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We perform the first, to our knowledge, classical-statistical real time lattice simulations of topological
transitions in the nonequilibrium glasma of weakly coupled but highly occupied gauge fields created
immediately after the collision of ultrarelativistic nuclei. Simplifying our description by employing SU(2)
gauge fields, and neglecting their longitudinal expansion, we find that the rate of topological transitions is
initially strongly enhanced relative to the thermal sphaleron transition rate and decays with time during
the thermalization process. Qualitative features of the time dependence of this nonequilibrium transition rate
can be understood when expressed in terms of the magnetic screening length, which we also extract
nonperturbatively. A detailed investigation of autocorrelation functions of the Chern-Simons number (NCS)
reveals non-Markovian features of the evolution distinct fromprevious simulations of non-Abelian plasmas in
thermal equilibrium.
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I. INTRODUCTION

Topological transitions are ubiquitous in nature and
believed to be responsible for a variety of phenomena
across the most diverse energy scales. In the context of non-
Abelian gauge theories, a prominent example is transitions
between energy degenerate ground states of definite Chern-
Simons number, mediated by unstable, spatially localized
classical field configurations of finite energy called spha-
lerons [1–5]. Interest in these so-called sphaleron transi-
tions first arose in the context of electroweak baryogenesis
[6–8]: the high temperatures make these transitions ener-
getically favorable and may lead to the large violations in
baryon number necessary to explain the matter-antimatter
asymmetry of the universe [9].
Sphaleron transitions can also be significant in QCD at

high temperatures and energy densities [10]. In this case,
there is no baryon number violation; however, because of
the chiral anomaly and the Atiyah-Singer index theorem,
these sphaleron transitions can generate significant
amounts of axial charge. Because such transitions are
governed by ultrasoft magnetic modes [7], their rate in a
non-Abelian plasma at finite temperature can be computed
by solving classical equations of motion in real time [11].
Hard quantum modes still play a role due to Landau
damping effects [12]; nevertheless, their effect can be
accounted for in the hard thermal loop effective theory
[13], and the sphaleron transition rate can still be computed
in a real time simulation nonperturbatively [14]. Estimates
now exist for an SU(3) gauge theory at high temperatures
where weak coupling methods are justified [15].
A striking observation is that if the axial charge

generated from sphaleron transitions is produced in the

presence of a sufficiently strong external magnetic field, a
net vector charge current can be produced in a hot QCD
plasma [16,17]. This phenomenon, called the chiral mag-
netic effect (CME), can be studied in ultrarelativistic heavy-
ion collisions, where the magnetic fields in noncentral
collisions are very large at early times after the collision,
and the energy densities are also sufficiently large that
deconfined QCD matter is created. Experimental searches
for the CME are ongoing at RHIC and the LHC, and
intriguing hints suggestive of the CME and other anoma-
lous transport effects have been seen [18–21]. However,
conventional explanations for the observed signatures have
also been put forward [22–26], and further progress relies
in part on an improved theoretical understanding of the
expected magnitude and features of the signal. A status
report on theoretical models of the CME and ongoing
experimental searches can be found in Ref. [27].
A major complication for theoretical descriptions of the

chiral magnetic effect in heavy-ion collisions is the very short
lifetimeof the externalmagnetic field at the highestRHICand
LHC energies. Computations suggest that the magnitude of
the magnetic field becomes smaller than the values relevant
for the CME (eB ≥ m2

π) on very short time scales of ∼0.1 to
0.2 fm

c of the LHC and RHIC collisions, respectively [28],
though in principle, very large electrical conductivities in the
quark gluon plasma can extend this time scale to slightly
longer times [29]. Hence to understandwhether the CME has
observable consequences in heavy ioncollisions, oneneeds to
obtain an estimate of the sphaleron transition rate at very early
times in the collision when the system is far off-equilibrium.
A systematic QCD approach to the very early time

evolution in ultrarelativistic heavy ion collisions is obtained
in the color glass condensate effective field theory [30]. In

PHYSICAL REVIEW D 93, 074036 (2016)

2470-0010=2016=93(7)=074036(22) 074036-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.074036
http://dx.doi.org/10.1103/PhysRevD.93.074036
http://dx.doi.org/10.1103/PhysRevD.93.074036
http://dx.doi.org/10.1103/PhysRevD.93.074036


this description, very high occupancy gluons in the nuclear
wave functions are released in the collision generating
nonequilibrium matter called the glasma [31–34]. The
dynamics of the glasma is controlled by a saturation scale
Qs, which represents the hard momentum scale up to which
gluons in the nuclear wave function have maximal occu-
pancy. This saturation scale grows with the energy of the
collision. When Qs ≫ ΛQCD, where ΛQCD is the intrinsic
QCD scale, the QCD coupling αSðQsÞ ≪ 1 and weak
coupling methods are applicable. Because the occupancy
of gluons is parametrically of order 1=αSðQsÞ ≫ 1 in the
glasma, the early time dynamics of this matter may be
described by classical-statistical methods [35–39]. One
therefore has a clean theoretical limit in QCD, whereby
the properties of the nonperturbative glasma can be
computed systematically [40,41].
We will present in this paper a first real time non-

perturbative computation of the far from equilibrium
sphaleron transition rate in the glasma. For simplicity,
we shall consider sphaleron transitions in a fixed box rather
than the realistic (but computationally far more challeng-
ing) longitudinally expanding case.1 We will employ a
numerical lattice implementation of the classical-statistical
dynamics and adapt techniques previously developed in the
context of classical Yang-Mills simulations to extract the
thermal sphaleron transition rate [43–46], and in real-time
studies of electroweak baryogenesis [47–53].
A deeper understanding of the rate of sphaleron tran-

sitions requires that one explore simultaneously the scales
associated with the hard modes as well as the softer electric
and magnetic screening scales in the glasma. How these
scales develop with time has been discussed previously in
the context of thermalization of the glasma in both
analytical [54,55] and numerical approaches [56–58]. We
will revisit this problem and demonstrate numerically that a
clear separation of scales takes place with the temporal
evolution of the glasma.
In particular, we will compute the spatial Wilson loop

which provides the scale determining magnetic screening in
a hot plasma in equilibrium. Albeit the nonequilibrium
temporal evolution of the spatial Wilson loop has been
studied previously [56], we will go further and extract the
scaling exponent that controls the temporal evolution of the
corresponding string tension in the classical theory. We will
show that the time evolution of the sphaleron transition rate
is controlled by this string tension, scaling dimensionally as
the string tension squared. Unlike the thermal case,

topological transitions in the glasma are determined by this
magnetic scale alone and are robustly described by classical-
statistical dynamics as long as occupancies are large.
The outline of this paper is as follows: in Sec. II, we will

give a brief overview of sphaleron transitions, in and out of
equilibrium. In Sec. III, we discuss in some detail how we
measure the Chern-Simons number on a real time numeri-
cal lattice. We shall outline two different approaches, a
“slave field” approach and a “calibrated cooling” approach
and demonstrate, as a warm-up, our technology in the well
understood case of thermal equilibrium initial conditions.
Then in Sec. IV, we will introduce our nonequilibrium
initial conditions and compute physical hard and soft scales
as well as the far from equilibrium sphaleron transition rate.
We will compare and contrast our results to those obtained
in thermal equilibrium. In Sec. V, we will summarize our
results, discuss their implications, and outline future work.
Some details of the numerical procedure and essential tests
are described in two Appendixes.

II. SPHALERON TRANSITIONS AND AXIAL
CHARGE DYNAMICS

In SUðNcÞ gauge theories with Nf light flavors of
fundamental fermions, the conservation of the axial current
associated with each quark species,

jμ5;f ¼ qfγμγ5qf; ð1Þ
is violated due to the axial anomaly as well as the explicit
symmetry breaking introduced by the quark masses mf,

∂μj
μ
5;f ¼ 2mq̄iγ5q −

g2

16π2
Fa
μν
~Fμν
a ; ð2Þ

where Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν denotes the non-

Abelian field strength tensor and ~Fμν
a ¼ 1

2
ϵμναβFa

αβ is its dual
[59]. Since in the high-temperature phase the explicit
breaking due to the quark masses is usually neglected, we
will denote the combined axial current of all light flavors as
jμ5 in the following. In this limit, the anomaly equation takes
the form

∂μj
μ
5 ¼ −

g2Nf

16π2
Fa
μν
~Fμν
a ð3Þ

and states that fluctuations of the SUðNcÞ gauge fields
characterized by Fμν

~Fμν can induce local imbalances of the
axial charge density ðj05Þ as well as global imbalances of the
net axial charge

J05ðtÞ ¼
Z

d3xj05ðt; xÞ: ð4Þ

As noted previously, it was realized that in the presence of
additional Uð1Þ electromagnetic fields, such imbalances of
axial charge densities ðj05Þ can lead to a variety of novel

1Fluctuations in the Chern-Simons number for the longitudi-
nally expanding, albeit boost invariant, glasma were considered
previously in [42]. Because boost invariant gauge field configu-
rations are (2þ 1)-dimensional configurations, the second ho-
motopy group of SU(2) is trivial. Thus in this case, nonzero
integer valued topological transitions are not allowed; fractional
values of topological charge can nevertheless be generated by
fluctuations in the color electric and color magnetic fields.
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transport phenomena associated with the CME [16,17] and
related effects [27].
Since the anomaly relation in Eq. (3) suggests that the

fluctuations of axial charges are sourced by fluctuations of
Fμν

~Fμν, basic features of the generation of an axial charge
imbalance can be understood by investigating the non-
Abelian dynamics of gauge fields.2 Concentrating on the
Yang-Mills sector from now on, it is convenient to express
the right hand side of the anomaly equation in terms of the
Chern-Simons current

Kμ ¼ g2

32π2
ϵμνρσ

�
Aa
νFa

ρσ −
g
3
fabcAa

νAb
ρAc

σ

�
; ð5Þ

which satisfies the relation

∂μKμ ¼ g2

32π2
Fa
μν
~Fμν
a ; ð6Þ

such that the overall difference of net axial charge is given
by

J05ðt2Þ − J05ðt1Þ ¼ −2Nf

Z
t2

t1

dt
Z

d3x∂μKμ: ð7Þ

Since the spatial integral over the (four) divergence of the
Chern-Simons current (

R
d3x∂μKμ) defines a total time

derivative, the right hand side of Eq. (7) can be expressed in
terms of the difference of two boundary terms

