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I discuss “truncated” QCD studied recently by Glozman et al. through numerical simulations. For two
flavors it was observed that truncation restores the full chiral Uð2Þ ×Uð2Þ symmetry of the Lagrangian.
Moreover, additional enhancement of the above symmetry connecting representations with distinct Lorentz
spins was observed. I argue that the chiral symmetry restoration in a confining theory could entail emergent
(extra) dynamical flavors which would show up in the spectrum of color-singlet particles, provided their
mass ≠ 0. As an example, I consider truncated QCD with a single massless Dirac quark. Assuming the
validity of the above observations, I demonstrate how a dynamical SUð2Þfl symmetry could emerge for
massive spin-1 mesons without contradicting general principles.
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I. INTRODUCTION

Spontaneous chiral symmetry breaking is a crucial
feature of QCD. Since it occurs at strong coupling, so
far there is no full understanding of the underlying
dynamics. It was conjectured [1] that the chiral symmetry
restoration could happen for highly excited (mesonic and
baryonic) states, but this conjecture did not hold [2].
The standard QCD Lagrangian

L ¼ −
1

4g2
GμνaGa

μν þ
X
f

Ψ̄ iDμγ
μΨ ð1Þ

can include one, two or more distinct Dirac fermions
(flavors) in the fundamental representation. Denoting this
number as Nf we can say that, with the vanishing quark
masses, Lagrangian (1) possesses a chiral symmetry

UðNfÞ ×UðNfÞ: ð2Þ
After spontaneous breaking of the chiral symmetry (χSB),
and taking account of the axial anomaly, the flavor
symmetry of conventional QCD is

SUðNfÞdiag ×Uð1ÞV: ð3Þ

If Nf ¼ 1, i.e., with a single flavor, the conventional
symmetry is just Uð1ÞV , the fermion charge.
The Banks-Casher formula [3] tells us that the quark

condensate responsible for χSB does not develop, provided
the fermion Dirac operator modes do not condense near
zero [i.e., the density of the eigenvalues ρð0Þ ¼ 0.] Thus,
the near-zero modes play a special role in the chiral
symmetry breaking.
A conjecture was put forward in [4] that in lattice

calculations with dynamical quarks in the vacuum but with
truncated fermion Green functions, the chiral symmetry

will be restored [5,6]. By “truncated” I mean that a (fixed)
number of the lowest-lying eigenmodes of the Dirac
operator are eliminated in the quark propagator “by hand.”
This framework will be referred to as “truncated QCD.”
This conjecture was verified in recent calculations

[4–6].1 It was found indeed that the chiral symmetry is
restored in the spectrum; e.g., vector and axial vector
mesons are degenerate. Moreover, an additional observa-
tion was that the effects due to the anomaly in the
flavor-singlet axial Uð1Þ current disappear. Thus, the first
surprising “experimental” finding of [4–6] is that the
symmetry of the spectrum is at least Uð2Þ ×Uð2Þ in
truncated SUð3Þc QCD with two flavors.2

It is clear that the above truncation introduces nonlocal
deformations in QCD. Their impact is unclear. For in-
stance, it is not a priori certain that causality remains
undamaged. The local Lagrangian description in the
“truncation framework” does not exist, and, moreover,
no nonlocal Lagrangian is known. We can be certain,
however, that truncation does not break the Lorentz
invariance. This is important.
The second surprising finding of truncation is as follows.

The numerical results mentioned above exhibit an
unexpected enhancement of the spectral symmetry, at least
in the spin-1 sector—the enhancement that goes beyond the
expected Uð2Þ ×Uð2Þ. A dynamical Uð4Þ symmetry was
discussed in the literature [7,8] [in truncated SUð3Þc QCD
with two flavors] in connection with this enhancement. The
above Uð4Þ symmetry entangles geometric (dotted and
undotted) spinorial quark indices with isospin, which
would contradict the Coleman-Mandula theorem [9],

1There are certain reservations, however; for a discussion see
Sec. II.

2Here and below it will be assumed that all quark masses
vanish.

PHYSICAL REVIEW D 93, 074035 (2016)

2470-0010=2016=93(7)=074035(6) 074035-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.074035
http://dx.doi.org/10.1103/PhysRevD.93.074035
http://dx.doi.org/10.1103/PhysRevD.93.074035
http://dx.doi.org/10.1103/PhysRevD.93.074035


generally speaking. Below, I discuss how a phenomenon
that looks like a “flavor doubling” could emerge in the
space of color-singlet mesons with mass ≠ 0 in a hypo-
thetical QCD with no χSB.

