 0.002
0.002 0.002

0.004
0.006 0.006, 0.004, 0.002
0.004 0.004, 0.002
0.002 0.002

24I 0.005
0.005 0.005, 0.001
0.001 0.001

32ID

0.0042

0.008 0.008, 0.0042, 0.001, 0.0001
0.0042 0.0042, 0.001, 0.0001
0.001 0.001, 0.0001
0.0001 0.0001

0.001

0.008 0.008, 0.0042, 0.001, 0.0001
0.0042 0.0042, 0.001, 0.0001
0.001 0.001, 0.0001
0.0001 0.0001

TABLE XII. Strange quark masses in the valence and sea
sectors on our older 32I, 24I and 32ID ensembles. The second
column gives the simulated strange mass, and the third column
the subset of reweighted strange masses that are used in our
global fits. The final column gives the set of valence strange
masses with which we computed the Omega baryon mass, and
the kaon mass, decay constant and bag parameters. As discussed
in the text, for the 260 MeV pion mass cut, we exclude kaonic
data with valence light quark massmx if the pion withmy ¼ mx is
excluded on that ensemble. Similarly, the Omega baryon and the
Wilson flow data are excluded if the unitary pion on that
ensemble is excluded.

Ensemble set msim
h fmrw

h g fmval
h g

32I 0.03 0.029, 0.028, 0.027 0.03, 0.025
24I 0.04 0.03775, 0.0355, 0.03325 0.04, 0.03
32ID 0.045 0.0455, 0.046, 0.0465 0.035, 0.045, 0.055
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The guesses for the parameters in our global fits were
input by hand based on a rough order-of-magnitude
estimate obtained from previous fits, and within a reason-
able basin of attraction we observed no deviations in the fit

result (of course wildly different guesses can lead to false
minima, but with much much larger χ2).
The predicted values of the lattice spacings and (unrenor-

malized) physical quark masses obtained using the
ChPTFV ansatz are listed in Table XV alongside the
correlated (superjackknife) differences between those and
the results for the other ansätze. A similar listing of the
physical predictions can be found in Table XVI. The
corresponding fit parameters for all four ansätze are given
in Table XVII. For the analytic fit with the 260 MeV cut,
the cut excludes the 32Ifine data for which the pion mass is
371(5) MeV, and we are therefore unable to directly obtain
the scaling parameters associated with the heavy 32Ifine

TABLE XIII. Data in lattice units on the 48I and 64I ensembles, along with the relative (fractional) correction to
the infinite volume limit, in combination with each of the following: the continuum limit, the physical light quark
mass and the physical strange mass. The corrections are shown for the ChPTFV fits, the analytic fit with a 260 MeV
pion mass cut [labeled “Ana.(260)”], and the analytic fit with a 370 MeV cut [labeled “Ana. (370)”]. We include
the infinite-volume correction (where applicable) in all of these such that the ChPTFV corrections can be compared
directly to those of the analytic fits, where the latter are performed to data that has first been corrected to the infinite
volume.

Quantity Measured value Ansatz a ¼ 0 mphys
ud mphys

s

fπð48IÞ 0.075799(84) ChPTFV −0.0037ð73Þ −0.00111ð30Þ 0.00129(30)
Ana.(370) −0.0110ð67Þ −0.00175ð20Þ −0.00093ð44Þ
Ana.(260) −0.0075ð80Þ −0.00201ð24Þ −0.00046ð33Þ

fπð64IÞ 0.055505(95) ChPTFV −0.0009ð39Þ −0.00083ð41Þ 0.0001(10)
Ana.(370) −0.0059ð37Þ −0.00179ð26Þ −0.0039ð11Þ
Ana.(260) −0.0040ð43Þ −0.00211ð37Þ −0.0020ð12Þ

fKð48IÞ 0.090396(86) ChPTFV −0.0024ð58Þ −0.00059ð14Þ −0.00095ð68Þ
Ana.(370) −0.0059ð54Þ −0.00084ð10Þ −0.00174ð73Þ
Ana.(260) −0.0055ð62Þ −0.00090ð12Þ −0.00173ð75Þ

fKð64IÞ 0.066534(99) ChPTFV −0.0009ð31Þ −0.00047ð18Þ −0.0061ð13Þ
Ana.(370) −0.0032ð29Þ −0.00085ð13Þ −0.0074ð13Þ
Ana.(260) −0.0029ð33Þ −0.00093ð18Þ −0.0073ð17Þ

fK=fπð48IÞ 1.1926(14) ChPTFV 0.0013(42) 0.00052(16) −0.00223ð49Þ
Ana.(370) 0.0051(42) 0.00091(10) −0.00082ð35Þ
Ana.(260) 0.0020(47) 0.00111(15) −0.00127ð57Þ

fK=fπð64IÞ 1.1987(18) ChPTFV 0.0000(23) 0.00035(23) −0.00625ð89Þ
Ana.(370) 0.0027(23) 0.00093(13) −0.00346ð68Þ
Ana.(260) 0.0011(25) 0.00117(22) −0.0053ð13Þ

t1=20 ð48IÞ 1.29659(39) ChPTFV −0.0276ð62Þ 0.000122(20) 0.000204(95)
Ana.(370) −0.0260ð56Þ 0.000120(20) 0.000176(84)
Ana.(260) −0.0259ð68Þ 0.000140(22) 0.00023(10)

t1=20 ð64IÞ 1.74448(98) ChPTFV −0.0150ð33Þ 0.000122(24) 0.00088(24)
Ana.(370) −0.0142ð30Þ 0.000124(23) 0.00076(21)
Ana.(260) −0.0141ð37Þ 0.000148(32) 0.00097(24)

w0ð48IÞ 1.5013(10) ChPTFV 0.0063(59) 0.000327(40) 0.00047(20)
Ana.(370) 0.0080(54) 0.000328(41) 0.00043(19)
Ana.(260) 0.0076(66) 0.000373(48) 0.00042(18)

w0ð64IÞ 2.0502(26) ChPTFV 0.0034(32) 0.000322(50) 0.00199(41)
Ana.(370) 0.0043(29) 0.000335(51) 0.00183(36)
Ana.(260) 0.0041(36) 0.000388(73) 0.00179(41)

TABLE XIV. The χ2=d:o:f. for each of the four chiral ansätze.
Here the χ2 does not include the overweighted data, and the
number of degrees of freedom has been correspondingly reduced.
For the analytic fits, the pion mass cut is given in parentheses.

ChPTFV ChPT Analytic (260 MeV) Analytic (370 MeV)

0.44(13) 0.44(16) 0.49(14) 0.79(18)
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data; instead we first fit without these data and then
determine the remaining unknowns, Z32Ifine

l=h and R32Ifine
a ,

by including the 32Ifine data while freezing the other fit
parameters to those obtained without these data.
In Fig. 22 we plot the unitary mass dependence of mπ ,

mK and mΩ, which are used to determine the quark masses
and overall lattice scale. In this figure we clearly see that the
overweighting procedure forces the curve to pass through
the near-physical data as desired, and that this procedure
does not introduce any significant tension with the heavier
data. In Fig. 20 we plot a histogram of the deviation of
the data from the ChPTFV fit, showing excellent general
agreement between the fit and the data, and in Fig. 21 we
plot the corresponding histograms for the analytic fits. For
the analytic fit with the 370 MeV mass cut we observe
Oð3 − 4Þσ deviations of the 32ID pion mass data from the
fit curve, which arise because of chiral curvature in the data:

the fit is pinned near the physical point by the over-
weighting procedure and is strongly influenced by the
larger volume of data in the heavy mass regime, leading to
deviations from the lighter 32ID data that lies between
these extremes. Nevertheless, in Tables XV, XVI and XVII
we generally observe better agreement between the analytic
fit with the 370MeVmass cut and the ChPTFV results than
for the lower cut. The total (uncorrelated) χ2=d:o:f: are
given in Table XIV and are subunity for all four ansätze.
As previously mentioned, the inclusion of the Wilson

flow data in these fits has a significant effect on the
precision of the lattice spacings via their influence on
the shared Ra parameters. This can be seen in Table XVIII,
in which we show the various scaling parameters, as well as
the unrenormalized quark masses and lattice spacings,
obtained using the ChPTFV ansatz with and without the
Wilson flow data. For the 48I and 64I ensembles, for which

TABLE XV. The unrenormalized physical quark masses in bare lattice units (without mres included) and the values of the inverse
lattice spacing a−1 obtained using the ChPTFVansatz, and the full correlated differences (labeled Δ) between the results obtained using
the other ansätze and the ChPTFV result. We present analytic fit results obtained using both the 370 MeVand 260 MeV pion mass cut.
The latter fit was performed without the 32Ifine data, and a separate fit with fixed parameters was used to obtain the 32Ifine scaling
parameters.

ChPTFV ΔðChPTÞ Δ (Analytic [260 MeV]) Δ (Analytic [370 MeV])

amlð32IÞ 0.000260(13) 0.00000152(63) −0.0000054ð63Þ −0.0000025ð58Þ
amsð32IÞ 0.02477(18) 0.000044(15) 0.000032(95) 0.000072(45)
a−1ð32IÞ 2.3833(86) GeV −0.00234ð74Þ GeV −0.0001ð51Þ GeV −0.0043ð25Þ GeV
amlð64IÞ 0.0006203(77) 0.00000137(62) −0.0000047ð60Þ −0.0000031ð56Þ
amsð64IÞ 0.02539(17) 0.000039(14) 0.000054(88) 0.000056(40)
a−1ð64IÞ 2.3586(70) GeV −0.00181ð67Þ GeV −0.0021ð40Þ GeV −0.0027ð19Þ GeV
amlð24IÞ −0.001770ð79Þ −0.00000048ð35Þ −0.0000037ð21Þ −0.0000012ð20Þ
amsð24IÞ 0.03224(18) 0.0000209(69) −0.000054ð50Þ 0.000046(18)
a−1ð24IÞ 1.7848(50) GeV −0.00074ð21Þ GeV 0.0032(22) GeV −0.00194ð65Þ GeV
amlð48IÞ 0.0006979(81) −0.00000049ð35Þ −0.0000020ð18Þ −0.0000016ð19Þ
amsð48IÞ 0.03580(16) 0.0000129(64) 0.000015(25) 0.000017(13)
a−1ð48IÞ 1.7295(38) GeV −0.00029ð16Þ GeV −0.00027ð59Þ GeV −0.00042ð33Þ GeV
amlð32IDÞ −0.000106ð17Þ −0.0000069ð12Þ −0.000002ð13Þ 0.0000004(61)
amsð32IDÞ 0.04625(48) −0.000091ð27Þ −0.00018ð28Þ −0.00016ð11Þ
a−1ð32IDÞ 1.3784(68) GeV 0.00141(37) GeV 0.0025(38) GeV 0.0020(17) GeV
amlð32IfineÞ 0.000058(16) 0.0000021(20) 0.000024(12) 0.0000040(57)
amsð32IfineÞ 0.01852(30) 0.000044(34) −0.00019ð26Þ 0.00005(10)
a−1ð32IfineÞ 3.148(17) GeV 0.0003(14) GeV 0.0100(99) GeV −0.0020ð44Þ GeV

TABLE XVI. The physical predictions obtained using the ChPTFVansatz, and the full correlated differences (labeled Δ) between the
results obtained using the other ansätze and the ChPTFV result. We present analytic fit results obtained using both the 370 and 260 MeV
pion mass cut. The latter fit was performed without the 32Ifine data, and a separate fit with fixed parameters was used to obtain the
32Ifine scaling parameters.

ChPTFV ΔðChPTÞ Δ (Analytic [260 MeV]) Δ (Analytic [370 MeV])

fπ 0.1302(9) GeV −0.000375ð53Þ GeV −0.00019ð45Þ GeV −0.00068ð20Þ GeV
fK 0.1555(8) GeV −0.000251ð52Þ GeV −0.00035ð43Þ GeV −0.00043ð17Þ GeV
fK=fπ 1.1945(45) 0.00152(12) −0.0010ð21Þ 0.00297(60)
t1=20

0.7292ð41Þ GeV−1 0.00098ð37Þ GeV−1 0.0014ð23Þ GeV−1 0.0014ð11Þ GeV−1

w0 0.8742ð46Þ GeV−1 0.00114ð42Þ GeV−1 0.0013ð27Þ GeV−1 0.0016ð12Þ GeV−1

T. BLUM et al. PHYSICAL REVIEW D 93, 074505 (2016)

074505-30



TABLE XVII. The fit parameters of each of our chiral ansätze. The parameters are given in physical units and with the heavy quark
mass expansion point adjusted to the physical strange quark mass a posteriori. Analytic fit results are presented with a 370 MeV and
260 MeV pion mass cut. The latter was performed without the 32Ifine data, and a separate fit with fixed parameters was used to obtain
the 32Ifine scaling parameters. For the ChPTFV and ChPT fits we use a chiral scale of 1.0 GeV. The fit formulas to which these
parameters correspond can be found in Refs. [5,6].

Parameter ChPT ChPTFV Parameter Analytic (260 MeV) Analytic (370 MeV)

Z24I
l 0.9727(51) 0.9715(54) 0.9675(70) 0.9686(56)

Z48I
l 0.9727(51) 0.9715(54) 0.9675(70) 0.9686(56)

Z32ID
l 0.9192(67) 0.9156(72) 0.910(13) 0.9105(84)

Z32Ifine
l

1.012(19) 1.015(17) 0.971(19) 1.005(15)

Z24I
h 0.9634(38) 0.9628(40) 0.9637(43) 0.9636(36)

Z48I
h 0.9634(38) 0.9628(40) 0.9637(43) 0.9636(36)

Z32ID
h 0.9159(60) 0.9144(63) 0.9174(82) 0.9172(56)

Z32Ifine
h

1.004(12) 1.005(12) 1.013(16) 1.005(12)

R24I
a 0.7493(22) 0.7489(24) 0.7503(26) 0.7494(21)

R48I
a 0.7263(27) 0.7257(28) 0.7256(29) 0.7268(25)

R64I
a 0.9898(19) 0.9896(19) 0.9888(16) 0.9903(18)

R32ID
a 0.5795(34) 0.5783(36) 0.5794(45) 0.5802(33)

R32Ifine
a 1.3222(44) 1.3208(44) 1.3251(46) 1.3224(43)

B (GeV) 4.233(21) 4.236(21) Cmπ
0 (½GeV�2) 0.00037(15) 0.000421(91)

Lð2Þ
8

0.000611(41) 0.000631(41) Cmπ
1 (GeV) 7.982(80) 7.917(51)

Lð2Þ
6

−0.000145ð36Þ −0.000146ð36Þ Cmπ
2 (GeV) 0.190(32) 0.219(25)

cmπ ;mh
6.8(4.1) 3.7(4.1) Cmπ

3 (GeV) −0.036ð31Þ −0.026ð32Þ
f (GeV) 0.12195(94) 0.12229(96) Cfπ

0 (GeV) 0.1259(11) 0.12593(88)

cIf (½GeV�2) 0.021(23) 0.017(23) Cfπ ;I
a (½GeV�2) 0.023(25) 0.034(21)

cIDf (½GeV�2) −0.027ð30Þ −0.033ð30Þ Cfπ ;ID
a (½GeV�2) −0.007ð31Þ 0.013(29)

Lð2Þ
5

0.000524(78) 0.000513(78) Cfπ
1

1.082(78) 0.988(45)

Lð2Þ
4

−0.000198ð64Þ −0.000171ð64Þ Cfπ
2

0.792(75) 0.643(71)

cfπ ;mh
0.084(46) 0.070(46) Cfπ

3
0.094(54) 0.188(46)

mðKÞ (½GeV�2) 0.2363(16) 0.2363(17) CmK
0 (½GeV�2) 0.2363(19) 0.2363(15)

λ2 0.02825(50) 0.02845(50) CmK
1 (GeV) 3.782(77) 3.828(43)

λ1 0.00367(71) 0.00371(72) CmK
2 (GeV) 0.54(16) 0.478(95)

cmK;my
(GeV) 3.933(16) 3.935(17) CmK

3 (GeV) 3.923(22) 3.929(15)

cmK;mh
(GeV) 0.097(86) 0.094(86) CmK

4 (GeV) 0.11(15) 0.075(83)

fðKÞ (GeV) 0.15123(94) 0.15146(97) CfK
0 (GeV) 0.1530(11) 0.15304(89)

cI
fðKÞ (½GeV�2) 0.012(18) 0.010(18) CfK;I

a (½GeV�2) 0.017(19) 0.018(17)

cID
fðKÞ (½GeV�2) −0.020ð27Þ −0.024ð27Þ CfK;ID

a (½GeV�2) −0.006ð28Þ −0.001ð26Þ
λ4 0.00620(38) 0.00594(39) CfK

1
0.343(78) 0.361(34)

λ3 −0.00383ð79Þ −0.00335ð80Þ CfK
2

0.653(86) 0.573(69)

(Table continued)
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the hadronic measurements are very precise, we see only a
small improvement in the statistical error. However, for the
32I, 24I and 32Ifine ensembles we observe factors of three
or more improvements in precision. The results themselves
are very consistent.
In Fig. 19 we plot the dependence of our physical

predictions on the bin size used for the 64I data. Here we
observe no statistically significant dependence on the bin
size, further attesting that our chosen bin size of 5 (5 × 40
MD time units) is a conservative choice and does not lead to
an underestimate in the errors on our physical predictions.
We would like to emphasize that the goal of this analysis

is not to extract reliable model parameters but simply to
perform a few-percent extrapolation of our pristine near-
physical data to the physical point. As we discuss in
Sec. IV B, we are well aware that NLO ChPT can be
expected to fail at the 5% level in the 200–370 MeV mass
range in which the majority of our data lies (and where the
fit would be most heavily weighted if we weighted the data
by statistical error alone), and we do not want this model
failure to unduly influence the quality of our prediction.
The overweighting procedure was chosen to ensure that the
fits pass through our 48I and 64I data with the heavier data
used only to guide the extrapolation. Despite this, we find
that the fits are largely insensitive to the pion mass cut and
to the fit ansatz such that all of our results agree to a high
degree (including their uncorrelated χ2=d:o:f.). In order to

gauge the quality of our uncorrelated fits, we present
histograms of the deviation of the fit from our data in
Figs. 20, 21 (and 28 for BK), and we see no spuriously large
deviations that cannot be accounted for by higher-order
mass dependent terms. Given the high degree of consis-
tency between our results, there is no reason to suggest that
any of the fits has converged upon a false minimum.
Furthermore, the predictive power of these global fits is
highlighted by our numerical discovery of the 3% shift in
lattice spacings between the 48I and 24I ensembles and the
smaller 1% shift between the 64I and 32I ensembles.

A. Systematic error estimation

In our previous analyses we used the difference between
the ChPTFV and ChPT results as a conservative estimate
of the higher-order finite-volume errors on our results
(recall the ChPTFV formulas incorporate the NLO
finite-volume corrections). From a purely χPT perspective
this is a considerable overestimate of the size of the NNLO
and above corrections, which are known to be only a small
fraction of the NLO values even at smaller volumes.
Our prudence was motivated by Ref. [36], in which the
authors observed significant deviations between the finite-
volume corrections predicted by standard finite-volume
chiral perturbation theory and those obtained via a
resummed version of the Lüscher formula [37] that relates

TABLE XVII. (Continued)

Parameter ChPT ChPTFV Parameter Analytic (260 MeV) Analytic (370 MeV)

cfK;my
0.2952(51) 0.2959(51) CfK

3
0.3047(60) 0.2991(51)

cfK;mh
0.074(45) 0.080(46) CfK

4
0.113(62) 0.124(46)

mðΩÞ (GeV) 1.6618(30) 1.6620(33) CmΩ
0 (GeV) 1.6612(43) 1.6618(27)

cmΩ;ml
4.86(42) 4.75(43) CmΩ

1 5.14(75) 4.89(44)

cmΩ;mv
5.565(44) 5.583(46) CmΩ

2 5.582(63) 5.553(42)

cmΩ;mh
1.39(45) 1.60(47) CmΩ

3 1.35(74) 1.27(47)

c ffiffiffi
t0

p
;0 (½GeV�−1) 0.7317(39) 0.7307(42) c ffiffiffi

t0
p

;0 (½GeV�−1) 0.7323(49) 0.7320(37)

cI ffiffiffit0p
;a (½GeV�2) 0.081(18) 0.085(19) cI ffiffiffit0p

;a (½GeV�2) 0.079(21) 0.080(18)

cIDffiffiffit0p
;a (½GeV�2) 0.037(13) 0.042(14) cIDffiffiffit0p

;a (½GeV�2) 0.035(18) 0.035(13)

c ffiffiffi
t0

p
;l (½GeV�−2) −0.655ð81Þ −0.660ð81Þ c ffiffiffi

t0
p

;l (½GeV�−2) −0.747ð84Þ −0.640ð80Þ
c ffiffiffi

t0
p

;h (½GeV�−2) −0.221ð43Þ −0.227ð43Þ c ffiffiffi
t0

p
;h (½GeV�−2) −0.262ð38Þ −0.205ð44Þ

cw0;0 (½GeV�−1) 0.8798(46) 0.8787(48) cw0;0 (½GeV�−1) 0.8805(58) 0.8803(43)

cIw0;a (½GeV�2) −0.022ð16Þ −0.019ð17Þ cIw0;a (½GeV�2) −0.022ð19Þ −0.024ð16Þ
cIDw0;a (½GeV�2) 0.018(12) 0.023(13) cIDw0;a (½GeV�2) 0.018(17) 0.016(12)

cw0;l (½GeV�−2) −2.05ð12Þ −2.06ð12Þ cw0;l (½GeV�−2) −2.30ð14Þ −2.03ð12Þ
cw0;h (½GeV�−2) −0.597ð64Þ −0.602ð64Þ cw0;h (½GeV�−2) −0.567ð67Þ −0.580ð65Þ
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the finite-volume mass shift of a particle to the infinite-
volume Euclidean scattering length of that particle with the
pion. Nevertheless, one can conclude from those results
that the full finite-volume corrections can be expected to
differ from the NLO χPT predictions by only 30%–50% for
the light pions that we are currently using.
Our present fits are dominated by near-physical data

computed on 5.5 fm volumes, such that (e.g. in Tables XV
and XVI) we observe only very tiny differences between
the ChPT and ChPTFV fit results; these differences are
typically 10%–20% of the size of the statistical error, and
hence have negligible impact upon the total error. Given
the small size of these differences and that the true sizes of
the higher-order finite-volume effects are expected to be
several times smaller, we therefore choose to omit the
finite-volume systematic from our error estimate.
The estimate of the chiral extrapolation error is made

difficult due to the fact that the global fits combine the chiral
and continuum extrapolations together, and in this analysis
the latter are larger than the former while being less well
determined by the fits (the a2 parameters have typically
50%–100% statistical error). As a result, the established
procedure of estimating the chiral error from the difference
of the ChPTFVand analytic result with a 260MeV cut is no
longer satisfactory.
In this analysis we considered analytic fits with both a

260 MeV and a 370 MeV pion mass cut. The latter is
clearly applying the linear ansatz outside of its region of
applicability, leading to deviations from the 32ID data at
the 3–4σ level. Despite this there is generally excellent
agreement between the continuum predictions of this fit
and the ChPTFV. The analytic fit with the 260 MeV mass
cut does not suffer from this issue, but at the expense of
fitting to a considerably smaller amount of data, including
one less lattice spacing. The ChPTFV fit on the other hand
is theoretically “clean” in that it is the correct ansatz for
the data in the chiral limit, and agrees very well with our
data when applied in the 140 to 370 MeV pion mass range.
In Table XIII we see that all four ansätze agree at a broad
level (given the size of the errors on the a2 terms) as to the
size of the continuum extrapolation, and this is by far the
dominant correction. The only significant inconsistencies
are in the light quark extrapolation, for which the
260 MeV analytic fit gives a larger correction indicating
a stronger slope near the physical point. Nevertheless,
the differences between the predicted corrections of the
ChPTFV and 260 MeV analytic fits are at most on the
0.1% level.
Given the small size of the observed differences in the

corrections to the 48I and 64I data, and our understanding
that these are likely a result of deficiencies in the fitting
strategies for those ansätze, we choose to take the cleaner
ChPTFVansatz, which describes our data very well, as our
final result and treat the systematic error associated with the
extrapolation to the physical point as negligible.

