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It is shown that two physical phenomena are important for high excitations: (i) the screening of the
universal gluon-exchange potential and (ii) the flattening of the confining potential owing to creation of
quark loops, and both effects are determined quantitatively. Taking the first effect into account, we
predict the masses of the ground states with l ¼ 0, 1, 2 in agreement with experiment. The flattening
effect ensures the observed linear behavior of the radial Regge trajectories M2ðnÞ ¼ m2

0 þ nrμ2 GeV2,
where the slope μ2 is very sensitive to the parameter γ, which determines the weakening of the string
tension σðrÞ at large distances. For the ρ trajectory the linear behavior starts with nr ¼ 1 and the values
μ2 ¼ 1.40ð2Þ GeV2 for γ ¼ 0.40 and μ2 ¼ 1.34ð1Þ GeV2 for γ ¼ 0.45 are obtained. For the excited states
the leptonic widths Γeeðρð775ÞÞ ¼ 7.0ð3Þ keV, Γeeðρð1450ÞÞ ¼ 1.7ð1Þ keV, Γeeðρð1900ÞÞ ¼ 1.0ð1Þ keV,
Γeeðρð2150ÞÞ ¼ 0.7ð1Þ keV, and Γeeð13D1Þ ¼ 0.26ð5Þ keV are calculated, if these states are considered
as purely qq states. The width Γeeðρð1700ÞÞ increases if ρð1700Þ is mixed with the 23S1 state, giving for a
mixing angle θ ¼ 21° almost equal widths: Γeeðρð1700ÞÞ ¼ 0.75ð6Þ keV and Γeeð1450Þ ¼ 1.0ð1Þ keV.
DOI: 10.1103/PhysRevD.93.074034

I. INTRODUCTION

Meson spectroscopy continues to be an important issue
both for experimentalists and theoreticians. More precise
experimental data have appeared in the last years [1–9] and
a large number of theoretical works are devoted to light-
meson properties [10–20]. The important idea that mesons
have universal properties, from light-light to heavy quar-
konia, is supported in many studies [21–28] and a kind of
universal qq potential was used for all mesons in different
models [9,10,12–16,22–24]. The detailed analysis of
meson spectra was done in the relativized potential model
(RPM), introducing a phenomenological (universal) poten-
tial [9]. A convenient systematics of radial excitations was
suggested in Ref. [11], where it was assumed that the slope
of the radial Regge trajectories (RTs) has a universal value
(with a good accuracy) for all mesons. However, up to now
the discussions continue about the true value of the slopes
of the radial RTs [24–27], and even the linearity of the
radial RTs is disputed [28]. However, the physical effects
which are responsible for the observed universality remain
unclear up to now.
Here we use the relativistic string Hamiltonian (RSH)

[12,13], derived in the framework of the field correlator
method [29,30], which allows for expressing the meson
properties via two fundamental parameters: the string
tension and the QCD constant Λ. In principle, the RSH
contains both perturbative and nonperturbative dynamics,

and yields also the spin-dependent interactions, so that, in
general, all possible dynamical regimes in the qq systems
can be addressed. It is the main purpose of our work to start
a general analysis of the light-meson dynamics both in
radial and orbital excitations. However, in the present paper
we confine ourselves to the case of the radial excitations of
the vector mesons ρðnSÞ and the ground states with l ¼ 0,
1, 2, where the physical picture is more simple and
transparent. Thus, our analysis can be considered as the
first step towards the overall picture, which may be more
complicated.
We show that in light mesons the dynamics is more

complicated than in heavy quarkonia, which manifests
itself in two effects: the so-called screening of the gluon-
exchange (GE) interaction and the flattening of the linear
confining potential, which is especially important for high
excitations. These phenomena occur for extended objects
owing to qq holes (loops), which are created inside the film
subtended by the Wilson loop. These two effects can be
described by the RSH and will be the main subject of our
analysis. As was shown in Ref. [12], the RSH defines two
regimes: the string regime, valid for the states with large l,
l ≥ 3, and the potential-like regime, taking place for
low-lying states. For the ground states (with large l) the
mass formulaM2ðl; nr ¼ 0Þ ¼ 2πσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