Z
t2

t1

dt
Z

d3x∂μKμ ¼ NCSðt2Þ − NCSðt1Þ; ð8Þ

where NCS denotes the Chern-Simons number

NCSðtÞ ¼
Z

d3xK0ðt; xÞ; ð9Þ

which is a unique property of the gauge field configuration
at the boundary. When considering a vacuum state, for
instance, the Chern-Simons number NCS can be associated
with the homotopy class HomðGÞ ∈ π3ðSUðNcÞÞ≃ Z
of the gauge transformation G∶R3 ∪ f∞g → SUðNcÞ
that transforms the configuration to the topologically
trivial vacuum state.3 (See, for example, Ref. [63] for a
comprehensive review.) Consequently, the Chern-Simons

number of a vacuum state is an integer which distinguishes
between energy degenerate but topologically inequivalent
configurations.
When considering states of finite energy density, either

in or out of thermal equilibrium, dynamical transitions
between different topological sectors can occur [6] medi-
ated by the sphaleron [1]. While sphaleron transitions
manifest themselves in a change of the gauge field top-
ology, the Chern-Simons number of an excited state
configuration is—in contrast to vacuum states—no longer
necessarily an integer. Instead, NCSðtÞ behaves as a
continuous function of time whose derivative, according
to Eqs. (8) and (6), satisfies the relation

dNCS

dt
¼ g2

8π2

Z
d3xEa

i ðxÞBa
i ðxÞ; ð10Þ

where we will express 1
4
Fa
μν
~Fμνa ¼ Ea

i B
a
i with Ei

a ¼ F0i
a

and Bi ¼ 1
2
ϵijkFjk from now on. Clearly, the integrand in

Eq. (10) receives contributions not only from topological
transitions but also from ordinary fluctuations of the
field strength that are unrelated to topology. This is
illustrated in Fig. 1 where we show a snapshot of the

integrand g2

8π2
Ea
i ðxÞBa

i ðxÞ for a thermal three-dimensional
(3D) Yang-Mills configuration. Thus from Eq. (3), both
ordinary fluctuations and topological transitions contribute
to the generation of an axial charge imbalance.
For Yang-Mills theories in thermal equilibrium,

sphaleron transitions dominate the late time behavior of
the Chern-Simons number [6,7,64] that is related to the
generation of a net axial charge. Since individual sphaleron
transitions are uncorrelated with each other, the long time
behavior of the Chern-Simons number in thermal equilib-
rium can be characterized by an integer random walk
between different topological sectors. Accordingly, the
sphaleron transition rate can be defined from the NCS
autocorrelation function [65,66]

FIG. 1. Spatial profile of g2

8π2
Ea
i ðxÞBa

i ðxÞ for a 3D Yang-Mills
configuration in thermal equilibrium (N ¼ 16, β ¼ 2). Left:

thermal field strength fluctuations contributing to ~E · ~B on all

length scales. Right: spatial profile of ~E · ~B during a sphaleron
transition after cooling to remove short distance fluctuations.

2We note that in general there is a nontrivial interplay between
the dynamics of the gauge sector and previously existing
imbalances of axial charges [60–62]. However, since we are
mostly interested in the generation of such axial charge
imbalances we will not consider these effects within this study.

3While for gauge fields with periodic boundary conditions the
gauge transformations map from the 3-torus T3 to the gauge
group SUðNcÞ, the set of homotopy classes of the map is still
isomorphic to integers.
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Γeq
sph ≡ lim

δt→∞

hðNCSðtþ δtÞ − NCSðtÞÞ2ieq
Vδt

; ð11Þ

in the spirit of a transport coefficient. Since the definition of
Γeq
sph involves a real time correlation function, even in

thermal equilibrium, this quantity is not accessible using
first principles calculations in Euclidean lattice gauge
theory. (See, for instance, [15] for a discussion.) Instead,
calculations of the equilibrium sphaleron transition rate
have been performed either by using weak coupling
numerical lattice techniques [11,67] or by investigating
theories with a holographic dual [68].
Parametric estimates of the sphaleron transition rate in

weakly coupled plasmas in thermal equilibrium give

Γeq
sph ¼ κα5ST

4; ð12Þ

where αS ¼ g2=4π here denotes the coupling constant
[12,69,70] and κ is a nonperturbative constant. This para-
metric estimate is based on the argument [6,7,64] that the
typical spatial length scale corresponding to a sphaleron
transition is determined by modes with wavelengths on the
order of the inverse magnetic screening scale 1=g2T. The
time scale necessary to achieve a sphaleron transition turns
out not to be 1=g2T as previously argued [64], but a longer
time scale 1=g4T, which accounts for the “Landau damp-
ing” of the transition time due to the interaction of the soft
magnetic modes with hard modes on the scale of the
temperature. This parametric scaling has also been con-
firmed independently by numerical simulations [15,71–73]
which extract [15] κ ¼ 0.21N3

cðN2
c − 1ÞðNcg2T2=m2

DÞ
within logarithmic accuracy in the coupling g; plugging
in the value of the Debye massmD for very weak couplings,
Nf ¼ 0 and Nc ¼ 3, one obtains κ ∼ 132� 4.
Our work here extends these studies to the case of an

overoccupied non-Abelian plasma that is far off-
equilibrium. Since such a system is dominated by classical
dynamics, the sophisticated real time lattice techniques
[43–46] previously used to study sphaleron transitions in
equilibrium can be straightforwardly adapted to the prob-
lem of interest here. However, the problem in our case is
simpler because, unlike the thermal case, hard quantum
modes do not influence the sphaleron transition rate in the
glasma. The dynamics of nonequilibrium sphaleron tran-
sitions is entirely determined by the classical-statistical
simulations; indeed, for the time scales studied, the
sphaleron rate in the glasma is governed by soft modes
on the order of the magnetic screening scale determined
from the spatial Wilson loop. Before we present these
results, we will first review the real time numerical
techniques that are essential to compute sphaleron
transitions.

III. TOPOLOGY MEASUREMENT
ON THE REAL TIME LATTICE

In this section, we will outline the numerical classical-
statistical methods that have been developed for the real
time simulations of topological transitions at high temper-
atures and adapt these for our nonequilibrium context. One
first solves the classical Yang-Mills equations on the lattice;
in this first study, for simplicity, we will consider only the
case of an SU(2) gauge theory. While a lattice formulation
of the problem is essential to describe nonperturbative real-
time phenomena, the lattice discretization, as we shall
discuss, poses problems for the extraction of topological
information in the plasma. We will outline the sophisticated
methods that have been devised to reliably extract the
Chern-Simons number on the lattice for non-Abelian
plasmas in equilibrium. In particular, we will discuss the
independent calibrated cooling and slave field methods and
adapt these to the nonequilibrium glasma case. As a
benchmark for our computations, we will reproduce and
discuss key features of the well known equilibrium results.

A. Classical-statistical lattice setup

We discretize the theory on a 3D spatial lattice with N
sites and spacing a in each direction following the
Hamiltonian formulation of lattice gauge theory in tempo-
ral axial gauge. We define the lattice gauge link variables
UμðxÞ and electric field variables EμðxÞ such that they
transform according to

Eμ
ðGÞðxÞ ¼ GðxÞEμðxÞG†ðxÞ;

UðGÞ
μ ðxÞ ¼ GðxÞUμðxÞG†ðxþ μ̂Þ; ð13Þ

under time independent gauge transformations. Defining
the variation of the lattice gauge links with respect to the
gauge fields as

δUμðxÞ
δAa

νðyÞ
¼ −igaτaUμðxÞδμν

δx;y
a3

; ð14Þ

where τa denotes the fundamental generator of SUðNcÞ, we
solve the classical Hamilton equations of motion

∂tE
μ
aðxÞ ¼ −

δH
δAa

μðxÞ
;

∂tUμðxÞ ¼ −igaτa
δH

δEμ
aðxÞUμðxÞ; ð15Þ

derived from the lattice Hamiltonian

H ¼ a3

2

X
j;x

Ea
j ðxÞEa

j ðxÞ þ
2

g2a

X
□

ReTr½1 −U□�; ð16Þ

using a leapfrog updating scheme.With the classical solutions
in hand, we can subsequently extract the observables of
interest from the lattice field configurations and perform an
average over an ensemble of all field configurations.
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B. Chern-Simons number measurement

While we are interested in the dynamics of topological
transitions and the behavior of the Chern-Simons number
over the course of the nonequilibrium evolution, there are
several problems associated with the lattice definition of the
corresponding observables—a clear discussion of these can
be found in [46]. First of all, since the lattice is a discrete set
of points, meaningful topological concepts can only be
defined for (i) sufficiently smooth configurations, for which
gauge links are close to the identity, and (ii) slowly varying
configurations, for which neighboring plaquettes are nearly
identical. These are the gauge field configurations which
effectively admit an interpolation between lattice sites.
Further, there exists no local operator definition of the
Chern-Simons current K0ðt; xÞ such that the spatial integralR
d3xK0ðt; xÞ is a total time derivative for generic field

configurations. Instead, local operator definitions of the
Chern-Simons current can only be made approximately
equal to a total derivative for sufficiently smooth and slowly
varying field configurations.
Since these problems are particularly severe for classical-

statistical simulations in thermal equilibrium, different
techniques known as the calibrated cooling [43,46] and
the slave field [45,74] methods have been developed in this
context to overcome this challenge on real time lattices. We
will briefly summarize below the basic ideas behind both
methods. More details on the technical implementation of
both methods are given in Appendixes A and B.

