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We study the possibility of using multilevel algorithms for the computation of correlation functions of
gradient flow observables. For each point in the correlation function, an approximate flow is defined which
depends only on links in a subset of the lattice. Together with a local action, this allows for independent
updates and consequently a convergence of the Monte Carlo process faster than the inverse square root of
the number of measurements. We demonstrate the feasibility of this idea in the correlation functions of the
topological charge and the energy density.
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I. INTRODUCTION

In Monte Carlo simulations of Yang-Mills gauge theo-
ries, correlation functions of gluonic operators suffer from a
severe signal-to-noise problem [1]. While the signal of a
two-point function itself falls off exponentially with the
distance between the operators, the variance is largely
independent of their separation. Since the error decreases
only like 1=

ffiffiffiffi
N

p
, with N the number of measurements, this

makes their measurement in numerical calculations for
large separations exceedingly difficult.
Due to their favorable renormalization properties, cor-

relation functions of observables defined through the Yang-
Mills gradient flow are an important tool to study gauge
theories [2–4]. In particular, they allow for a computation-
ally economical definition of the topological susceptibility
on the lattice,

χtop ¼
1

V

Z
dxdyhqðxÞqðyÞi;

with the topological charge density qðxÞ defined through
the Wilson flow.
The signal-to-noise problem present at large distances in

the hqðxÞqðyÞi correlation function translates into a lack of
volume averaging of χtop: the statistical error of the
susceptibility from a given number of configurations does
not improve with increasing volume. In pure gauge theory,
this can be partially overcome with large statistics, but in
practice, rather small lattices are still used, and the finite
size effect needs to be carefully controlled [5]. In large
volume, it is therefore beneficial to study the dependence of
hqðxÞqðyÞi on jx − yj directly and model the large distance
behavior [6] or integrate it such that the contribution of the
tail can be neglected [7] given the statistical accuracy.
On a related note, we also point out that it has been

suggested to extract the masses of glueballs from the large
distance behavior of two-point functions of the smoothed
topological charge and energy density [8]. For this

approach to work, it is highly beneficial to have a precise
determination of the tail of the correlator at large distances.
One way to deal with the signal-to-noise problem is to

use multilevel algorithms which rely on the locality of the
observable and of the action [9,10]. If it is possible to
decompose the observables in contributions from different
parts of the lattice, each of them can be updated inde-
pendently. Depending on the number of sublattices and the
efficiency of the decomposition, the signal-to-noise prob-
lem can be eliminated or at least reduced substantially.
Recently, such a type of algorithms has also been adapted to
the case of quenched lattice QCD to compute fermionic
correlators [11].
In the case of flow observables, multilevel algorithms

cannot be applied directly basically due to the fact that the
flow has a footprint which is not finite. In this paper, we
propose a first step in the direction of solving this problem.
We study a two-level algorithm where the lattice is
decomposed into two subvolumes and observables are
defined such that they depend only on the fields in the
respective subvolume.
The paper is organized as follows. In Sec. II, we describe

the algorithm, and in Sec. III, we define the observables that
we use in this study. Then, in Sec. IV, we demonstrate the
feasibility of this setup and discuss how the improvement
works before we conclude.

II. ALGORITHM

In order to make the discussion of the algorithm as self-
contained as possible, we shall briefly present the main
ideas introduced in Refs. [10,12], in a context which is
directly applicable to our case.

A. Factorized observables

For simplicity, we consider SUðNÞ Yang-Mills gauge
theory on the lattice with the standard Wilson action,
although a more general type of actions can be used,
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S½U� ¼ β

N

X
P

Trf1 −UðPÞg; ð1Þ

where UðPÞ is the product of gauge links around the
plaquette P.
Take B, L, and R to be three disjoint subsets of gauge

links, such that they make up for the totality of gauge
links on the lattice. We choose B in such a way that the
gauge action S½UL;UB;UR� can be decomposed as
SL½UL;UB� þ SR½UB;UR� þ SB½UB�, where by UL;B;R we
refer to the set of gauge links which belong to L, B, and R
respectively. One natural choice for B is the subset of all
spatial links at a fixed time slice xB0 , so that L and R are
simply defined as all gauge links that are located to the left
or to the right of the boundary B. This setup is depicted
in Fig. 1.
For two observables OðxÞ and O0ðyÞ, which are defined

for x ∈ L and y ∈ R, the decomposition of the action
makes it possible to write

hOO0i ¼
Z

dUBpðBÞ½O�L½O0�R;