was derived,
which explicitly shows that the slope of the leading RT is
equal to 2πσ ¼ ð1.13� 0.02Þ GeV2 with great accuracy
(e.g. for l ¼ 3 the accuracy is 0.8%). To derive this
expression it was assumed that in RSH the centrifugal
term (the rotation of the string) gives a large contribution,
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while the corrections to the mass from the GE, the spin-
dependent potentials, and the self-energy term are consid-
ered to be small and may be neglected. However, for
low-lying states these terms in the qq potential are not small
[22,23] and therefore the question arises how to match the
mass relations, valid for the states with large l, and those
with l ¼ 0, 1, 2. First, we discuss the well-established
features of the universal qq interaction.
In the RSH approach the qq potential is defined in a

gauge-invariant way via the Wilson loop [29,30] and the
confining potential is shown to be scalar and linear (if no
quark loops occur): VCðrÞ ¼ σ0r, with the string tension
σ0 ¼ 0.18ð2Þ GeV2 fixed by the slope of the leading RT
(with j ¼ lþ s) [31,32]. In the static potential, the con-
fining and GE potentials enter as a sum to satisfy the
Casimir scaling, observed on the lattice with very good
accuracy [33,34]. A very important point is that the
parameters of the GE potential cannot be taken arbitrarily
but have to be determined in full correspondence with the
existing information from pQCD [35]. From high energy
experiments the QCD constant ΛMSðnf ¼ 5Þ is now well
established, while the QCD constants for nf ¼ 3, 4 are
defined by matching the coupling at the quark mass
thresholds [35–37]; it gives the value ΛMSðnf ¼ 3Þ ¼
ð339� 10Þ MeV, if αsðMZÞ ¼ 0.1184ð7Þ is used [35],
or a bit smaller ΛMSðnf ¼ 3Þ ¼ ð327� 12Þ MeV is
obtained for the new world average αsðMZÞ ¼
0.1177ð13Þ [37]. Knowledge of ΛMSðnf ¼ 3Þ is very
important, because its value determines the “vector”
constant ΛVðnf ¼ 3Þ, entering the vector coupling in the
GE potential: ΛVðnf ¼ 3Þ¼ 1.4753ΛMSðnf ¼ 3Þ¼ ð485�
25ÞMeV [36]. Besides, as shown recently in Ref. [38],
the infrared regulator (IR)MB is not an extra parameter, but
can be expressed via the string tension: M2

B ¼ 2πσ ¼
1.13ð11Þ GeV2 (the accuracy of calculations is estimated
to be ∼10%). Then taking the central values, ΛV ¼
0.485 GeV andMB ¼ 1.13 GeV, one defines the two-loop
freezing coupling (called critical), αcrit ¼ αVðq2 ¼ 0Þ ¼
0.6065. Surprisingly, this value of the two-loop αcrit with a
large ΛV ∼ 480 MeV coincides with the one-loop phenom-
enological αcrit from Ref. [9], where a very small (unre-
alistic) Λðnf ¼ 3Þ ¼ 200 MeV is used. Knowledge of this
freezing constant αcrit ¼ 0.60� 0.04 is crucially important
for heavy quarkonia, where the GE interaction remains
important up to high excitations. Unfortunately, the role of
the GE interaction in light mesons is not fully understood
and here we pay special attention to the correct definition of
the universal potential to distinguish between true dynami-
cal effects and artifacts coming from different fitting
parameters, including the constituent masses. Many fea-
tures of the light-meson dynamics become more transparent
if one studies the S-wave isovector mesons, which are more
simple from the theoretical point of view, since they are not
subject to chiral effects (with exception of the π-meson)

and for them there does not exist a complicated centrifugal
term in the RSH.
We now pay special attention to the radial RTs with the

systematics, suggested in Ref. [11], assuming that the radial
RTs are linear in the (nr;M2) plane (JPC is fixed),