II. PRELIMINARIES

Let me try to concisely summarize the main results of
Glozman et al.
Each massless Dirac fermion field in the fundamental

representation of SUð3Þc is built from one dotted and one
undotted Weyl spinor, χiα and η̄ _αi, respectively,

Ψ ¼
�
χiα

η̄ _αi

�
; ð4Þ

where i is the color index (usually omitted in what follows).
The standard definition of flavor implies that in the quark
sector we have Nf Dirac spinors (4). The unbroken chiral
UðNfÞ ×UðNfÞ symmetry implies the following:
(i) If the flavor indices f and g are introduced as χf and

ηg (f; g ¼ 1; 2;…; Nf), then all 2Nf fermion numbers,
corresponding to the currents

ðj _ααÞff ¼ χ̄ _αfχ
f
α; ηαfη̄

f
_α;

f ¼ 1; 2;…; Nf; no summation over f!; ð5Þ

are conserved separately (see [4–6] in which Nf ¼ 2). In
other words, there are 2Nf conserved quark charges. This
follows from conservation of all diagonal vector and axial-
vector currents, including the axial flavor singlet.
(ii) Conventional spin representations can be generalized

to chiral spin: The hadronic states can be classified with
regards to dotted and undotted indices separately; for
instance, the state χ̄f_αχ

g
α has spin S ¼ ð1

2
; 1
2
Þ while χfαηαg

has S ¼ ð0; 0Þ.
(iii) Confinement of quarks in color-singlet states is not

damaged.
(iv) An additional degeneracy of the spectrum of the

color-singlet mesons connects chiral multiplets with inter-
changed dotted and undotted indices, for instance,

χiαηβi ↔ η̄ _αiηβi: ð6Þ

(v) The least straightforward result of Glozman et al. is
as follows. Despite the fact that the parity degeneracy in the
spin-1 sector is restored, which would normally imply that
the χSB does not occur upon truncation (the biquark
condensate does not develop), the falloff of the correlation
functions of the scalar operators χαη

α and χ̄ _αη̄
_α is not

exponential but rather powerlike, implying that the spin-
zero mesons are massless, as if they were Goldstones.
In other channels (i.e., J ¼ 1; 2;…) the corresponding
mesons are massive.

Needless to say, all of the above “experimental” results
should be checked by independent group(s) before their
status can be elevated to “firmly established.” A special
emphasis should be put on clarification of the controversial
point (v).
For the time being, let us imagine, however, that a

consistent truncated version of QCD can be worked out and
address the question of whether an enhanced flavor
symmetry can appear in the particle spectra upon the chiral
symmetry restoration. Since this question can be raised
even for one Dirac spinor3; (i.e., Nf ¼ 1), I will discuss,
namely, this situation because of simplifying indices.

III. WHAT HAPPENS IF CHIRAL
SYMMETRY IS UNBROKEN

First, let us note that two distinct “diagonal” 2-point
functions

hχ̄ _αχαðxÞðχ̄ _αχαð0ÞÞ†i and hχαηβðxÞðχαηβðxÞð0ÞÞ†i ð7Þ
cannot be saturated by the same mesons. This is because a
“cross” correlator

hχ̄ _αχαðxÞðχαηβðxÞð0ÞÞ†i ð8Þ
vanishes identically which, in turn, follows from separate
conservation of both the vector and axial current, i.e., the χ
and η quark numbers. Thus, the correlation functions in (7)
are saturated by different massive mesons. In the rest frame
both have conventional spin 1. However, the chiral spin
structure (which can be used for classification in the case of
unbroken χSB) is different. I also use the fact that truncated
QCD [4–6] does not violate Lorentz (in fact, Poincaré)
invariance. The additional degeneracy of the spectrum of
the color-singlet mesons detected by Glozman et al. con-
nects the following multiplets with interchanged dotted and
undotted indices, for instance,

χfαηβg ↔ η̄ _αηβ ð9Þ
where the braces indicate symmetrization (three spin states)
and

∂β
_αðη̄ _αηβÞ ¼ 0; ð10Þ

so that the operator on the right-hand side of (9) also
produces three spin states (conventional spin 1). The scalar-
pseudoscalar state χ½αηβ� has no partner because of (10), and
the same is true for the χ current. Since their “experimental”
interpretation is not yet clear (see above), I will not discuss
them, and I focus on two different spin-1 states in (9).4

3In this case the conjecture of [4–6] would imply Uð2Þ flavor
symmetry instead of conventional Uð1Þ ×Uð1Þ.