Finally, we consider the discretization systematic. For
Wilson-style fermions the explicit symmetry breaking
allows for a dimension-5 clover term of OðaΛQCDÞ; for
domain wall fermions this term is heavily suppressed by the
separation of the chiralmodes in the fifth dimension, and can

TABLE XVIII. A comparison of the scaling parameters and the
predictions for the lattice spacings and unrenormalized quark
masses obtained by fitting using the ChPTFV ansatz with and
without the Wilson flow data.

With W.flow Without W.flow

amlð32IÞ 0.000260(13) 0.000262(15)

amsð32IÞ 0.02477(18) 0.02483(27)

a−1ð32IÞ 2.3833(86) GeV 2.3726(181) GeV

Zlð64IÞ 1.0(0) 1.0(0)

Zhð64IÞ 1.0(0) 1.0(0)

Rað64IÞ 0.9896(19) 0.9953(60)

amlð64IÞ 0.0006203(77) 0.0006175(84)

amsð64IÞ 0.02539(17) 0.02531(19)

a−1ð64IÞ 2.3586(70) GeV 2.3615(80) GeV

Zlð24IÞ 0.9715(54) 0.9702(56)

Zhð24IÞ 0.9628(40) 0.9612(43)

Rað24IÞ 0.7489(24) 0.7494(42)

amlð24IÞ −0.001770ð79Þ −0.001767ð78Þ
amsð24IÞ 0.03224(18) 0.03236(32)

a−1ð24IÞ 1.7848(50) GeV 1.7779(132) GeV

Zlð48IÞ 0.9715(54) 0.9702(56)

Zhð48IÞ 0.9628(40) 0.9612(43)

Rað48IÞ 0.7257(28) 0.7291(55)

amlð48IÞ 0.0006979(81) 0.0006971(85)

amsð48IÞ 0.03580(16) 0.03577(18)

a−1ð48IÞ 1.7295(38) GeV 1.7299(40) GeV

Zlð32IDÞ 0.9156(72) 0.9122(79)

Zhð32IDÞ 0.9144(63) 0.9107(70)

Rað32IDÞ 0.5783(36) 0.5791(52)

amlð32IDÞ −0.000106ð17Þ −0.000099ð18Þ
amsð32IDÞ 0.04625(48) 0.04649(53)

a−1ð32IDÞ 1.3784(68) GeV 1.3741(75) GeV

Zlð32IfineÞ 1.015(17) 0.998(30)

Zhð32IfineÞ 1.005(12) 0.989(21)

Rað32IfineÞ 1.3208(44) 1.308(16)

amlð32IfineÞ 0.000058(16) 0.000078(30)

amsð32IfineÞ 0.01852(30) 0.01907(68)

a−1ð32IfineÞ 3.148(17) GeV 3.104(45) GeV
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be discounted in practice [5]. Our domain wall simulations
can be treated as nonperturbatively OðaÞ improved, and
further chiral symmetry implies that all terms containing an
odd power of the lattice spacing [OðaΛQCDÞ, Oða3Λ3

QCDÞ,
etc.] can be neglected; the leading discretization effects
therefore enter at the Oða4Λ4

QCDÞ level, and these are of a
comparable size [5] to logarithmic corrections to lattice
artefacts that are regularly considered negligible. In our
previous papers and above (cf. Table XIII) we observe that

the discretization effects for the coarser 48I ensemble are at
the 2% level, implying aOð0.04%Þ discretization systematic
that can be neglected. [For our very coarse 32ID ensemble
the discretization effects enter at the 5% level, implying
Oð0.25%Þ discretization errors that can also be discounted.]
We could therefore, in principle, obtain precise continuum
results from just two lattice spacings, as we have done in
previous publications. However, the fits in this document
utilize threewidely spaced lattice spacings with the Shamir
fermion action. In this document we present several plots
overlaying our data with the fitted scaling behavior, from
whichwe observe no evidence of deviations froma2 scaling.

B. Physical predictions

In this section we present our predictions.

1. χPT parameters

The LO and NLO SU(2) partially quenched χPT low-
energy constants are given in Table XVII. These can be
combined into the standard SU(2) χPT LECs, l3 and l4,
giving

l3 ¼ 2.73ð13Þ and l4 ¼ 4.113ð59Þ: ð67Þ

We can also compute the ratio of the decay constant to the
LO SU(2) χPT parameter f, for which we obtain

Fπ=F ¼ 1.0645ð15Þ: ð68Þ

The errors on the above are statistical only; we make no
attempt to estimate the systematic errors on these numbers
due to higher-order effects or indeed the reliability of χPT
in general. These issues will be investigated in a forth-
coming publication.

2. Lattice spacings

For the lattice spacings we obtain the following values:

a−132I ¼ 2.3833ð86Þ GeV;
a−164I ¼ 2.3586ð70Þ GeV;
a−124I ¼ 1.7848ð50Þ GeV;
a−148I ¼ 1.7295ð38Þ GeV;

a−132Ifine ¼ 3.148ð17Þ GeV;
a−132ID ¼ 1.3784ð68Þ GeV; ð69Þ

where we quote the statistical error in parentheses. Our
previous values [5] for the lattice spacings of the 32I, 24I
and 32ID ensembles are as follows:

FIG. 19. The dependence of the error for the predicted physical
values, obtained from our global fits with the ChPTFVansatz, of
various quantities as a function of the bin size used for the 64I
ensemble. The vertical axis plots the ratio σb=σ1 for bin size b
along the horizontal axis, where σ is the statistical error and the
subscript indicates the 64I bin size for which that error was
computed. The upper and lower bounds were obtained by varying
σb by 1=

ffiffiffiffi
N

p
, where N is the number of samples.

FIG. 20. A stacked (nonoverlapping) histogram of the deviation
of the ChPTFV fit curve from our data in units of the statistical
error. Different colored blocks are associated with the different
quantities given in the legend. The 3σ outlier is the Ωmass on the
heavier (aml ¼ 0.005) 24I ensemble at the unreweighted strange
mass of 0.04 in lattice units. The jackknife error on this point (not
shown) is such that it is consistent with ðy − yfitÞ=σ ¼ −2.
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FIG. 21. A stacked (nonoverlapping) histogram of the deviation of the analytic fit curves from our data in units of the statistical error.
The left figure is for the 260 MeV pion mass cut, and the right plot for the 370 MeV cut. Different colored blocks are associated with the
different quantities given in the legend. The outliers in the right-hand plot are exclusively from mπ on the 32ID ensembles, indicating
that the linear curve is deviating from the data due to chiral curvature.

FIG. 22. m2
π=ml (upper-left), m2

K (upper-right) and mΩ (lower) unitary data corrected to the physical strange quark mass and the
infinite volume limit as a function of the unrenormalized physical quark mass, plotted against the ChPTFV fit curves. Data with hollow
symbols are those included in the fit and data with filled symbols are those excluded. The square point is our predicted continuum value.
Note the 64I and 48I data lie essentially on top of each other in this figure.
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a−132I ¼ 2.310ð37Þð17Þð9Þ GeV;
a−124I ¼ 1.747ð31Þð24Þð4Þ GeV;

a−132ID ¼ 1.3709ð84Þð56Þð3Þ GeV; ð70Þ

where the errors are statistical, chiral and finite-volume.
We observe a 1.8σ tension between the new and old
values of the 32I lattice spacing, which appears to arise
from the introduction of the physical point data; if we look
at Fig. 22 we see that the physical point data appears to
favor a stronger light quark mass slope than one would
obtain from the heavier data. Nevertheless there do not
seem to be any clear discrepancies, except for those that
might be attributed to statistical effects. Other than this, our
new results are consistent with these values, and are
significantly more precise due to the inclusion of the
Wilson flow data.

3. Decay constants

In Table XVI we list the predicted values of fπ , fK and
fK=fπ obtained using the ChPTFV ansatz, as well as the
differences between those results and those of the other
ansätze. As we now have data at several lattice spacings, we
can examine the scaling of both fπ and fK in order to ensure
that their dependence on the lattice spacing can be described
by a quadratic form. In Fig. 23 we plot the data, corrected to
the physical quark masses and the infinite volume using the
ChPTFV fit, as a function of the lattice spacing. In addition
we show the scaling curve for the Iwasaki ensembles. We
observe excellent consistency between the data and the fit
curve for both quantities. In Fig. 24 we show the chiral
extrapolation in the continuum/infinite-volume limits with
the ChPTFV ansatz, again showing excellent agreement
between the data and the fit.

We obtain the following physical predictions:

fπ ¼ 0.13019ð89Þ GeV;
fK ¼ 0.15551ð83Þ GeV;

fK=fπ ¼ 1.1945ð45Þ; ð71Þ
where, as above, the statistical errors are given in paren-
theses. Previously [5] we obtained

fπ ¼ 0.1271ð27Þð9Þð25Þ GeV;
fK ¼ 0.1524ð30Þð7Þð15Þ GeV;

fK=fπ ¼ 1.1991ð116Þð69Þð116Þ: ð72Þ
Here we see that the inclusion of the 48I and 64I data,
giving statistically precise data at simulated masses very
near the physical quark masses, has led to a highly
significant improvement in our results.
In our first global fit analysis [6], performed only to the

32I and 24I ensembles over a (unitary) pion mass range of
290–420 MeV, we obtained a value for fπ from our NLO
χPT fit that was 6.6% (9 MeV) lower than the experimental
value. We concluded that this discrepancy was due to
systematic errors in the chiral extrapolation, and introduced
the analytic fits as a means of estimating this systematic.
When we included the 32ID ensembles into the global fit
[5] we observed a marked improvement in the results for
the decay constants and a corresponding reduction in the
size of the chiral systematic (as estimated by taking the
difference between the ChPTFV and analytic fit results).
Now, with the inclusion of the 48I and 64I data we have

essentially eliminated the chiral extrapolation error, and
have obtained values for both decay constants that
are in excellent agreement with the Particle Data Group
(PDG) values [38], fπ− ¼ 0.1304ð2Þ GeV and fK− ¼
0.1562ð7Þ GeV. Here, fπ− is determined experimentally

FIG. 23. fπ (left) and fK (right) data corrected to the physical up/down and strange quark masses and the infinite-volume as a function
of the square of the lattice spacing. The curve shows the continuum extrapolation for the Iwasaki action with the ChPTFVansatz. Here
we have not shown the 32ID data point as it has a different gauge action.
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using the measured branching fraction and pion lifetime,
with jVudj computed very precisely via nuclear β decay,
such that the error is dominated by higher order terms in the
decay width formula. On the other hand, the value for fK−

requires jVusj as input, which, for the quoted result, is
computed using jVusjfþð0Þ determined via semileptonic
kaon decays and lattice input for fþð0Þ. The consistency of
our fK with the PDG value could therefore be taken as
both representing the consistency of experiment with the
Standard Model, and the quality of the lattice QCD
determinations of both the kaon semileptonic form factor
and our determination of the kaon decay constant.

4. Wilson flow scales

In Table XVI we list the predicted values of the Wilson
flow scales, t1=20 and w0, in the continuum limit. The unitary
mass dependencies are plotted in Fig. 25 and the a2

dependencies in Fig. 26. For our final results, we obtain
the following continuum predictions:

t1=20 ¼ 0.7292ð41Þ GeV−1;

w0 ¼ 0.8742ð46Þ GeV−1; ð73Þ
where the statistical error is quoted in parentheses.
The above values can be compared to the following

results obtained using 2þ 1f 2HEX-smeared Wilson fer-
mions [33]:

t1=20 ¼ 0.1465ð25Þ fm ¼ 0.7425ð127Þ GeV−1;

w0 ¼ 0.1755ð18Þ fm ¼ 0.8894ð91Þ GeV−1; ð74Þ
where we have combined the statistical and systematic
errors in quadrature. We find excellent agreement between
these and our results.

5. Unrenormalized physical quark masses

The quark masses in bare lattice units on the 32I
reference ensemble are given in Table XV. In physical
units, and including the residual mass, the unrenormalized
physical quark masses are given in Table XIX. Combining
these results we obtain the following:

munrenorm
ud ¼ 2.198ð11Þ MeV;

munrenorm
s ¼ 60.62ð24Þ MeV; ð75Þ

where the errors are statistical.

C. Renormalized physical quark masses
and the chiral condensate

The quark masses presented above are defined in the
bare lattice normalization of the 32I reference ensemble.
On each of the 32I and 24I ensembles independently, we
calculate the nonperturbative renormalization factors that
are necessary to convert quark masses in the corresponding
bare normalization into a variant of the Rome-Southampton
RI-MOM scheme [39] that can be related to MS via
perturbation theory. The procedure applied below is iden-
tical to that used in Refs. [5,6], and the determination of the
renormalization coefficients is documented in Appendix F;
below we provide only a brief outline.
We compute amputated, projected bilinear vertex

functions,

ΛOðq2Þ ¼ tr½ΠOðq2ÞΓðsÞ
O �; ð76Þ

where O is an operator, Π are the matrix-valued amputated
vertex functions and ΓðsÞ are projection operators, for which
the superscript s indexes the particular renormalization
scheme (where applicable). We use the “symmetric” RI-
MOM schemes, defined by the following condition on the

FIG. 24. fπ (left) and fK (right) unitary data corrected to the physical strange quark mass and the continuum and infinite-volume limits
as a function of the unrenormalized physical quark mass, plotted against the ChPTFV fit curves. Data with hollow symbols are those
included in the fit and data with filled symbols are those excluded. The square point is our predicted continuum value. Note the 64I and
48I data lie essentially on top of each other in this figure.
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incoming and outgoing quark momenta, pin and pout

respectively: p2
in ¼ p2

out ¼ q2 ≡ ðpin − poutÞ2.
We define renormalization factors by matching to the

tree-level amplitude at the scale μ2 ¼ q2:

ZO

Zn=2
q

ðμ; aÞ × Λbare
O ðμ; aÞ ¼ Λtree

O : ð77Þ

In order to cancel the factors of the quark field renorm-
alization in the denominator, we use

ZðsÞ
m ðμ; aÞ ¼ ΛSðμ; aÞ

ZV × ΛðsÞ
V ðμ; aÞ

; ð78Þ

where ΛO ≡ Λbare
O × ðΛtree

O Þ−1, S and V are the scalar and
vector operators respectively, and ZV is the vector-current

renormalization computed using hadronic variables via the
procedure given in Sec. III C 2. We use two different
choices of projection operator for the vector vertex, formed
from the quantities qqμ=q2 and γμ; these define the SMOM
and SMOMγμ schemes respectively. More details on the
projection operators and the numerical determination of
these quantities can be found in Appendix F.
We now describe the procedure by which we obtain the

renormalized quark masses given the renormalization
factors. In Sec. V B 5 we present quark masses normalized
according to the bare lattice units of the 32I reference
ensemble. For any other ensemble e, the quark masses in
the associated bare normalization can be obtained simply
by dividing the values of mud and ms given in Eq. (75) by
Ze
l and Ze

h respectively. For each ensemble, the masses
renormalized in the RI-SMOM schemes can therefore be
computed as

FIG. 25. t1=20 (left) and w0 (right) unitary data corrected to the physical strange sea quark mass and the continuum limit as a function of
the unrenormalized physical quark mass, plotted against the ChPTFV fit curves. Data with hollow symbols are those included in the fit
and data with filled symbols are those excluded. The square point is our predicted continuum value. Note the 64I and 48I data lie
essentially on top of each other in this figure.

FIG. 26. t1=20 (left) and w0 (right) data corrected to the physical up/down and strange sea quark masses as a function of the square of the
lattice spacing. The curve shows the continuum extrapolation for the Iwasaki action with the ChPTFVansatz. Here we have not shown
the 32ID data point as it has a different gauge action.
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ðmSMOM�
f Þe ¼ ðZSMOM�

m Þemunrenorm
f =Ze

f; ð79Þ

where f ∈ fl; hg. These measurements contain finite lattice
spacing errors associated with the vertex functions used in
the conversion to MS. In order to convert our continuum
quark masses to the RI-SMOM scheme, and thence to MS,
we linearly extrapolate the ratio

Ze
mf ¼ Ze

m=Ze
f ð80Þ

in a2 to the continuum. This extrapolation is performed
using only two lattice spacings, potentially introducing
additional systematic effects. In practice we find that the
linear continuum fit results in a 4% shift in the central
values from those computed on our finest ensemble (32I).

The good chiral symmetry of the action heavily suppresses
Oða3Þ terms in the Symanzik effective theory and higher
order corrections enter only at the Oða4Þ level. This
suggests systematic effects on the order of ð4%Þ2 ∼
0.16%, which we treat as negligible. Applied to the quark
masses, the products

mSMOM�
f ¼ ðZSMOM�

mf Þcontmmunrenorm
f ð81Þ

are then free from Oða2Þ scaling errors and have negligible
higher order discretization systematics.
Fixing the renormalization coefficients to a particular

scale requires the input of the lattice spacings from the main
analysis in order to convert the lattice momenta to physical
units; for this we used only the central values of the
ChPTFV fits. In order to account for the effect of the
statistical and systematic uncertainties on the lattice spac-
ings, we repeated the determination of the renormalization
coefficients using two different values of the lattice spac-
ings that differed slightly in value, and from these we
estimated the slope of the renormalization coefficients with
respect to the input lattice spacing. For each chiral ansatz,
we then used the slope to shift the central values of the
renormalization coefficients to the lattice spacings deter-
mined via that ansatz, and also to inflate the statistical

TABLE XIX. Unrenormalized physical quark masses. For the
analytic fits, the corresponding pion mass cut is given in
parentheses.

Ansatz munrenorm
ud (MeV) munrenorm

s (MeV)

ChPTFV 2.198(11) 60.62(24)
ChPT 2.199(10) 60.67(22)
Analytic (260 MeV) 2.185(16) 60.70(27)
Analytic (370 MeV) 2.188(13) 60.69(21)

TABLE XX. The nonperturbative renormalization factors calculated at μ ¼ 3.0 GeV that are used to convert bare
quark masses (Zm) and quark masses in the normalization of the 32I reference ensemble (Zml,Zmh). Values are given
on the 32I and 24I ensembles and in the continuum limit for the latter quantity.