½A�L;R ¼ 1

ZL;R

Z
dUL;RAe−SL;R½UL;R;UB�; ð2Þ

whereA is eitherO orO0, ZL and ZR are the normalization
factors such that ½1�L;R ¼ 1, and pðBÞ ¼ ZLZR

Z e−S½UB�, with
Z the standard partition function.
Equation (2) expresses the fact that one can average an

observable over L and R independently while keeping B
fixed and then take the average over the possible values of
B. As discussed in Refs. [10,12], this process can be iterated
if the operators O or O0 can be subsequently factorized.
This is the property of factorization that was exploited
originally in Ref. [10] to show an exponential reduction in
the error of the expectation value of large Wilson loops.
The idea presented above can be realized in a

Monte Carlo simulation as follows. First, generate N0

regular updates which are used to perform the integration
over UB in Eq. (2). Then, for each of the N0 original
configurations, N1 updates of L and R are done independ-
ently while keeping B fixed, so that for the product
½O�L½O0�R, the error decreases ideally as 1=N1 instead of
the standard 1=

ffiffiffiffiffiffi
N1

p
. As shown in the Appendix, this can be

reached only for operators with vanishing expectation value
hOi ¼ hO0i ¼ 0. Therefore, in the following, we restrict
ourselves to the connected correlation functions.
Note that factorization makes it possible to obtain a

better scaling for the errors in ½O�L½O0�R, but the error on

the final expectation value hOO0i depends on the average
over B which scales as 1=

ffiffiffiffiffiffi
N0

p
. This means that for large

values ofN1, the error is controlled by the fluctuations of B,
and hence the dominant scaling will be the 1=

ffiffiffiffiffiffi
N0

p
. As

discussed in the following sections and as shown in the
Appendix, in practice one can take very large values of N1

before the ideal scaling is no longer valid.

B. Modified flow observables

Given the gauge link variables Uðx; μÞ, the flow vari-
ables Vtðx; μÞ associated to them are defined by the
equation [2,3,13]

_Vtðx; μÞ ¼ −g20f∂x;μSðVÞgVtðx; μÞ;
Vt¼0ðx; μÞ ¼ Uðx; μÞ: ð3Þ

The effect of the flow can be viewed as a smoothing of
the gauge fields over a spherical range with a mean square
radius of

ffiffiffiffi
8t

p
. Because of this, any observable defined in L

or R has a nontrivial dependence on gauge links from the
opposite domain at positive flow time t, and it cannot be
factorized as required for Eq. (2) to hold. However, the
smoothing produced by the flow is exponentially sup-
pressed at large distances, which leads us to propose a
slightly modified version of the flow equations, such that an
observable computed with the modified flow gauge links
~Vt is a good approximation to the original one and can be
factorized as required in Eq. (2).
If the Wilson action is also used in the definition of the

flow, we propose the following modified flow equation:

_~V
tðx; μÞ ¼

�−g20f∂x;μSð ~VtÞg ~Vtðx; μÞ; ~Vt¼0ðx; μÞ ¼ Uðx; μÞ; if Uðx; μÞ ∈ L ∪ R.

Uðx; μÞ; if Uðx; μÞ ∈ B:
ð4Þ

FIG. 1. Factorized lattice setup. The lattice is split into two
subvolumes L and Rwhich are separated by the boundary links B
defined as the spatial links at the time slice xB0 .
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The modified version accounts for integrating the flow
equations while the links at B are kept fixed. It is
constructed such that for each link Uðx; μÞ ∈ L, also the
smoothed link ~Vtðx; μÞ only depends on links in L and B.
Therefore, for an observable OðxÞ, in either L or R, the
modified flow observable ~OtðxÞ does not get any contri-
bution from the links in the opposite domain. If ~OtðxÞ is a
good approximation of OtðxÞ, one can take advantage of
factorization to obtain a better scaling of the errors of
hOO0i with respect to the N1 nested Monte Carlo updates.