1. Calibrated cooling

Problems with the lattice definition of the Chern-Simons
current arise primarily due to ultraviolet fluctuations on the
scale of the lattice spacing. However, fortuitously, the
contribution of these ultraviolet modes to the sphaleron
transition rate is suppressed because the sphaleron rate is
dominated by the dynamics of modes on the order of the
magnetic screening length [6,7,64]. Hence an efficient way
to deal with the aforementioned problems is to suppress the
effect of ultraviolet fluctuations on the topology measure-
ment by use of a calibrated cooling technique [43,46].
The most efficient way to remove ultraviolet fluctuations

in a gauge invariant fashion is to follow the trajectory of the
configuration along an additional “cooling time” direction τ
along which the gauge links evolve according to the energy
gradient flow4

∂τUμðt; x; τÞ ¼ −igaτaEμ;a
coolðt; x; τÞUμðt; x; τÞ;

Ecool
μ;a ðt; x; τÞ ¼ −

δH
δAμ

aðxÞ : ð17Þ

By this procedure, ultraviolet fluctuations are efficiently
removed, and one can then define the Chern-Simons
number by following the gradient flow (gf) all the way
to the vacuum5

Ngf
CSðtÞ − Nvac

CS ðtÞ

¼ −
g2a3

8π2

Z
∞

0

dτ
X
x

Ecool
i;a ðt; x; τÞBcool

i;a ðt; x; τÞ: ð18Þ

While the Chern-Simons number of the associated vacuum
configuration Nvac

CS ðtÞ is an integer characterizing the
topological properties of the gauge field configuration,
the integral on the right hand side contains the fluctuations
above the vacuum and can be evaluated using an Oða2Þ
improved operator definition of the chromoelectric and
chromomagnetic fields inside the integral as described in
Appendix A. Typically the field configurations become
smooth already after cooling to τa2 ∼ 1. Thus ultraviolet
lattice effects on the Chern-Simons number expression
from integrating Eq. (10) are small, and the method is
topological [46]. However, the numerical cost of cooling all
the way to the vacuum is too large for this definition to be
practical, and it is therefore useful to consider the following
modifications instead.
Instead of cooling all the way to the vacuum ðτ → ∞Þ it

is sufficient to cool for a shorter depth τc to efficiently
remove ultraviolet fluctuations on the scale of a single
lattice spacing. For such cooled configurations, a local
operator definition of the Chern-Simons current behaves
approximately as a total derivative; one can therefore define
the change in the Chern-Simons number between two
different times t1 and t2 by comparing the cooled images of
the configurations,

NCSðt2Þ − NCSðt1Þ

¼ g2a3

8π2

Z
t2

t1

dt0
X
x

Ei;aðt0; x; τcÞBi;aðt0; x; τcÞ; ð19Þ

as described in detail in Appendix A. By varying the
amount of cooling τc applied to the configuration, one in
addition controls both the magnitude and the typical
wavelength of ordinary field strength fluctuations that
contribute to the Chern-Simons number measurement.
We shall investigate the dependence on the cooling depth

4While gradient flow techniques are also frequently used in
Euclidean lattice gauge theory [75–79], we note that the cali-
brated cooling technique employed here differs in the following
aspects. While in four-dimensional (4D) Euclidean lattice gauge
theory, the gradient flow follows the steepest descent of the 4D
gauge action, and the cooling trajectory of our gauge field
configuration follows the steepest descent of the 3D lattice
Hamiltonian, such that three-dimensional gauge field configura-
tions at different times are cooled independently of each other.

5Cooling to the classical vacuum amounts to following the
energy gradient flow in Eq. (17) up to the point where
the magnetic energy density vanishes identically to machine
precision.
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τc in more detail below. We note that one can check
whether the definition of the Chern-Simons current indeed
behaves as a total derivative by adding occasional coolings
all the way to the vacuum to compute NCS [according to the
previous definition in Eq. (18)]. This measurement is
recalibrated to ensure that any residual lattice errors do
not accumulate over time. An illustration of this calibrated
cooling method is shown in Fig. 2.
In practice, we evolve the field configurations along the

real-time axis t and perform cooling up to a variable length
τc for every 0.5 lattice units in time. Based on the cooled
images of the configurations, we then compute the change
in the Chern-Simons number according to Eq. (19), as
described in detail in Appendix A. We recalibrate this
measurement by performing a cooling to the vacuum6 for
every 5 lattice units in time. When comparing the compu-
tations using, respectively, the definitions in Eqs. (19) and
(18), we observed that the largest discrepancy was of the
order of 0.1 (and typically much smaller than that). The
close agreement indicates that the method employed is
indeed topological.

2. Slave field method

In the calibrated cooling method, ultraviolet fluctuations
are removed explicitly to arrive at a topological definition
of the Chern-Simons number. An alternative method
referred to as the slave field method was proposed by
Woit [74] and developed further by Moore and Turok [45].
The basic idea underlying this method is to extract the
integer part of the Chern-Simons number [which, loosely
speaking, corresponds to the integer part Nvac

CS ðtÞ in
Eq. (18)] by measuring the winding number NW of the
gauge transformation SðxÞ which transforms the configu-
ration to the topologically trivial sector, setting

NSF
CS ¼ NW; ð20Þ

where the acronym SF stands for slave field. Since the
topological trivial sector of 3D Yang-Mills theory satisfies
the (minimal) Coulomb gauge condition that

Q ¼ 1

3N3Nc

X
j;x

ReTr½1 − UðSÞ
j ðxÞ� ð21Þ

is minimal, finding the gauge transformation SðxÞ is then
equivalent to the problem of fixing the Coulomb gauge on
the real time lattice. As pointed out in [45], keeping track of
this gauge transformation over the course of the
Hamiltonian time evolution can be efficiently achieved
using a sequence of small gauge transformations deter-
mined by an extended variant of the Los Alamos gauge
fixing algorithm described in more detail in Appendix B.
At first sight, it may appear as if this procedure were

completely free of the aforementioned ultraviolet problems.
However, these problems return in determining the winding
number of the gauge transformation. Indeed, a topologi-
cally meaningful definition of the winding number is
possible only when SðxÞ is sufficiently slowly varying7;
when this is the case, the winding number can be extracted
using the methodology of Woit [74]. Specifically, for the
SUð2Þ gauge group, the winding number is characterized
by the degree of the map

NW ¼ degðSÞ ð22Þ
and can be extracted in a straightforward way following
[45]—the procedure is described in further detail in
Appendix B. Similarly, in the case of SUðNcÞ with
Nc > 2, one can extract the winding number by decom-
position into SUð2Þ subgroups [80].
By fixing the Coulomb gauge condition at the initial

time, the slave field SðxÞ can initially be set to the identity
such that it is slowly varying at that time. However,
ensuring that the slave field SðxÞ remains slowly varying
over the course of the Hamiltonian evolution is a nontrivial
task and generally requires a more careful tuning of the
algorithm. The strategy devised in [45] is to monitor the
roughness of the gauge transformation. This quality is
quantified in terms of the peak stress defined as

PS ¼ supx
X
j

ReTr

�
1 −

1

2
ðUðSÞ

j ðxÞ þ U†;ðSÞ
j ðx − ĵÞÞ

�
;

ð23Þ
and to apply the transformation to the Coulomb gauge of
the dynamical fields U, E, and S

UiðxÞ → UðSÞ
i ðxÞ; EiðxÞ → EðSÞ

i ðxÞ; SðxÞ → 1; ð24Þ

real-time evolution

co
ol
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g
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n
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N
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S
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S
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V
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FIG. 2. The calibrated cooling method.

6Since in practice the cooling to the vacuum is extremely
costly, we use up to two steps of blocking [46] for our largest field
configurations during this process. For more information, see
Appendix A.

7The slave field SðxÞ does not necessarily have to be close to
the identity for this condition to be satisfied.
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whenever the peak stress falls below a certain threshold
[45]. Consequently, by restoring the Coulomb gauge
condition dynamically, one ensures that the slave field
remains slowly varying on large time scales and the
extraction of the winding number is topological.
Despite the elegance of the slave field method, in

practice, the underlying local gauge fixing algorithm is
very inefficient on large lattices, and performing the
frequent gauge fixing required for the topology measure-
ment becomes prohibitively expensive. We will therefore
use this method primarily as a benchmark and cross-check
of the calibrated cooling technique discussed previously.

C. Chern-Simons measurements and sphaleron
transitions in thermal equilibrium

Before we apply the above methods to study sphaleron
transitions in the glasma, we will briefly discuss the
application of these methods to SUð2Þ Yang-Mills theory
in thermal equilibrium. While the correct determination of
the sphaleron rate at weak coupling requires a simultaneous
description of the hard (∼T) and soft (∼g2T) excitations of
the systems—as discussed earlier in Sec. II—our primary
goal is to illustrate basic features of the evolution of the
Chern-Simons number in thermal equilibrium. We will
therefore neglect the effects of hard excitations in the
thermal case and instead follow previous work that
explored the behavior of soft (∼g2T) modes in 3D classical
Yang-Mills theory.
We generate thermal configurations using the highly

efficient thermalization algorithm developed by Moore
[81]. Beginning with a cold start (Uμ ¼ 1, Eμ ¼ 0), we
perform a series of iterations of the following steps:
(1) Generate color electric fields according to a

Gaussian distribution with

hEi
aðxÞEj

bðyÞi ¼ β−1lat δ
ijδabδx;y;

where βlat ¼ 1=ðg2TaÞ is the lattice coupling in 3D
Yang-Mills theory.8

(2) Project the color electric fields on the constraint
surface where Gauss’s law condition DμEμ ¼ 0 is
satisfied using the algorithm described in [44].

(3) Evolve the gauge links and electric fields according
to Hamilton’s equations of motion for some time tth
to allow energy to be exchanged between the electric
and magnetic fields.

until the energy density settles to its equilibrium value9. We
subsequently perform the real time evolution by solving
Hamilton’s equations of motion as described in Sec. III A

and measure the Chern-Simons number using the methods
described in Sec. III B. Since our primary aim was to
illustrate the time evolution of the Chern-Simons number in
the equilibrium setup, we performed our thermal simula-
tions on rather small N ¼ 24 lattices with βlat ¼ 2 where
comparisons to published results are available [45].
We first investigate the behavior of the Chern-Simons

number over the course of the real time evolution for a
single field configuration. Our results are shown in Fig. 3.
The different curves correspond to the extraction of the
Chern-Simons number using the calibrated cooling (purple)
and slave field (green) techniques. Since the difference
between the two measurements—also shown in Fig. 3—is
small, we have shifted the slave field measurement by 5
units for better comparison of the results.
The long time behavior of the correlation function in

Fig. 3 is dominated by transitions between different topo-
logical sectors that are characterized in terms of approximate
integer changes of the Chern-Simons number over a short
amount of time. While thermal field strength fluctuations
also contribute to the calibrated cooling measurement, the
comparison with the slave field measurement—designed to
measure the topological contribution only—shows that the
effect of ordinary field strength fluctuations is small and
does not significantly affect the long time behavior of the
Chern-Simons number. We find, consistent with the results
of [45,46], that both methods agree within statistical white
noise over the course of the entire simulation.
We can further quantify the time evolution of the Chern-

Simons number by investigating the statistical properties of
the Chern-Simons number difference

ΔNCSðt; δtÞ ¼ NCSðtþ δtÞ − NCSðtÞ; ð25Þ
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FIG. 3. Comparison of Chern-Simons number measurements
using the calibrated cooling [τc ¼ 0.75ðg2TÞ−2] and slave field
techniques for a single configuration in thermal equilibrium
(N ¼ 24, β ¼ 2). Slave field results are shifted by 5 units for
comparison purposes. The difference between the two methods is
small over the course of the entire simulation.