Scheme Lattice Ansatz Zm Zml Zmh

SMOM 24I ChPTFV 1.4386(12) 1.4808(82) 1.4942(63)
SMOM 24I ChPT 1.4385(12) 1.4788(79) 1.4932(60)
SMOM 24I analytic (260 MeV) 1.4390(12) 1.4874(108) 1.4931(68)
SMOM 24I analytic (370 MeV) 1.4383(12) 1.4849(86) 1.4927(57)
SMOM 32I ChPTFV 1.4396(37) 1.4396(37) 1.4396(37)
SMOM 32I ChPT 1.4393(37) 1.4393(37) 1.4393(37)
SMOM 32I Analytic (260 MeV) 1.4396(37) 1.4396(37) 1.4396(37)
SMOM 32I Analytic (370 MeV) 1.4391(37) 1.4391(37) 1.4391(37)
SMOM Cont. ChPTFV … 1.3870(122) 1.3699(100)
SMOM Cont. ChPT … 1.3888(120) 1.3704(100)
SMOM Cont. Analytic (260 MeV) … 1.3780(145) 1.3706(103)
SMOM Cont. Analytic (370 MeV) … 1.3805(128) 1.3705(99)
SMOMγμ 24I ChPTFV 1.5235(13) 1.5682(87) 1.5824(67)
SMOMγμ 24I ChPT 1.5234(13) 1.5661(83) 1.5813(64)
SMOMγμ 24I Analytic (260 MeV) 1.5240(13) 1.5752(115) 1.5813(72)
SMOMγμ 24I Analytic (370 MeV) 1.5232(13) 1.5725(91) 1.5808(60)
SMOMγμ 32I ChPTFV 1.5192(39) 1.5192(39) 1.5192(39)
SMOMγμ 32I ChPT 1.5189(39) 1.5189(39) 1.5189(39)
SMOMγμ 32I Analytic (260 MeV) 1.5192(39) 1.5192(39) 1.5192(39)
SMOMγμ 32I Analytic (370 MeV) 1.5186(39) 1.5186(39) 1.5186(39)
SMOMγμ Cont. ChPTFV … 1.4567(126) 1.4386(103)
SMOMγμ Cont. ChPT … 1.4585(125) 1.4389(103)
SMOMγμ Cont. Analytic (260 MeV) … 1.4470(150) 1.4392(106)
SMOMγμ Cont. Analytic (370 MeV) … 1.4496(134) 1.4390(102)
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errors of the superjackknife distribution to reflect the
uncertainty on those values. The continuum extrapolations
of Zml and Zmh were performed independently for each
ansatz, enabling us to determine the full effect of the
systematic errors in the final step. The values of Zm and
Zmf thus determined are given in Table XX.
Applying the renormalization factors to the masses from

the previous section, we obtain the values given in
Table XXI. Converting to the MS scheme and including
the additional systematic errors associated with the pertur-
bative matching, we find

mudðMS; 3.0 GeVÞ ¼ 2.997ð36Þð33Þ MeV;

msðMS; 3.0 GeVÞ ¼ 81.64ð77Þð88Þ MeV; ð82Þ

where the errors are statistical and from the perturbative
truncation respectively. In the RGI scheme, these corre-
spond to

m̂ud ¼ 8.62ð10Þð9Þ MeV;

m̂s ¼ 235.0ð22Þð25Þ MeV: ð83Þ

The quark mass ratio is

ms=mud ¼ 27.34ð21Þ; ð84Þ

for which there is no systematic error associated with the
perturbative matching as it cancels in the ratio.
For comparison, in our previous work [5] we obtained

mudðMS;3.0GeVÞ¼ 3.05ð8Þð6Þð1Þð2ÞMeV;

msðMS;3.0GeVÞ¼ 83.5ð1.7Þð0.8Þð0.4Þð0.7ÞMeV ð85Þ

and

ms=mud ¼ 27.36ð39Þð31Þð22Þ; ð86Þ

for which the errors are statistical, chiral and finite-
volume. Our new results are highly consistent with these
values and again show a substantial improvement in the

systematic error as a result of including the near-
physical data.
We can also compute the chiral condensate,

Σ ¼ −huuimu;md→0 ¼ BF2 ¼ Bf2=2; ð87Þ

by combining the leading-order SU(2) χPT parameters
from Table XVII. Like the quark masses, this quantity
must be renormalized. Again we first convert to our
intermediate SMOM schemes and subsequently per-
turbatively convert each to MS, using the difference as
an estimate of the perturbative truncation systematic.
The appropriate renormalization factor can be deter-
mined by noting that the leading-order χPT formula
for the pion mass must be renormalization-scheme
independent:

ðm2
πÞLO ¼ 2Bunrenormmunrenorm

ud

¼ 2BSMOM�mSMOM�
ud

¼ 2BSMOM�ðZSMOM�
ml Þcontmmunrenorm

ud : ð88Þ

This suggests that

BSMOM� ¼ Bunrenorm=ðZSMOM�
ml Þcontm: ð89Þ

The subsequent conversion to the MS scheme at
3 GeV can be performed by further dividing by the
appropriate scheme change factor.
It is customary to quote the dimension-one quantity

ðΣÞ1=3. We obtain

Σ1=3ðSMOM; 3.0 GeVÞ ¼ 0.2837ð19Þ GeV
Σ1=3ðSMOMγμ ; 3.0 GeVÞ ¼ 0.2791ð19Þ GeV; ð90Þ

which, after converting to MS and combining, gives

Σ1=3ðMS; 3.0 GeVÞ ¼ 0.2853ð20Þð10Þ GeV; ð91Þ

where the errors are statistical and from the perturbative
matching respectively.

D. Neutral kaon mixing parameter, BK

The neutral kaon mixing parameter is renormalization
scheme dependent, and as such the fits must be performed
using renormalized data. As this introduces additional
systematic errors, we follow our established procedure of
performing these fits separately from the main global fit
analysis. Below we first summarize our nonperturbative
renormalization procedure for BK and then present the
results of the chiral/continuum fit and finally our physical
predictions.

TABLE XXI. The physical quark masses renormalized at μ ¼
3.0 GeV in the two intermediate RI-SMOM schemes for each of
the chiral ansätze. The quoted errors are statistical only.

Scheme Ansatz mu=d (GeV) ms (GeV)

SMOM ChPTFV 0.003049(37) 0.08305(80)
SMOM ChPT 0.003055(36) 0.08314(79)
SMOM Analytic (260 MeV) 0.003011(50) 0.08319(87)
SMOM Analytic (370 MeV) 0.003021(42) 0.08317(76)
SMOMγμ ChPTFV 0.003202(38) 0.08721(83)
SMOMγμ ChPT 0.003208(37) 0.08730(81)
SMOMγμ Analytic (260 MeV) 0.003162(51) 0.08735(89)
SMOMγμ Analytic (370 MeV) 0.003172(43) 0.08733(79)
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1. Renormalization of BK

In this section we provide a brief outline of the procedure
for determining the renormalization coefficients; for more
details we refer the reader to Appendix F and Refs. [5,40].
As with the quark mass renormalization, we make use of

“symmetric” regularization-invariant momentum schemes
(RI-SMOM for short), defined by the condition
μ2 ¼ p2

1 ¼ p2
2 ¼ q2 ≡ ðp1 − p2Þ2, where p1 and p2 are

the momenta of the incoming and outgoing quarks:
dðp1Þsð−p2Þ → dð−p1Þsðp2Þ. We compute the amputated
and projected Green’s function of the relevant four-quark
operator,OLL, describing theK − K mixing, normalized by
the square of the average between the vector and axial
bilinear:

Zðs1;s2Þ
BK

ðμ; aÞ × Λðs1Þ
VVþAAðμ; aÞ
Λðs2Þ
AV ðμ; aÞ2

¼ 1; ð92Þ

where

ΛAV ¼ 1

2
ðΛV þ ΛAÞ; ð93Þ

and ΛO ≡ Λbare
O × ðΛtree

O Þ−1 for the operator O, as before.
Note that the quark wave function renormalization factor

cancels in the ratio. In Appendix F we show that the
difference between ΛV and ΛA at 3 GeV is numerically
negligible, and therefore the above choice of normalization
is irrelevant. The superscript ðsiÞ refers to choice of
projector (cf. [5]): either γμ or q. The choices s1 ¼ s2 ¼
γμ and s1 ¼ s2 ¼ q define the so-called SMOMðγμ; γμÞ and
SMOMðq; qÞ schemes respectively.
We perform the full analysis separately for each scheme

and use the difference to estimate the systematic error
associated with the MS matching. While treating the two
schemes in an equal fashion is the most rigorous estimate
we can make with the current data, we have indications that

this might overestimate the error on the SMOMðq; qÞ
result: A preliminary study [41] of step scaling to higher
momentum scales suggests that the scale evolution in this
scheme agrees with perturbation theory over the full range
of scales, whereas the SMOMðγμ; γμÞ scheme evolves into
better agreement as the scale is raised. The perturbative
truncation error is therefore greater for the SMOMðγμ; γμÞ
scheme than for the SMOMðq; qÞ scheme. The complete
study of the evolution to higher energy scales requires
careful treatment of the charm threshold, and is the subject
of further work by RBC and UKQCD. These observations
are consistent with our earlier results at lower scales, and
the better agreement with the perturbative scale evolution
for the SMOM ðq; qÞ scheme was the reason we have, in
this work and previously, taken our central values for BK
from this scheme [40].
We compute ZBK

on each ensemble at a number of q2,
and interpolate to a chosen high momentum scale at which
the matching to MS can be performed. We choose to
perform the matching at 3.0 GeV as before. The values of
the renormalization coefficients at the various lattice
momenta and further details of the analysis are given in
Appendix F.
All matrix elements included in the global fit must be

renormalized to a common scale of 3.0 GeV in order that
the global fit can extrapolate these to a shared, universal
continuum limit. As described in Ref. [5], due to the
coarseness of the 32ID ensemble we are unable to renorm-
alize directly at 3 GeV without introducing potentially
sizeable lattice artifacts. Instead we renormalize with a
lower momentum scale of μ0 ¼ 1.4363 GeV, and apply

the continuum nonperturbative running σðs1;s2ÞBK
ðμ; μ0Þ,

extracted from the 32I and 24I lattices (and extrapolated
to the continuum), to convert this value to μ ¼ 3 GeV.
More details of this conversion are given in Appendix F.
Determining the lattice momentum corresponding to the

3 GeV match point requires the input of the lattice spacings
determined in the previous sections. The effects of the

TABLE XXII. ZBK
at 3 GeV in the two intermediate schemes, with the central values shifted and errors inflated to

account for the different values of the lattice spacings obtained via each chiral ansatz.

Scheme Lattice ChPTFV ChPT Analytic (260 MeV) Analytic (370 MeV)

ðq; qÞ

32I 0.9787(3) 0.9787(3) 0.9787(3) 0.9786(3)
24I 0.9568(3) 0.9568(3) 0.9570(3) 0.9568(3)
48I 0.9545(1) 0.9544(1) 0.9544(1) 0.9544(1)
64I 0.9782(2) 0.9781(2) 0.9781(2) 0.9781(2)

32Ifine 0.9995(4) 0.9995(4) 0.9998(5) 0.9995(4)
32ID 0.9284(45) 0.9286(45) 0.9276(45) 0.9289(45)

ðγμ; γμÞ

32I 0.9409(2) 0.9408(2) 0.9409(2) 0.9408(2)
24I 0.9161(5) 0.9161(5) 0.9162(5) 0.9160(5)
48I 0.9140(1) 0.9140(1) 0.9140(1) 0.9140(1)
64I 0.9411(1) 0.9410(1) 0.9410(1) 0.9410(1)

32Ifine 0.9617(3) 0.9617(2) 0.9619(3) 0.9617(2)
32ID 0.8824(25) 0.8824(25) 0.8824(26) 0.8824(25)
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uncertainties on the lattice spacings are incorporated by
shifting the central values and inflating the errors according
to the lattice spacings determined via each of the chiral
ansätze, using the procedure outlined in the Sec. V C. The
resulting values of ZBK

are given in Table XXII.

2. Chiral/continuum fit to BK

As above, we describe the chiral dependence using chiral
perturbation theory, with and without finite-volume cor-
rections, as well as a linear ansatz with a 260 MeV and
370 MeV pion mass cut. The chiral/continuum fit forms
can be found in Ref. [40]. As before, we use separate
parameters to describe the lattice spacing dependence of the
Iwasaki and Iwasakiþ DSDR actions. The fit parameters
can be found in Table XXIV, and in Fig. 27 we show
examples of the unitary and continuum extrapolations. In
Fig. 28, in which we plot a histogram of the statistical
deviations of the data from the ChPTFV fit curve, we see
excellent consistency between the data and the fit. The total
χ2=d:o:f: for each of the four ansätze are given in
Table XXIII.
The fits to BK with a 370 MeV pion mass cut have 7 free

parameters (the remainder having been determined in our
earlier fits, above) and use 163 data points, giving
156 degrees of freedom; for the 260 MeV cut have 7
parameters and 90 data points, giving 83 degrees of
freedom.

3. Predicted values

In Table XXV we list the continuum predictions for BK,
renormalized in each of the two intermediate schemes, that
we obtained using the ChPTFV ansatz, as well as the sizes
of the differences between those and the other chiral
ansätze. In contrast to the other quantities, for BK we
observe that the differences between the ChPTFV
and analytic ansätze are of the same order as the statistical

error, although those differences are poorly resolved.
Nevertheless, we choose to continue to neglect the chiral
systematic error for the following reasons: We previously
chose to treat the chiral extrapolation error as small not just
because the differences between the analytic and ChPTFV
forms are small, but because we have good evidence to
believe that the ChPTFV fits are correctly capturing this
behavior in addition to their strong theoretical motivation.
This was not the case in our former works where we were
extrapolating from heavier masses. There the analytic fits
weremotivated by the apparent linearity in the available data
with full knowledge that they do not correctly describe any
underlying chiral curvature and are therefore not applicable
over large mass ranges. Given that both fit forms were
deficient in different ways, we conservatively took their full
difference as an estimate of the error. On the other hand, in
our new analysis we have a large amount of data in the light
mass regime and the fits are forced to pass through data
essentially at the physical point. As a result there is no longer
any reason to distrust the ChPTFV results, especially given
that they are only being used to perform a 4 MeV extrapo-
lation in the pion mass. On the other hand there is now good
evidence of chiral curvature in our results and therefore good
reason to discount the analytic results. In fact, it is a
testament of the robustness of our procedure that, despite
this deficiency, the results obtained using these two ansätze
differ only at the fraction-of-a-percent level.
We use the SMOMðq; qÞ result for our central value,

giving us a final continuum result in a nonperturbative
MOM scheme with 0.3% total error after all sources of
error are accounted for:

BKðq; q; 3 GeVÞ ¼ 0.5341ð18Þ: ð94Þ
This final prediction, and the result in the SMOMðγμ; γμÞ

scheme, can be converted into the MS scheme using the
following one-loop matching coefficients [40]:

FIG. 27. The left figure shows the unitary light quark mass dependence of BK in the SMOMðq; qÞ at 3 GeV. The quark masses are in
physical units and in the native normalization of the 32I reference ensemble. Data with hollow symbols are those included in the fit and
data with filled symbols are those excluded. The right figure shows the lattice spacing dependence of those data. Here we have not
included the 32ID ensemble as it lies on a different scaling trajectory.
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Cðq; q → MSÞ ¼ 0.99113;

Cðγμ; γμ → MSÞ ¼ 1.00408; ð95Þ

using αsð3 GeVÞ ¼ 0.24544. The resulting MS values are
also listed in Table XXV.
For the reasons discussed above, we use the value

obtained via the SMOMðq; qÞ scheme for our final MS
result. The matching introduces a perturbative truncation

error, which we estimate by taking the full difference
between the results obtained using the two RI-SMOM
intermediate schemes. We obtain

BKðMS; 3 GeVÞ ¼ 0.5293ð17Þð106Þ; ð96Þ

where the errors are statistical and from the perturbative
matching to MS respectively.
In the renormalization group invariant (RGI) scheme, the

above corresponds to

B̂K ¼ 0.7499ð24Þð150Þ: ð97Þ

Previously [5] we obtained

BKðMS; 3 GeVÞ ¼ 0.535ð8Þð7Þð3Þð11Þ; ð98Þ

for which the errors are statistical, chiral, finite-volume and
from the perturbative matching respectively. Comparing
with the above, we see excellent agreement. Our new result
offers a considerable improvement in the statistical error,
but the truncation effects are the same as we have not
changed the scale, and dominate the final error.

VI. CONCLUSIONS

Combining decades of theoretical, algorithmic and
computational advances, we are finally able to perform
2þ 1 flavor simulations with an essentially chiral action
directly at the physical masses of the up, down and strange
quarks in isospin symmetric QCD with both fine lattice
spacings and large physical volumes. In this paper we
report on two such ensembles; a 483 × 96 × 24 (48I)
ensemble and a 643 × 128 × 12 (64I) ensemble, both
using Möbius domain wall fermions. The inverse lattice
spacings are a−1 ¼ 1.730ð4Þ GeV and 2.359(7) GeV,
respectively, and these ensembles have mπL ¼ 3.863ð6Þ
and 3.778(8). We make use of the Möbius kernel with
parameters chosen such that the Möbius and Shamir

FIG. 28. A histogram of the deviation of the ChPTFV fit curve
from our data in units of the statistical error for the ðq; qÞ
intermediate scheme.

TABLE XXIV. The BK fit parameters for each of our chiral ansätze in the SMOMðq; qÞ scheme at 3.0 GeV. The
parameters are given in physical units and with the heavy quark mass expansion point adjusted to the physical
strange quark mass. For the ChPT and ChPTFV ansatzë the chiral scale Λχ has been adjusted to 1 GeV.

Parameter ChPT ChPTFV Parameter Analytic (260 MeV) Analytic (370 MeV)

B0
K 0.5280(16) 0.5278(16) CBK

0
0.5316(28) 0.5322(17)

cIBK;a
0.125(12) 0.128(12) CBK;I

a 0.145(19) 0.129(12)

cIDBK;a
0.148(15) 0.153(15) CBK;ID

a 0.201(33) 0.164(15)

cBK;mx
0.00492(64) 0.00420(64) CBK

1
−1.0ð1.1Þ 0.37(19)

cBK;ml
−0.00809ð94Þ −0.00728ð95Þ CBK

2
0.58(68) 0.38(28)

cBK;my
1.316(32) 1.324(32) CBK

3
1.547(96) 1.331(32)

cBK;mh
−0.13ð18Þ −0.06ð18Þ CBK

4
0.50(55) 0.07(18)

TABLE XXIII. The χ2=d:o:f: for each of the four chiral ansätze
and the two intermediate renormalization schemes. Here the χ2

does not include the overweighted data, and the number of
degrees of freedom has been correspondingly reduced. For the
analytic fits, the pion mass cut is given in parentheses.

Scheme ChPTFV ChPT
Analytic

(260 MeV)
Analytic

(370 MeV)

ðq; qÞ 0.55(38) 0.70(42) 0.46(35) 0.51(34)
ðγμ; γμÞ 0.62(43) 0.78(46) 0.52(40) 0.58(39)
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(traditional domain wall) kernels are identical, but the
approximation to the sign-function of the four-dimen-
sional effective action is improved in the former, resulting
in a smaller residual chiral symmetry breaking for the
same computational cost.
The simulated pion masses are 139.2(4) and

139.2(5) MeV for the 48I and 64I ensembles respectively.
These are slightly above the physical value, requiring a
small extrapolation that we performed by combining these
ensembles with several of our older Shamir domain wall
ensembles in a simultaneous chiral/continuum “global fit,”
specifically the 243 × 64 × 16 (24I) and 323 × 64 × 16
(32I) ensembles with the Iwasaki gauge action at β ¼
2.13 and 2.2 respectively, and the 323 × 64 × 32 (32ID)
ensemble with the Iwasakiþ DSDR gauge action at
β ¼ 1.75. We also include a new 323 × 64 × 12 (32Ifine)
Shamir domain wall ensemble with the Iwasaki
gauge action at β ¼ 2.37, corresponding to a−1 ¼
3.148ð17Þ GeV, and a heavier 371(5) MeV pion mass;
this enables us to examine the scaling behavior of our data
in the 1.75–3.15 GeV range of inverse lattice spacings to
look for deviations from the leading a2 scaling behavior.
These ensembles give us access to a wide range of unitary
and partially quenched data ranging from the physical point
up to the imposed 370 MeV pion-mass cut. As we use the
same kernel for our Möbius and Shamir simulations, we
are able to describe all of these ensembles using the same
continuum scaling curve, apart from the 32ID ensemble
which has a different gauge action.
The global fits are performed using the techniques

developed in Refs. [5,6]. We fit to the following quantities:
mπ ,mK , fπ , fK ,mΩ and the Wilson flow scales w0 and t

1=2
0 .

A separate fit is performed to the neutral kaon mixing
parameter, BK . To describe the mass dependence of these
quantities we use NLO partially quenched chiral perturba-
tion theory with and without finite-volume corrections
(referred to as the ChPTFV and ChPT ansätze) and also
a linear “analytic” ansatz.
Despite the significantly improved precision of the 48I

and 64I data, we found that the fits missed these data by
1–2σ; this is an artifact of the large number of data points in
the heavy-mass regime where χPT is only reliable to
Oð5%Þ. We resolve this issue by over-weighting the 48I

and 64I data in order that the fit is forced to pass through
these points. We emphasize that, while these global fits
combine a large amount of data from various sources, the
overweighting procedure guarantees that the predictions
(and their statistical errors) are dominated by the near-
physical data. A simpler procedure in which we simply
treated the quark mass mistuning as an additional system-
atic error, would also obtain a similar statistical precision;
the global fits essentially just remove these systematic
effects.
The 48I and 64I ensembles each have the same gauge

coupling as the corresponding 24I and 32I ensembles, but
with smaller residual chiral symmetry breaking (signifi-
cantly so for the former). We found that the differences in
the fermion action between these two pairs of ensembles,
each evaluated at the same gauge coupling, resulted in a
3.2(2)% difference between the 48I and 24I lattice scales,
and a 1.1(2)% difference between that of the 64I and 32I
ensembles. In Appendix C we show that this can be
understood as an unexpectedly large effect of the changes
in Ls and the Möbius scale parameter α which distinguish
these ensembles, and provide added numerical evidence
that these effects are accurately described by such shifts in
the lattice scales.
We showed that due to the dominance of the 48I and

64I data, which were measured with near-physical pion
masses on large, 5.5 fm boxes, the systematic errors
associated with the chiral extrapolation and finite-volume
can be neglected. The errors on our final results, which we
take from the ChPTFV fits, are dominated by statistics,
and are themselves very small. For the pion and kaon
decay constants we obtain fπ ¼ 130.2ð9Þ MeV and
fK ¼ 155.5ð8Þ MeV; for the average up/down quark mass
and strange quark mass in the MS scheme at 3 GeV, 2.997
(49) and 81.64(1.17) MeV; the neutral kaon mixing
parameter BK in the RGI scheme, 0.750(15) and the MS
scheme at 3 GeV, 0.530(11); and the Wilson flow scales
t1=20 ¼ 0.729ð4Þ GeV−1 and w0 ¼ 0.874ð5Þ GeV−1. In
Table XXVI we compare our numbers to the Nf¼2þ1

results compiled by the Flavor Lattice Averaging Group
(FLAG) in their Review of Lattice Results [42].
Our results for the light and strange quark masses,

obtained in Sec. V C, are renormalized in the MS scheme

TABLE XXV. The physical predictions for BK in the two intermediate schemes and in the MS scheme (via the
intermediate schemes) obtained using the ChPTFV ansatz, and the full correlated differences (labeled Δ) between
the results obtained using the other ansätze and the ChPTFV result. Analytic fit differences are presented with a
370 MeV and 260 MeV pion mass cut.