M2ðnrÞ ¼ M2ðnr ¼ 0Þ þ nrμ2: ð1Þ

HereMð0Þ is the mass of the lowest-lying meson on the RT
and μ2 is the slope parameter. According to Refs. [8,11] the
slope μ2 is approximately the same for all radial RT
trajectories, μ2 ¼ 1.25� 0.15 GeV2. This strong statement
cannot be checked in many cases, since no sufficient
experimental information is available about high radial
excitations, with exception of the ρ family, and in the
literature there are also other predictions for μ2 [18,25],
and even the linear behavior is disputed [28]. The question
is whether this slope is universal or not. Notice, that in
different RPMs [9,16,23] a much larger mass difference
μ21 ¼ M2ðρð1450ÞÞ − M2ðρð775ÞÞ ¼ ð1.54 � 0.04Þ GeV2

is obtained and this value agrees with experimental
μ21ðexpÞ, if the central values of the mass, Mðρð775ÞÞ
and Mðρ0ð1450ÞÞ from the Partical Data Group [1] are
taken. An even larger value μ21ðexpÞ ¼ 1.63ð2Þ GeV2

corresponds to the recent BABAR data for Mðρ0Þ ¼
ð1493� 15Þ MeV [5]. In the present paper we will show
that this large mass difference is not accidental and occurs
because the ρð775Þmass is “too small” due to large GE and
self-energy contributions. For that reason (in contrast to
other RTs) the linear behavior of the radial ρ trajectory
starts with the first excitation nr ¼ 1.
Our calculations here are done in closed-channel

approximation, neglecting the widths and hadronic shifts,
while in a strict sense light mesons have to be studied as
many-channel systems, taking into account a contribution
of every channel to the meson wave function (WF). But
such many-channel calculations form a very difficult task,
which needs individual consideration of every meson and a
complete theory of meson decays, which does not exist
now. Therefore, calculations in closed-channel approxima-
tion continue to be very important: they allow for a
separation of the conventional qq mesons from multiquark
systems of a different nature [7]. Moreover, the influence of
open channels can be effectively taken into account,
introducing the string tension σðrÞ depending on the
separation r [23]. This effect occurs owing to the creation
of virtual quark loops in the Wilson loop, causing the string
tension to decrease and depend on r, and this effect is very
important for higher radial excitations, while the ground
states are not affected by this flattening effect, since they
have relatively small sizes.
An important point is that one can introduce the critical

value of the string tension, σcrit, when the breaking of the qq
string takes place. If the string tension is taken as inRef. [23]:
σðrÞ ¼ σ0ð1 − γfðrÞÞ [with σ0 ¼ 0.18ð2Þ GeV2], then at
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not too large distances, r ≤ 1.2 fm the string tension is
almost constant, σðrÞ ≈ σ0, while at larger distances the
function fðrÞ → 1 and the critical value is

σlim ¼ σ0ð1 − γÞ: ð2Þ

The calculations show that a good description of the radial
excitations is reached if the parameter γ ¼ 0.43� 0.03 is
used as a fitting parameter. Moreover, the value of γ strongly
affects the slope of the radial RT and therefore it can be
extracted from this slope, if there are good experimental data
for the mass of the excitations with nr ≥ 2. In particular,
more precise data on the masses of ρð1900Þ and ρð2150Þ
could allow for distinguishing between the value
μ2 ¼ 1.43ð13Þ GeV2, suggested in Ref. [18], and μ2 ¼
1.365ð108Þ obtained in Refs. [8,11] from the analysis of
the Crystal Barrel data [2].
Here we also calculate the leptonic widths of the ρðn3S1Þ

and ρðn3D1Þ states. However, the accuracy of these
calculations is limited by the fact that they are done in
closed-channel approximation, where the norm of the qq
component of the WF at the origin remains undetermined,
e.g. for the states with JPC ¼ 1−− the WF can be sche-
matically written as