C. Two-point correlation function

We now consider the case of the connected two-point
correlation functionOðxÞOðyÞ for x and y spacetime points
in the four dimensional lattice and put together the
modified flow observables with the multilevel scheme.
We define

Ct
Oðx; yÞ ¼ hOtðxÞOtðyÞiC

¼ hOtðxÞOtðyÞi − hOtðxÞihOtðyÞi ð5Þ

as the connected (C) correlation function of the observable
O. If the two points x and y are separated from the
boundary B by a distance much larger than the radius of
the flow

ffiffiffiffi
8t

p
, then the modified version of Eq. (5) using the

gauge links ~Vt is a good approximation to the original
correlator. To show this, we look at the correction term Δ,
defined as the difference between the flow observable and
the observable computed using the modified flow

Δt
Oðx; yÞ ¼ Ct

Oðx; yÞ − ~Ct
Oðx; yÞ: ð6Þ

Notice that we have left the dependence on both x and y
explicit, as the presence of the boundary B breaks full
translation invariance and one must keep track not only of
the distance jx − yj between source and sink but also of the
distance of both x and y with respect to B. The reason for
this will become evident in the next section when we
discuss a practical application of the algorithm. When not
explicitly needed, wewill drop the t index in every quantity.
For the observables discussed in the next section, our

data show that for a sufficiently large separation from B
compared to the smoothing radius, Δ becomes negligible.
In spite of that, our strategy is not to neglect the correction
term Δ. Instead, in a nested Monte Carlo simulation, the
idea is to use first the N0 generated configurations to
estimate Δ and then use this estimation to correct for the
value of ~COðx; yÞ. For this to work, we need that the
fluctuations of Δ are much smaller than the fluctuations of
CO in such a way that we can use theN0 updates to estimate
Δ and subsequently perform the N1 nested Monte Carlo
updates independently in L and R to compute ~CO.

The main equation of this paper is a modified version of
Eq. (2), which takes into account the correction term Δ and
is applicable for any two-point correlation function of
Wilson flow observables. We define an estimator Ĉt

Oðx; yÞ
of Ct

Oðx; yÞ as

Ĉt
Oðx; yÞ ¼

1

N0

X
N0

f½ ~OtðxÞ�L½ ~OtðyÞ�R þ Δt
Oðx; yÞg

½ ~OtðzÞ�L;R ¼ 1

N1

X
N1

~OtðzÞ; z ¼ x; y; ð7Þ

where ðx; yÞ ∈ L × R. The estimator in Eq. (7) is correct up
to errors of order Oð1= ffiffiffiffiffiffi

N0

p Þ, which comes from the fact
that Δ is only computed on the N0 standard updates.
However, in the next section, we show that the fluctuations
of Δ are exponentially suppressed with the distance to the
boundary, so that the leading term for the scaling of the
error in Ĉ comes from the correlator of the modified flow
observables.

III. NUMERICAL TEST OF THE MODIFIED
FLOW OBSERVABLES

To test our algorithm, we work with the SU(3) gauge
group and a set of gauge configurations generated with the
parameters shown in Table I. The configurations are
generated for a value of β ¼ 6.11, which corresponds to
a lattice spacing of a ≈ 0.08 fm and an effective smearing
radius

ffiffiffiffiffiffi
8t0

p
≈ 6a. Open boundary conditions are used in

the time direction [14]. We consider two observables, the
topological charge density q and the Yang-Mills energy
density e. In particular, we look at the connected two-point
correlation function of the time slice summed q̄ and ē,

Ct
qðx0;rÞ¼ hq̄tðx0Þq̄tðx0þ rÞiC; q̄tðx0Þ¼ a3

X
~x

qtð~x;x0Þ

Ct
eðx0;rÞ¼ hētðx0Þētðx0þ rÞiC; ētðx0Þ¼ a3

X
~x

etð~x;x0Þ;

ð8Þ

where we have left the x0 dependence explicit in order to
keep track of the distance to the boundary B, which is
chosen to be the subset of spatial links with time coordinate
xB0 ¼ T=2. All computations are done in such a way that

TABLE I. Lattice parameters. We report the lattice bare
coupling β, the lattice dimensions L and T, the scale parameter
t0 defined in Ref. [3], the lattice spacing a computed using the
r0 ¼ 0.5 ½fm� scale from [15], and the number of generated
configurations N0.