ChPTFV Δ ChPT Δ Analytic (260 MeV) Δ Analytic (370 MeV)

BKðq; qÞ 0.5341(18) 0.00020(11) −0.0035ð25Þ −0.00029ð21Þ
BKðγμ; γμÞ 0.5166(18) 0.00027(12) −0.0037ð24Þ −0.00029ð21Þ
BKðMS via q; qÞ 0.5293(17) 0.00020(11) −0.0035ð24Þ −0.00029ð21Þ
BKðMS via γμ; γμÞ 0.5187(18) 0.00027(12) −0.0037ð24Þ −0.00029ð21Þ

T. BLUM et al. PHYSICAL REVIEW D 93, 074505 (2016)

074505-44



at 3 GeV. The only remaining uncertainties on these
quantities are statistical and perturbative matching errors,
roughly 1% each. The renormalization and running of the
quark masses were computed nonperturbatively, details of
which can be found in Appendix F. The masses are quite
consistent with our previous determinations, but show
significant improvement due to the inclusion of the
physical point ensembles. Our masses agree with the
FLAG averages, but have errors that are both smaller than
those of the average as well as those of any of the individual
results used therein [5,46–49]. The ratio of strange to light
quark masses, shown in Eq. (86), is also consistent with the
FLAG average [42], but here the error is slightly larger
since systematic errors mostly cancel, though it is as small
as any individual result used in the average [5,46–49].
The FLAG average for the standard model kaon

bag parameter is largely dominated by the Budapest-
Marseille-Wuppertal collaboration (BMWc) result [45],
B̂K ¼ 0.7727ð81Þstatð34Þsysð77ÞPT, where the errors are
statistical, systematic and from perturbation theory, respec-
tively. We would like to stress the difficulties one encoun-
ters in reliably assessing truncation errors, a point also

emphasized by BMWc [45]. Among other checks, the
BWMc showed that the NLO-perturbative and their non-
perturbative running in the RI-MOM scheme agree
between 1.8 and 3.5 GeV within statistical errors (of
2%), and quote 1% for the error due to perturbation theory,
2% being the size of the NLO term in the perturbative
expansion. We proceed differently, by evaluating the
difference between two different intermediate SMOM
schemes, and estimate an error of 2%. We believe our
procedure is more robust than those that have fed into the
FLAG average, since multiple intermediate schemes were
used to assess the truncation error. This error can certainly
be reduced further in the future by performing the matching
to MS at higher scale or by computing the matching
coefficient at NNLO. We want to emphasize that the errors
quoted are different because the subjective procedures to
estimate these errors are different. For completeness, we
also compare the nonperturbative scale evolution to the
NLO running between 2 and 3 GeV. We find a deviation of
around 1.5% for the RI-SMOMðγμ; γμÞ and for the RI-
MOM schemes, and of 0.5% for the RI-SMOMðq; qÞ
scheme.

TABLE XXVI. Summary of results from the simulations reported here. The first error is the statistical error, which
for most quantities is much larger than any systematic error we can measure or estimate. The exception is for the
quantities in MS and B̂K . For these quantities, the second error is the systematic error on the renormalization, which
is dominated by the perturbative matching between the continuum RI-MOM scheme and the continuum MS
scheme. Comparison of our results to the averages compiled by the Flavor Lattice Averaging Group [42] for
Nf ¼ 2þ 1 flavor isospin symmetric QCD. Note that for B̂K, a direct comparison of the perturbative error is not
possible since we use a different, and we believe more robust, method to estimate it. This perturbative error is
common to our calculation and to the calculations dominating the FLAG average. In the rightmost column we
provide the references to the original work that entered the quoted FLAG averages. Light quark masses and the
chiral condensate are given in the MS scheme, evaluated at 2 GeV. Results from this work have been run down from
3 GeV to 2 GeVusing the running factor 1.106 from the FLAG review [42] and do not include the FLAG-estimated
systematic error due to the omission of the charm sea quark.

Quantity This work FLAG average

fπ 130.19� 0.89 MeV 130.2� 1.4 MeV [5,43,44]
fK 155.51� 0.83 MeV 156.3� 0.9 MeV [5,43,44]
fK=fπ 1.1945� 0.0045 1.194� 0.005 [5,43–45]
mu ¼ mdðMS; 3 GeVÞ 2.997� 0.036� 0.033 MeV
msðMS; 3 GeVÞ 81.64� 0.77� 0.88 MeV
ms=mu ¼ ms=md 27.34� 0.21 27.46� 0.15 [5,46–49]
mu ¼ mdðMS; 2 GeVÞ 3.315� 0.040� 0.036 MeV 3.42� 0.06 MeV [5,47–49]
msðMS; 2 GeVÞ 90.29� 0.85� 0.97 MeV 93.8� 1.5 MeV [5,46,48,49]

t1=20
0.7292� 0.0041 GeV−1

w0 0.8742� 0.0046 GeV−1

BKðSMOMðq; qÞ; 3 GeVÞ 0.5341� 0.0018
BKðMS; 3 GeVÞ 0.5293� 0.0017� 0.0106
B̂K 0.7499� 0.0024� 0.0150 0.7661� 0.0099 [5,45,50,51]
Fπ=F 1.0645� 0.0015 1.0624� 0.0021 [46,52,53]
½ΣðMS; 3 GeVÞ�1=3 285.3� 2.0� 1.0 MeV
½ΣðMS; 2 GeVÞ�1=3 275.9� 1.9� 1.0 MeV 271� 15 MeV [6,47,52]
l̄3 2.73� 0.13 3.05� 0.99 [5,47,52,53]
l̄4 4.113� 0.059 4.02� 0.28 [5,47,52,53]
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It is useful to compare our results with Ref. [45] in the
intermediate MOM schemes (before converting to MS) as
these numbers are purely nonperturbative:

BRI
K ð3.5 GeVÞ ¼ 0.5308ð56Þstatð23Þsys BMWc ð99Þ

Bðq;qÞ
K ð3 GeVÞ ¼ 0.5341ð18Þstat this work; ð100Þ

where we neglect the various sources of systematic errors in
our result since they are considerably smaller than the
statistical error. These results are in different nonperturba-
tive schemes and at different scales, and are therefore not
directly comparable. However, we can compare their
relative total errors: our result and that of BMWc have a
0.3% and a 1.1% relative error, respectively. We emphasize
that in terms of objective statistical errors, and every
systematic effect for which there is a theoretical framework
for estimation (e.g. discretization, mass extrapolation, and
finite volume), our new result is more precise than those
entering the FLAG average. This is reflected in the 0.3%
total relative error on results in a nonperturbatively defined
q RI scheme. Our assessment of the (subjective) perturba-
tive systematic uncertainty on the conversion to MS is more
pessimistic than that of FLAG and BMWc, but we believe
that it is better founded on the evidence of multiple
intermediate schemes.
Predictions of B̂K in lattice QCD have now reached a

level of precision where other ingredients in its utilization
for SM-tests are limiting progress (e.g. our knowledge
on jVcbj).
The results for the kaon and pion decay constant and

their ratio are compatible with the FLAG average and
amongst the most precise Nf ¼ 2þ 1 predictions that have
been made. Our results will certainly allow for further
constraining CKM-unitarity tests [42].
The most significant remaining differences between our

simulations and the physical world are isospin breaking and
EM effects and the effect of quenching the charm quark.
Including isospin breaking effects requires using non-

degenerate masses for the up and down quarks. This is
possible within the domain wall fermion framework with
current technology, for example using the rational quotient
action or the one-flavor action developed by TWQCD [54].
However, these techniques are computationally demanding,
and the effects in question are expected to be similar in size
to the electromagnetic effects, hence there is limited value
in considering these in isolation.
The RBC and UKQCD collaborations have performed

exploratory calculations using QCD domain wall configu-
rations with quenched electromagnetic interactions [55,56]
and have performed unquenched simulations using
reweighting techniques [57]. There is increasing effort in
the lattice community to control these effects, from more
precise electroquenched calculations [58,59] (i.e. with EM
included only in the valence sector) up to full QCDþ QED

simulations [60]. Adding QED to lattice simulations is
challenging for many reasons. First, adding a coupling
constant to the theory, especially in the context of non-
degenerate light quarks, considerably increases the cost of
the simulations, particularly when using a chiral action
close to the physical point. Second, the absence of mass gap
in QED implies finite-size effects with power-law depend-
ence on the lattice spatial extent, which are potentially large
compared to the QED contributions [60,61]. Finally, it is
still not clear how to define quantities such as decay
constants in QCDþ QED, because the matrix elements
are infrared divergent and gauge dependent [62]. Because
of these issues, the addition of isospin-breaking effects and
electromagnetism remains an important and challenging
topic for our future calculations.
Dynamical charm effects are expected to be small for

the majority of the quantities studied in this paper, but
for quantities such as the KL − KS mass difference and
K → ππ amplitudes they can have significant contribu-
tions. This is therefore the most promising avenue for RBC
and UKQCD to take, allowing us to address these sys-
tematic errors on our flagship calculations. The biggest
hurdle for including the charm is the requirement of
simulating with finer lattice spacings, which tends to incur
freezing of topology as well as requiring large computing
power to obtain sufficiently large physical volumes. RBC
and UKQCD have developed the “dislocation enhancing
determinant” method [63] to overcome the effects of the
topology freezing, and have already commenced large-
scale physical simulations with dynamical charm.
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APPENDIX A: CONSERVED CURRENTS OF THE
MÖBIUS DOMAIN WALL ACTION

The connection of the Möbius formulation to overlap
fermions can be made at the propagator level and with the
familiar DWF physical fields qL and qR. In the following
subsection we repeat known but important results connect-
ing the surface-to-surface and surface-to-bulk propagators
of the Möbius domain wall action (in our conventions) with
the four dimensional overlap propagator. These results are
then used to establish a practical implementation of the
conserved axial and vector currents for the Möbius case.

1. Domain wall and overlap propagators,
and contact terms

The approximate overlap operator can bewritten in terms
of our four dimensional Schur complement matrices as

Dov ¼ Sχðm ¼ 1Þ−1SχðmÞ: ðA1Þ

Observe that if we solve the following 5-D system of
equations,

D5
χðm ¼ 1Þ−1D5

χðmÞϕ ¼

0
BBB@

q

0

..

.

0

1
CCCA; ðA2Þ

and substitute the UDL decomposition, this yields

D−1
S ðm ¼ 1ÞDSðmÞLðmÞϕ ¼ Lðm ¼ 1Þ

0
BBB@

q

0

..

.

0

1
CCCA: ðA3Þ

Since ðLðmÞðq; 0;…; 0ÞTÞ1 ¼ q and ðLðmÞϕÞ1 ¼ ϕ1, the
topmost row of our 5-D system of equations gives the
overlap propagator:

Sχðm ¼ 1Þ−1SχðmÞ ¼ ðD5
χðm ¼ 1Þ−1D5

χðmÞÞ
11
: ðA4Þ

This approximate overlap operator can however be
expressed in terms of the ψ basis fields, and

Dov ¼ Sχðm ¼ 1Þ−1SχðmÞ ðA5Þ

¼ ½P−1PD5
χðm ¼ 1Þ−1Q−1

− γ5γ5Q−D5
χðmÞP−1P�

11

ðA6Þ

¼ ½P−1D5
GDWðm ¼ 1Þ−1D5

GDWðmÞP�11: ðA7Þ

The cancellation the Pauli-Villars term can be expressed in
terms of unmodified generalized domain wall matrix
D5

GDW . The overlap contact term can be subtracted from
the overlap propagator. Here we define

~D−1
ov ¼ 1

1 −m
½D−1

ov − 1� ðA8Þ

¼ 1

1 −m
½P−1D5

GDWðmÞ−1D5
GDWðm ¼ 1ÞP − 1�11

ðA9Þ

¼ 1

1 −m
fP−1D5

GDWðmÞ−1½D5
GDWðm ¼ 1Þ

−D5
GDWðmÞ�Pg11: ðA10Þ

Now, the difference ½D5
GDWðm ¼ 1Þ −D5

GDWðmÞ�ij ¼
ð1 −mÞ½P−δi;Ls

δj1 þ Pþδi;1δj;Ls
�. This relation is simpler

to interpret in our convention than with the convention from
Ref. [12]: the mass term is applied to our five dimensional
surface fields without field rotation. With this,

~D−1
ov ¼ fP−1D5

GDWðmÞ−1R5Pg11: ðA11Þ
This is just the normal valence propagator of the physical
DWF fields q ¼ ðP−1ψÞ1 and q ¼ ðψR5PÞ1. We see that
the usual domain wall valence propagator has always
contained both the contact term subtraction and the
appropriate multiplicative renormalization of the overlap
fermion propagator. As a result, the issues of lattice artifacts
in NPR raised in Ref. [65] have never been present in
domain valence analyses. This was guaranteed to be the
case because Shamir’s 5-D construction is designed to

DOMAIN WALL QCD WITH PHYSICAL QUARK MASSES PHYSICAL REVIEW D 93, 074505 (2016)

074505-47

http://qcdoc.phys.columbia.edu/cps.html
http://www2.ph.ed.ac.uk/%7Epaboyle/bagel/Bagel.html
http://www2.ph.ed.ac.uk/%7Epaboyle/bagel/Bagel.html
https://github.com/RJhudspith/GLU


exactly suppress chiral symmetry breaking in the limit of
infinite Ls, including any contact term.
For later use, we may also consider the propagator into

the bulk from a surface field q for Möbius fermions,

hQsqi ¼ ½P−1D5
GDWðmÞ−1R5P�s1 ðA12Þ

¼ 1

1 −m
fP−1D5

GDWðmÞ−1D5
GDWð1ÞP − 1gs1

ðA13Þ

¼ 1

1 −m
fD5

χðmÞ−1D5
χð1Þ − 1gs1 ðA14Þ

¼ 1

1 −m
fL−1ðmÞD−1ðmÞDð1ÞLð1Þ − 1gs1

ðA15Þ

¼ 1

1−m



L−1ðmÞ

�S−1χ ðmÞSχð1Þ 0

0 1

�
Lð1Þ−1

�
s1

:

ðA16Þ
Now,

LðmÞ ¼

0
BBBBB@

1 0

−T−ðLs−1ÞðPþ −mP−Þ
..
.

1
−T−1ðPþ −mP−Þ

1
CCCCCA;

LðmÞ−1 ¼

0
BBBBB@

1 0

T−ðLs−1ÞðPþ −mP−Þ
..
.

1
T−1ðPþ −mP−Þ

1
CCCCCA ðA17Þ

and so we have,

hQsqi

¼ 1

1 −m

0
BBBBB@

D−1
ov ðmÞ − 1 0

T−ðLs−1ÞÞ½ðPþ −mP−ÞD−1
ov ðmÞ − γ5�

..

.
0

T−1½ðPþ −mP−ÞD−1
ov ðmÞ − γ5�

1
CCCCCA

s1

ðA18Þ

¼

0
BBB@

½Pþ þ P−T−Ls � 0

T − ðLs − 1Þ
..
.

0

T−1

1
CCCA

s1

½1þ T−1
1 � � �T−1

Ls
�−1D−1

ov ðmÞ:

ðA19Þ
Finally, applying the permutation matrix, we have the five
dimensional propagator from a physical field,

Gq ¼ PhQsqi

¼ ½Pþ þ P−T−1�

0
BBBBBBBBB@

T−ðLs−1Þ

T−ðLs−2Þ

..

.

T−1

1

1
CCCCCCCCCA
½1þ T−Ls �−1D−1

ov :

ðA20Þ

The connection between domain wall systems and the
overlap, well established in the literature and reproduced in
this section, is useful in understanding the relation of
domain wall fermions to their 4-D effective action.

2. Conserved vector and axial currents

The standard derivation of lattice Ward identities pro-
ceeds as follows. A change of variables of the fermion
fields ψ and ψ at a single site y is performed:

ψ 0
y ¼ ψy − iαψy; ψ 0

y ¼ ψy þ iψyα: ðA21Þ

Under the path integral, the Jacobian is unity, and the
partition function is left invariant:

Z0 ¼
Z

dψdψe−S½ψ ;ψ �


1 − iα

�
δS
δψy

ψy − ψy
δS
δψy

��
¼ Z:

ðA22Þ

Hence, �
δS
δψy

ψy − ψy
δS
δψy

�
¼ 0: ðA23Þ

The Wilson action gives eight terms from varying ψy and
eight terms from varying ψy due to the 4-D hopping stencil:

ψδyðDWÞψ
¼ Δ−

μ JWμ ðyÞ

¼
X
μ

"
−ψy

1−γμ
2

UμðyÞψyþμ̂ þ ψy−μ̂
1−γμ
2

Uμðy− μ̂Þψy

−ψy
1þγμ
2

U†
μðy− μ̂Þψy−μ̂ þ ψyþμ̂

1þγμ
2

UμðyÞ†ψy

#

ðA24Þ

¼Δ−
μ

�
ψy

1−γμ
2

UμðyÞψyþμ̂−ψyþμ̂U
†
μðyÞ1þγμ

2
ψy

�
¼0;

ðA25Þ
where Δ−

μ is the backwards discretized derivative.
An equivalent alternate approach may be taken, however,

and this is a better way to approach nonlocal actions such as
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the chiral fermions. Gauge symmetry leaves the action
invariant at OðαÞ under the simultaneous active substitu-
tion, for a fixed site y of

UμðyÞ → ð1þ iαÞUμðyÞ;
Uμðy − μ̂Þ → Uμðy − μ̂Þð1 − iαÞ ðA26Þ

and

ψy → ð1þ iαÞψy; ψy → ψyð1 − iαÞ: ðA27Þ

A change of variables on the fermion fields at site y may
be performed simultaneously to absorb the phase on the
fermions:

ψ 0
y ¼ ð1þ iαÞψy; ψ 0

y ¼ ψyð1 − iαÞ: ðA28Þ

Under the path integral, the Jacobian is again unity, and
the phase associated with the fermion is absorbed. We can
now view the change in action as being associated with the
unabsorbed phases on the eight gauge links connected to
site y:

Z0 ¼ Z ¼
Z

dψ 0dψ 0e−S½ψ 0;ψ 0;U�

×



1þ iα

X
μ

�
δS

δUμðyÞij
UμðyÞij

−
δS

δUμðy − μÞij Uμðy − μÞij
��

: ðA29Þ

For a gauge invariant Lagrangian we can always use a
picture where the same change in action, and same current
conservation law may be arrived at by differentiating with
respect to the eight links connected to a site:�X

μ

�
δS

δUμðyÞij
UμðyÞij −

δS
δUμðy − μÞij Uμðy − μÞij

��

¼ 0: ðA30Þ

This arises because the phase freedom of fermions and of
gauge fields are necessarily coupled and inseparable in a
gauge theory. For the nearest-neighbor Wilson action, this
generates the same eight terms entering Δ−

μ Jμ ¼ 0.
In the case of nonlocal actions, the Dirac matrix, what-

ever its form, can be viewed as a sum of gauge covariant
paths. When generating a current conservation law from
Uð1Þ rotation of the fermion field at site y, we sum over all
fields ψðxÞ and ψðxÞ connecting through the Dirac matrix
Dðx; yÞ to the fixed site ψðyÞ and ψðyÞ. The following sum
is always constrained to be zero for all y, and is identical to
that found by Kikukawa and Yamada [66]:X

x

ψxDðx; yÞψy − ψyDðy; xÞψx ¼ 0: ðA31Þ

The partitioning of this sum of terms into a paired discrete
divergence operator and current is not obvious, and it is
cumbersome to generate Kikukawa and Yamada’s nonlocal
kernel.
It is instructive to consider what happens if we derive the

same sum of terms by differentiating with respect to the 8
links connected to site y.

�X
μ

�
δS

δUμðyÞij
UμðyÞij −

δS
δUμðy− μÞij Uμðy− μÞij

��
¼ 0:

ðA32Þ

The structure of Eq. (A32) always lends itself interpretation
as a backwards finite difference. For a nonlocal action, the
differentiation Eq. (A32) appears to generate a lot more
terms than the fermion field differentiation Eq. (A31). The
reason is clear: these extra terms are constrained by gauge
symmetry to sum to zero, but only after cancellation between
the different terms in Eq. (A32). Specifically, we consider an
action constructed as the product of Wilson matrices:

S ¼
X
xyzw

ψxDWðx; yÞDWðy; zÞDWðz; wÞψðwÞ: ðA33Þ

The link variation approach gives three terms, each of which
are conserved under a nearest-neighbor difference diver-
gence: varying with respect to the 8 links we obtain, via the
product rule,

δyðψDWDWDWψÞψ
¼ ψ ½ðδyDWÞDWDW þDWðδyDWÞDW

þDWDWðδyDWÞ�ψ : ðA34Þ

Each of these contributions contain a backwards difference
operator, and it is trivial to split this into a divergence and
corresponding conserved current using Eq. (A24).
The above comment is generally applicable to any

function of the Wilson matrix. We take this approach to
establish the exactly conserved vector current of an
approximate overlap operator, where the approximation
is represented by a rational function. We will also establish
that matrix elements of this current are identical to those of
the Furman and Shamir approach [9] in the case of domain
wall fermions. The Furman and Shamir approach will then
be used to also establish an axial Ward identity for our
generalized Möbius domain wall fermions under which an
explicitly known defect arises. This is important in both
renormalizing lattice operators and also in determining the
most appropriate measure of residual chiral symmetry
breaking in our simulations. We construct the conserved
vector current by determining the variation in the overlap
Dirac operator, δyDov:
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δyDov ¼
1 −m
2

γ5



δy

�
1

1þ T−Ls

�
½1 − T−Ls�

þ 1

1þ T−Ls δyð1 − T−LsÞ
�

¼ 1 −m
2

γ5



δy

�
1

1þ T−Ls

�

−
1

1þ T−Ls δyðT−LsÞ
�
1 −

T−Ls

1þ T−Ls

��

¼ ð1 −mÞγ5δy
�

1

1þ T−Ls

�
: ðA35Þ

We can similarly find the variation in T−1 induced by a
variation in DW , where the variation in DW is just the
backwards divergence of the standard Wilson conserved
current operator. Denoting,

T−1 ¼ −ð ~Q−Þ−1 ~Qþ
~Q− ¼ DsþP− −D−Pþ ¼ D−γ5Q−

~Qþ ¼ DsþPþ −D−P− ¼ D−γ5Qþ; ðA36Þ

we see that

δyðT−1Þ ¼ − ~Q−1
− f−δyð ~Q−Þ ~Q−1

− ~Qþ þ δyð ~QþÞg
¼ − ~Q−1

− fδyð ~Q−ÞT−1 þ δyð ~QþÞg
¼ − ~Q−1

− δyðDWÞfðbP− þ cPþÞT−1

þ bPþ þ cP−g: ðA37Þ

Since

~Q−P− ¼ ð1þ bDWÞP−; ~QþP− ¼ ðcDW − 1ÞP−

~Q−Pþ ¼ ðcDW − 1ÞPþ; ~QþPþ ¼ ð1þ bDWÞPþ;

we may reexpress the identity

ðbþ cÞðPþ þ P−Þ
¼ c ~Q−P− − b ~QþP− þ c ~QþPþ − b ~Q−Pþ ðA38Þ

~Q−1
− ðPþ þ P−Þ

¼
~Q−1
−

bþ c
½ ~QþðcPþ − bP−Þ þ ~Q−ðcP− − bPþÞ�; ðA39Þ

and this lets us find a symmetrical form:

ðbþ cÞδyðT−1Þ
¼ ½b½Pþ − T−1P−� þ c½T−1Pþ − P−��δyðDWÞ
× ½b½Pþ þ P−T−1� þ c½PþT−1 þ P−��:

We may now look at the variation of the term T−Ls

δyðT−LsÞ ¼
XLs

s¼1

T−ðs−1Þ
�

b½Pþ − T−1P−�
þc½T−1Pþ − P−�

�
δyðDWÞ

×

�
b½Pþ þ P−T−1�
þc½PþT−1 þ P−�

�
T−ðLs−sÞ: ðA40Þ

Compiling these results, we find

δyDov ¼ −
1 −m
bþ c

γ5
1

1þ T−Ls

×

�XLs

s¼1

T−ðs−1ÞδyðT−1ÞT−ðLs−sÞ
�

1

1þ T−Ls :

ðA41Þ

The terms may be expanded until insertions of the
backwards divergence of the Wilson current are reached
[Eq. (A24)]. Gauge symmetry then implies the conserva-
tion of the obvious current and the vector Ward identities
can be constructed. For example, we may take as source
ηjj

0αα0 ðzÞ ¼ δjj0δαα0δ4ðz − xÞ and a two-point function of
the conserved current may be constructed as

Δ−
μ hψγνψðxÞjVμðyÞi

¼Trγνγ5η†D
−†
ov γ½1þT−Ls �−1


XLs−1

s¼0

T−sδyðT−1ÞT−ðLs−1−sÞ
�

× ½1þT−Ls �−1D−1
ov η: ðA42Þ

Note that when c ¼ 0, the insertion of Eq. (A40)
contains only terms such as

½P−T−1 þ Pþ�; ðA43Þ
which are also present in the surface to bulk propagator
Eq. (A20). As one would expect, when we take b and c to
represent domain wall fermions, the two-point function of
our exactly conserved vector current—derived from the
four dimensional effective action—exactly matches the
matrix element of the vector current constructed by
Furman and Shamir [9], Eq. (2.21), from a five dimensional
interpretation of the action.
Since the Furman and Shamir current was easily con-

structed from the five dimensional propagator Eq. (A20),
one might hope to do the same in the generalized approach
to domain wall fermions. To play a similar trick for the c
term, we would need to generate the terms

P−½1þ T−Ls �−1D−1
ov ðA44Þ

and

PþT−1
1 ½1þ T−Ls �−1D−1

ov : ðA45Þ
These are not manifestly present in Eq. (A19). However,
the presence of the contact term on the s ¼ 0 slice can be
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removed after a propagator calculation. We define this
slice as

SðxÞ ¼ hQ0qi ¼
1

1 −m
ðD−1

ov ðmÞ − 1Þ: ðA46Þ

In a practical calculation, the source vector ηmay be used to
eliminate the contact term by forming

ð1 −mÞSðxÞηþ η

¼ D−1
ov ðmÞη ¼ ½1þ T−Ls �½1þ T−Ls �−1D−1

ov η: ðA47Þ

By applying Pþ and P− we find we have the following set
of vectors

0
BB@

Pþ
P−T−LsPþ½1þ T−Ls �

P−½1þ T−Ls �

1
CCA½1þ T−Ls �−1D−1

ov ; ðA48Þ

and we may eliminate to form Ls þ 1 vectors from a 4-D
source η

TðsÞ ¼

0
BBBBB@

1

T−1

..

.

T−Ls

1
CCCCCA½1þ T−1

1 � � �T−1
Ls
�−1D−1

ov ðmÞη: ðA49Þ

This may be used to construct

½b½Pþ þ P−T−1� þ c½PþT−1 þ P−��Ts; ðA50Þ

for s ∈ f0…Ls − 1g, and by contracting these vectors
through the Wilson conserved current the matrix element,
Eq. (A42), can be formed in a very similar manner to the
standard DWF conserved vector current. When c ¼ 0
the matrix element reduces to being identical to that for
the Furman and Shamir vector current.
A flavor nonsinglet axial current, almost conserved

under a backwards difference operator, can now also be
constructed following Furman and Shamir. We associate a
fermion field rotation

ψðx; sÞ →


eiαΓðsÞψðx; sÞ; x ¼ x0
ψðx; sÞ; x ≠ x0

; ðA51Þ

where

ΓðsÞ →

−1; 0 ≤ s < Ls=2

1; Ls=2 ≤ s
: ðA52Þ

We acquire a related (almost-)conserved axial current,
whose pseudoscalar matrix element is

Δ−
μ hψγ5ψðxÞjAμðyÞi
¼ Tr½η† ~D−†

ov γ5�½1þ T−Ls �−1

×


XLs−1

s¼0

T−sΓðsÞδyðT−1ÞT−ðLs−1−sÞ
�

× ½1þ T−Ls �−1D−1
ov η: ðA53Þ

The exact vector current conservation induces the same J5q
midpoint density defect that arose for DWF, and the Ward
identity is

Δ−
μ hψγ5ψðxÞjAμðyÞi ¼ hψγ5ψðxÞj2mPðyÞ þ 2J5qðyÞi:

ðA54Þ

This allows us to retain the usual definition of the residual
mass in the case of Möbius domain wall fermions. We
emphasize that the definition,

mres ¼
hπð~p ¼ 0ÞjJ5qi
hπð~p ¼ 0ÞjPi

				
m¼−mres

;

via the zero-momentum pion matrix element of J5q is
particularly important, because then our PCAC relation,

hπð~p ¼ 0Þj2mPþ 2J5qi ¼ 0;

guarantees that the low momentum lattice pions are
massless. This is the appropriate measure of chiral sym-
metry breaking for the analysis of the chiral expansion.
Section III C discusses methods of using the vector and

axial ward identities to measure the renormalization of the
local vector and axial currents, and their use in our analysis.

APPENDIX B: DERIVING DIMENSIONLESS
GLOBAL FIT FORMS

In this section we briefly describe how to obtain the
appropriate dimensionless global fit function describing the
lattice data for a quantity Q of mass dimension D on a
general ensemble e. The procedure is as follows:
(1) Write down the fit formula forQ in physical units on

the reference ensemble, including an a2 term. For
example, a linear ansatz might have the following
form:

Q ¼ cQ;0ð1þ cQ;aa2rÞ þ cQ;ml
~mr
l þ cQ;mh

~mr
h;

where we have assumed that there are no partially
quenched data points for simplicity. Here the super-
script r on the quark masses indicates that they are in
the normalization of the reference ensemble.

(2) To derive the fit form for Q on ensemble e, first
replace ar with the lattice spacing, ae, appropriate
for that ensemble, then rewrite ae as ae ¼ ar=Re

a:
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Q ¼ cQ;0ð1þ cQ;aa2rðRe
aÞ−2Þ þ cQ;ml

~mr
l þ cQ;mh

~mr
h:

(3) Multiply by aDr and redefine the fit parameters in
terms of dimensionless quantities (denoted with a
prime superscript):

aDr Q ¼ c0Q;0ð1þ c0Q;aðRe
aÞ−2Þ þ c0Q;ml

ðar ~mr
l Þ

þ c0Q;mh
ðar ~mr

hÞ:

(4) Using ar ¼ Re
aae, rewrite the function in terms of

the lattice spacing on the ensemble e:

ðRe
aÞDðaDe QÞ ¼ c0Q;0ð1þ c0Q;aðRe

aÞ−2Þ
þ c0Q;ml

Re
aðae ~mr

l Þ þ c0Q;mh
Re
aðae ~mr

hÞ:

(5) Finally, use ~mr ¼ Ze
l ~m

e to move the quark masses
into the native normalization of ensemble e, and
divide by ðRe

aÞD:
ðaDe QÞ ¼ ðRe

aÞ−Dc0Q;0ð1þ c0Q;aðRe
aÞ−2Þ

þ c0Q;ml
ðRe

aÞ1−DZe
l ðae ~me

l Þ
þ c0Q;mh

ðRe
aÞ1−DZe

hðae ~me
hÞ:

This fit function now describes the data in lattice units for
the ensemble e.

APPENDIX C: DEPENDENCE OF THE LATTICE
SPACING ON THE FERMION ACTION

In Sec. IV we described that, contrary to our expect-
ations, combining the 24I and 48I ensembles into a single
global fit required that two lattice spacings, differing by
3.2(2)%, be used for these two, nominally similar ensem-
bles. (Similar but smaller discrepancies between the lattice
spacings for the 32I and 64I ensembles were also found.)
In this appendix we will discuss this phenomenon in
greater detail and describe additional measurements that
we performed in order to verify that this assignment of
different lattice spacings is correct. For clarity we will focus
on the 24I and 48I ensembles, since the explanation for
both cases is the same. For the 24I ensemble set we
consider only the ensemble with the lighter input quark
mass of mf ¼ 0.005.
The 24I and 48I ensembles are very similar. Each uses the

same Iwasaki gauge action with the same value of β ¼ 2.13.
They differ in the fermion formulation used (Shamir
and Möbius respectively), the total light quark mass
[mf þmres ¼ ð5.0þ3.154ð15ÞÞ×10−3 ¼ 8.154ð15Þ×10−3

and mfþmres¼ð7.8þ6.102ð40ÞÞ×10−4¼13.999ð40Þ×
10−4, respectively] and the degree of residual chiral
symmetry breaking, which is suggested by the differences

in the values of the residual quark masses just
quoted. For a comparison of the mf ¼ 0.004 32I and 64I
ensembles, the corresponding numbers are mf þ mres ¼
ð4.0 þ 0.6664ð76ÞÞ × 10−3 ¼ 4.6664ð76Þ × 10−3 and
mfþmres ¼ð6.78þ3.116ð23ÞÞ×10−4¼ 9.896ð23Þ×10−4

respectively.
If we were to describe the low-energy Green’s functions

computed on the 24I and 48I ensembles as corresponding
to separate Symanzik effective theories, these two effective
theories would be essentially identical, except for
differences in their low-energy constants of order ðmaÞn.
For example, in a theory with chiral fermions the dimen-
sion-4 ðFμνÞ2 term, closely related to the lattice scale,
would have coefficients which differed by terms of order
ðmaÞ2, terms much too small to be relevant here. Of course,
had such a term been important, our global fitting pro-
cedure would have included its effects by describing both
the 24I and 48I ensembles with a single Symanzik effective
theory, with a single lattice spacing, whose mass-dependent
coefficients were represented by explicit mass-dependent
terms in the fit. In this framework both the 24I and 48I
ensembles would be described by the same lattice spacing a
and the same value of Ra.
It may be useful to briefly review the meaning of the

lattice spacing a as it is generally defined in field theory and
specifically defined in the calculation presented here.
Perhaps the simplest way to define the cutoff scale is by
specifying the value of a “physical” quantity, such as the
Wilson flow or three-gluon coupling, at a sufficiently short
flow time or large gluon momentum that the process can be
understood in perturbation theory. Theories with identical
lattice actions but with different quark masses will give the
same value for the lattice scale up to terms of order ðmaÞ2 if
we introduce the lattice scale a as the natural lower/upper
limit on the flow times or momentum scales that are
available for such a short-distance definition. From this
perspective, such mass dependent effects are much too
small to result in the 3% discrepancy we find. In our actual
approach, we define the lattice spacing through the mass of
the Ω−. This requires our global fitting procedure and an
explicit extrapolation to a specific value of input quark
masses, specifically those which give physical values for
mπ=mΩ and mK=mΩ, in order that such a low-energy
definition of the lattice scale be well defined.
Necessarily, in this approach the 24I and 48I ensembles
are assigned a common lattice spacing and their different
input quark masses are completely accounted for in the
global fitting procedure (up to negligible systematic
effects). For our low-energy definition of the lattice
spacing, it is not possible to interpret the 3% difference
in a between the 24I and 48I ensembles as resulting from
their different input masses.
Instead, the change in the lattice spacing between the 24I

and 48I ensembles must be attributed to some other change
in the lattice action. We are left to conclude that this effect
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must be a result of the change in fermion formulation. As
discussed in Sec. II, we can consider this change as being
accomplished in two steps: we first change Ls from 16 to 48
using the Shamir formulation, and then change from the
Shamir (Ls ¼ 48, bþ c ¼ 1) to the Möbius (Ls ¼ 24,
bþ c ¼ 2) formulation at fixed Lsðbþ cÞ. Since all
4-dimensional Green’s functions related by this final
change are expected to agree at the 0.1% level, the
Shamir to Möbius change is inconsistent with a 3% change
in the lattice spacing, which would naturally result in a 3%
change in such Green’s functions. (For example, a change
in the Omega mass of 3% would result in at least a 3%
change in the Omega propagator.)
Thus, we expect that this 3% change in lattice spacing

would have been observed even if we had continued to use
the Shamir action and simply increased Ls from 16 to 48.
While this is a surprisingly large effect for such a change in
Ls, we believe that it is a plausible explanation. The effect
of the smaller Ls ¼ 16 value is usually characterized by the
value of mresa ¼ 3.154ð15Þ × 10−3, which is substantially
less than 3%. However, considerable effort has been
devoted to reducing the size of mres, including a careful
choice for the domain wall parameterM5 and the choice of
the Iwasaki gauge action. It is possible that, while these
choices have significantly reduced mres, they have not
correspondingly reduced the size of other Ls-dependent
effects.
For example, the value of the lattice spacing, which is

determined by the strength of QCD interactions at the scale
of ΛQCD, is a strong function of the antiscreening produced
by QCD vacuum polarization. The quarks act to reduce this
antiscreening, and the Pauli-Villars determinant was origi-
nally included in the domain wall fermion action [8] to
regulate what would have been a divergent contribution to
QCD vacuum polarization coming from the increasing
number of fermion species as Ls → ∞. While, as can be
seen by the relation with overlap fermions discussed in
Sec. II these effects have a well-defined Ls → ∞ limit, we
cannot rule out the possibility that they appear at the 3%
level for β ¼ 2.13 and Ls ¼ 16. Instead, we interpret this
large shift in a as providing new information about the
potential effects of finite Ls, and a warning that simple
estimates can occasionally be misleadingly low. In this
spirit, we should recognize that the earlier arguments about
the insensitivity of the coefficients of the Oða2Þ Symanzik
correction terms to our change in action may underestimate
these effects. Of course, in this case, if our few tenths of a
percent estimate were to become even a 5% effect, it would
not interfere with our current continuum extrapolations.
Since the conclusion, implied by our global fits, that the

lattice spacing did indeed change by 3.2% and 1% when
going from the 24I to 48I and 32I to 64I ensembles
respectively, was a surprise, it was important to test this
hypothesis. For that purpose, we generated two additional
MDWFþ I ensembles with input parameters set equal to

those of the lightest 24I and 32I ensembles (i.e. those with
aml ¼ 0.005 and aml ¼ 0.004, respectively), but using
the Möbius parameters and Ls values that were used for
the 48I and 64I ensembles respectively. We compensated
for the reduction in the residual mass by increasing the
input bare quark mass in order that the total quark masses
remain equal to the 24I and 32I values. If the observed
differences in the lattice spacings can indeed be attributed
to the change in Ls (that which would have been required
if the new ensembles were generated with the Shamir
action), then the lattice scales for these new ensembles
should match those determined for the 48I and 64I
ensembles.
We refer to these new ensembles as the 24Itest and

32Itest ensembles. They were generated with Möbius
domain wall fermions and the Iwasaki gauge action at β ¼
2.13 and 2.25 respectively, and with lattice sizes of 243 ×
64 × 24 and 323 × 64 × 12. Both ensembles use Möbius
parameters of α ¼ bþ c ¼ 2 and b − c ¼ 1, making them
equivalent to Shamir domain wall ensembles with Ls ¼ 48
and 24 respectively. On the 24Itest ensemble, we measured
the residual mass and Wilson flow scales on configurations
in the range 120–550; the residual mass was measured
every 40 configurations, and the Wilson flow scales every
10, and we binned the latter over four successive mea-
surements. Similarly, for the 32Itest ensemble, we per-
formed measurements in the configuration range 200–610,
measuring the residual mass every 20 and the Wilson flow
scales every 10, binning the latter over two successive
measurements.
The values of the average plaquette, residual mass, total

quark mass and Wilson flow scales are listed in
Table XXVII. From the table we can immediately observe
that, while the total quark masses of the 24Itest and 24I
ensembles are closely matched, there are clear differences
in the average plaquette and Wilson flow scales; smaller
differences are also observable between the 32Itest and 32I
measurements. The differences in the Wilson flow scales
are ∼3% between the 24I and 24Itest ensembles and ∼1%
between the 32I and 32Itest, which are very similar to the
differences in lattice scales observed between the 24I/48I
and 32I/64I ensembles respectively.
We cannot directly compare the computed values on the

test ensembles in Table XXVII with the corresponding 48I
and 64I values, due to the measurements being performed
with different quark masses. For a definitive test, we instead
include the test ensembles in the global fits. For each
ensemble there are associated three free parameters: the
scaling parameters Zl, Zh and Ra. The observed differences
in the fermion action appear to result in negligible changes
to Zl and Zh; hence, we are able to fix those values to those
of the 24I/48I (for the 24Itest) and 32I/64I (for the 32Itest
ensemble); this leaves only Ra as a free parameter for each
ensemble. In Table XXVIII we list the values of Ra that we
obtain, along side the corresponding values for the 24I, 32I,
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48I and 64I ensembles. We observe excellent agreement
betweenRa on the 24Itest ensemble and that on the 48I, and
similarly between the 32Itest and 64I. This offers clear
evidence that the change in Ls is responsible for the
observed differences in lattice spacing. It provides further
confidence in our global fitting procedure, which was
sufficiently reliable to produce strong evidence for this
effect even though it was not expected in advance.
Note, in this explanation we continue to assume the

near equality of the Möbius and Shamir 4-D theories for
fixed Lsðbþ cÞ, and to view the difference in a as what
would have been observed had we used only the Shamir
action, increasing Ls from 16 to 48 (for 24I/48I) and 16 to
24 (for 32I/64I). While we believe that this assumption has
a strong theoretical justification, the numerical experiment
just described does not provide direct evidence for its
validity.

APPENDIX D: WEIGHTED FITS

We define a weighted χ2 as

χ2 ¼
X
i

ωi½yi − fðxi; cÞ�2
σ2i

; ðD1Þ

where i indexes the measurements, yi and σi are the
measured value and statistical error, xi the associated

coordinates, and c the set of parameters of the fit function
f. The quantities ωi are set to a value Ω for some subset of
the data, whereΩ is assumed to be large, and to unity for all
other data. We demonstrate below that the dependence on
Ω vanishes in the limit Ω → ∞ and that this limit is
sensible.
The minimum of χ2 satisfies

∂χ2
∂cκ ¼

X
i

ωi

σ2i

∂Δ2
i ð~xi; ~cÞ
∂cκ ¼ 0: ðD2Þ

Writing out the derivative explicitly and dividing both sides
by Ω gives the following expression:

X
i

ωi

Ω
Δið~xi; ~cÞ

σ2i
·
∂fð~xi; ~cÞ

∂cκ ¼ 0: ðD3Þ

If we naïvely take the Ω → ∞ limit of this equation, it
appears that all of the data with ωi ¼ 1 drop out entirely
and hence do not contribute to the fit. This is certainly true
in those cases in which the number of data points with
weight ωi ¼ Ω is sufficient to determine the full set of
parameters ~c. However when there are fewer points, there
is no solution that satisfies Eq. (D3) in the Ω → ∞ limit.
We argue that if one first determines the solution for
finiteΩ, either analytically or numerically, then afterwards
take the limit Ω → ∞, the solution remains valid and in
fact depends on the data with ωi ¼ 1. The resolution of
this apparent paradox is that when the overweighted
points are insufficient to determine the parameters, the
fit has (almost-)unconstrained directions with infinitesi-
mally small curvature arising from the vanishing
unweighted data, and hence there is a well-defined
minimum.

1. Simple example

It is straightforward to demonstrate the behavior dis-
cussed above via a simple example in which we are
attempting to determine the parameters of the function

fðxÞ ¼ aþ bx ðD4Þ

by minimizing

χ2 ¼
XN−1

i¼0

ðri − fðxiÞÞ2wi ¼ 0; ðD5Þ

where ri are a series of N data points with coordinates xi
and unit variances for simplicity.
Let us first consider a scenario in which we have three

data points (N ¼ 3), two of which are overweighted:
w0 ¼ w1 ¼ Ω, and the third is assigned w2 ¼ 1. Here
the overweighted data points are sufficient to determine
both parameters and the result of solving for the minimum

TABLE XXVII. Comparison of various quantities in lattice
units between the test ensembles and the original ensembles. For
the 24I and 32I ensembles we quote values for the residual mass
computed at unitary light quark masses (not extrapolated to the
chiral limit). These and the average plaquette values were
determined in Ref. [6]. The Wilson flow scales on these
ensembles are discussed in Appendix E. For comparison, the
residual masses for the 48I and 64I ensembles are 0.000610(4)
and 0.000312(2) respectively.

Quantity 24I (0.005) 24Itest 32I (0.004) 32Itest

hPi 0.588053(4) 0.587035(6) 0.615587(3) 0.615318(8)
ml 0.005 0.00746 0.004 0.00437
mh 0.04 0.04246 0.03 0.03037
mres 0.003154(15) 0.000666(25) 0.0006697(34) 0.000306(9)
ml þmres 0.008154(15) 0.008126(25) 0.0046697(34) 0.004676(9)
mh þmres 0.043154(15) 0.043126(25) 0.0306697(34) 0.030676(9)

t1=20
1.3163(6) 1.2766(19) 1.7422(11) 1.7226(24)

w0 1.4911(15) 1.4485(46) 2.0124(26) 1.9937(57)

TABLE XXVIII. The values of the lattice spacing ratio Ri
a ¼

a32I=ai for ensembles i with β ¼ 2.13 and β ¼ 2.25, including
the two test ensembles.