4In fact, each of the two operators produces two parity
degenerate mesons.
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In conventional QCD the symmetry of the theory under
consideration is just vectorial Uð1Þ. It is implemented
trivially since all mesons have the corresponding charge
zero.
Restoration of the chiral symmetry in truncated QCD

would lead to Uð1Þ ×Uð1Þ. Enhancement of symmetry
needed for (9) was not expected a priori. We need some-
thing like an SUð2Þ converting χ into η̄. If we do so literally,
we would break the Lorentz symmetry by rotating an
undotted spinor index into the dotted one. We must act in a
more subtle way.

IV. EMERGENT DYNAMICAL FLAVOR
FOR SPIN-1 MESONS

In our simplified example there are four color-singlet
massive mesons (if I choose interpolating fields without
derivatives),

χiαηβ;i; χ̄ _αiη̄
i
_β
; η̄ _αiηβi; χiαχ̄

_β
i : ð11Þ

There are four interpolating fields; each one produces,
generally speaking, four chiral spin states. More exactly, we
must focus only on the states with conventional spin 1, as
was discussed above. This means that we must symmetrize
with respect to α and β in the first pair and take into account
the fact that, due to transversality, (pseudo)scalar states are
not produced by the second pair. Then, each operator will
produce three spin states.
A crucial point is that for M ≠ 0, where M is the meson

mass, each state [the Lorentz spins S ¼ ð1
2
; 1
2
Þ and

S ¼ ð1; 0Þ þ ð0; 1Þ], being distinctly different, can be
described by one and the same formalism.5 Dotted indices
can be converted into undotted and vice versa by applying
the energy-momentum operator Pα _α or P _αα which are
invertible because P2 ¼ M2 ≠ 0. Then, instead of the four
operators (11) with distinct Lorentz structure, we can
introduce6

χαηβ; χ̄ _αη̄ _β;

ðPα _αM−1Þη̄ _αηβ; ðP _ααM−1Þχαχ̄ _β: ð12Þ
I omitted the color indices as well as the symmetrization
braces. Now, the operators in (12) carry either both
dotted or both undotted indices. It is important that Pα _α

is invertible. Pα _αP _αβ ¼ δβαP2 and P2 > 0. Because of this
fact, instead of (12) one could also represent all operators in
the S ¼ ð1

2
; 1
2
Þ form.

All four states in (12) can now be related by standard
Uð2Þfl transformations. Two diagonal transformations are

equivalent to charge conservation for χ’s and η’ separately,
while off-diagonal ones are (see the Appendix)

δðχiαηβ;iÞ ¼
iffiffiffiffiffiffi
P2

p ½Pα _αðη̄ _αiηβ;iÞ þ Pβ _βðχiαχ̄
_β
i Þ�ε̄;

δðη̄ _αiχ̄ _β
i Þ ¼

iffiffiffiffiffiffi
P2

p ½P _αβðχiβχ̄
_β
i Þ þ P_ββðη̄ _αiηβ;iÞ�ε;

δðη̄ _αiηβiÞ ¼
iffiffiffiffiffiffi
P2

p ½P _ααðχiαηβiÞεþ Pβ _βðη̄ _αiχ̄
_β
i Þε̄�;

δðχiαχ̄ _β
i Þ ¼

iffiffiffiffiffiffi
P2

p ½Pα _αðη̄ _αiχ̄ _β
i Þε̄þ P_ββðχiαηβiÞε�; ð13Þ

where ε is a complex parameter of the off-diagonal trans-
formations of SUð2Þfl, and

ffiffiffiffiffiffi
P2

p
¼ M when acting on a

representation with a given mass M. It is obvious that (13)
does not contradict the Coleman-Mandula theorem.
Convolution of two dotted or two undotted indices on
the left-hand side of the first or the second line will produce
current divergences on the right-hand side, as I have already
mentioned.
It is obvious that the multiplet (12) is closed and

irreducible, and all mesons in this multiplet must have
degenerate masses. Altogether we have 12 distinct degen-
erate spin-1 states (including triple spin degeneracy), instead
of two nondegenerate (real) sextets (including triple spin
degeneracy) that would be present in the spectrum if the
symmetry of the problem was justUð1Þ ×Uð1Þ. In conven-
tional QCD we would have four distinct real spin-1 triplets.

V. J = 0 MESONS

In the theory with one Dirac spinor under consideration,
spin-zero mesons are produced by the operators χαη

α

and χ̄ _αη̄
_α. In terms of real fields we have two degenerate

mesons: one scalar and one pseudoscalar. The parity
degeneracy is due to the chiral symmetry restoration.
Unlike spin-1 states, no extra dynamical symmetry can
emerge in this channel.