β ðT=aÞ × ðL=aÞ3 t0=a2 a (fm) N0

6.11 80 × 203 4.5776(15) 0.078 384
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both x0 and x0 þ r are placed far enough from the open
boundaries. From now on, we shall use O to refer to either
q or e when there is no need to make a distinction
between them.
We use the 384 independent configurations to study

the dependence of the fluctuations of Δ on both x0 and r.
First, we consider the correlators which are symmetric
with respect to B, so we choose a source which is
placed at the value of x0 ¼ ðT − rÞ=2. In this case, the
correlator is only a function of r and given by COðrÞ ¼
COððT − rÞ=2; rÞ.
Figure 2 shows the dependence of the error of both

COðrÞ and ΔOðrÞ for a fixed value of the flow time t ¼ t0.
The errors are computed by measuring the autocorrelation
function as described in Ref. [16]. We note that for
separations from the boundary larger than the smoothing
radius, the fluctuations in Δ are below 5% of those of the
observable. As will be discussed in Sec. IV B, the fact that
the ratio between the fluctuations of the observable and
those of the correction term decrease at large distances
contributes to the fact that the algorithm is efficient up to
very large values of N1.
Since the effective smearing radius produced by the flow

grows as
ffiffi
t

p
, the effect of freezing the boundary links at B

increases monotonically with the flow time. We have
observed this behavior in our data, but we are more
interested in the behavior of the correlation functions at
the reference flow scale t ¼ t0. For different values of the
flow, a similar analysis can be performed. However, it is
clear that if the fluctuations of Δ are “small” for a given
value of t0, they are also small for t < t0.
Next, we go beyond the symmetric case and look

at the x0 dependence of Δ. Figure 3 shows a plot of the

errors in Δ as a function of x0 for two fixed values of r
at t ¼ t0.
Notice that the effect of the flow is that of a Gaussian

smearing, so we should expect that the errors in Δ decay at
least exponentially with the distance to the boundary B.
Both Figs. 2 and 3 show a behavior which is compatible
with this statement.
The results presented in this section show that using the

modified flow equations has little impact in the two-point
function, and the effect can be incorporated in the correc-
tion term Δ. When using Eq. (7), it is important to tune the
value of N0 and N1 in such a way that the effect of Δ
remains under control. In particular, due to the exponential
smoothing of the flow, N1 can be chosen larger at larger
values of r, which is precisely where a higher precision is
required.

IV. RESULTS

We consider the ensemble in Table I, and for each of the
N0 configurations, we perform N1 ¼ 40 Monte Carlo
updates while keeping B fixed. The updates are separated
by 60 sweeps, where one sweep is composed of eight over-
relaxation updates followed by one heat-bath update. Both
updates are performed using the Cabibbo-Marinari tech-
nique applied to three SU(2) subgroups [17,18].
In the following, we present our findings concerning the

scaling of the errors with respect to N1 and show the
application of our algorithm for the computation of the two-
point correlation function over the whole range of distances
allowed in our finite size lattice. The limitations of the
method are also discussed. We conclude this section by
using our method to compute the topological susceptibility
and compare it to the result obtained with the standard
algorithm.

FIG. 2. Statistical error σ of ΔO and CO at flow time t ¼ t0. For
both observables, ē and q̄, the error in the correlator is
independent of the distance r, but the errors of Δ seem to decay
at least exponentially with the distance. The dotted vertical line is
added as a reference to indicate the point where the distance from
the boundary is equal to the smoothing radius

ffiffiffiffiffiffi
8t0

p
. For larger

separations, the errors in ΔO are below 5% those of CO.
Uncertainties are smaller than the data markers.