β ¼ 2.13 β ¼ 2.25

24I 48I 24Itest 32I 64I 32Itest

0.7491(23) 0.7259(27) 0.7243(28) 1.0(0) 0.9897(19) 0.9877(19)
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of Eq. (D5) in the limit of large Ω, and the result of solving
at finite Ω and taking the limit afterwards, are identical:

a ¼ ðr1x0 − r0x1Þ=ðx0 − x1Þ and

b ¼ ðr0 − r1Þ=ðx0 − x1Þ: ðD6Þ

Notice that this result does not contain the unit-weight data
point, r2.
Let us now consider just two data points (N ¼ 2), and

take w0 ¼ Ω and w1 ¼ 1 such that the number of over-
weighted data points is no longer sufficient to determine
both parameters. The equations for the minimum of χ2 are

∂χ2
∂a ¼ −2Ωðr0 − fðx0ÞÞ − 2ðr1 − fðx1ÞÞ ¼ 0 and

∂χ2
∂b ¼ −2Ωðr0 − fðx0ÞÞx0 − 2ðr1 − fðx1ÞÞx1 ¼ 0: ðD7Þ

Taking the large Ω limit gives

−2Ωðr0 − fðx0ÞÞ ¼ 0 and − 2Ωðr0 − fðx0ÞÞx0 ¼ 0:

ðD8Þ

These are identical up to a trivial normalization, hence
we have two unknowns and only one equation; no
unique solution can be found. (Note that the fact that the
equations are the same will not be true in a general case
with multiple overconstrained data points; there one
would instead find expressions that cannot be simulta-
neously satisfied.) On the other hand we can solve for
the minimum at finite Ω; the solutions are identical to
those given in Eq. (D6), and are independent of Ω,
allowing us to take the large Ω limit a posteriori
without issue.

Finally we consider one further example, again with
three data points but this time with only one overweighted:
N ¼ 3, w0 ¼ Ω and w1 ¼ w2 ¼ 1. Here, as above, the
number of overweighted points is insufficient to determine
both parameters, but all three points together are more than
enough to constrain the parameters (with one degree of
freedom). We might therefore expect that the solutions at
finite Ω would be Ω-dependent unlike in the previous
example. Indeed this is the case, but it is straightforward to
show that the solutions are finite in the limit Ω → ∞ and
furthermore that they are functions of all three data points
in this limit. The expressions are somewhat lengthy and
we have not reproduced them here, but we have plotted
the Ω dependence of the solutions for a particular set of
data points and parameters in Fig. 29. In the figure we also
plot the function before and after the weighting, demon-
strating that it does indeed pass through the overweighted
data point.

2. Determination of the optimal Ω value
in the global fits

It remains to demonstrate the limiting behavior in
the more complex environment of the global fits. As
the minimization is performed numerically via the
Marquardt-Levenberg algorithm we must be careful in
our choice of algorithmic parameters; the algorithm termi-
nates when the change in χ2 under a shift of the fit
parameters is less than some chosen value, δχ2min. As we
increase Ω at fixed δχ2min, the relative effects of fluctuations
in the unweighted data are reduced and the fit becomes
more tolerant to increasingly large deviations of the fit from
the unit-weight data. This manifests as an increase in the
jackknife statistical error of our predictions. We must
therefore choose a value of δχ2min that is small enough
to properly take into account the constraints from the
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FIG. 29. Left: fit parameters of the function fðxÞ ¼ aþ bx determined from arbitrarily chosen data points, r0ðx0 ¼ 1Þ ¼
2, r1ðx1 ¼ 3Þ ¼ 7 and r2ðx2 ¼ 4Þ ¼ 6, plotted against the weighting Ω of the first point. Right: fit curves with Ω ¼ 1
(red full line) and Ω ¼ 100000 (dashed blue) overlaying the data.
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unit-weight data. The choice is limited by the increased
time for the fit to reach its minimum coupled with the
inevitable limits of finite precision. For fixed δχ2min, the time
to perform the fit also naturally increases with Ω due to the
increase in the overall scale of the fluctuations. We must
therefore determine an optimal value for Ω that is large
enough that our predictions are no longer noticeably
dependent on its value while small enough for the fits to
complete in a reasonable time and to be unaffected by finite
precision errors.
In Fig. 30 we show examples of theΩ dependence on the

predicted values of fπ , fK , w0 and t
1=2
0 . The plots also show

the result of reducing the stopping condition δχ2min by
several orders of magnitude. We observe percent-scale
shifts in the central values of these quantities from the
unweighted fit results, and we clearly see the behavior
flattens out at around Ω ¼ 1000. We chooseΩ ¼ 5000 as a
value large enough to be well within the flat region while
small enough to avoid the difficulties discussed above. For

the chosen value of Ω we observed no significant depend-
ence of the results on δχ2min, but to be conservative we chose
1 × 10−4 as our final value. Note that we observed stronger
dependence of our results on δχ2min for some alternate
choices of guess parameters, but with tighter stopping
conditions the results stabilized and agreed with those
presented in this document. To be certain, all fits presented
within the body of this work were repeated with tighter
stopping conditions, and no significant changes from the
given values were observed.

APPENDIX E: ADDITIONAL MEASUREMENTS
ON THE 32I, 24I AND 32ID ENSEMBLES

In this work we include additional data for the 24I and
32I ensembles, specifically measurements of the Wilson
flow scales, t1=20 and w0, and also an improved measure-
ment of the vector current renormalization coefficient that
we use to normalize our decay constants. To remind the

FIG. 30. Plots of the predicted continuum value for fπ (upper left), fK (upper right), t1=20 (lower left), and w0 (lower right) as a function
of the weight Ω applied to the physical point ensembles in the fit. Fits were performed with Ω ¼ 1, 10, 100, 1000, 5000, 10000, and
50000. We also considered three different values of the stopping condition δχ2min: 1 × 10−3, 1 × 10−4 and 1 × 10−5. For the point at
Ω ¼ 5000 we also considered a fourth value, δχ2min ¼ 1 × 10−6, and we only consider two values for Ω ¼ 50000 where the errors are
clearly less well controlled. For each choice ofΩ, the results for each value of δχ2min have been offset for clarity, with the largest value the
left-most point of each cluster, with the largest error.
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reader, these ensembles have lattice volumes of 243 × 64 ×
16 and 323 × 64 × 16, and use the Shamir domain wall
fermion action with the Iwasaki gauge action at bare
couplings β ¼ 2.13 and 2.25 respectively, and were
originally described in Refs. [35] and [6]. We also
perform measurements of the Wilson flow scales on the
32ID ensemble, which has a lattice volume of 323×
64 × 32, Shamir domain wall fermions with the Iwasakiþ
DSDR gauge action at β ¼ 1.75, and was described
in Ref. [5].

1. Wilson flow scales

The procedure for determining the Wilson flow scales is
described in Sec. III F. We have three 32I ensembles with
bare light quark masses of aml ¼ 0.004, 0.006 and 0.008,
upon which we perform measurements using 300, 312 and
252 configurations respectively (separated by 10 MD time
units) following our earlier analyses. The measurements
are binned over four successive configurations to take
account of autocorrelations. For the 24I ensemble set, we
have two ensembles with aml ¼ 0.005 and 0.01, and we
measure on 202 and 178 configurations respectively
(separated by 40 MD time units) and use a bin size of
2. Finally, for the 32ID ensemble set we have two
ensembles with aml ¼ 0.001 and 0.0042, and we measure
on 180 and 148 configurations respectively (with 8 MD
time units separation) and bin over 4 configurations. Note
that the results for the 32I ml ¼ 0.008 ensemble and the
24I ml ¼ 0.01 ensemble are not included in the global fits
due to the pion mass cut, but we include the results here
for completeness.
On all three ensembles we use reweighting in the sea

strange quark mass to constrain the mass dependence.
The number of reweighting steps and the mass ranges used
are given in the aforementioned papers. For the results
presented in this section, we list only the simulated value
and the closest reweighted value to the physical strange
quark mass. The simulated strange quark masses are 0.03,
0.04 and 0.045 for the 32I, 24I and 32ID ensembles
respectively, and the physical strange masses are as
follows: ðamsÞ32I ¼ 0.0248ð2Þ, ðamsÞ24I ¼ 0.0322ð2Þ and
ðamsÞ32ID ¼ 0.0462ð5Þ. The values we obtain are given in
Table XXIX.

2. Vector current renormalization

In Sec. III C we describe how the renormalization
coefficient relating the domain wall local axial current to
the physically normalized Symanzik current can be deter-
mined via the quantity ZV=ZV, which relates the local
vector current Vμ to the conserved 5D current Vμ. This
quantity is used to renormalize the decay constants. In our
earlier works [5,6] we obtained ZV by fitting directly to the
ratio of two-point functions,

ZV

ZV
¼

P
3
i¼1

P
~xhVa

i ð~x; tÞVið~0; 0ÞiP
3
i¼1

P
~xhVa

i ð~x; tÞVið~0; 0Þi
: ðE1Þ

Since the lightest state that couples to the vector operator is
the noisy ρ meson, for this work we instead determine the
ratio for the 48I, 64I and 32Ifine ensembles via the three-
point function, hπjVμjπi, as described in Sec. III C 2; this
procedure gives a substantially more precise result than the
above. In the global fits we attempt to describe the
aforementioned ensembles, along with 32I and 24I ensem-
ble sets, using the same continuum scaling trajectory. In
order to guarantee consistent scaling behavior we must
therefore recompute ZV on the 32I and 24I ensemble sets
using the new method. This is not necessary for the 32ID
ensembles, which are described by a different scaling
trajectory.
On the 24I ensemble set we measured on 147 and 153

configurations of the aml ¼ 0.005 and 0.01 ensembles
respectively. We also included 85 measurements on the
heavier aml ¼ 0.02 ensemble and 105 measurements on
the aml ¼ 0.03 ensemble described in Ref. [35]. For the
32I ensembles we measure on 135, 152 and 120 configu-
rations of the aml ¼ 0.004, 0.006 and 0.008 ensembles
respectively. In Table XXX we list the measured values on
each ensemble and extrapolated to the chiral limit.

APPENDIX F: NONPERTURBATIVE
RENORMALIZATION

In order to determine the renormalization coefficients
for the quark masses and BK , we use what is now the
standard framework for our collaboration: the Rome-
Southampton nonperturbative renormalization schemes
[39] with momentum sources, twisted boundary conditions

TABLE XXIX. The Wilson flow scales in lattice units on the
32I, 24I and 32ID ensembles at the simulated strange quark mass
and the reweighted mass closest to the physical value. The quark
masses are given in bare lattice units.

Ensemble set ðaml; amsÞ t1=20 =a w0=a

32I (0.004, 0.03) 1.7422(11) 2.0124(26)
(0.004, 0.025) 1.7510(14) 2.0310(34)

32I (0.006, 0.03) 1.7362(9) 1.9963(19)
(0.006, 0.025) 1.7439(15) 2.0136(34)

32I (0.008, 0.03) 1.7286(11) 1.9793(24)
(0.008, 0.025) 1.7359(12) 1.9913(24)

24I (0.005, 0.04) 1.3163(6) 1.4911(15)
(0.005, 0.03225) 1.3237(12) 1.5071(22)

24I (0.01, 0.04) 1.3050(7) 1.4653(14)
(0.01, 0.03225) 1.3126(12) 1.4808(30)

32ID (0.001, 0.045) 1.0268(3) 1.2178(7)
(0.001, 0.04625) 1.0262(3) 1.2088(10)

32ID (0.0042, 0.045) 1.0225(3) 1.2042(7)
(0.0042, 0.04625) 1.0220(3) 1.2031(8)

DOMAIN WALL QCD WITH PHYSICAL QUARK MASSES PHYSICAL REVIEW D 93, 074505 (2016)

074505-57



and nonexceptional kinematics [67–70]. This setup has
already been described in several previous publications
[5,69,71,72], and results in tiny statistical errors, infrared
contamination suppression, and consistent removal of a2

discretization effects in the vertex functions.
A key aspect of the RI-MOM approach is that any other,

potentially regularization dependent, scheme may be easily
converted into the RI-MOM scheme using momentum-
space scattering amplitudes determined (either perturba-
tively or nonperturbatively) solely within that other
scheme. This makes RI schemes a very useful intermediate
scheme for converting between lattice calculations and MS.
The amputated vertex functions ΠO of the operators of

interest O (in this paper O represent flavor nonsinglet
bilinear and four-quark fermion operators) are computed on
Landau gauge-fixed configurations, for which we use the
timeslice by timeslice FASD algorithm [28]). We use
nonexceptional “symmetric” momentum configurations,
defined by the condition

p2
1 ¼ p2

2 ¼ q2; ðF1Þ

where, for bilinear vertices, p1 and p2 are the incoming and
outgoing quark momenta respectively, and for the four-
quark vertices used to compute ZBK

the quark momenta are
assigned as follows: dðp1Þsð−p2Þ → dð−p1Þsðp2Þ. In the
above, q ¼ p1 − p2 is the momentum transfer.
In contrast to the symmetric scheme, the original RI-

MOM scheme defined in Ref. [39], which we do not include
here, corresponds to the zero-momentum transfer kinemat-
ics, i.e.p1 ¼ p2, and suffers from enhanced nonperturbative
effects at high energies arising from low-momentum loop
effects; in particular the effects of the dynamical chiral
symmetry breaking are greatly enhanced [6].
We compute projected, amputated vertex functions of the

form

Λbare
O ðμ; aÞ ¼ PfΠOðq2; aÞgμ2¼q2 : ðF2Þ

Precise definitions of the projectors P depend on the choice
of operator, the kinematics, and the choice of scheme. In

practice the Green’s functions are first computed at finite
values of the quark mass and then extrapolated to the chiral
limit; this quark mass dependence is however very mild for
the nonexceptional schemes considered here and we omit it
below for the purpose of clarity.
The renormalization factors are defined by imposing

ZO

Zn=2
q

ðμ; aÞ × Λbare
O ðμ; aÞ ¼ Λtree

O ; ðF3Þ

where Zq is the quark wave function renormalization factor,
and n the number of fermion fields in O. A second, separate
condition is required in order to extract Zq. Note that the
right-hand side of the above depends on the choice of
projector.
In order to simplify the equations, we introduce the

following notation:

ΛO ¼ Λbare
O × ðΛtree

O Þ−1 ðF4Þ

projection scheme and for each ensemble, as a function of
the external momenta.
In this work we are only interested in quantities that

renormalize multiplicatively, such that the Z-factors and the
Λs are simply scalars. For a general lattice action with
nonzero chiral symmetry breaking, the four-quark operator
responsible for K − K mixing in fact mixes with other
operators, and ZO and Λbare

O become matrix-valued [71].
However for our choice of action, the residual chiral
symmetry breaking is negligible and only multiplicative
renormalization is required.
Once a bare matrix element hOibareðaÞ of the operator O

has been computed on a lattice with lattice spacing a, the Z-
factor can be used to convert it into the corresponding
MOM scheme:

hOiMOMðμ; aÞ ¼
�
ZO

Zn=2
q

ðμ; aÞ
�

MOM
× hOibareðaÞ: ðF5Þ

In order to connect the lattice results to phenomenology,
they have to be matched to a scheme suitable for a
continuum computation, such as MS; this is performed
using perturbation theory. The final equation reads

hOiMSðμ; aÞ ¼ cMS←MOMðμÞ × hOiMOMðμ; aÞ: ðF6Þ

This quantity has a well-defined continuum limit as any
potential divergences are absorbed by the Z-factors.
We remind the reader that the Z-factors defined above

are scheme dependent. The renormalization scheme is fixed
by the choice of projectors and of kinematics; specifically,
with the choice of symmetric kinematics given above, it
depends on the projector used for the operator O and that
used to extract Zq. For both the quark mass renormalization
factor, Zm, and the BK renormalization factor, ZBK

we use

TABLE XXX. ZV measured on the 24I and 32I ensembles, and
the extrapolated value in the chiral limit.

Ensemble set ðamlÞ ZV

24I 0.03 0.71611(8)
0.02 0.71498(13)
0.01 0.71409(20)
0.005 0.71408(58)

−amres 0.71273(26)

32I 0.008 0.74435(42)
0.006 0.74387(55)
0.004 0.74470(99)

−amres 0.74404(181)
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two SMOM schemes; for the former these are the RI-
SMOM and the RI-SMOMγμ [70] schemes, and for the
latter the SMOMðγμ; γμÞ and SMOMðq; qÞ [40] schemes.
In the main analysis we use the difference between the MS
results computed using these two intermediate schemes as
an estimate of the systematic error associated with the
truncation of the perturbative series used to compute the
SMOM → MS matching factors.

1. Renormalization of the quark masses

Our determination of the quark masses from the global
fits uses an intermediate scheme that is hadronically
defined and explicitly dependent on our choice of lattice
regulator. The renormalization factors from bare masses to
this temporary hadronic scheme are denoted Zl and Zh for
light and strange quarks respectively. For quark masses we
can convert this temporary scheme to an SMOM scheme by
determining the SMOM renormalization ZSMOM

m in the
usual way and then determining the continuum limit of

the ratio ZRI
m

Zl=h
, and from there to MS in the usual way. This is

described in more detail in Sec. V C.
We first introduce the renormalization factor of the flavor

nonsinglet bilinears. We define ΛS and ΛP, the amputated
and projected Green’s functions of the scalar and pseudo-
scalar bilinear operators respectively, as

ΛS ¼ tr½ΠS · I�; ΛP ¼ tr½ΠP · γ5�: ðF7Þ

Similarly, for the local vector and axial currents we define

ΛV;A ¼ tr½ΠVμ;Aμ
· ΓðsÞ

Vμ;Aμ
� ðF8Þ

where ðsÞ denotes the choice of projector. Following
Ref. [70], we define the γμ and the q-schemes (or
projectors) in the following way:

ΓðγμÞ
Vμ

¼ γμ; and ΓðγμÞ
Aμ

¼ γμγ5; ðF9Þ

and

ΓðqÞ
Vμ

¼ qqμ=q2; and ΓðqÞ
Aμ

¼ qqμγ5=q2: ðF10Þ

For completeness, we also renormalize the tensor
current. The vertex function is Πσμν , where

σμν ¼
i
2
½γμ; γν�; ðF11Þ

and the amputated and projected vertex are

ΛT ¼ tr½Πσμν · Γ
ðsÞ
σμν �: ðF12Þ

For the projectors, we use

ΓðγμÞ
σμν ¼ σμν; and ΓðqÞ

σμν ¼ σνρqρqμ=q2: ðF13Þ
The corresponding renormalization factors ZS;V;T;A;P=Zq

can then obtained by imposing Eq. (F3) with n ¼ 2.
To obtain the renormalization factor of the quark mass,

Zm, we take the ratio of the vector and scalar bilinears in
order to cancel the quark wave-function renormalization:

ZðsÞ
m ðμ; aÞ ¼ ΛSðμ; aÞ

ZVðaÞ × ΛðsÞ
V ðμ; aÞ

; ðF14Þ

where ZV is computed hadronically via the procedure given
in Sec. III C 2. In the previous equation, we have used the
fact that Zm ¼ 1=ZS ¼ 1=ZP in the chiral limit. Similarly,
we should expect ZA ¼ ZV up to some small corrections
arising, for example, from the fact that we work at finite Ls,
or due to infrared contaminations. In our estimate of the
systematic errors, we have also replaced ΛS by ΛP and ΛV
by ΛA in Eq. (F14).

2. Renormalization of the kaon bag parameter

The renormalization factor ZBK
is defined in a similar

manner. The amputated Green’s function of the relevant
four-quark operator OVVþAA describing K − K oscillations
in the Standard Model is computed numerically with a
certain choice of kinematics and projected onto its tree-
level value. We normalize by the square of the average
between the vector and axial bilinear:

Zðs1;s2Þ
BK

ðμ; aÞ × Λðs1Þ
VVþAAðμ; aÞ
Λðs2Þ
AV ðμ; aÞ2

¼ 1; ðF15Þ

where

ΛAV ¼ 1

2
ðΛV þ ΛAÞ; ðF16Þ

such that the quark field renormalization cancels in the
ratio. In practice we find that the difference between the
vector and axial vertices are very small, hence choosing
the average rather than simplyΛV orΛA in the denominator,
has no discernable effect.
In Eq. (F15), the superscripts s1 and s2 label the choice

of projectors. We refer the reader to Refs. [5,40] for the
details on the implementation, including the explicit
definitions of projectors.