8Our normalization of the lattice coupling differs by a factor of
4 from the one used in earlier works [45].

9For a choice of ttha ¼ 50 we find that for aN ¼ 24 lattice and
βlat values as discussed below, convergence is typically achieved
in less than 20 iterations.
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during the real time evolution. In equilibrium, time
translation invariance guarantees the result to be indepen-
dent of t, and we have verified this explicitly. Our results
for the probability distributionPðΔNCSÞ are shown in Fig. 4
based on the data sets in Table I. Different panels in Fig. 4
show our results for two different separations in time δt ¼
5ðg2TÞ−1 (upper panel) and δt ¼ 20ðg2TÞ−1 (lower panel),
whereas different curves in each panel correspond to differ-
ent choices of the cooling depth τc ¼ 0.0625 − 62.5ðg2TÞ−2
employed in the measurement of the Chern-Simons
number.
While a minimal amount of cooling is necessary to

ensure that the Chern-Simons current behaves at least
approximately as a total time derivative,10 by cooling

further one successively removes residual field strength
fluctuations from the configurations and thereby reduces
their contribution to the Chern-Simons number. After
cooling down to τc ¼ 62.5ðg2TÞ−2, the difference in the
Chern-Simons number is strongly peaked around integers
as the measurement is completely dominated by transitions
between different topological sectors.11 Since more tran-
sitions occur over a larger time scale δt, the width of the
distribution increases significantly, as is clear from the
results shown in the upper and lower panels of Fig. 4. Even
though this behavior is most prominent for the coolest
configurations, it can also be clearly seen for modest
cooling times relative to the behavior of the original field
configurations.
We now compute the autocorrelation function of the

Chern-Simons number,

Cðt; δtÞ ¼ 1

V
hðNCSðtþ δtÞ − NCSðtÞÞ2i; ð26Þ

which, according to Eq. (11), can be used to define the
sphaleron transition rate in the late time limit of the
correlation function. Our results are shown in Fig. 5, where
we present the autocorrelation function in Eq. (26) as a
function of the temporal separation δt. We find that the
autocorrelation function is approximately independent of
the cooling depth τc indicating once again the dominance of
topological transitions for the long-time behavior of the
Chern-Simons number. One also observes from Fig. 5 that
the NCS autocorrelation function shows an approximately
linear rise as a function of δt. This result is consistent with
the expectation that consecutive sphaleron transitions have
the Markovian property of being uncorrelated with each
other on sufficiently long time scales. The long time
behavior of the Chern-Simons number can therefore be
approximated by an integer random walk with the diffusion
constant given by the sphaleron transition rate,

1

V
hΔN2

CSðδtÞieq ¼ Γeq
sphδt: ð27Þ

We compared our results for the sphaleron transition rate to
the previous extraction by Moore and Turok [45]. The latter
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by δt ¼ 5ðg2TÞ−1 (upper panel) and, respectively, δt ¼
20ðg2TÞ−1 (lower panel) during the real time evolution. The
different curves in each panel correspond to the results for
different levels of cooling.

TABLE I. Data sets for studying sphaleron transitions in 3D
SUð2Þ Yang-Mills theory in thermal equilibrium.

N βlat g2Ta ðg2TÞ2τc Nconfs

24 2 1=2 0.0625 1152
24 2 1=2 4.0 196
24 2 1=2 62.5 1180

10The quality of this approximation can be checked explicitly
during the calibration step [45]. We refer to Appendix A for a
more detailed discussion.

11Small differences from integer values arise not only due to
residual field strength fluctuations but also due to (small) lattice
discretization errors in the determination of the space-time
integral of the Chern-Simons current in Eq. (19).

MACE, SCHLICHTING, and VENUGOPALAN PHYSICAL REVIEW D 93, 074036 (2016)

074036-8



is represented by the black line with grey error bands in
Fig. 5. Excellent agreement is obtained between the two
calculations.

IV. SPHALERON TRANSITIONS IN THE GLASMA

Now that we have demonstrated that we can reproduce
established results in the literature for computing the
sphaleron transition rate in non-Abelian plasmas in thermal
equilibrium, we can apply these techniques to explore
topological transitions in the glasma. We will begin with
discussing the initial conditions for the glasma in weak
coupling. We will for simplicity not consider the realistic
case of a glasma undergoing rapid longitudinal expansion
but will restrict ourselves to an isotropic system in a static
box. In agreement with previous studies, we will show that
even if one starts with a one scale problem given by the
initial hard scale, the saturation scale Qs, a scale separation
develops with time between the hard scale and the softer
electric and magnetic screening scales. Of particular
interest is the temporal evolution of the spatial string
tension, which we will compute for the first time. We will
then compute the Chern-Simons number in the glasma and
study its autocorrelation behavior. Finally, we will dem-
onstrate that one can express the extracted sphaleron
transition rate in terms of the magnetic screening scale
in the system.

A. Initial conditions and single particle spectra

We choose our initial conditions to mimic the physical
situation in a weak coupling scenario of an ultrarelativistic
heavy ion collision at very high energies [39,82]. The
defining feature of the nonequilibrium plasma, often called
the glasma, is an initial nonperturbatively large phase space
occupancy fðt0; pÞ ∼ 1=αS of gluon modes up to a satu-
ration scale Qs. As discussed previously, these initial
conditions can be implemented in a simple quasiparticle
picture where the initial gauge fields, and their momentum

conjugate electric fields, are expressed as a superposition of
transversely polarized gluons,

Aa
μðt0; xÞ ¼

XZ d3k
ð2πÞ2

1

2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðt0; kÞ

p
½cakξλμðkÞeikx þ c:c:�;

Ea
μðt0; xÞ ¼

XZ d3k
ð2πÞ2

1

2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðt0; kÞ

p
½cak _ξλμðkÞeikx þ c:c:�;

ð28Þ

where ξλμðkÞ labels the transverse polarization vectors, the
c’s are complex Gaussian random numbers with zero mean

and unit variance, and
PR

indicates a sum over polar-

izations and an integral over wave numbers. The above
initial conditions do not automatically satisfy the non-
Abelian Gauss law DμEμ ¼ 0; we must therefore enforce
this constraint using the methods described in [44]. Our
initial gluon distribution fðt0; kÞ is chosen to be

fðt0; kÞ ¼
n0

2πNcαS

Qsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þQ2

s=10
p θðQs − kÞ; ð29Þ

where n0 is a free parameter of order unity that can be used
to vary the initial overoccupancy—if not stated otherwise,
we choose n0 ¼ 1 as the default value.
While our choice of initial conditions may appear

peculiar at first sight, previous studies [57,58,82] have
demonstrated that the details of the initial conditions
become irrelevant on a time scale Qst ∼ n−20 , which
corresponds parametrically to the inverse of the large angle
scattering rate. Indeed, following the time evolution of the
gluon spectrum12 shown in Fig. 6, one observes a rapid
change of the gluon distribution at early times Qst≲ 50.
As first reported in [57,58], the glasma subsequently
approaches a universal attractor solution characterized by
an infrared power law with a rapid falloff at high momenta.
This evolution is shown for Qst ≤ 800 in Fig. 6. In this
regime, the dynamics is entirely characterized in terms of a
self-similar scaling of the gluon distribution [57,58,82]

fðt; pÞ ¼ ðQstÞαfSððQstÞβpÞ: ð30Þ

The scaling exponents α ¼ −4=7 and β ¼ −1=7 in this
regime have been extracted to high accuracy from classical-
statistical simulations [57,58,82] and can be understood
from simple considerations in kinetic theory [54,55]. As
discussed in [82,83] the self-similar scaling in Eq. (30)
persists up to a time scale QstQuantum ¼ α−7=4s , when the
typical occupancy of hard modes becomes of order unity.
Beyond tQuantum a classical-statistical description is no

FIG. 5. Autocorrelation function of the Chern-Simons number
for equilibrium configurations (N ¼ 24, β ¼ 2) with two differ-
ent cooling depths ðg2TÞ2τc ¼ 0.0625 and 62.5. Our results are
compared to the sphaleron rate from [45].

12We extract the single particle spectrum from equal time
correlation functions in Coulomb gauge as discussed in detail in
[82].
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longer accurate, as instead quantum effects become impor-
tant and drive the system to thermal equilibrium [84].

B. Evolution of characteristic scales

In a weakly coupled plasma in thermal equilibrium, the
three scales are parametrically separated by powers of the
coupling constant, with the hard scale ∼T much larger
than the electric screening scale ∼gT, much larger than the
magnetic screening scale ∼g2T. However, in the glasma,
initially all scales are on the order of the saturation scaleQs
because of the nonperturbatively large occupancies
f ∼ 1=αS. Hence the hierarchy of scales characteristic of
a weakly coupled plasma in equilibrium has to be developed
dynamically during the thermalization process.
Even though the existence of a scale hierarchy is essential

for the applicability of most weak coupling methods, and
plays a crucial role for the theoretical understanding of the
sphaleron transition rate in thermal equilibrium, we empha-
size that the classical-statistical lattice approach does not
explicitly rely on a separation of scales.Wewill therefore use
this approach in the following to study the time evolution of
the characteristic scales starting from the nonperturbative
high occupancy regime.