FIG. 3. Statistical error σ of ΔO as a function of x0 for two
values of r at flow time t ¼ t0. Open symbols correspond to a
value of r ¼ 20a ¼ 9.4

ffiffiffiffi
t0

p
, while filled symbols correspond to a

value of r ¼ 28a ¼ 13.2
ffiffiffiffi
t0

p
. The smallest error corresponds to

the symmetric point in which both source and sink are placed far
from the boundary. Uncertainties are smaller than the data
markers.
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A. Autocorrelation times

An interesting question to explore is whether or not an
undesirable growth of the autocorrelations is introduced
due to the freezing of the boundary B. Such an effect could
have an impact on the cost of the measurement in our
nested Monte Carlo scheme. To investigate that, we look at
the integrated autocorrelation time τint of Oðx0Þ as a
function of the time coordinate x0. Given that the N0

standard updates are completely decorrelated, the relevant
autocorrelation function is given by the average over N0 of
the autocorrelation function for the N1 nested updates,
~ΓðtÞ ¼ 1

N0

PN0

i¼1 ΓiðtÞ, where ΓiðtÞ is precisely the autocor-
relation function for each of the nested chains.
Now, τint can be defined in the usual way [16] in terms of

the average autocorrelation function ~ΓðtÞ. Our data show
that τint increases at most by a factor of 1.5 when the
observables approach the boundary B, so there is not a
significant effect. However, on different observables, it
could have a more severe impact which then must be taken
into account when spacing the N1 nested updates and
calculating the cost of the simulation.

B. Choice of the parameters

The introduction of the nested updates adds an extra
parameter to be tuned in the algorithm, as the parameter N1

can be chosen to minimize the errors at a given computa-
tional effort. We argue that for the connected correlator ĈO,
when source and sink are placed far away from the
boundary, the value of N1 up to which the algorithm is
efficient can be scaled exponentially with respect to the
distance to B.
To show this, in the Appendix, we have looked into the

scaling of errors with respect to N0 and N1 in a
Monte Carlo simulation. Our results show that the leading
contribution to the error in the connected correlator scales
as 1=

ffiffiffiffiffiffi
N0

p
N1, which corresponds to the ideal case, but

additionally there are other terms that scale as 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
N0N1

p
and as 1=

ffiffiffiffiffiffi
N0

p
. Such terms, however, when dealing with

connected correlation functions, are exponentially

suppressed as e−m0jxM0 −xB0 j, where xM0 is the time coordinate
of either the source or sink, whichever is the closest to the
boundary, and m0 is the mass of the lightest mode which is
compatible with the symmetries of O. This means that we
can expect the ideal scaling up to very large values of N1

given that source and sink are far away from the boundary
in units of 1=m0.
Another effect that must be taken into account is the

presence of the correction term Δ. Such a term is measured
only over the N0 standard updates, so that its error should
scale in the standard way as 1=

ffiffiffiffiffiffi
N0

p
. This will add another

term which is independent of N1 to the final error. We can
see from our results in Fig. 3 that for a fixedN0, the error in
Δ decays at least exponentially fast with the distance of
either the source or sink to the boundary B. This means that
for the final estimator Ĉ, the value of N1 up to which the
ideal scaling is valid increases exponentially with the
distance to the boundary as long as jxM0 − xB0 j is larger
than the relevant scale, either 1=m0 for the effects coming
from ~C or

ffiffiffiffi
8t

p
for those coming from Δ.

C. N1 dependence of the error

To show the way in which our algorithm improves over
the standard one, we measure the scaling of errors with
respect to N1 for the symmetric correlator. The results for
two different values of r are shown in Fig. 4. For the larger
r ¼ 28a, and for N1 ¼ 40, we are still in the regime where
the ideal scaling is the dominant one, so on the left subplot,
we see a scaling of the error which is compatible with 1=N1

for the whole range of N1 values.
For the smaller value of r ¼ 14a, in particular when

looking at the case of Ĉe, we observe that for N1 ≳ 6, the
error improves only marginally with N1, which means that
we are already in the regime where the term independent of
N1 becomes relevant. This supports the discussion of the
previous section and shows that for small values of r, there
is no significant improvement by performing a very large
number of N1 nested Monte Carlo updates. In practice, one
can use all the N1 generated nested updates for all values of