3. Numerical details and discussion

a. Quark mass renormalization

For the quark mass renormalization we require only the
values on the 32I and 24I ensembles, which together are
sufficient to perform the continuum extrapolation of
Zm=Zl=h. Here we discuss an update of the analysis
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performed in Ref. [5] using the newly determined lattice
spacings and a number of additional data points.
In the Rome-Southampton method, the projected vertex

functions are first computed at finite quark mass before
being extrapolated to the chiral limit. For each ensemble,
we use unitary valence quark masses and extrapolate
linearly in the quark mass. In the sea sector, the strange
quark mass remains fixed to—or close to—its physical
value. Since we do not observe any relevant quark mass
dependence in our data, we neglect the systematic error
associated with the fact that the sea strange quark mass is
not extrapolated to zero.
We use partially twisted boundary conditions to obtain

momenta of the following form:

pin ¼
2π

L
ð− ~m; 0; ~m; 0Þ; ðF17Þ

pout ¼
2π

L
ð0; ~m; ~m; 0Þ; ðF18Þ

where ~m combines the Fourier mode with the twist angle θ

~m ¼ mþ θ=2; m ∈ N: ðF19Þ
The fact that these momenta all point in the same direction
up to hypercubic rotations means that they lie upon a
common continuum scaling curve (i.e. their a2 dependence
is the same), allowing us to unambiguously take the
continuum limit.
For the 24I lattice, in addition to the momenta listed in [5],

we have generated additional points closer to the 3GeVpoint
at which we ultimately evaluate the Z-factors. More pre-
cisely, the twist angle θ is chosen to be n × 3=16, with
n ¼ 15; 16;…19. The results can be found in the following
section.

b. Renormalization of BK

As BK is a scheme dependent quantity, we must perform
our global fits to renormalized data, and as a result we
require values of the renormalization coefficients to be
computed on all of the ensembles used in the analysis: the
32I, 24I, 48I, 64I, 32Ifine and 32ID. This differs from the
quark mass determination, for which we used a hadroni-
cally defined intermediate scheme during the continuum
extrapolation and converted to MS a posteriori. In this
appendix we present updated values of the 32I, 24I and
32ID ZBK

results in Ref. [5], as well as new values for the
48I, 64I and 32Ifine.
For our new ensembles, we have considered only one

value of the valence quark mass msea
l ¼ mval

l . Again, due to
the modest chiral dependence previously observed for the
nonexceptional schemes, we expect the associated system-
atic error to be negligible compare to the other sources of
errors (in particular the perturbative matching).
As the 32ID ensemble is comparatively coarse, we

renormalize at a lower scale μ0 ∼ 1.4 GeV and use the

nonperturbative continuum step-scaling factor σðs1;s2ÞBK
ðμ; μ0Þ

to run to 3 GeV. This procedure is discussed in Ref. [5]. The
step-scaling factor is obtained by performing a continuum
extrapolation of the ratio

σðs1;s2ÞBK
ðμ; μ0; aÞ ¼ Zðs1;s2Þ

BK
ðμ; aÞ=Zðs1;s2Þ

BK
ðμ0; aÞ; ðF20Þ

computed on the 32I and 24I lattices.
Since the values of the lattice spacings have been

updated, the numbers quoted here differ slightly from
our previous work. The strategy is the following: we use
the same 32ID lattice renormalization coefficient,

Zðs1;s2Þ
BK

ðμ0; a32IDÞ, as used previously, but notice that the
corresponding value of μ0 obtained with the new lattice
spacings is 1.4363 GeV rather than 1.426 GeV. As a result
we must recompute the step-scaling factor. The results for

Zðs1;s2Þ
BK

at μ0 can be found in Table XLII and our updated

results for σðs1;s2ÞBK
are reported in Table XLIII. For each

scheme, the 32ID renormalization factor evaluated at μ ¼
3 GeV is then simply given by

Zðs1;s2Þ
BK

ðμ; a32IDÞ ¼ σðs1;s2Þðμ; μ0Þ × Zðs1;s2Þ
BK

ðμ0; a32IDÞ:
ðF21Þ

4. Numerical results

a. Bilinears and quark mass renormalization

The values for the amputated vertex functions Λ (nor-
malized by the tree-level value) at finite quark mass and in
the chiral limit computed on the 24I ensemble are given in
Tables XXXI and XXXII for the SMOMγμ and SMOM
schemes respectively. The corresponding numbers for the
32I ensembles are given in Tables XXXIII and XXXIV.
Recall that we use only one choice of projector for the
scalar and pseudoscalar vertices, specifically those given in
Eq. (F7). The results for these vertices computed on the 24I
and 32I ensembles are included in Tables XXXI and
XXXIII respectively.
In Table XXXV we present Λ interpolated to 3 GeV

using a polynomial ansatz in the momenta. For the 24I
lattice, since we have a very fine resolution, we take the five
momenta quoted in the tables. For the 32I results we use
q ∼ 2.77, 3.10 and 3.43 GeV in the interpolation.
We show the values of the quark mass renormalization in

Table XXXVI. Using Table XXXV we can gauge the size
of the systematic error on Zm by comparing the S and P
vertices and the A and V vertices. We observe that the
differences between the vector and axial vector vertices are
very small, and can therefore be neglected. The differences
between the scalar and pseudoscalar vertices are slightly
larger, but these correspond to only 0.01% changes if used
in the computation of Zm, and can therefore be ignored. As
discussed above, the systematic error associated with not
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taking the chiral extrapolation of the sea strange quark mass
can also be ignored. Note that the uncertainties on the
lattice spacings are incorporated in these quantities in the
main analysis.

b. Renormalization of BK

We quote the results for the projected vertex function
ΛVVþAA at finite masses and in the chiral limit for various
momenta on the 32I and 24I ensembles in Tables XXXVII
and XXXVIII. The corresponding values each computed at
a single quark mass on the 48I, 64I and 32Ifine ensembles
are given in Tables XXXIX, XL and XLI respectively.
To obtain the final results we construct the ratio given in

Eq. (92) at finite quark masses for a few momenta surround
the desired scale, either μ0 ¼ 1.4363 GeV or μ ¼ 3 GeV,
take the chiral limit and then perform the interpolation with
a polynomial ansatz. Similarly to the quark mass case, the
procedure is very robust and does not depend on the order
we perform these operations, nor on the details of the
interpolation. The final results for ZBK

on the various
ensembles are given in Table XLII, and the continuum step-
scaling factors used to run the 32ID renormalization factor
to 3 GeV are quoted in Table XLIII.
As with the quark mass renormalization the only

significant source of systematic error on these results arises
from the perturbative matching to MS, which we estimate
using the full difference between our final predictions for
BK determined via the two intermediate SMOM schemes.
As above, we incorporate the uncertainties on the lattice
spacings into our renormalization factors in the main
analysis.

APPENDIX G: RANDOM NUMBER GENERATOR

After all the data presented in this paper was generated, it
was found that the U(1) noise generated from the freshly
initialized random number generator in CPS [73] is
vulnerable to correlations, such that the expectation value
of ‖

P
x

P
N
j¼1 e

−iθðxÞj‖2=V deviates from N. This correla-
tion is not observed when U(1) noise is replaced with
Gaussian noise, for which the accept/reject procedure used
in generating the Gaussian random numbers appears to
eliminate the observed correlation. We also confirmed
that the U(1) noise generated from the CPS RNG for
the thermalized gauge configurations on our previous
ensembles do not show the correlation, due to the decor-
relating effect of the Gaussian RNG used for the pseudo-
fermion fields.
To further test the robustness of Gaussian random

numbers generated from CPS RNG, we reproduced the
2þ 1 flavor DWF ensemble used in Ref. [74], with
the RNG’s replaced with the Mersenne Twister [75],
implemented in Cþþ11. Each 24 hypercube of lattice
sites was initialized with randomized seeds. We confirmed
that the plaquette agrees to within 1 standard deviation:

TABLE XXXI. Projected, amputated vertex functions Λ̄ for the
vector, axial-vector and tensor operators in the SMOMγμ scheme
computed on the two 24I ensembles, and in the chiral limit, at
scales close to the chosen renormalization scale of 3 GeV. In this
table we also include the projected, amputated scalar and
pseudoscalar vertices.

am ¼ 0.01

q=GeV 2.911997 2.973955 3.035912 3.097870 3.159827

S 1.1492(3) 1.1455(3) 1.1422(3) 1.1390(2) 1.1360(2)
V 1.0530(2) 1.0537(2) 1.0543(2) 1.0550(2) 1.0557(2)
T 1.0225(2) 1.0244(2) 1.0263(2) 1.0281(2) 1.0299(2)
A 1.0527(2) 1.0534(2) 1.0541(2) 1.0548(2) 1.0556(2)
P 1.1520(3) 1.1480(3) 1.1444(3) 1.1409(2) 1.1377(2)

am ¼ 0.005

q=GeV 2.911997 2.973955 3.035912 3.097870 3.159827

S 1.1491(2) 1.1455(2) 1.1421(1) 1.1390(1) 1.1360(1)
V 1.0529(1) 1.0536(1) 1.0542(1) 1.0549(1) 1.0556(1)
T 1.0225(2) 1.0244(2) 1.0262(1) 1.0281(1) 1.0299(1)
A 1.0528(1) 1.0534(1) 1.0541(1) 1.0548(1) 1.0556(1)
P 1.1517(2) 1.1478(2) 1.1441(2) 1.1407(2) 1.1375(2)

am ¼ −amres

q=GeV 2.911997 2.973955 3.035912 3.097870 3.159827

S 1.1491(7) 1.1455(6) 1.1421(6) 1.1389(5) 1.1359(5)
V 1.0527(5) 1.0534(4) 1.0540(4) 1.0547(4) 1.0555(4)
T 1.0223(5) 1.0243(5) 1.0261(5) 1.0280(5) 1.0299(5)
A 1.0528(4) 1.0535(4) 1.0542(4) 1.0549(4) 1.0556(4)
P 1.1512(7) 1.1473(7) 1.1436(7) 1.1402(6) 1.1370(6)

TABLE XXXII. Projected, amputated vertex functions Λ̄ in the
SMOM scheme computed on the two 24I ensembles, and in the
chiral limit, at scales close to the chosen renormalization scale of
3 GeV.

am ¼ 0.01

q=GeV 2.911997 2.973955 3.035912 3.097870 3.159827

V 1.1159(4) 1.1160(3) 1.1163(3) 1.1166(3) 1.1171(3)
T 1.0225(2) 1.0244(2) 1.0263(2) 1.0281(2) 1.0299(2)
A 1.1156(3) 1.1158(3) 1.1160(3) 1.1164(3) 1.1169(3)

am ¼ 0.005

q=GeV 2.911997 2.973955 3.035912 3.097870 3.159827

V 1.1158(3) 1.1159(3) 1.1162(2) 1.1165(2) 1.1169(2)
T 1.0225(2) 1.0244(2) 1.0262(2) 1.0281(1) 1.0299(1)
A 1.1156(3) 1.1158(2) 1.1160(2) 1.1163(2) 1.1167(2)

am ¼ −amres

q=GeV 2.911997 2.973955 3.035912 3.097870 3.159827

V 1.1156(9) 1.1158(9) 1.1159(8) 1.1161(8) 1.1164(8)
T 1.0224(5) 1.0243(5) 1.0262(5) 1.0280(5) 1.0299(5)
A 1.1156(9) 1.1158(8) 1.1160(8) 1.1162(7) 1.1165(7)
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0.588064(12) from 8460 MD units compared to
0.588052(9) from the configurations used in Ref. [74].
All the random numbers generated from CPS RNG for the
work presented here were Gaussian random numbers. The
only exception are the Z(3) random numbers for Z3 box
source used for the Ω baryon in Sec. III E, which was
generated independently from the CPS RNG.

APPENDIX H: GLOBAL FIT FORMS

The ChPT forms and their associated finite-volume
corrections were originally determined in Ref. [35] and
the analytic forms in Refs. [6,40]. We have subsequently
[5,6,40] added additional terms describing the scaling
behavior and the dependence of the quantities on the heavy
sea and valence quark masses where appropriate. In this
analysis we also introduce linear fit forms to describe the

Wilson flow scales. For the convenience of the reader we
collect these disparate formulas below.
The ChPT forms for the pseudoscalar mass and decay

constant are [5,6,35]

m2
xy ¼

χx þ χy
2

½1þ Lmπ ðχx; χy; χlÞ�

þ cmπ ;mh

mx þmy

2
ðmh −mphys

h Þ; ðH1Þ

fxy ¼ f½1þ cAf a
2 þ Lfπ ðχx; χy; χlÞ�

þ cfπ ;mh
ðmh −mphys

h Þ: ðH2Þ

Here mx and my are the (partially quenched) valence light
quark masses,ml is the sea light quark mass andmh the sea
heavy quark mass. The quantity χx ¼ 2Bmx, and the
superscript A above the a2 coefficient denotes the gauge

TABLE XXXIII. Projected, amputated vertex functions Λ̄ for the vector, axial-vector and tensor operators in the
SMOMγμ scheme computed on the three 32I ensembles, and in the chiral limit, at scales close to the chosen
renormalization scale of 3 GeV. In this table we also include the projected, amputated scalar and pseudoscalar
vertices.

am ¼ 0.008

q=GeV 1.186382 1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

S 1.5760(95) 1.4124(23) 1.2881(7) 1.2346(4) 1.1920(2) 1.1648(2) 1.1446(1)
V 1.0568(13) 1.0425(4) 1.0376(1) 1.0368(1) 1.0374(1) 1.0387(0) 1.0405(0)
T 0.9072(10) 0.9403(3) 0.9668(1) 0.9796(1) 0.9915(1) 1.0005(0) 1.0083(0)
A 1.0357(9) 1.0369(4) 1.0364(1) 1.0362(1) 1.0371(1) 1.0385(0) 1.0404(0)
P 1.8453(92) 1.4853(22) 1.3065(9) 1.2425(5) 1.1956(3) 1.1665(2) 1.1457(2)

am ¼ 0.006

q=GeV 1.186382 1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

S 1.5818(54) 1.4178(29) 1.2906(10) 1.2358(6) 1.1930(3) 1.1656(2) 1.1451(1)
V 1.0544(7) 1.0413(4) 1.0376(2) 1.0370(2) 1.0376(1) 1.0388(1) 1.0406(1)
T 0.9081(5) 0.9402(3) 0.9669(3) 0.9798(2) 0.9917(1) 1.0006(1) 1.0084(1)
A 1.0357(8) 1.0374(3) 1.0367(2) 1.0366(2) 1.0374(1) 1.0387(1) 1.0405(1)
P 1.8124(66) 1.4745(23) 1.3048(6) 1.2419(6) 1.1956(3) 1.1669(2) 1.1458(2)

am ¼ 0.004

q=GeV 1.186382 1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

S 1.5697(61) 1.4163(24) 1.2915(6) 1.2363(3) 1.1927(2) 1.1653(1) 1.1448(1)
V 1.0542(10) 1.0418(2) 1.0373(2) 1.0368(1) 1.0374(1) 1.0387(1) 1.0405(1)
T 0.9078(8) 0.9404(2) 0.9668(2) 0.9798(1) 0.9917(1) 1.0005(1) 1.0083(1)
A 1.0396(8) 1.0383(2) 1.0366(2) 1.0365(1) 1.0373(1) 1.0386(1) 1.0404(1)
P 1.8346(113) 1.4761(21) 1.3050(9) 1.2414(4) 1.1948(3) 1.1663(1) 1.1455(1)

am ¼ −amres

q=GeV 1.186382 1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

S 1.5605(173) 1.4219(57) 1.2955(14) 1.2384(7) 1.1934(4) 1.1659(3) 1.1453(3)
V 1.0510(25) 1.0413(6) 1.0369(3) 1.0369(3) 1.0375(2) 1.0388(2) 1.0405(1)
T 0.9085(18) 0.9406(6) 0.9668(4) 0.9799(3) 0.9918(2) 1.0006(2) 1.0084(1)
A 1.0438(18) 1.0400(5) 1.0368(4) 1.0368(3) 1.0376(2) 1.0388(1) 1.0405(1)
P 1.7969(254) 1.4637(53) 1.3030(22) 1.2400(11) 1.1940(7) 1.1659(4) 1.1452(3)
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action. We use the following notation for the gauge actions:
I for the Iwasaki action and ID for the Iwasakiþ DSDR.
The logarithmic terms Lmπ are defined in Eq. B32 and B33
of Ref. [35] for nondegenerate and degenerate valence

quark masses, respectively. Similarly, Lfπ are given in
Eqs. B36 and B37 of the same document. For the kaon
mass, decay constant and bag parameter we use the
following forms [5,6,35,40]:

m2
xy ¼ mðKÞ

�
1þ λ1χl

f2
þ λ2χx

f2

�
þ cmK;my

ðmy −mphys
h Þ

þ cmK;mh
ðmh −mphys

h Þ; ðH3Þ

fxy ¼ fðKÞ
�
1þ cAfK;aa

2 þ λ3χl
f2

þ λ4χx
f2

þ LfK ðχx; χlÞ
�

þ cfK;my
ðmy −mphys

h Þ þ cfK;mh
ðmh −mphys

h Þ; ðH4Þ

TABLE XXXIV. Projected, amputated vertex functions Λ̄ in the SMOM scheme computed on the three 32I
ensembles, and in the chiral limit, at scales close to the chosen renormalization scale of 3 GeV.

am ¼ 0.008

q=GeV 1.186382 1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

V 1.1756(30) 1.1387(12) 1.1145(4) 1.1047(2) 1.0979(2) 1.0945(1) 1.0928(1)
T 0.9077(10) 0.9406(3) 0.9668(1) 0.9796(1) 0.9916(1) 1.0005(0) 1.0083(0)
A 1.1659(27) 1.1359(12) 1.1137(4) 1.1043(2) 1.0977(2) 1.0943(1) 1.0927(1)

am ¼ 0.006

q=GeV 1.186382 1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

V 1.1735(15) 1.1367(10) 1.1147(6) 1.1049(4) 1.0981(3) 1.0946(3) 1.0929(3)
T 0.9089(6) 0.9405(3) 0.9669(3) 0.9798(2) 0.9917(1) 1.0006(1) 1.0084(1)
A 1.1661(15) 1.1347(10) 1.1142(6) 1.1046(4) 1.0979(3) 1.0945(3) 1.0928(3)

am ¼ 0.004

q=GeV 1.186382 1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

V 1.1760(19) 1.1377(8) 1.1138(4) 1.1045(2) 1.0979(2) 1.0944(1) 1.0927(1)
T 0.9086(7) 0.9408(2) 0.9667(2) 0.9798(1) 0.9917(1) 1.0005(1) 1.0083(1)
A 1.1713(20) 1.1365(8) 1.1134(4) 1.1043(2) 1.0978(2) 1.0943(1) 1.0926(1)

am ¼ −amres

q=GeV 1.186382 1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

V 1.1769(54) 1.1368(23) 1.1131(9) 1.1042(5) 1.0979(4) 1.0944(3) 1.0926(3)
T 0.9097(17) 0.9411(6) 0.9667(3) 0.9799(3) 0.9918(2) 1.0006(2) 1.0084(1)
A 1.1777(53) 1.1372(23) 1.1132(9) 1.1043(5) 1.0980(4) 1.0944(3) 1.0926(3)

TABLE XXXV. The bilinear amputated, projected vertex functions Λ̄ interpolated to 3 GeV. Note that these errors
do not include the lattice spacing uncertainty.

Lattice Scheme S V T A P

24I
γμ 1.1441(6) 1.0536(4) 1.0251(5) 1.0538(4) 1.1457(7)
q … 1.1158(8) 1.0251(5) 1.1159(8) …

32I
γμ 1.1736(4) 1.0383(2) 0.9981(2) 1.0383(2) 1.1737(5)
q … 1.0957(3) 0.9978(2) 1.0958(3) …

TABLE XXXVI. Quark mass renormalization factors

ZðsÞ
m ð3 GeV; aÞ computed on the 24I and 32I lattices at 3 GeV

in the two SMOM schemes. Note that these errors do not include
the lattice spacing uncertainty.

24I 32I

γμ 1.523(1) 1.519(4)
q 1.439(1) 1.440(4)
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Bxy ¼ B0
K

�
1þ cABK;a

a2 þ cBK;ml
χl

f2
þ cBK;mx

χx
f2

−
χl

32π2f2
log

�
χx
Λ2
χ

��

þ cBK;my
ðmy −mphys

h Þ þ cBK;mh
ðmh −mphys

h Þ; ðH5Þ

where my and mx are the heavy and light valence quark masses, respectively, and ml and mh are as above. Here the
logarithmic term LfK is defined in Eq. B47 of Ref. [35]. For the Omega baryon mass we use

mvvv ¼ mðΩÞ þ cmΩ;lml þ cmΩ;vðmv −mphys
h Þ þ cmΩ;vðmh −mphys

h Þ; ðH6Þ

where mv is the valence heavy quark mass.

TABLE XXXVII. Chiral extrapolation of Λ̄VVþAA in both schemes on the 24I ensemble for the momentum points
in the vicinity of the 1.4 GeV scale, and those in the vicinity of the 3 GeV matching scale.

ðγμ; γμÞ scheme, lowest momenta

q=GeV 1.172282 1.563201 1.858201 1.920141

am ¼ 0.01 1.1453(14) 1.1617(9) 1.1702(5) 1.1722(5)
am ¼ 0.005 1.1458(16) 1.1600(8) 1.1688(4) 1.1708(4)
am ¼ −amres 1.1466(48) 1.1574(26) 1.1665(14) 1.1685(13)

ðγμ; γμÞ scheme, highest momenta

q=GeV 2.973122 3.035062 3.097002 3.158942

am ¼ 0.01 1.2116(5) 1.2145(5) 1.2174(5) 1.2205(5)
am ¼ 0.005 1.2113(3) 1.2142(3) 1.2171(3) 1.2202(3)
am ¼ −amres 1.2108(13) 1.2137(13) 1.2167(14) 1.2197(14)

ðq; qÞ scheme, lowest momenta

q=GeV 1.172282 1.563201 1.858201 1.920141

am ¼ 0.01 1.3017(25) 1.2921(14) 1.2851(10) 1.2846(10)
am ¼ 0.005 1.2996(23) 1.2876(15) 1.2825(8) 1.2821(8)
am ¼ −amres 1.2962(64) 1.2803(49) 1.2782(30) 1.2779(27)

ðq; qÞ scheme, highest momenta

q=GeV 2.973122 3.035062 3.097002 3.158942

am ¼ 0.01 1.3012(7) 1.3037(7) 1.3064(8) 1.3092(8)
am ¼ 0.005 1.3008(5) 1.3033(5) 1.3059(4) 1.3087(4)
am ¼ −amres 1.3003(18) 1.3027(18) 1.3052(18) 1.3078(18)

TABLE XXXVIII. Chiral extrapolation of Λ̄VVþAA in both schemes on the 32I ensemble for all simulated
momenta.

ðγμ; γμÞ scheme

q=GeV 1.186382 1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

am ¼ 0.008 1.0985(21) 1.1117(11) 1.1240(2) 1.1311(3) 1.1399(2) 1.1483(2) 1.1573(1)
am ¼ 0.006 1.0991(20) 1.1111(6) 1.1246(5) 1.1318(4) 1.1404(3) 1.1487(3) 1.1577(3)
am ¼ 0.004 1.1008(16) 1.1120(2) 1.1236(5) 1.1312(4) 1.1401(3) 1.1483(2) 1.1573(2)
am ¼ −amres 1.1034(43) 1.1129(11) 1.1237(13) 1.1316(9) 1.1404(7) 1.1485(6) 1.1574(5)

ðq; qÞ scheme

q=GeV 1.186382 1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

am ¼ 0.008 1.2473(40) 1.2352(21) 1.2262(5) 1.2233(3) 1.2238(3) 1.2266(2) 1.2316(2)
am ¼ 0.006 1.2471(25) 1.2334(13) 1.2271(10) 1.2242(7) 1.2243(6) 1.2271(5) 1.2321(5)
am ¼ 0.004 1.2515(28) 1.2345(13) 1.2253(9) 1.2231(4) 1.2239(4) 1.2266(3) 1.2316(2)
am ¼ −amres 1.2566(77) 1.2341(38) 1.2251(22) 1.2231(12) 1.2241(10) 1.2267(8) 1.2316(7)
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The analytic forms for the pseudoscalar mass and decay constant are [5,6]

m2
xy ¼ Cmπ

0 þ C1ðmx þmyÞ=2þ C2ml þ C3ðmh −mphys
h Þ ðH7Þ

fxy ¼ Cfπ
0 ð1þ Cfπ ;A

a a2Þ þ C1ðmx þmyÞ=2þ C2ml þ C3ðmh −mphys
h Þ ðH8Þ

where again,mx andmy are the valence light quark masses, andml andmh are the sea light and heavy quark masses. For the
kaon mass, decay constant and bag parameter [5,6,40],

TABLE XXXIX. Vertex functions of the four-quark operators Λ̄VVþAA and the bilinears Λ̄V and Λ̄A needed for
ZBK

, computed in both schemes on the 48I ensemble with am ¼ 0.00078.