1. Hard scale Λ

We first consider the time evolution of hard scale ΛðtÞ,
describing the characteristic momentum scale of hard
excitations in the plasma. Following the methodology of
previous Yang-Mills studies [39,58,82], we determine this
scale using the gauge invariant local operator definition

Λ2ðtÞ ¼ hHðtÞi
hϵBðtÞi

; ð31Þ

where the dimension six operator HðtÞ corresponds to the
trace of the squared covariant derivative of the field strength
tensor

HðtÞ ¼ 1

3V

Z
d3xDab

j ðxÞFji
b ðxÞDac

k ðxÞFki
c ðxÞ: ð32Þ

Here ϵBðtÞ denotes the magnetic energy density

ϵBðtÞ ¼
1

4V

Z
d3xFa

ijðxÞFa
ijðxÞ: ð33Þ

Summation over the color a; b; c ¼ 1;…; N2
c − 1 and

spatial Lorentz indices i, j, k ¼ x, y, z is implied. This
hard scale can be expressed in perturbation theory as the
ratio of moments of the single particle distribution as (see,
for example, [82])

Λ2ðtÞ ¼ 2

3

R
d3pp3fðt; pÞR
d3ppfðt; pÞ ; ð34Þ

such that for a weakly coupled plasma in thermal equilib-
rium one has

Λ2
eq ¼

80

63
π2T2; ð35Þ

whereas initially

Λ2
init ¼ cΛQ2

s ; ð36Þ

where cΛ ¼ 236−6
ffiffiffiffi
11

p
525

up to higher order corrections for our
choice of initial condition. Our results for the nonequili-
brium evolution of the hard scale are shown in Fig. 7 for
three different lattice spacings, Qsa ¼ 1; 1=2; 1=3. Since
the operator definition in Eq. (31) involves an ultraviolet
sensitive dimension six operator, the result is only slowly
convergent as a function of the lattice spacing. Moreover,
since the physical hard scale Λ increases as a function of
time, clear deviations from the continuum limit can be
observed for coarser lattices at late times. However, for the
finer lattices we find that the time evolution of the hard
scale converges toward a Λ2 ∼ ðQstÞ2=7 scaling behavior as
reported previously in [55,82]. Indeed, this scaling is
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expected from the self-similar evolution of the single
particle distribution in Eq. (30).

2. Debye scale mD

We will now discuss the extraction of the Debye mass,
which corresponds to the (static) electric screening scale in
the plasma. Since we are unaware of a nonperturbative
definition of the Debye mass in the context of classical-
statistical real-time lattice simulations13 we follow previous
works [55,82] and instead use the leading order perturba-
tive definition of the Debye screening mass

m2
DðtÞ ¼ 4g2Nc

Z
d3p
ð2πÞ3

fðt; pÞ
p

: ð37Þ

The corresponding lattice expression is obtained by replac-

ing the momentum integral
R d3p

ð2πÞ3 in this expression by the

lattice sum over discrete momentum modes 1
ðNaÞ3

P
p. In a

weakly coupled plasma in thermal equilibrium,

m2
D;eq ¼

g2NcT2

3
ð38Þ

with the Debye scale is parametrically smaller than the
typical hard momentum scale. In contrast, one finds
initially in our nonequilibrium simulation that

m2
D;init ¼ cm2

D
n0Q2

s ; ð39Þ

where cm2
D
¼

ffiffi
2
5

q ffiffiffiffi
11

p
−1

π2
for our choice of initial condition.

Comparing this expression to Eq. (36), we observe that
there is no parametric separation of scales at the initial time
even at arbitrarily weak coupling. Our results for the
nonequilibrium temporal evolution of the Debye scale
m2

DðtÞ are depicted in Fig. 8 for different lattice discretiza-
tions. We find that m2

D approaches an approximate
ðQstÞ−2=7 scaling behavior in the continuum limit, con-
sistent with the expectation suggested by the scaling of the
single particle distribution.

3. Spatial string tension σ

In thermal equilibrium, the sphaleron transition rate is
controlled by the dynamics of modes with momenta on the
order of the inverse magnetic screening length. It is
therefore desirable to extract an equivalent quantity in
our nonequilibrium setup and study its evolution in time.
As in thermal equilibrium, one can investigate the behavior
of the spatial Wilson loop

Wðt; AÞ ¼ P exp

�
ig
I

dxiAiðx; tÞ
�
; ð40Þ

as a function of the area A enclosed by the loop. Since the
large distance behavior of the Wilson loop in thermal
equilibrium is characterized by an area law,

hTrWðAÞieq ∝ e−σA; ð41Þ

with the spatial string tension σ related to the magnetic
screening scale parametrically as

σ ∼ g4T2; ð42Þ

at weak coupling, we can similarly extract the spatial string
tension σ in our nonequilibrium simulations and use

ffiffiffi
σ

p
as

a proxy for the inverse magnetic screening length.
We first analyze the behavior of the spatial Wilson loop

itself to establish the area law scaling in Eq. (41) for our
nonequilibrium setup.14 Our results for the (real part of the)
trace as a function of the area of the Wilson loop at three
different times, Qst ¼ 100, 400, 800, of the evolution are
presented in Fig. 9. While for small areas the Wilson
loops are close to the identity and do not exhibit scaling,
convergence toward an area law scaling as in Eq. (41) can
be observed for sufficiently large areas. Since the obser-
vation of such area law scaling in an out-of-equilibrium
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FIG. 8. Evolution of the Debye scale m2
DðtÞ for three different

lattice spacings, Qsa ¼ 1; 1=2; 1=3. The grey dashed line
indicates a ðQstÞ−2=7 scaling behavior.

13For a discussion of the nonperturbative definition of the
Debye mass in Euclidean lattice gauge theories, see, for instance,
[85]. However, it is not obvious how to adapt these concepts to
our real time lattice simulations.

14Our results presented in this section are obtained for so-
called on-axis Wilson loops, i.e., square loops with sides oriented
along the lattice coordinate directions (1,0,0),(0,1,0),(0,0,1). We
have also investigated the behavior of so-called off-axis Wilson
loops where, instead of orienting the sides along the (1,0,0),
(0,1,0),(0,0,1) directions, the sides of the rectangle are oriented
along any mutually orthogonal directions of lattice vectors
[pointing, for example, in the (2,1,0) and ð−1; 2; 0Þ directions].
Within statistical errors the off-axis results agree with the on-axis
measurements when expressed as a function of the area of the
loop.
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plasma is quite nontrivial, we briefly note that our results
are in line with the findings reported in [56,86]. Although
area law scaling emerges clearly for all times shown in
Fig. 9, extending our analysis to much earlier times is
extremely challenging. This is because the values of the
Wilson loop decrease rapidly as a function of area at very
early times; accurately resolving values ≲10−3 requires
enormous statistics, far exceeding the number of configu-
rations Nconfs ¼ 4000 used in Fig. 9.
We can further quantify the long distance behavior of the

Wilson loop in terms of the spatial string tension σðtÞ,
which can be extracted from the logarithmic derivative of
the Wilson loop with respect to the area

σðtÞ ¼ −
∂ lnhTrWðt; AÞi

∂A
����
Q2

sA≫1

: ð43Þ

In practice, we compute the logarithmic derivative at
different values of Q2

sA by performing a fit involving three
adjacent data points. Subsequently, we search for an area
independent value at Q2

sA ≫ 1 to extract the spatial string
tension and include residual variations in our error estimate.
Our results for the string tension σðtÞ as a function of

time are shown in Fig. 10. Here we combined data for
different lattice discretizations. While the error bars for the
string tension are significantly larger relative to the pre-
vious measurements, one clearly observes a rapid decrease
of the string tension as a function of time. We find that the
time dependence can be approximately described by a
ðQstÞ−2=3 scaling behavior. We caution, however, that the
precision with which we extract the exponent is limited to
the 10% level—primarily by the large statistical uncertain-
ties in the measurement of the Wilson loop. We also note
that in contrast to the time evolution of the hard and electric
screening scales which can be estimated from kinetic
theory [54,55], we are not aware of an analytic prediction

of the time evolution of the nonperturbative magnetic
screening scale.

4. Dynamical separation of scales

Our results for the time evolution of the different
characteristic scales of the glasma are compactly summa-
rized in Fig. 11, where we plot the hard scale Λ2ðtÞ, the
electric screening scalem2

DðtÞ, and the spatial string tension
σðtÞ (as a proxy for the magnetic screening scale) as a
function of time. Initially all scales are of similar magnitude
up to order one factors depending on the details of the
initial conditions. Subsequently a clear separation of scales
emerges dynamically as a function of time. While the hard
scale increases according to a power law in time, the
electric and magnetic screening scales decrease and sep-
arate from each other as well due to the faster decrease of
the string tension relative to the Debye mass. Since such a
separation of scales is essential to the applicability of
standard (perturbative) weak coupling methods (such as
effective kinetic descriptions or hard-loop effective field
theories), our nonperturbative lattice results provide clear
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evidence that these methods become applicable at suffi-
ciently late times.

C. Sphaleron transitions and evolution
of Chern-Simons number

With the estimates obtained of the time evolution of the
characteristic hard and soft scales in the glasma, we will
now proceed to study sphaleron transitions and the evo-
lution of the Chern-Simons number. We first note that a
crucial difference from the thermal case is that we can
simultaneously resolve the dynamics of hard as well as soft
excitations using a classical-statistical lattice description. In
the thermal case, the typical occupancies of hard modes
ðp ∼ TÞ are of order unity fðp ∼ TÞ ∼ 1 and a classical
description does not apply to the hard modes. In contrast, in
the glasma, the hard modes ðp ∼ ΛðtÞÞ are high occupied,
fðp ∼ ΛðtÞÞ ≫ 1, and therefore admit a classical descrip-
tion. Because of the noted complication, the study of
sphaleron transitions in a weakly coupled plasma in thermal
equilibrium proceeds via an effective field theory for soft
ðp ∼ g2TÞ modes as discussed in Sec. II. Since there is no
such complication in the nonequilibrium case, we can
directly study sphaleron dynamics in the glasma using first
principles lattice techniques.
This benefit is not without cost because for the glasma all

relevant scales have to be resolved simultaneously on the
lattice. In addition, since the relevant scales are separating
rapidly from each other with time, one typically requires
very large lattices, and the characteristic scales are accessible
only for a limited amount of time. A summary of the lattice
parameters and data sets used in our study is provided in
Table II. If not stated otherwise, all results shown were
obtained for N ¼ 96 lattices with spacing Qsa ¼ 1.