FIG. 4. Scaling of the error of ĈO as a function of N1. On the left for a value of r ¼ 28a ¼ 13.2
ffiffiffiffi
t0

p
and on the right for a value of

r ¼ 14a ¼ 6.6
ffiffiffiffi
t0

p
. The solid line indicates a scaling of the error proportional to 1=N1, while the dotted line corresponds to the standard

1=
ffiffiffiffiffiffi
N1

p
scaling. For the smaller value of r (right plot), we observe a saturation in the number of effective N1 nested updates that can be

used to reduce the errors. In fact, after N1 ≈ 6 we observe no significant improvement.
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r, but for small separations, the effect of using all of them is
not significative.
For a given N0 and N1, the value of r at which the ideal

scaling is not valid anymore is observable dependent, and
so it has to be studied on a case by case basis. In our
particular case, we observe that for N1 ¼ 40, we are on the
ideal scaling regime for the correlator at distances starting
at values of r ¼ 16a ¼ 7.5

ffiffiffiffi
t0

p
at a flow time t ¼ t0.

D. Application of the algorithm

To show how the algorithm performs for the whole range
of distances in the two-point correlator, we compute Cq and
Ce using the standard algorithm and using our nested
Monte Carlo scheme. For each value of r and x0, we
compute CO and ĈO. We use the N0 ¼ 384 standard
updates to compute CO in the usual way. For our nested
algorithm, we employ the N1 ¼ 40 nested updates for each
of the standard ones.
When using the standard approach, the correlator at

distance r is computed by averaging over all the x0 values
in the plateau region. In the case of our algorithm, this is not
the best strategy, as translation invariance is lost due to the
presence of the boundary B. Instead, we find it beneficial
not to use those time slices for which the source or sink is
closer to B than a given distance rB, which is tuned as part
of the analysis. When working at t ¼ t0, we find the best
choice to be rB ¼ 6a, which is compatible with the
smearing radius

ffiffiffiffiffiffi
8t0

p
≈ 6a.

The inclusion of rB in the analysis means that for
separations smaller than 2rB, the average is done only
when the source and sink are in the same domain, either L
or R. In those cases, we expect no improvement with
respect to the standard algorithm. For larger distances,
however, one can choose to have x0 ∈ L and x0 þ r ∈ R,
where the better scaling is expected. Notice that for
intermediate distances, the average over time slices would
also include terms for which the source and sink are in the
same domain. These terms would contribute to the error

with the usual scaling 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
N0N1

p
, so we find the better

performance when they are also not included in the
average, and we sum only over the factorized terms.
We also look at smaller values of the flow time t; in

particular, we look at a value of t ¼ t0=10. Smaller flow
times can be of interest if one is looking at obtaining the
glueball masses. In such cases, the analysis is the same as
described above, but only the value of rB changes; for
example, at t ¼ t0=10, we find an optimal value of
rB ¼ 3a, which is also compatible with the value of the
smearing radius.

E. Performance of the algorithm

We apply the strategy described above to compute the
ĈO and CO correlators for a wide range of separations r
between the source and sink. To assess the performance of
the algorithm, in Fig. 5 we plot the ratio between the error
of the standard correlator σO and the error of the improved
one σ̂O ¼ σðĈOÞ. With the standard algorithm, if the
statistics are increased by a factor N1 ¼ 40, the error
should scale down by a factor

ffiffiffiffiffiffi
N1

p
≈ 6.3. The lower

horizontal line in Fig. 5 shows the theoretical improvement
of the standard algorithm for the same statistics as the ones
we use in our two-level algorithm.
For the short distance region, we observe an improve-

ment which is below the theoretical one of the standard
algorithm. As explained before, this is expected due to the
fact that one cannot make full use of translation invariance
and that our algorithm is not designed to be the most
efficient for such short distances when the effects of the
flow are more relevant.
As soon as r ≥ 2rB, one enters the region where the new

algorithm outperforms the standard one. This is expected,
as for most of these values of r, we can make full use of the
N1 ¼ 40 nested updates. However, at intermediate distan-
ces, we lose due to the lack of translation invariance in the
x0 direction. This is precisely what we observe as the
improvement rises continually from r ¼ 2rB until it reaches