ψSðrÞ ¼ Cqqðcos θψSðrÞ − sin θψDðrÞÞ þ CcontðSÞψCS;

ψDðrÞ ¼ Cqqðcos θψDðrÞ þ sin θψSðrÞÞ þ CcontðDÞψCD;

ð3Þ

assuming that the qq components of the S- and D-wave
WFs have equal (or close) values and allowing for S −D
mixing. Fortunately, knowledge of the continuum compo-
nent is not important for the leptonic widths, since a
multiquark component of the WF, even if it is large, gives
a small contribution to the WF at the origin [39]. Thus the
weight C2

qq remains as the relevant unknown parameter in
the closed-channel approximation which produces an
uncertainty in the theoretical predictions of the leptonic
widths. Here, in our calculations of the leptonic widths of
ρðnSÞ; ρðnDÞ with JPC ¼ 1−− we take Cqq ¼ 1.

II. THE STRING REGIME

In the RSH of light mesons, the quark mass mq ¼ 0 and
all spin-dependent potentials are considered as a perturba-
tion; then the RSH is given by the expression [12,22]:

Hðω; νÞ ¼ ωþ p2
r

ω
þ lðlþ 1Þ
ωþ R

1
0 dβνðβÞð1 − β2

2
Þ2

þ σ2r2

2

Z
1

0

dβ
1

νðβÞ þ
1

2

Z
1

0

dβνðβÞ: ð4Þ

This Hamiltonian contains two variables ω; νðβÞ, which are
defined from the extremum conditions. The variable νðβÞ is
shown to be different for the states with large l ≥ 3 (in the
so-called the string regime) and for small l ≤ 2 (the
potential-like regime) in order to provide the minimal
value of the mass [12,13]. In the string regime the
centrifugal term and the term proportional to σ2r2 dominate
and thus the ground state masses Mstrðl; nr ¼ 0Þ were
obtained neglecting the contributions from the GE and the
fine-structure potentials. In that approximation the masses
of all members of the multiplet are equal to the centroid
mass, which for the ground state (nr ¼ 0) with large l is

M2
strðl; nr ¼ 0Þ ¼ 2πσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
: ð5Þ

From this formula one can see that the mass difference,
βl ¼ M2

strðlþ 1Þ −M2
strðlÞ, is practically equal to 2πσ ¼

1.13ð1Þ GeV2 [σ ¼ 0.18ð2Þ GeV2] with high accuracy,
e.g. for l ¼ 3 the accuracy is 0.8%. The values of
Mstrðl; nr ¼ 0Þ are given in Table I together with exper-
imental masses with j ¼ lþ s and the centroid masses
Mcogðl; nr ¼ 0Þ for l ¼ 1, 2.
Table I shows the good agreement between the masses

calculated according to Eq. (5), and the experimental masses
for a4ð2040Þ; ρ5ð2350Þ; a6ð2450Þ [1]. Surprisingly, even for
a2 and ρ3 with l ¼ 1, 2, the centroid masses have reasonable
values, although the low-lying states have to be studied in
the potential-like regime and for them all kinds of the
interactions: the confining, the GE, the centrifugal term,
are important. In the potential-like regime the RSH can be
rewritten in a more convenient form, H ¼ H0 þ ΔðstrÞ,
where the unperturbed part H0 has the form of the
Hamiltonian occurring in the spinless Salpeter equation
(SSE) (mq ¼ 0) [22,23]:

H0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q

q
þ V0ðrÞ; ð6Þ

and the operator p2
r is replaced by p2, while the remaining

part of the centrifugal term, the so-called string correction,

TABLE I. The masses Mstrðl; nr ¼ 0Þ (in MeV) in the string regime Eq. (4).

l 1 2 3 4 5

MstrðlÞ 1265 1664 1979 2249 2489
Mðexp; j ¼ lþ sÞ 1318(1) 1689(2) 1982(14) 2330(35) 2450(130)
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ΔðstrÞ ¼ −
lðlþ 1Þσhr−1inl