1. Sphaleron transitions and Chern-Simons number

Since there are important conceptual differences of
sphaleron dynamics in the glasma relative to the thermal
equilibrium case, we will begin by illustrating the time
evolution of the Chern-Simons number and demonstrate
our ability to successfully identify topological transitions.
In Fig. 12, we show the time evolution of the Chern-Simons
number for a short period of time during the nonequili-
brium evolution of a single gauge field configuration.
Different curves in Fig. 12 correspond to different extrac-
tion methods and can be characterized as follows.
In the first case we perform gradient flow cooling of the

nonequilibrium field configuration all the way to the
vacuum and measure the integral of the Chern-Simons
current along the cooling trajectory, as in Eq. (18). In this
way we obtain the green curve in Fig. 12, which exhibits
clear discontinuities. The positions of these discontinuities
are indicated by the vertical gray lines. Each discontinuity
corresponds to a transition between different topological
sectors defined by the so-called “gradient flow separatrix”
[46], which occurs when the gauge field configuration
evolves from the basin of attraction of one vacuum state to
the basin of attraction of another topologically inequivalent
vacuum state.
By adding the Chern-Simons number Nvac

CS ðtÞ of the
corresponding vacuum state, as in Eq. (18), we obtain the
blue curve in Fig. 12 corresponding to the gradient flow
definition Ngf

CS of the Chern-Simons number. One observes

that Ngf
CS is a continuous function of time. In addition to the

topological information, it also contains contributions
from finite energy fluctuations of the chromoelectric and
chromomagnetic fields.
We have also compared our results from the gradient

flow definition of the Chern-Simons number with the ones
obtained from the calibrated cooling technique. WhenTABLE II. Data sets employed in the study of sphaleron

transitions out of equilibrium.

N n0 Qsa Q2
sτc Nconfs

64 0.5 1.0 12 256
64 1.0 1.0 12 256
64 1.0 1.0 324 1024
64 1.5 1.0 12 256
96 1.0 1.0 1 128
96 1.0 1.0 12 4096
96 1.0 1.0 36 1024
96 1.0 1.0 108 1024
96 1.0 1.0 216 1024
96 1.0 1.0 250 2048
96 1.0 1.0 324 2048
128 1.0 0.5 1 128
128 1.0 0.5 12 512
128 1.0 1.0 1 128
128 1.0 1.0 12 2432
192 1.0 0.5 12 512
192 1.0 1.0 1 128
192 1.0 1.0 12 512
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FIG. 12. Evolution of the Chern-Simons number for a single
nonequilibrium configuration on a N ¼ 96 lattice with spacing
Qsa ¼ 1. Different curves correspond to different extraction
procedures and contain variable amounts of field strength
fluctuations in addition to the topological contributions.
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choosing a small cooling depthQ2
sτc ¼ 0.25, we obtain the

orange curve in Fig. 12, which closely follows the gradient
flow definition. By choosing a larger value of Q2

sτc ¼ 250
for the cooling depth, we can practically remove all field
strength fluctuations above the vacuum and restrict the
measurement of the Chern-Simons number to its topologi-
cal content. Indeed, one observes from the purple curve in
Fig. 12 that for Q2

sτc ¼ 250 the evolution is characterized
by discontinuous transitions between different topological
sectors, which nicely coincide with the crossings of the
gradient flow separatrix.
Even though we can separate the topological content of

the Chern-Simons number from the contribution of field-
strength fluctuations at different length scales by varying
the cooling depth, it is not a priori obvious which
contributions to the Chern-Simons number are most rel-
evant to the physics of the chiral magnetic effect. We will
therefore vary the amount of cooling in the following and
present results for different values of the cooling depth.

2. Statistical analysis of Chern-Simons number

Now that we have established that we are able to identify
topological transitions out of equilibrium, we will proceed
with a more detailed statistical analysis. To obtain a first
estimate of the time dependence of the transition rate, we
follow the methodology in Sec. III C and first investigate
the probability distribution of the difference ΔNCS between
the measurements of the Chern-Simons number at refer-
ence time t and subsequent time tþ δt. [See the definition
in Eq. (25).] Our results for three different reference times,
Qst ¼ 10, 50, 100, during the nonequilibrium evolution
and a common separation of Qsδt ¼ 10 are shown in
Fig. 13. Irrespective of the amount of cooling, which
primarily affects how narrowly the distributions are peaked
around integer values, a clear difference between the
different panels emerges. At early times of the nonequili-
brium evolution, transitions between different topological
sectors occur frequently resulting in a broad probability
distribution for Qst ¼ 10. At the later times Qst ¼ 50, 100,
the rate of transitions decreases rapidly as a function of time
leading to much narrower distributions. Most prominently,
starting at Qst ¼ 100 one finds that after a time Qsδt ¼ 10
approximately half of the field configurations can still be
found in the same topological sector. Most of the other half
has merely transitioned to the neighboring topological
sector. Very few configurations have jΔNCSj > 1 when
sufficient cooling ðQ2

sτc ¼ 250Þ is applied to isolate the
topology at these late times.15

While a rapid decrease of the sphaleron transition rate
may be expected based on our previous observation that the

magnetic screening scale decreases significantly as a
function of time during the nonequilibrium evolution, we
would like to further quantify this effect and determine the
physical scales associated with the rate. We follow the same
methodology devised in the equilibrium case and study the
autocorrelation functions of the Chern-Simons number.
Our results for the autocorrelation function of the Chern-
Simons number Cðt; δtÞ are summarized in Figs. 14 and 15.
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FIG. 13. Histograms of the distribution of the Chern-Simons
number difference ΔNCS within Qsδt ¼ 10 units of time differ-
ence on a N ¼ 96, Qsa ¼ 1.0 lattice. The different panels
correspond to different reference times Qst ¼ 10, 50, 100 (top
to bottom) of the nonequilibrium evolution.

15We emphasize that the detailed fractions depend on the
physical volume determined by the lattice size V ¼ ðNaÞ3. Most
importantly, we will demonstrate shortly that the variance
hΔN2

CSi of the distributions exhibits the expected volume scaling.
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Figure 14 shows results for the autocorrelation function
for a fixed reference time Qst ¼ 50 during the nonequili-
brium evolution. Starting with a rapid rise for small
separations Qsδt≲ 10, the growth of hΔN2

CSi slows down
dramatically at larger δt and is superseded by pronounced
oscillations. In fact, the oscillations are so significant that
for certain periods such as, e.g.,Qsδt≃ 10–20 the variance
hΔN2

CSi decreases with increasing separation δt. We have
verified that this oscillatory behavior persists even for
deeper cooling, as can be observed from the lower panel
of Fig. 14 where we show results for Q2

sτc ¼ 324. Most
importantly, this behavior is robust under variations of the
lattice volume as can be observed from the different curves
in Fig. 14 which agree with each other within errors—
indicating that our results are not significantly affected by
finite volume effects.
We emphasize that the nonmonotonic behavior observed

in our nonequilibrium simulations is clearly different from
the thermal case, shown in Fig. 5, where in contrast hΔN2

CSi

increases monotonously as a function of the separation
time. Moreover the nonmonotonic behavior observed in
Fig. 14 is inconsistent with the usual interpretation of the
Chern-Simons number evolution as a Markovian process.
This is the case even when a time-dependent transition rate
is assumed. It instead points to the fact that essential
features of the dynamics on these time scales are non-
Markovian as the evolution of the Chern-Simons number
exhibits pronounced memory effects.
While the nonmonotonic behavior of the Chern-Simons

number autocorrelation may come as a surprise, we find
that it is a robust feature of the nonequilibrium evolution
also at later times. This is seen in Fig. 15, where we plot the
Chern-Simons autocorrelation function starting from three
different reference times, Qst ¼ 25, 50, 100, during the
nonequilibrium evolution. Even though a clear time
dependence is seen in Fig. 15, the general oscillation
pattern remains intact, albeit a slight change in the
oscillation frequency can be observed.
The most prominent feature of Fig. 15 though is the

change in magnitude between different timesQst ¼ 25, 50,
100. Clearly, the overall magnitude of hΔN2

CSi is signifi-
cantly larger at earlier times and confirms our previous
observation of a larger rate of topological transitions early
on in the evolution of the glasma. We will further quantify
this statement below by extracting the rate of topological
transitions associated with the initial rise of the autocorre-
lation function.

D. Quantifying the rate of topological transitions

We established clearly that Chern-Simons number evo-
lution in the glasma is non-Markovian. The equilibrium
definition of the sphaleron transition rate in Eq. (11) as the
slope of the NCS autocorrelation function in the late time
limit is therefore not sufficient to quantify topological
transitions in the glasma. However, for short enough

 0

 5x10-7

 1x10-6

 1.5x10-6

 2x10-6

 2.5x10-6

 0  10  20  30  40  50  60  70  80

<
(N

C
S
(t

+
δt

)-
N

C
S
(t

))
2 >

/(
Q

s3  V
)

Qsδt

N=96,   Qs
2τc=12

N=128, Qs
2τc=12

N=192, Qs
2τc=12

 0
 2x10-8
 4x10-8
 6x10-8
 8x10-8
 1x10-7

 1.2x10-7
 1.4x10-7
 1.6x10-7
 1.8x10-7

 2x10-7

 0  10  20  30  40  50  60  70  80

<
(N

C
S
(t

+
δt

)-
N

C
S
(t

))
2 >

/(
Q

s3  V
)

Qsδt

N=64,   Qs
2τc=324

N=96,   Qs
2τc=324

FIG. 14. Chern-Simons number autocorrelation function
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hðNCSðtþ δtÞ − NCSðtÞÞ2i as a function of the temporal

separation δt starting from Qst ¼ 50 during the nonequilibrium
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separations in time Qsδt≲ 10, the autocorrelation function
does exhibit a rapid and approximately linear rise. We will
exploit this behavior to quantify the time dependence of the
transition rate as

Γneq
sphðtÞ ¼

�ðNCSðtþ δtÞ − NCSðtÞÞ2
Vδt

	
Qsδt<10

: ð44Þ

This definition of the rate does not by any means single out
topological contributions; it potentially receives large con-
tributions from fluctuations of the color-electric and color-
magnetic strength on all scales. We will therefore further
apply different levels of cooling τc to efficiently suppress
field-strength fluctuations on short distance scales. In
particular, by choosing Q2

sτc ≫ 1 to cool almost all the
way to the vacuum, we can effectively suppress non-
topological fluctuations and obtain a rate more closely
related to the extraction of the sphaleron transition rate in
thermal equilibrium.16