FIG. 5. Ratio of the errors σO=σ̂O as a function of r. Open symbols are the results for a flow time t ¼ t0=10, while filled symbols
corresponds to the value of t ¼ t0. One can see that the improvement can be split into three distinct regions. For short distances, our
algorithm is not as efficient as the standard one. For intermediate distances our algorithm is already better than the standard one but does
not reach the theoretical maximum improvement, which is only achieved in the large distance regime. The two horizontal lines represent
the theoretical maximum improvement of the standard algorithm and the one expected from our algorithm.
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the theoretical maximum improvement equal to N1 ¼ 40.
For values of r sufficiently large, our algorithm performs as
expected, and we obtain the theoretical maximum improve-
ment which is shown in the figure by the upper horizontal
line. We observe the same qualitative behavior for different
values of the flow time, the only difference being
the different value of rB which is used in the analysis.
Clearly, for smaller values of the flow time, we are able to
outperform the standard algorithm at even shorter distan-
ces, which could be useful for certain applications.

F. Topological susceptibility

As a final test of our proposal, we compute the
topological susceptibility χ at t ¼ t0 and compare it to
the result obtained when using the standard algorithm. For
the comparison, we use the same statistics in both cases,
i.e., N0N1 ¼ 15360 measurements, so that the computa-
tional effort is roughly the same. For the definition of the
susceptibility, we use the one in Ref. [7]. To write this in
terms of our observables, we define C̄qðrÞ as the average of
Cqðx0; rÞ over x0. We proceed as described in the previous
section, so for the standard algorithm, we average over all
values of x0, while in the case of the new algorithm, we use
only those values of x0 such that the source and sink are not
closer than rB to the boundary B. Then, we define the
topological susceptibility as

χðrcutÞ ¼
a
L3

Xrcut
z0¼−rcut

C̄qðjz0jÞ; ð9Þ

where rcut should be chosen so that the statistical error in
the sum is larger than the estimated systematic error from
cutting the summation. We are not so interested in choosing
the best value of rcut but more on comparing the perfor-
mance of the two-level algorithm with respect to the
standard one.
In Table II, we show the results at three different values

of rcut using both the standard algorithm and the new nested
Monte Carlo algorithm that we propose in this paper. As
already pointed out in the Introduction, with the traditional
approach, summing up the correlator to large values of rcut
only increases the error while the signal remains relatively
constant [6,7]. We clearly observe this effect in our data
when using the standard method. On the other hand, the

error when using our algorithm remains relatively constant
when the value of rcut is increased from values of 0.85 fm
up to 4.19 fm. In fact, for the largest value of rcut, the
improvement when using our algorithm is more than
twofold, corresponding to an increase in statistics by a
factor 5.

V. CONCLUSION

In this paper, we have studied a multilevel algorithm for
computing the two-point correlation function of flow
observables. It is based on the idea originally introduced
in Ref. [10]. Basically, we split the lattice into two
subvolumes separated by a boundary B and use the locality
of the action to perform independent updates on each of
them. Such an approach would not work for observables at
positive flow time, so we slightly modify the flow equations
to build a “good” approximation of the original observable
which can be factorized as required for a multilevel type
scheme to work.
In this type of algorithms, one starts by performing N0

standard updates followed by N1 nested updates for each of
the original N0 generated configurations. In the ideal case,
one expects the scaling of the error to be proportional to
1=N1 instead of the standard 1=

ffiffiffiffiffiffi
N1

p
. We put this to the test,

and for the case of the connected two-point correlation
function hOðxÞOðyÞi − hOðxÞihOðyÞi, we find that our
algorithm outperforms the standard one when x and y are
far from the boundary B in units of 1=m0 and of the flow
radius

ffiffiffiffi
8t

p
, where m0 is the lightest mass compatible with

the observable O. In the case of short separations, our
algorithm is not better than the standard one, which is
expected from the way the observables are constructed.
We also showed that our algorithm can be used to obtain

a better lattice determination of the topological suscep-
tibility χ, where the large statistical errors coming from the
tail of the correlator are tamed. With our choice of
parameters, we observe a decrease of errors by a factor
larger than 2 for the same statistics as the standard
algorithm, which would correspond to a fivefold decrease
of the computational time required for a fixed target error.
Although we performed our analysis with the Yang-

Mills energy density e and the topological charge q, the
idea can be applied to any correlation function of flow
observables in the lattice Yang-Mills gauge theory. Also,
the idea that we presented in this paper can be generalized
to a four dimensional approach in which the decomposition
is not limited to the time direction. In that case, we expect
an even better performance of the algorithm.