8ω2ðnlÞ ; ð7Þ

is considered as a perturbation. This correction is not very
large,∼50–100 MeV for l ¼ 1, 2, still it cannot be neglected.
In Eq. (7) the variable ωðnlÞ is the kinetic energy of a light
quark, defined by the solutions of the SSE:

�
2

ffiffiffiffiffi
p2

q
þ V0ðrÞ

�
ψnlðrÞ ¼ M0ðnlÞψnlðrÞ: ð8Þ

To define the solutions of the unperturbed Hamiltonian
H0 with l ¼ 0, 1, 2, it is important to use the universal
quark-antiquark potential, which has no fitting parameters
and therefore allows us to separate physical effects from the
artifacts introduced by fitting parameters. This potential has
the form of linear plus GE terms (observed on the lattice
[33] and derived in the field correlator method [34]), and
successfully describes heavy quarkonia spectra [40],

V0ðrÞ ¼ σ0rþ VGEðrÞ; ð9Þ

with σ0 ¼ 0.18ð2Þ GeV2, fixed by the slope of the leading
RT. In the GE potential the vector coupling in coordinate
space,

VGEðrÞ ¼ −
4

3

αVðrÞ
r

; ð10Þ

is taken in two-loop approximation, where it does not
depend on the renormalization scheme, and defined via the
vector coupling in momentum space:

αVðrÞ ¼
2

π

Z
∞

0

dq
sinðqrÞ

q
αVðq2Þ: ð11Þ

Here

αVðq2Þ ¼
4π

β0t

�
1 −

β1
β20

ln t
t

�
; ð12Þ

where for nf ¼ 3, β0 ¼ 9, β1 ¼ 64 and in the logarithm

tðq2Þ ¼ lnðq2þM2
B

Λ2
V

Þ, the vector constant ΛVðnf ¼ 3Þ ¼
ð480� 20Þ MeV corresponds to ΛMSðnf ¼ 3Þ ¼ ð327�
15Þ MeV from pQCD, while the IR regulator MB ¼ffiffiffiffiffiffiffiffi
2πσ

p ¼ 1.13ð11Þ GeV2 was defined in Ref. [38] (see
the discussion in the Introduction). At q2 ¼ 0 the logarithm

t0 ¼ tðq2 ¼ 0Þ ¼ ln
M2

B

Λ2
V

ð13Þ

defines the freezing constant, αcritðq2 ¼ 0Þ¼ αVðr→∞Þ¼
0.60�0.04, which is rather large (for the admissible values,
ΛV ¼ 480� 20 MeV and MB ¼ 1.1–1.15 GeV). In

bottomonium, this strong GE interaction remains important
up to high excitations and gives a good description of the
charmonium and bottomonium spectra [40].
However, for the light mesons this universal potential

appears to be too strong, giving smaller masses for the 1S,
1P, and 1D ground states (see Table II). This result does not
change if the parameters of the vector coupling vary within
the admissible range. It also shows that the dynamics in
light mesons, which all lie above open hadronic thresholds,
is more complicated due to their large spatial extensions
and the appearance of virtual qq loops in the Wison loop of
large size, and hence modifying the gluon-exchange
propagator. As we shall discuss later in Sec. V, the gluon
effectively acquires the screening mass due to these loops
as obstacles and the color-magnetic confinement [38,41].
For that reason we consider also a screened potential.
The creation of the virtual quark loops (scalars in the 3P0

mechanism) decreases the string tension, making it depen-
dent on the separation r. Due to this flattening effect the
masses of excited states decrease, e.g. the mass Mð4SÞ
becomes by ∼300–350 MeV smaller than for a purely
linear potential σ0r. However, it is not so for the ground
states with l ¼ 0, 1, 2, which have relatively small sizes
(hri ≤ 1.2 fm) and are not affected by the flattening effect.
Below, we shall find out the direct connection between the
parameter responsible for the flattening of the potential, and
the slope of the radial RT.
There is one more difference between light-meson

masses and those of heavy quarkonia, where the centroid
masses just coincide with the eigenvalue (EV) of the SSE.
For a light meson its centroid massMcogðnlÞ also includes a
negative self-energy contribution ΔðSEÞ [22,23,42] and
negative string correction ΔðstrÞðl ¼ 1; 2Þ, which do not
introduce extra parameters. The self-energy term is very
important for the mass value, since it gives a contribution to
the intercept of the RT. In the case l ¼ 0,