Our results for the nonequilibrium sphaleron transition
rate Γneq

sphðtÞ as a function of time are presented in Fig. 16 for
various levels of cooling. For small values of Q2

sτc ∼Oð1Þ,
a significant dependence on the cooling depth is observed.
This indicates large contributions to the rate from fluctua-
tions of the color-electric and color-magnetic strength at
short distance scales. In contrast, the results for large values
of Q2

sτc ≫ 1 appear to converge toward a single curve
isolating the genuine contributions due to topological
transitions.
Irrespective of the cooling depth, a clear time depend-

ence of the rate can be observed. Starting from the largest

values at early times, the rate rapidly decreases as a
function of time and eventually approaches a power law
behavior ðQstÞ−ζ with an approximate scaling exponent
ζ ≃ 4=3. Albeit the early time behavior depends on the
details of the initial conditions, we find that variations of
the initial conditions do not affect the scaling behavior at
later times. This is shown in Fig. 17 where the non-
equilibrium sphaleron transition rate is plotted for different
initial overoccupancies n0; all the curves approach a
common scaling behavior around Qst ∼ 100. On the other
hand, it is also clear that the sphaleron transition rate is by
far the largest at early times and one should therefore expect
a significant sensitivity to early time dynamics in time
integrated quantities such as the axial charge density.
The time dependence of the sphaleron transition rate in

the scaling regime can be compared to those of the
characteristic scales of the glasma. As we noted previously,
the sphaleron transition rate in equilibrium is most sensitive
to modes on the order of the magnetic screening scale. One
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16Similarly, we could also apply cooling to the vacuum and
simply count the number of transitions defined by crossings of
the gradient flow separatrix per unit time. However, as some of
the separatrix crossings do not affect the evolution on longer time
scales, this measurement would differ by a “dynamical prefactor”
[46] which potentially also depends on time.
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can analogously express the corresponding rate in the
glasma in units of the spatial string tension previously
extracted in Sec. IV B 3. Our results for the dimensionless
ratio Γneq

sphðtÞ=σ2ðtÞ are presented in Fig. 18 as a function of
time. While both the square of the spatial string tension as
well as the nonequilibrium sphaleron rate change by an
order of magnitude over the time scale shown in Fig. 18, the
ratio of the two quantities remains approximately constant
with Γneq

sph=σ
2 ¼ ð2.2� 0.4Þ × 10−3 extracted from the

result shown in Fig. 18. We interpret this result as clear
evidence that the dynamics of sphaleron transitions off-
equilibrium is fully determined by modes on the order of
the inverse magnetic screening length in the glasma.

V. CONCLUSION AND OUTLOOK

We presented a first study of the dynamics of sphaleron
transitions in the glasma—the overoccupied and off-
equilibrium non-Abelian plasma formed at early times in
ultrarelativistic heavy ion collisions. For simplicity, we
considered the glasma dynamics for SU(2) gauge fields in a
fixed box at the very weak couplings where classical-
statistical dynamics captures its early time properties.
The glasma at the earliest time in our simulation is

characterized by a single hard scale Qs, defined as the
momentum up to which all modes in the glasma have
maximal occupancy of order 1=αS; the occupancy falls
sharply beyond Qs. We showed that novel soft electric and
magnetic scales develop in the glasma and separate from
each other and the hard scale dynamically with character-
istic power laws in time that are independent of details of
the initial conditions. Such a separation of scales is
essential for the thermalization process since, in weak
coupling, a clean hierarchy of these scales describes the
equilibrium dynamics of a non-Abelian plasma.
In particular, we examined the temporal behavior of the

spatial Wilson loop and demonstrated that it obeys an area
law, with the scale set by a spatial string tension.We studied
its temporal behavior in detail and extracted, for the first
time to our knowledge, the power law that governs its decay
with time. In analogy to the thermal case, the spatial string
tension can be understood to determine the length scale for
magnetic screening in the plasma.
We next explored the dynamics of the Chern-Simons

charge in the glasma. By employing two different cooling
techniques we demonstrated the existence of integer valued
topological transitions and studied their temporal evolution.
In analogy to the thermal case, we computed the autocor-
relation of the Chern-Simons charge; in contrast to the
former, the autocorrelation function in the glasma is non-
Markovian and even demonstrates oscillatory behavior
with increasing autocorrelation time.
We argued that one can still identify a meaningful

sphaleron transition rate for short autocorrelation times
and studied the behavior of this rate with the evolution of

the glasma. Our first observation was that, with increasing
cooling time, the glasma sphaleron rate converges to a
limiting value. This indicates that one is measuring the rate
of genuine topological transitions at the maximal cooling
times studied. Second, we found that while the sphaleron
transition rate is sensitive to the initial occupancy at early
times, it is insensitive to it at late times where it approaches
a characteristic scaling behavior. Most strikingly, we find
that the sphaleron transition rate, to a good approximation,
scales with time as the string tension squared, or as the
fourth power of the inverse magnetic screening length.
While in a weakly coupled plasma in thermal equilib-

rium the magnetic screening length lmag is parametrically
∼1=αST, it is much smaller in the glasma where initially
lmag is on the order of the inverse hard scale 1=Qs. As a
consequence, the sphaleron transition rate in the glasma is
greatly enhanced compared to the equilibrium value of
Γeq ∼ α5ST

4; in particular, there is no parametric suppression
of the sphaleron rate in the glasma as Γneq ∼Q4

s .
As the glasma evolves and begins to develop a separation

of scales, the sphaleron transition rate decreases, as
illustrated in Fig. 19. Within our classical-statistical frame-
work we can follow this evolution up to a time scale
tQuantum ∼ α−7=4S Q−1

s where the occupancy of hard modes in
the plasma becomes of order unity and the classical
description breaks down [82]. Employing our extraction
of the time evolution of the string tension, we can estimate
that by the time tQuantum the sphaleron rate has dropped to

Γneq ∼ α10=3S T4. In arriving at this estimate, we have equated
the energy density of the glasma to an equilibrium plasma
with the same energy density, which gives us T4 ∼Q4

s=αS.
Thus at tQuantum, Γneq is still parametrically α−5=3S larger than
the equilibrium value.
There is nontrivial quantum dynamics at the end of the

classical regime which prevents our following the evolution
of the sphaleron transition rate all the way to equilibrium.

FIG. 19. Sketch of the temporal evolution of the sphaleron
transition rate in the nonexpanding glasma. Shaded band repre-
sents the uncertainty in our extraction of the scaling exponent.
See text for details.
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While there has been a lot of progress in understanding the
equilibration of hard modes based on kinetic theory [84], it
will be important to study the equilibration process of the
sphaleron rate in this quantum regime.
From the perspective of computing the chiral magnetic

effect, it is, however, the early time dynamics that matters
the most. This is because the sphaleron transition rate is
much larger at early times than the rate in thermal
equilibrium. While this is encouraging, more work is
required to understand the extrapolation of the weak
coupling rates to realistic couplings as well as the sensi-
tivity of the sphaleron transition rate to details of the initial
conditions. This includes extending our simulations to
SU(3) and to the longitudinally expanding glasma realized
in heavy ion collisions. A further essential improvement to
the framework introduced here will include the addition of
Wilson fermions to the glasma dynamics [87–89]. This will
allow us to study the anomaly in real time. Finally, adding
an external Uð1Þ electromagnetic field to the fermion
computation will allow us to investigate the chiral magnetic
effect in heavy ion collisions from first principles. The
computation discussed here is the first necessary step in
achieving the goals of this program.
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APPENDIX A: CALIBRATED COOLING
METHOD

We shall describe here further details of our implemen-
tation of the calibrated cooling method developed in
[43,46] to measure the Chern-Simons number. We focus
on the aspects relevant to the practical implementation and
refer to Sec. III B 1 for a more general introduction.

1. Cooling

We first perform a cooling of the spatial gauge links
Uμðx; tÞ at a given real time t by following the energy
gradient flow. We introduce a dimensionless cooling time
variable τa2, which measures the depth of cooling in lattice

units, and perform a sequence of updated steps of the gauge
links according to

Uμðx; t; τ þ δτÞ ¼ expð−igaEcool
μ ðx; t; τÞδτÞUμðx; t; τÞ;

ðA1Þ

where the “cooling” electric field Ecool
μ associated with the

change of the gauge links along the cooling path is given by

Ecool;a
i ðx; t; τÞ

¼ −
2

ga3
X
j≠i

ReTr½iτaðU□

i;j −U□

i;−jÞðx; t; τÞ�; ðA2Þ

with the elementary plaquettes defined as

U□

i;jðxÞ ¼ UiðxÞUjðxþ îÞU†
i ðxþ ĵÞU†

jðxÞ;
U□

i;−jðxÞ ¼ U†
jðx− ĵÞUiðx− ĵÞUjðxþ î− ĵÞU†

i ðxÞ;
U□

−i;jðxÞ ¼ UjðxÞU†
i ðxþ ĵ− îÞU†

jðx− îÞUiðx− îÞ;
U□

−i;−jðxÞ ¼ U†
i ðx− îÞU†

jðx− î− ĵÞUiðx− î− ĵÞUjðx− ĵÞ:
ðA3Þ

We use a cooling step size of δτ ¼ a2=8 and repeat the
update in Eq. (A1) until reaching the desired cooling depth
τc. During the course of the real time evolution, the cooling
process is repeated after each t ¼ a=2. Based on the cooled
copies Uμðx; t1; τcÞ and Uμðx; t2; τcÞ of the original gauge
field configurations at two adjacent times t1 and t2 [see
Fig. (2)], we then compute the change in the Chern-Simons
number as detailed below.