ACKNOWLEDGMENTS

We are very thankful to R. Sommer for extensive
discussions. We also would like to thank L. Giusti, M.
Cè, and D. Banerjee for discussions related to multilevel
algorithms. Our simulations were performed at the ZIB

TABLE II. Results for the topological susceptibility
104t20χðrcutÞ using the standard algorithm and the new algorithm
that we propose in this paper. The values of rcut in physical units
were computed using the r0 scale from Ref. [15].

rcut=
ffiffiffiffi
t0

p
rcut (fm) Standard New

5.1 0.85 6.405(46) 6.347(60)
15.4 2.56 6.507(94) 6.291(61)
25.2 4.19 6.518(164) 6.254(69)

MULTILEVEL ALGORITHM FOR FLOW OBSERVABLES IN … PHYSICAL REVIEW D 93, 074502 (2016)

074502-7



computer center with the computer resources granted by
The North-German Supercomputing Alliance. M. G. V.
acknowledges support from the Research Training Group
GRK1504/2 “Mass, Spectrum, Symmetry” founded by the
German Research Foundation.

APPENDIX: ERROR REDUCTION

In a two-level nested Monte Carlo algorithm as the one
described in the main text, we are interested in the scaling
of errors with respect toN0 andN1. In particular, we look at
the case of the two-point correlator

A ¼ hOðx0ÞOðy0Þi;

whereOðx0Þ ∈ L andOðy0Þ ∈ R. To simplify the notation,
we write O≡Oðx0Þ and O0 ≡Oðy0Þ.
In a Monte Carlo simulation, an estimator for A is given

by

Â ¼ 1

N0

XN0

i¼1

1

N2
1

XN1

j¼1

XN1

k¼1

OijO0ik: ðA1Þ

The error σ2A on the estimator is then computed in the usual
way,

σ2A ¼ hðÂ − ĀÞ2iLBR; ðA2Þ

where hiLBR stands for the average over all the gauge links
in L ∪ B ∪ R and Ā ¼ h½O�L½O0�RiB is the real expectation
value of A.
By inserting Â from Eq. (A1) into Eq. (A2) and using the

fact that the N0 updates are independent, one obtains

σ2A ¼
1

N0N2
1

hVarLðOÞVarRðO0ÞiBþ
1

N0

ðh½O�2L½O0�2RiB− Ā2Þ

þ 1

N0N1

ðhVarLðOÞ½O0�2RþVarRðO0Þ½O�2LiBÞ; ðA3Þ

where VarLðOÞ¼ ½O2�L− ½O�2L and similarly for VarRðO0Þ.
By looking at Eq. (A3), it is clear that the error scales not
only as the ideal case 1=

ffiffiffiffiffiffi
N0

p
N1, but it has also subleading

contributions.
Note, however, that using the transfer matrix formalism,

one can show that the second term proportional to 1=N0 is
exponentially suppressed as e−m0jxB0−xM0 j, where m0 is the
mass of the lightest state compatible with the symmetries of
O and xM0 corresponds to x0 or y0, whichever is the closest
to xB0 .
The third term is also exponentially suppressed if one

considers the case of the connected correlator

C ¼ hOðx0ÞOðy0Þi − hOðx0ÞihOðy0Þi:

Then, only the first term gives the leading contribution to
the error, and it is the one that has the ideal scaling for
which a nested Monte Carlo scheme would be useful.
The final formula for the error of the connected corre-

lator is

σ2C ≈
1

N0N2
1

hVarLðOÞVarRðO0ÞiB

þ e−m0jxB0−xM0 j
�

c1
N0N1

þ c2
N0

�
: ðA4Þ
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