ðγμ; γμÞ scheme

q=GeV 2.72125 2.88132 2.96136 3.04139 3.20147

VVþ AA 1.20472(14) 1.21216(8) 1.21604(8) 1.21996(8) 1.22827(6)
V 1.05201(5) 1.05371(3) 1.05463(4) 1.05557(3) 1.05753(1)
A 1.05196(3) 1.05368(2) 1.05458(4) 1.05553(3) 1.05745(4)

ðq; qÞ scheme

q=GeV 2.72125 2.88132 2.96136 3.04139 3.20147

VVþ AA 1.29658(31) 1.30250(14) 1.30598(10) 1.30955(10) 1.31773(25)
V 1.11640(15) 1.11660(7) 1.11697(4) 1.11749(5) 1.11902(15)
A 1.11633(13) 1.11659(5) 1.11695(4) 1.11747(5) 1.11902(14)

TABLE XL. Vertex functions of the four-quark operators Λ̄VVþAA and the bilinears Λ̄V and Λ̄A needed for ZBK
,

computed in both schemes on the 64I ensemble with am ¼ 0.000678.

ðγμ; γμÞ scheme

q=GeV 2.7823 2.94596 3.0278 3.10963 3.27329

VVþ AA 1.13936(9) 1.14363(10) 1.14575(6) 1.14798(6) 1.15261(4)
V 1.03721(4) 1.03783(3) 1.03818(2) 1.03859(2) 1.03949(2)
A 1.03715(2) 1.03780(3) 1.03815(2) 1.03856(2) 1.03949(1)

ðq; qÞ scheme

q=GeV 2.7823 2.94596 3.0278 3.10963 3.27329

VVþ AA 1.22136(20) 1.22299(22) 1.22387(12) 1.22501(11) 1.22760(12)
V 1.09622(9) 1.09451(11) 1.09379(6) 1.09323(5) 1.09239(6)
A 1.09619(9) 1.09449(11) 1.09377(6) 1.09321(5) 1.09238(7)

TABLE XLI. Vertex functions of the four-quark operators Λ̄VVþAA and the bilinears Λ̄V and Λ̄A needed for ZBK
,

computed in both schemes on the 32Ifine ensemble with am ¼ 0.0047.

ðγμ; γμÞ scheme

q=GeV 2.18326 2.61991 3.05656 3.49322 3.92987 4.36652

VVþ AA 1.08793(30) 1.09602(53) 1.10356(30) 1.11137(28) 1.11909(12) 1.12751(11)
V 1.03160(12) 1.03005(15) 1.02984(8) 1.03049(8) 1.03162(5) 1.03327(4)
A 1.03076(11) 1.02976(17) 1.02972(8) 1.03042(8) 1.03159(5) 1.03324(5)

ðq; qÞ scheme

q=GeV 2.18326 2.61991 3.05656 3.49322 3.92987 4.36652

VVþ AA 1.18143(36) 1.17928(112) 1.17863(65) 1.18050(63) 1.18350(28) 1.18855(25)
V 1.10353(55) 1.09220(57) 1.08465(34) 1.08013(31) 1.07727(14) 1.07605(12)
A 1.10308(55) 1.09196(57) 1.08453(34) 1.08005(31) 1.07723(14) 1.07601(12)
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m2
xy ¼ CmK

0 þ CmK
1 mx þ CmK

2 ml þ CmK
3 ðmy −mphys

h Þ
þ CmK

4 ðmh −mphys
h Þ; ðH9Þ

fxy ¼ CfK
0 ð1þ CfK;A

a a2Þ þ CfK
1 mx þ CfK

2 ml

þ CfK
3 ðmy −mphys

h Þ þ CfK
4 ðmh −mphys

h Þ; ðH10Þ

Bxy ¼ CBK
0 ð1þ CBK;A

a a2Þ þ CBK
1 mx þ CBK

2 ml

þ CBK
3 ðmy −mphys

h Þ þ CBK
4 ðmh −mphys

h Þ; ðH11Þ

where, as before, my represents the heavy valence quark.
Finally the analytic function for the Omega baryon mass is

mvvv ¼ CmΩ
0 þ CmΩ

1 ml þ CmΩ
2 ðmv −mphys

h Þ
þ CmΩ

3 ðmh −mphys
h Þ; ðH12Þ

where again mv is the valence heavy quark mass. In
general, the coefficients for these analytic functions are
ordered as follows (skipping entries as appropriate): The
valence light quark mass dependence; the sea light quark
mass dependence; the valence heavy quark mass depend-
ence; and the sea heavy quark mass dependence.
For this analysis we also define the following functions

for the Wilson flow scales t1=20 and w0:

w0 ¼ cw0;0ð1þ cAw0;aa
2Þ þ cw0;lml þ cw0;hðmh −mphys

h Þ;
ðH13Þ

ffiffiffiffi
t0

p ¼ c ffiffiffi
t0

p
;0ð1þ cAffiffiffit0p

;aa
2Þ þ c ffiffiffi

t0
p

;lml

þ c ffiffiffi
t0

p
;hðmh −mphys

h Þ: ðH14Þ

These fit functions are used for both the ChPTFV/ChPT
and analytic ansätze.
Note that in the expressions above we do not show the a2

coefficient for the pion, kaon and Omega baryon masses as
they are fixed to zero by our choice of scaling trajectory
(cf. Sec. V.A of Ref. [6]).

[1] R. A. Haring, M. Ohmacht, T. W. Fox, M. K. Gschwind,
D. L. Satterfield, K. Sugavanam, P. W. Coteus, P.
Heidelberger, M. A. Blumrich, R. W. Wisniewski, A. Gara,
G. L.-T. Chiu et al., IEEE Micro 32, 48 (2012).

[2] P. A. Boyle, N. H. Christ, and C. Kim, IBM J. Res. Dev. 57,
13 (2013).

[3] P. A. Boyle, M. I. Buchoff, N. H. Christ, T. Izubuchi, C.
Jung, T. C. Luu, R. D. Mawhinney, C. Schroeder, R. Soltz,
P. Vranas, and J. Wasem, in SC’13 (2013), pp. 4–4, http://
www.computer.org/csdl/proceedings/sc/2013/9999/00/
06877437‑abs.html.

[4] P. A. Boyle, Proc. Sci., LATTICE2012 (2012) 020.

TABLE XLII. BK renormalization factors Zðs1;s2Þ
BK

computed on the various ensembles. For the 32I, 24I we quote
values at both 1.4363 and 3 GeV, which are used to compute the step-scaling factor. For the coarse 32ID ensemble
we only quote the value at the lower scale, and for the 48I, 64I and 32Ifine we do not quote the values at the lower
scale as they are not needed for our analysis. These values do not include the effect of the uncertainty on the lattice
spacing in their errors.

Zðs1;s2Þ
BK

ð3 GeV; aÞ
24I 32I 48I 64I 32Ifine 32ID

ðγμ; γμÞ 0.9161(5) 0.9409(2) 0.91397(3) 0.94106(2) 0.9617(1) …
ðq; qÞ 0.9568(2) 0.9787(1) 0.954452(4) 0.978152(2) 0.9995(1) …

Zðs1;s2Þ
BK

ð1.4363 GeV; aÞ
ðγμ; γμÞ 0.9546(10) 0.9809(93) … … … 0.9210(8)
ðq; qÞ 1.0488(16) 1.0638(20) … … … 0.9992(11)

TABLE XLIII. Continuum nonperturbative scale evolution

σðs1;s2ÞBK
ðμ; μ0Þ extracted from the 24I and 32I lattices in two

SMOM-schemes. As explained in the text, we choose μ0 ¼
1.4363 GeV and μ ¼ 3 GeV. These values do not include the
effect of the uncertainty on the lattice spacing in their errors.

ðγμ; γμÞ 0.9573(21)
ðq; qÞ 0.9103(31)

T. BLUM et al. PHYSICAL REVIEW D 93, 074505 (2016)

074505-66

http://dx.doi.org/10.1109/MM.2011.108
http://dx.doi.org/10.1147/JRD.2012.2237149
http://dx.doi.org/10.1147/JRD.2012.2237149
http://www.computer.org/csdl/proceedings/sc/2013/9999/00/06877437-abs.html
http://www.computer.org/csdl/proceedings/sc/2013/9999/00/06877437-abs.html
http://www.computer.org/csdl/proceedings/sc/2013/9999/00/06877437-abs.html
http://www.computer.org/csdl/proceedings/sc/2013/9999/00/06877437-abs.html
http://www.computer.org/csdl/proceedings/sc/2013/9999/00/06877437-abs.html
http://www.computer.org/csdl/proceedings/sc/2013/9999/00/06877437-abs.html


[5] R. Arthur et al. (RBC and UKQCD Collaborations), Phys.
Rev. D 87, 094514 (2013).

[6] Y. Aoki et al. (RBC and UKQCD Collaborations), Phys.
Rev. D 83, 074508 (2011).

[7] T. Blum, T. Izubuchi, and E. Shintani, Phys. Rev. D 88,
094503 (2013).

[8] Y. Shamir, Nucl. Phys. B406, 90 (1993).
[9] V. Furman and Y. Shamir, Nucl. Phys. B439, 54 (1995).

[10] R. C. Brower, H. Neff, and K. Orginos, Nucl. Phys. B, Proc.
Suppl. 140, 686 (2005).

[11] R. C. Brower, H. Neff, and K. Orginos, Nucl. Phys. B, Proc.
Suppl. 153, 191 (2006).

[12] R. C. Brower, H. Neff, and K. Orginos, arXiv:1206.5214.
[13] A. Borici, Nucl. Phys. B, Proc. Suppl. 83–84, 771 (2000).
[14] A. Borici, arXiv:hep-lat/9912040.
[15] E. I. Zolotarev, Zap. Imp. Akad. Nauk. St. Petersburg 30,

(1877), reprinted in his Collected works, Vol. 2, Izdat, Akad.
Nauk SSSR, Moscow, 1932, pp. 1–59.

[16] R. G. Edwards, U. M. Heller, and R. Narayanan, Nucl. Phys.
B540, 457 (1999).

[17] J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, and
H. van der Vorst, Comput. Phys. Commun. 146, 203 (2002).

[18] A. D. Kennedy, M. A. Clark, and P. J. Silva, Proc. Sci.,
LAT2009 (2009) 021.

[19] M. Albanese et al. (APE Collaboration), Phys. Lett. B 192,
163 (1987).

[20] P. de Forcrand, M. Garcia Perez, and I.-O. Stamatescu, Nucl.
Phys. B499, 409 (1997).

[21] S. Schaefer, R. Sommer, and F. Virotta (ALPHA Collabo-
ration), Nucl. Phys. B845, 93 (2011).

[22] N. H. Christ, C. Dawson, T. Izubuchi, C. Jung, Q. Liu, R. D.
Mawhinney, C. T. Sachrajda, A. Soni, and R. Zhou, Phys.
Rev. Lett. 105, 241601 (2010).

[23] A. Stathopoulos and K. Orginos, SIAM J. Sci. Comput. 32,
439 (2010).

[24] Q. Liu, Ph.D. thesis, Columbia University, 2012.
[25] D. Calvetti, L. Reichel, and D. C. Sorensen, Electr. Trans.

Numer. Anal. 2, 1 (1994).
[26] M. Luscher, J. High Energy Phys. 07 (2007) 081.
[27] P. A. Boyle, arXiv:1402.2585.
[28] R. J. Hudspith, Comput. Phys. Commun. 187, 115 (2015).
[29] T. Blum, P. Chen, N. H. Christ, C. Cristian, C. Dawson

et al., Phys. Rev. D 69, 074502 (2004).
[30] S. R. Sharpe, arXiv:0706.0218.
[31] P. A. Boyle, Proc. Sci., LATTICE2014 (2014) 087.
[32] M. Luscher, J. High Energy Phys. 08 (2010) 071.
[33] S. Borsanyi, S. Durr, Z. Fodor, C. Hoelbling, S. D. Katz

et al., J. High Energy Phys. 09 (2012) 010.
[34] A. Roessl, Nucl. Phys. B555, 507 (1999).
[35] C. Allton et al. (RBC and UKQCD Collaborations), Phys.

Rev. D 78, 114509 (2008).
[36] G. Colangelo, S. Durr, and C. Haefeli, Nucl. Phys. B721,

136 (2005).
[37] M. Luscher, Commun. Math. Phys. 104, 177 (1986).
[38] K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38,

090001 (2014).
[39] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa, and A.

Vladikas, Nucl. Phys. B445, 81 (1995).
[40] Y. Aoki, R. Arthur, T. Blum, P. A. Boyle, D. Brommel et al.,

Phys. Rev. D 84, 014503 (2011).

[41] J. Frison et al., Proc. Sci., LATTICE2014 (2014) 285.
[42] S. Aoki, Y. Aoki, C. Bernard, T. Blum, G. Colangelo et al.,

Eur. Phys. J. C 74, 2890 (2014).
[43] E. Follana, C. T. H. Davies, G. P. Lepage, and J. Shigemitsu

(HPQCD Collaboration, UKQCD Collaboration), Phys.
Rev. Lett. 100, 062002 (2008).

[44] A. Bazavov et al. (MILC Collaboration), Proc. Sci.,
LATTICE2010 (2010) 074.

[45] S. Dürr, Z. Fodor, C. Hölbling, S. D. Katz, S. Krieg et al.,
Phys. Lett. B 705, 477 (2011).

[46] A. Bazavov et al. (MILC Collaboration), Proc. Sci., CD09
(2009) 007.

[47] A. Bazavov, C. Bernard, C. DeTar, X. Du, W. Freeman
et al., Proc. Sci., LATTICE2010 (2010) 083.

[48] S. Durr, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, T.
Kurth, L. Lellouch, T. Lippert, K. K. Szabo, and G. Vulvert,
Phys. Lett. B 701, 265 (2011).

[49] S. Durr, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, T.
Kurth, L. Lellouch, T. Lippert, K. K. Szabó, and G. Vulvert,
J. High Energy Phys. 08 (2011) 148.

[50] J. Laiho and R. S. Van de Water, Proc. Sci., LATTICE2011
(2011) 293.

[51] T. Bae, Y.-C. Jang, H. Jeong, J. Kim, J. Kim et al., Proc.
Sci., LATTICE2013 (2013) 476.

[52] S. Borsanyi, S. Durr, Z. Fodor, S. Krieg, A. Schafer,
E. E. Scholz, and K. K. Szabó, Phys. Rev. D 88, 014513
(2013).

[53] S. R. Beane, W. Detmold, P. M. Junnarkar, T. C. Luu,
K. Orginos, A. Parreño, M. J. Savage, A. Torok, and
A. Walker-Loud, Phys. Rev. D 86, 094509 (2012).

[54] Y.-C. Chen and T.-W. Chiu, Phys. Lett. B 738, 55 (2014).
[55] T. Blum, T. Doi, M. Hayakawa, T. Izubuchi, and N. Yamada,

Phys. Rev. D 76, 114508 (2007).
[56] T. Blum, R. Zhou, T. Doi, M. Hayakawa, T. Izubuchi,

S. Uno, and N. Yamada, Phys. Rev. D 82, 094508 (2010).
[57] T. Ishikawa, T. Blum, M. Hayakawa, T. Izubuchi, C. Jung,

and R. Zhou, Phys. Rev. Lett. 109, 072002 (2012).
[58] N. Tantalo, Proc. Sci., LATTICE2013 (2014) 007.
[59] S. Borsanyi, S. Durr, Z. Fodor, J. Frison, C. Hoelbling et al.,

Phys. Rev. Lett. 111, 252001 (2013).
[60] S. Borsanyi, S. Durr, Z. Fodor, C. Hoelbling, S. Katz et al.,

Science 347, 1452 (2015).
[61] Z. Davoudi and M. J. Savage, Phys. Rev. D 90, 054503

(2014).
[62] C. Sachrajda, Proc. Sci., LATTICE2014, 023 (2014).
[63] G. McGlynn and R. D. Mawhinney, Proc. Sci.,

LATTICE2013 (2014) 027.
[64] P. A. Boyle, Comput. Phys. Commun. 180, 2739 (2009).
[65] V. Maillart and F. Niedermayer, arXiv:0807.0030.
[66] Y. Kikukawa and A. Yamada, Nucl. Phys. B547, 413

(1999).
[67] M. Gockeler, R. Horsley, H. Oelrich, H. Perlt, D. Petters,

P. E. L. Rakow, A. Schäfer, G. Schierholz, and A. Schiller,
Nucl. Phys. B544, 699 (1999).

[68] Y. Aoki, P. A. Boyle, N. H. Christ, C. Dawson, M. A.
Donnellan et al., Phys. Rev. D 78, 054510 (2008).

[69] R. Arthur and P. A. Boyle (RBC and UKQCD collabora-
tions), Phys. Rev. D 83, 114511 (2011).

[70] C. Sturm, Y. Aoki, N. Christ, T. Izubuchi, C. T. C. Sachrajda,
and A. Soni, Phys. Rev. D 80, 014501 (2009).

DOMAIN WALL QCD WITH PHYSICAL QUARK MASSES PHYSICAL REVIEW D 93, 074505 (2016)

074505-67

http://dx.doi.org/10.1103/PhysRevD.87.094514
http://dx.doi.org/10.1103/PhysRevD.87.094514
http://dx.doi.org/10.1103/PhysRevD.83.074508
http://dx.doi.org/10.1103/PhysRevD.83.074508
http://dx.doi.org/10.1103/PhysRevD.88.094503
http://dx.doi.org/10.1103/PhysRevD.88.094503
http://dx.doi.org/10.1016/0550-3213(93)90162-I
http://dx.doi.org/10.1016/0550-3213(95)00031-M
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.180
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.180
http://dx.doi.org/10.1016/j.nuclphysbps.2006.01.047
http://dx.doi.org/10.1016/j.nuclphysbps.2006.01.047
http://arXiv.org/abs/1206.5214
http://dx.doi.org/10.1016/S0920-5632(00)91802-4
http://arXiv.org/abs/hep-lat/9912040
http://dx.doi.org/10.1016/S0550-3213(98)00694-4
http://dx.doi.org/10.1016/S0550-3213(98)00694-4
http://dx.doi.org/10.1016/S0010-4655(02)00455-1
http://dx.doi.org/10.1016/0370-2693(87)91160-9
http://dx.doi.org/10.1016/0370-2693(87)91160-9
http://dx.doi.org/10.1016/S0550-3213(97)00275-7
http://dx.doi.org/10.1016/S0550-3213(97)00275-7
http://dx.doi.org/10.1016/j.nuclphysb.2010.11.020
http://dx.doi.org/10.1103/PhysRevLett.105.241601
http://dx.doi.org/10.1103/PhysRevLett.105.241601
http://dx.doi.org/10.1137/080725532
http://dx.doi.org/10.1137/080725532
http://dx.doi.org/10.1088/1126-6708/2007/07/081
http://arXiv.org/abs/1402.2585
http://dx.doi.org/10.1016/j.cpc.2014.10.017
http://dx.doi.org/10.1103/PhysRevD.69.074502
http://arXiv.org/abs/0706.0218
http://dx.doi.org/10.1007/JHEP08(2010)071
http://dx.doi.org/10.1007/JHEP09(2012)010
http://dx.doi.org/10.1016/S0550-3213(99)00336-3
http://dx.doi.org/10.1103/PhysRevD.78.114509
http://dx.doi.org/10.1103/PhysRevD.78.114509
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.015
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.015
http://dx.doi.org/10.1007/BF01211589
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1016/0550-3213(95)00126-D
http://dx.doi.org/10.1103/PhysRevD.84.014503
http://dx.doi.org/10.1140/epjc/s10052-014-2890-7
http://dx.doi.org/10.1103/PhysRevLett.100.062002
http://dx.doi.org/10.1103/PhysRevLett.100.062002
http://dx.doi.org/10.1016/j.physletb.2011.10.043
http://dx.doi.org/10.1016/j.physletb.2011.05.053
http://dx.doi.org/10.1007/JHEP08(2011)148
http://dx.doi.org/10.1103/PhysRevD.88.014513
http://dx.doi.org/10.1103/PhysRevD.88.014513
http://dx.doi.org/10.1103/PhysRevD.86.094509
http://dx.doi.org/10.1016/j.physletb.2014.09.016
http://dx.doi.org/10.1103/PhysRevD.76.114508
http://dx.doi.org/10.1103/PhysRevD.82.094508
http://dx.doi.org/10.1103/PhysRevLett.109.072002
http://dx.doi.org/10.1103/PhysRevLett.111.252001
http://dx.doi.org/10.1126/science.1257050
http://dx.doi.org/10.1103/PhysRevD.90.054503
http://dx.doi.org/10.1103/PhysRevD.90.054503
http://dx.doi.org/10.1016/j.cpc.2009.08.010
http://arXiv.org/abs/0807.0030
http://dx.doi.org/10.1016/S0550-3213(99)00059-0
http://dx.doi.org/10.1016/S0550-3213(99)00059-0
http://dx.doi.org/10.1016/S0550-3213(99)00036-X
http://dx.doi.org/10.1103/PhysRevD.78.054510
http://dx.doi.org/10.1103/PhysRevD.83.114511
http://dx.doi.org/10.1103/PhysRevD.80.014501


[71] R. Arthur, P. A. Boyle, N. Garron, C. Kelly, and A. T. Lytle
(RBC and UKQCD collaborations), Phys. Rev. D 85,
014501 (2012).

[72] P. A. Boyle, N. Garron, and A. T. Lytle (RBC and UKQCD
collaborations), Proc. Sci., LATTICE2011 (2011) 227.

[73] C. Jung, Proc. Sci., LATTICE2013 (2013) 417.
[74] T. Blum, P. A. Boyle, N. H. Christ, N. Garron, E. Goode

et al., Phys. Rev. D 84, 114503 (2011).
[75] M. Matsumoto and T. Nishimura, ACM Trans. Model.

Comput. Simul. 8, 3 (1998).

T. BLUM et al. PHYSICAL REVIEW D 93, 074505 (2016)

074505-68

http://dx.doi.org/10.1103/PhysRevD.85.014501
http://dx.doi.org/10.1103/PhysRevD.85.014501
http://dx.doi.org/10.1103/PhysRevD.84.114503
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995