McogðnSÞ ¼ M0ðnSÞ þ ΔðSEÞ;

ΔðSEÞ ¼ −
3σ

πωðnlÞ : ð14Þ

In heavy quarkonia ΔðSEÞ ∼ ð1–5Þ MeV is very small
and can be neglected, while for light-light, K, and ϕ
mesons, ΔðSEÞ is rather large due to the small value of
the kinetic energy ωðnlÞ ∼ ð400–500Þ MeV in the

TABLE II. The masses of the n3S1 light mesons (in MeV) for
the universal potential with σ ¼ 0.18 GeV2 and αcrit ¼ 0.6086.
Experimental data are taken from Refs. [1,7].

n ¼ nr þ 1 1 2 3 4

Mðn3S1Þ 693 1478 2046 2510
experimental [1] 775 1465 (25) 1909(42) 2150(90)
data [7] 775 1493(15) 1861 (17) 2254(22)
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denominator. Because of this term, the squared mass
M2ðnlÞ does not contain a term linear in MðnlÞ and
provides the linear behavior of the RT [10,23]. Notice,
that in the RPM a negative subtractive constant (a fitting
parameter), usually added to the potential (or the mass) [9],
violates the linearity of the orbital and radial RT (see also
the discussion in Ref. [15]).
In the mass of the n3S1 states, Mðn3S1Þ ¼ M0ðnSÞ þ

ΔðSEÞ þ 1
4
ΔðHFÞ, the hyperfine correction is defined as in

Ref. [43],

ΔðHFÞ ¼ 32παsðμhfÞjψnSð0Þj2
9ω2ðnSÞ ; ð15Þ

where the kinetic energy ωðnSÞ enters in the denominator.
Here it is important to underline that in Eq. (15) the
coupling αsðμhfÞ is not an arbitrary parameter. As shown in
Ref. [43], this coupling is defined at the universal scale
(for all mesons, light and heavy) μhf ≃ T−1

g , where Tg ≃
0.12 fm is the vacuum correlation length. Since the scale
μhf is close to the mass of the τ-lepton, the value of αsðμhfÞ
must be close to αsðMτÞ ¼ 0.33ð2Þ [1]. We take here
αsðμhfÞ ¼ 0.31, as it was used in Ref. [44] in the analysis of
the hyperfine splitting of the B mesons and bottomonium.
In Table II the calculated ρðnSÞ masses are given in the

typical case, when the universal potential has no screening
in the GE term and the freezing constant αcrit ¼ 0.608; σ0 ¼
0.18 GeV2.
FromTable II one can see (i) that the strong (universal) GE

potential gives the ρð775Þ mass, as well as the masses of
theMða2ð1318ÞÞ¼1.240GeV,Mðρ3Þ¼1.59GeV, smaller
by ∼80 MeV than their experimental values. (ii) On the
contrary, for high excitations, where the influence of the GE
potential is small, the masses Mð33S1Þ andMð43S1Þ are by
∼150 MeV and ∼300 MeV larger than in experiment,
irrespective of the strength of the GE potential, if the linear
σ0r potential is used. Therefore one needs to look for another
effect (reason), responsible for the strong decrease of the nS
masses observed in experiments.