VI. TWO DIRAC SPINORS

In principle, it is not difficult to generalize to two (or
more) flavors. All enhanced degeneracies found by
Glozman et al. can be explained by Uð2Þfl, as discussed
in Sec. IV, times SUð2Þ × SUð2Þ chiral symmetry of the
theory with two Dirac spinors. Whether or not full Uð4Þ
emerges will become clear only after the dynamical reason
is fully understood.

VII. POSSIBLE DYNAMICAL REASON

The symmetry as in (13) could emerge in truncated
QCD, provided truncation suppresses quark spin inter-
actions in the background gluon field (to be integrated over
in color-singlet two-point functions). In other words, in this

5This was emphasized by Arkady Vainshtein.
6In truncated QCD, unlike QCD per se the action of the

operator Pα _α on the quark field (e.g. iDα _αη̄
_α) does not produce

zero.
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(and only in this) section, I will use the Dirac rather than the
Weyl notation—it turns out to be more economic in the case
at hand.
Let us have a closer look at the propagator of the Dirac

fermion in the operator form (see, e.g., Ref. [10]),

Gðx; yÞ ¼
�
y

����P
�
P2 þ i

2
Gμνσ

μν

�
−1
����x
�

ð14Þ

where Gμν is the background gluon field, and Pμ is the
momentum operator in this background field. While P2

does not carry spinor indices, both P and σμν have them.
In particular,

Gμνσ
μν ¼

�
~σ ~Eþi~σ ~B 0

0 −~σ ~Eþi~σ ~B

�
; ð15Þ

where ~E and ~B are chromoelectric and chromomagnetic
fields, respectively.7 The upper left corner is associated
with propagation of χ and the lower right corner with η̄.
They do not mix in the massless theory. Usually a mass
term is needed for infrared regularization of the Green
function. However, the truncation procedure discards the
zero and low-lying modes and, therefore, automatically
provides an infrared regularization.
Assume that truncation somehow suppressed the spin

terms in (14), so one can replace (14) by

Gðx; yÞ → hyjPP−2jxi: ð16Þ

Accepting (16) as a working hypothesis will result in a
symmetry enhancement. In particular, the two-point func-
tions in the channels ð1

2
; 1
2
Þ and (1,0),(0,1) become propor-

tional. Namely,

i
Z

d4xeiqxhΨ̄ðxÞΓΨðxÞ; Ψ̄ð0ÞΓΨð0Þi ð17Þ

where Γ ¼ γμ and Γ ¼ σμν can be shown to be equal up to
trivial kinematical structures.
Thus the assumption (16) would explain the degeneracy

enhancement detected by Glozman et al. The problem is
that the very same assumption predicts even further
degeneracy, between spin 1 and spin 0 (e.g., the correlation
functions, say, for Γ ¼ γμ and Γ ¼ γ5 are the same). As was
mentioned above the issue with scalar and pseudoscalar
channels, as they are observed now in the numerical
calculations of Golzman et al., remains open since the
corresponding correlator cannot be fitted by exponentials.
So far, the exponential fit occurs only in the case of the
spin-1, spin-2, etc. channels [4–6]. This situation is
controversial.

VIII. A CURIOSITY: TRADING COLOR
FOR LORENTZ INDICES

This section is not directly related to the previous
sections. It presents an observation in passing that was
seemingly overlooked in the past.

A. SUð4Þc and two-index antisymmetric quarks

This example was not discussed in [11], although the
two-index antisymmetric representation of SUð4Þc is qua-
sireal and should have been included in the analysis. Since

the spinors χ½ij�α , ηα½km�εkmij transform in the same manner
under color and Lorentz transformation, they can be rotated
into each other. Thus, the flavor symmetry in this case is
SUð2NfÞ ×Uð1Þ. Since the Levi-Civita tensor εkmij is
symmetric under the interchange ½ij� ↔ ½km�, the pattern of
the chiral symmetry breaking in (untruncated) QCD will be
the same as for the adjoint quarks, namely,

SUð2NfÞ → SOð2NfÞ; ð18Þ

with 2N2
f þ Nf − 1 Goldstone bosons (pions). For a single

Dirac flavor we have two Goldstones, and for two Dirac
flavors we have nine pions in the symmetric two-index
representation of Oð4Þ. If the idea of [4–6]—the quark
condensate suppression—is correct, then QCD truncation
would eliminate all Goldstones and restore the full
SUð2NfÞ flavor symmetry.
For SUð3Þc, the two-index antisymmetric quark is

identical to fundamental quarks. The advantage of
two-index antisymmetric quarks becomes obvious [12] at
large N.