2. Chern-Simons number

Since we only perform cooling of the spatial gauge links,
we first need to reconstruct the connection between the
cooled configurations Uμðx; t1; τcÞ and Uμðx; t2; τcÞ to
evaluate the Chern-Simons current. Because the topology
measurement does not rely on the exact path connecting the
two configurations, we do so by simply performing a
smooth interpolation between the starting point
Uμðx; t1; τcÞ and the end point Uμðx; t2; τcÞ. Explicitly,
we choose the cooled analogue of the color electric field

Et1→t2
i ðx; τcÞ ¼

i
gaðt2 − t1Þ

Log½Uiðx; t2; τcÞU†
i ðx; t1; τcÞ�

ðA4Þ

to be constant between the two adjacent times such that for
t1 ≤ t ≤ t2 the gauge links follow the trajectory

Uμðx; t1 ≤ t ≤ t2; τcÞ
¼ expð−igaEt1→t2

i ðx; τcÞðt − t1ÞÞUμðx; t1; τcÞ: ðA5Þ

MACE, SCHLICHTING, and VENUGOPALAN PHYSICAL REVIEW D 93, 074036 (2016)

074036-18



We then compute the change in the Chern-Simons number
between the two configurations by evaluating the space
time integral of the Chern-Simons current

Nτc
CSðt2Þ − Nτc

CSðt1Þ

¼ g2a3ðt2 − t1Þ
8π2

X
x

Et1→t2
i;imp ðx; τcÞ

×
Bimp
i ðx; t1; τcÞ þ 4Bimp

i ðx; tmid; τcÞ þ Bimp
i ðx; t2; τcÞ

6
;

ðA6Þ
where in order to improve the accuracy of the integral
over time we construct the magnetic fields at the midpoint
tmid ¼ ðt1 þ t2Þ=2 from Eq. (A5) and use Simpson’s rule
to approximate the integral. Similarly, we use an Oða2Þ
improved definition of the color electric and color magnetic
fields [44], where the electric fields are locally determined
at each lattice point according to

Ea
i;impðxÞ ¼ −

1

12
Uab

i ðxÞEb
i ðxþ îÞ

þ 7

12
U†;ab

i ðx − îÞEb
i ðx − îÞ þ 7

12
Ea
i ðxÞ

−
1

12
U†;ab

i ðx − îÞU†;bc
i ðx − 2îÞEc

i ðx − 2îÞ:
ðA7Þ

Here Uab ¼ 2tr½taUtbU†� denote the adjoint parallel trans-
porters. Similarly, the magnetic fields are constructed
from a combination of the four elementary (1 × 1) pla-
quettes in Eq. (A3) and the eight adjacent rectangular
(2 × 1) plaquettes according to

Ba
i;impðxÞ ¼

ϵijk

ga2
ReTr

�
iτa

�
5

3

X
4□

U□

�j;�kðxÞ

−
1

3

X
8□

U□

�j;�kðxÞ
��

; ðA8Þ

with the different lattice operators illustrated in Fig. 20.

3. Calibration

While the successive application of Eq. (A6) allows us to
follow the change of the Chern-Simons number over the
course of the real time evolution, it is useful in this process
to recalibrate the measurement occasionally to ensure that
residual errors do not accumulate over time. As illustrated
in Fig. 2, we perform additional calibration steps where we
cool from τc all the way to the vacuum. Since the Chern-
Simons number of the associated vacuum configuration is
always an integer, we can get an independent estimate of
the Chern-Simons number Nτc

CSðtÞ of the cooled configu-
ration according to

Nτc;calib
CS ðtÞ ¼ Nvac

CS ðtÞ − ΔNcoolingpath
CS ðtÞ; ðA9Þ

which can be used to recalibrate the measurement. Here
ΔNcooling path

CS ðtÞ denotes the change of difference in the
Chern-Simons number computed along the cooling path
from τ ¼ τc to the vacuum (τ → ∞),

ΔNcoolingpath
CS ðtÞ

¼ g2a3

8π2

Z
∞

τc

dτ
X
x

Ecool;a
i ðx; t; τÞBcool;a

i ðx; t; τÞ: ðA10Þ

Since cooling all the way to the vacuum is computationally
expensive, we follow earlier works and use blocking to
reduce the numerical cost of the calibration procedure.
Each time blocking is performed, neighboring sets of gauge
links are combined into new “blocked” links as illustrated
in Fig. 21, which reduces the size of the lattice by a factor
of 23. Since the effective step width δτ of the cooling
can also be increased by a factor of 22 after blocking,
the numerical benefit is enormous and we have used up
to two levels of blocking when performing calibration on
our largest lattices. When sufficient cooling τa2 ≳ 1 is
performed before each level of blocking we find that the
error introduced in the computation of ΔNcoolingpath

CS ðtÞ due
to blocking can be kept below the 1% level.
By combining the results ΔNcoolingpath

CS ðt1Þ and

ΔNcoolingpath
CS ðt2Þ of consecutive calibrations with the

x
y

Ux,y

Ux,-y

U-x,y

U-x,-y

Ux,2y

U2x,y

U-x,2y

U-2x,y

U-2x,-y

U-x,-2y Ux,-2y

U2x,-y

FIG. 20. Elementary square plaquettes (left) and rectangular
plaquettes (right) employed in the computation of the magnetic
field strength.

FIG. 21. Blocking procedure used only during the calibration
step. A subset of the original gauge links represented by solid
black lines is combined into a coarser lattice of green links.
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measurement of the Chern-Simons number difference
Nτc

CSðt2Þ − Nτc
CSðt1Þ at the original cooling depth in

Eq. (A6), one can form a trajectory in configuration space
which connects the vacuum configurations at t1 and t2 such
that

Nvac
CS ðt2Þ − Nvac

CS ðt1Þ
¼ −ΔNcoolingpath

CS ðt1Þ þ Nτc
CSðt2Þ − Nτc

CSðt1Þ
þ ΔNcoolingpath

CS ðt2Þ: ðA11Þ

Because the difference in the Chern-Simons number of two
vacuum configurations Nvac

CS ðt1Þ − Nvac
CS ðt2Þ on the left hand

side is supposed to be an integer, this procedure allows for
an explicit check of whether the lattice definition of the
Chern-Simons current indeed behaves as a total derivative.
When evaluating the right hand side of Eq. (A11), we find
that the deviation from integer values is typically less than
2%. An example of this calibration check is shown in
Fig. 22, where we plot the values obtained for the right
hand side of Eq. (A11) over the course of the nonequili-
brium evolution of a single configuration. Excellent agree-
ment with integers can be observed, demonstrating that the
measurement is indeed topological.

APPENDIX B: SLAVE FIELD

We will describe in this appendix the implementation of
the slave field method [45]. As discussed in Sec. III B 2, it
provides an alternative measurement of the integer (topo-
logical) part of the Chern-Simons number. The basic
philosophy underlying the slave field method is to identify
the topological component of the Chern-Simons number
with the winding number of the gauge transformation to the
topologically trivial sector. The challenge for this method,
however, is to find this gauge transformation at every
instance of time and ensure that it is sufficiently slowly

varying to allow for a reliable extraction of the winding
number.

1. Initialization and slave field dynamics

When performing a slave field measurement, we perform
an initial gauge fixing to set the dynamical gauge links and
electric field variables such that they satisfy the (minimal)
Coulomb gauge condition at initial time t ¼ 0. Since
after the gauge fixing the configuration is topologically
trivial, the initial condition for the slave field then simply
becomes SðxÞ ¼ 1. Over the course of the real time
evolution of the configuration the Coulomb gauge con-
dition will be violated, and one needs to update the slave
field to dynamically keep track of the transformation back
to Coulomb gauge. We follow the original Ref. [45] and
use an updated algorithm based on local lattice gauge
fixing techniques to maximize the gauge fixing functionalP

x

P
i ReTrwðx; tþ δtÞ where

wðx; tþ δtÞ
¼ Sðx; tþ δtÞ

X
i

ðUiðx; tþ δtÞS†ðxþ î; tþ δtÞ

þ U†
i ðx − î; tþ δtÞS†ðx − î; tþ δtÞÞ: ðB1Þ

Starting from an initial guess Sinitðx; tþ δtÞ for the slave
field Sðx; tþ δtÞ, we perform Nsteps updated steps of the
Los Alamos gauge fixing algorithm, setting [90]

Sðx; tþ δtÞ → Snewðx; tþ δtÞ ¼ ~w†ðx; tÞSðx; tþ δtÞ;
ðB2Þ

in each step, where wðx; tÞ is determined from the slave
field in the previous step and ~w denotes the projection of w
to SUðNcÞ, which in the SUð2Þ case simply takes the
form ~w ¼ w=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðwÞp

.
To minimize the number of gauge fixing steps needed to

reach acceptable gauge fixing precision, we follow [45] and
try to take advantage of the previous update, by setting

Sinitðx; tþ δtÞ ¼ ðSðx; tÞS†ðx; t − δtÞÞmSðx; tÞ ðB3Þ
with m ¼ 1 − δt=a as our initial guess for the slave field,
except when the previous step was so large that ReTrð1 −
Sðx; tÞS†ðx; t − δtÞÞ > 2ð1 −mÞ2 where we use Sinitðx; tþ
δtÞ ¼ Sðx; tÞ instead. However, when the peak stress

PSðtÞ ¼ max
x

�
3Nc −

1

2
ReTrwðx; tÞ

�
ðB4Þ

of the previous slave field configuration is above our
tolerance PSðtÞ > PSmax, we use m ¼ ð1 − δt=aÞ3 instead
of the above and triple the number of gauge fixing steps
Nsteps. We found that for the small lattices used in our study
of the thermal case, we achieve an accurate tracking of the
gauge transformation with Nsteps ¼ 5 and PSmax ¼ 1.2.
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FIG. 22. Space-time integral of the Chern-Simons current
computed along a path connecting two vacuum configurations
according to the right hand side of Eq. (A11). Data obtained for a
single N ¼ 96, Qsa ¼ 1 nonequilibrium configuration.
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However, for the larger lattices used in our nonequilibrium
study, the local gauge fixing algorithm becomes inefficient
and a much larger number of steps is needed. Unfortunately
this makes the slave field method computationally too
expensive to be of practical use when studying a large
number of configurations on large lattices.
Even though the update described above is sufficient to

determine the evolution of the slave field, it does not
necessarily ensure that (over the course of the real time
evolution) the slave field remains sufficiently slowly
varying to reliably determine its winding number.
However, as pointed out in [45], the smoothness of the
slave field can be restored by performing the actual gauge
transformation back to Coulomb gauge

UiðxÞ → UðSÞ
i ðxÞ; EiðxÞ → EðSÞ

i ðxÞ; SðxÞ → 1; ðB5Þ

when the peak stress is sufficiently small PSðtÞ < PSmax.
In practice, we check after every fifth time step whether this
criterion is satisfied and eventually perform the trans-
formation. We also note that, since performing the gauge
transformation removes a possible winding, we have to add
the winding number of the gauge transformation Sðx; tÞ to
all subsequent measurements of the winding number. When
the slave field is sufficiently slowly varying, it is then
straightforward to determine its winding number using the
methodology described in [45,74].
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