B. SUð2Þc and fundamental quarks

This example was analyzed long ago [11]. In SUð2Þc all
representations are either real or quasireal. The fundamen-
tal representation is quasireal. The extended chiral sym-
metry at the Lagrangian level is SUð2NfÞ ×Uð1Þ, where
Nf is the number of Dirac flavors. The pattern of the chiral
symmetry breaking in (untruncated) QCD is

SUð2NfÞ → Spð2NfÞ; ð19Þ

with 2N2
f − Nf − 1 Goldstone bosons (pions). In the

simplest example Nf ¼ 1, the chiral symmetry is unbroken
since Spð2Þ is isomorphic to Oð3Þ and to SUð2Þ. No
Goldstones emerge. In the case Nf ¼ 2 considered in [4–6]
we have SUð4Þ → Spð4Þ ∼Oð5Þ, with five Goldstones.
Suppressing the gluon condensate as in [4–6] one can
conclude that in truncated QCD the full Uð4Þfl is restored.

C. Reducing to D= 2 and 3

Starting from the four-dimensional Dirac spinor (4) in
SUð3Þc QCD, we can dimensionally reduce the theory7I use gamma matrices in the spinorial representation.
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down to D ¼ 3 or even D ¼ 2. More exactly, we discard
one (or two) spacial dimensions leaving everything else
intact.
If D ¼ 3 the number of Lorentz rotations reduces to

three: two boosts and one spacial rotation. This implies that
the Lorentz group is just a single SUð2Þ, and the distinction
between dotted and undotted spinors disappears.
The Dirac spinor in Eq. (4) is composed of two

two-component spinors; with two flavors we get four
two-component spinors. Then the flavor symmetry is
obviously Uð4Þ.
The Lorentz group in two dimensions includes just a

single boost. Needless to say, the Dirac spinor (4) can be
decomposed into two Dirac 2D spinors, again implying that
the flavor symmetry is Uð4Þ.
Thus, if four-dimensional truncated QCD dynamically

“selects” three-dimensional geometry at least with regards
to spin degrees of freedom, then one would expect the
spectrum of the theory to be (approximately) Uð4Þ sym-
metric. By the same token, in the general case ofNf flavors,
we would get Uð2NfÞ. This is not in contradiction with the
Coleman-Mandula theorem.
The above observations are summarized in Fig. 1.

IX. CAVEATS

Truncated QCD with the vanishing quark condensate
(and presumed confinement) contradicts the Casher argu-
ment [13] that confinement necessarily leads to chiral
symmetry breaking. Although Casher’s argument is
imprecise, it still tells us that the procedure of discarding
near-zero modes from the quark propagators needs more
theoretical understanding.
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APPENDIX

Here I describe a mnemonic procedure (two generators)
acting on quarks, although it is ill defined for quarks
because of their masslessnes. This appendix is only for
mnemonics. The actual physical context making it well
defined is explained in Sec. IV. It is important to understand
that the quark mass term or a nonvanishing quark con-
densate would ruin the transformations presented below.
However, we consider a massless quark in combination
with a vanishing biquark condensate in truncated QCD [1].
The energy-momentum operator Pα _β generating space-

time shifts carries one dotted and one undotted index.
Therefore, the transition α ↔ _α can be achieved by combin-
ing Pα_β with the generators of SUð2Þ × SUð2Þ Lorentz

rotations (boosts). The meaning of the operator ðP2Þ−1=2 is
explained in Sec. IV. The quark transformation “laws” are

δχα ¼
iffiffiffiffiffiffi
P2

p Pα _αη̄
_αε̄; δη̄ _α ¼ iffiffiffiffiffiffi

P2
p P _ααχαε ðA1Þ

(and, of course, the Hermitian conjugate of the above).
Here ε is a complex transformation parameter. The 4 × 4
generator matrices (analogs of the Pauli matrices) can be
written as

Σ1 ¼
1ffiffiffiffiffiffi
P2

p
�

0 Pα _α

P _αα 0

�
;

Σ2 ¼
1ffiffiffiffiffiffi
P2

p
�

0 −iPα _α

iP _αα 0

�
: ðA2Þ

Moreover, the matrices

Σ3 ¼
�
I 0

0 −I

�
; I ¼

�
I 0

0 I

�
; ðA3Þ

where I is the 2 × 2 unit matrix, being diagonal, are
responsible for independent phase rotations. We keep the
above conservation laws in mind. The commutation rela-
tions for the generators (A2) are exactly the same as for the
Pauli matrices.

x

2 D

N

3

4

3 4
x

x

x

x

x

x

x

FIG. 1. Chiral symmetry vs number of dimensions and colors.
The closed circle shows actual QCD. Crosses denote theories
with naturally enhanced chiral symmetry.
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