III. THE FLATTENING EFFECT

In Sec. V we present the physical picture explaining the
flattening phenomena, observed on the lattice [45] and
studied in Ref. [23], while here we give concrete results of
our calculations with the confining potential, where the
string tension depends on the quark-antiquark separation r,

σðrÞ ¼ σ0fðrÞ; lim
r→∞

σðrÞ ¼ σ0ð1 − γÞ: ð16Þ

Here σ0 ¼ 0.18ð2Þ GeV2 and the function fðrÞ ¼
1 − γ expðσ0ðr−R0ÞÞ

Bþexpðσ0ðr−R0ÞÞ contains three parameters; two of them,

B ≅ 15–20 and R0 ≅ ð1.2–1.4Þ fm, are chosen in such way
that the flattening slowly starts at rather large distances,

∼1.2 fm, while the lowest-lying states with l ¼ 0, 1, 2 are
not affected by the flattening effect. At large distances, the
string tension goes to the limiting value, σlim ¼ σ0ð1 − γÞ.
Direct calculations show that the decrease of the ρðnSÞðn ≥
2Þ masses occur mostly due to the flattening effect and the
mass shifts are very sensitive to the value of the parameter γ
in σðrÞ. To reach agreement with experiment, the fitting
parameter γ is to be taken in the narrow range, γ ¼
ð0.43� 0.03Þ, however, the values of γ ¼ 0.40 and 0.45
give rise to different slopes of the ρ trajectory. If γ ¼ 0.40 is
taken, then a contribution from the screened GE potential is
more important than for γ ¼ 0.45 (see Table III), but both
variants have common features:
(1) The linear behavior of the ρ trajectory starts with

nr ¼ 1, although these RTs have slightly different
slopes: for γ ¼ 0.40ð0.45Þ the slope μ2ðρÞ ¼
1.40ð1.35Þ GeV2.

(2) At the same time the mass difference μ21 ¼
M2ðρð2SÞÞ −M2ðρð1SÞÞ ¼ 1.52ð4Þ GeV2 remains
relatively large (in both cases) and agrees with
μ21ðexpÞ ¼ M2ðρð1465ÞÞ − M2ðρð775ÞÞ ¼ ð1.55�
0.07Þ GeV2, if the central values of the experimental
mass are taken. The reason why μ21 is large, is
discussed below, in Sec. IV.

(3) The choice of γ directly determines the slope of the
radial RT and therefore it could be extracted from
the experimental massesMðρð3SÞÞ andMðρð4SÞÞ, if
they would be measured with better accuracy.

In Table III we give the masses in three cases (in all cases
σ0 ¼ 0.182 GeV2,mq ¼ 0): in case A there is no screening
of the GE potential, i.e., δ ¼ 0; in the cases B and C the
exponential form of the screening, Vscr ¼ VGE expð−δrÞ
with the screening parameter δ ¼ 0.20 GeV, is taken. In the
cases A and B the other parameters coincide,

ΛVðnf ¼ 3Þ ¼ 465 MeV; MB ¼ 1.15 GeV;

αcrit ¼ 0.5712; σ0 ¼ 0.182 GeV2;

γ ¼ 0.40; B ¼ 20; R0 ¼ 6.0 GeV:

ð17Þ
In case C the stronger GE potential, with αcrit ¼ 0.635, is
taken, while γ ¼ 0.45 in the flattening potential is larger
than in Eq. (17). The other parameters in case C are as
follows:

ΛV ¼ 500 MeV; MB ¼ 1.15 GeV;

σ0 ¼ 0.182 GeV2; B ¼ 15; R0 ¼ 6.0 GeV2:

ð18Þ
For all nS states the hyperfine correction to the masses is
calculated with αsðμhfÞ ¼ 0.31.
As seen from Table III, without screening (δ ¼ 0) the

ground state masses of ρð775Þ, a2ð1318Þ, and ρ3ð1690Þ
appear to be 50–100 MeV smaller than in experiment and
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variations of the parameters within reasonable ranges do
not change this result. On the contrary, in the case B for the
screened GE potential (δ ¼ 0.20 GeV, the other parameters
remaining the same, as in case A) a reasonable agreement
with experiment is reached. The choice of δ ¼ 0.30 GeV,
i.e., stronger suppression of the GE potential, gives rise to
large masses of ρð775Þ and ρð1465Þ and was neglected.
The best agreement with experimental data takes place in

the case C Eq. (18), when the screening parameter δ ¼
0.20 GeV is the same, but ΛV ¼ 500 MeV and γ ¼ 0.45
are larger than in the cases A and B.
Our conclusion is that screening of the universal GE

potential is necessary to obtain correct values of the masses
of the lowest-lying states with l ¼ 0, 1, 2, otherwise they
are ∼80 MeV smaller than in experiment. For the higher nS
excitations the contribution from the GE potential cannot
be neglected and agreement with experiment is reached
both in the cases B and C. The masses of the nP and
nD ðnr ≥ 1Þ states weakly depend on the screened GE
potential and will be discussed in the next section.
We give here also the rms radius RsðnSÞ ¼ h

ffiffiffiffiffi
r2

p
inS of

ρð1SÞ and ρð2SÞ, which weakly change in all three cases:
Rsð1SÞ ¼ 0.71ð0.72Þ fm in the cases B (C) and a bit
smaller, 0.68 fm in the case A, where there is no screening
effect. The rms of ρð2SÞ is significantly larger, Rsð2SÞ ¼
1.0ð1Þ fm in all cases.

IV. RADIAL REGGE TRAJECTORIES

We have shown that the GE potential gives a small
contribution to the masses of the high radial excitations
(nr ≥ 1) and therefore, in first approximation, the GE
potential with screening can be neglected. This allows us
to reveal more explicitly the role of the flattening effect for
formation of the radial RT. The most important contribution

to the light-meson masses comes from the EV of the SSE,
Eq. (8), the unperturbed part of the RSH, which in the case
of the linear σ0r potential (σ0 is a constant) is well known.
Namely, the EVof the SSE (mq ¼ 0) can be approximated
with great accuracy (for nr ≥ 1) by the expression [16,23],

M2
0ðnlÞ ¼ σ0ð8lþ 4πnr þ 3πÞ: ð19Þ

This formula explicitly shows that the EVs M2
0ðnr ¼ 0; lÞ

for the ground states for given l, lie on the orbital RT with
the slope β0 ¼ 8σ0 ¼ 1.44 GeV2, which is ≈27% larger
than βðexpÞ ¼ 2πσ0 ¼ 1.13ð1Þ GeV2, observed in experi-
ment. For the radial excitations, the difference between the
slope in Eq. (19) and the one found in experiment is very
large: μ20 ¼ 4πσ0 ¼ 2.26 GeV2 is 1.6–2.0 times larger than
μ2ðexpÞ ¼ ð1.25� 0.15Þ GeV2 [8,11]. The question is
why such a large difference occurs.
First of all, we look at the contribution to the centroid

mass from the self-energy correction, Eq. (14), for which
we use the relation, M0ðnSÞ ¼ 4ω0ðnSÞ (valid for
σ ¼ const) and rewrite ΔðSEÞ ¼ − 12σ0

πM0
; then

McogðnSÞ ¼ M0ðnSÞ −
3.82σ0
M0ðnSÞ

: ð20Þ

In the squared mass we neglect the small squared self-
energy term (although it is not small for the 1S state) and
obtain

M2
cogðnSÞ ¼ M2

0ðnSÞ − 7.6σ0 ¼ σ0ð4πnr − 7.6þ 3πÞ
¼ ð0.33þ 2.26nrÞ GeV2: ð21Þ

From here one can see that owing to ΔðSEÞ the value of
M2

cog is smaller than M2
0 given in Eq. (19), while the slope

μ20 ¼ 4πσ0 ¼ 2.26ð2Þ GeV2 does not change. Thus we
have confirmed the well-known result that the purely linear
potential with σ ¼ const produces always a large slope of
the radial RT.
The situation strongly changes, if the flattening potential

VCðrÞ ¼ σðrÞr is considered, for which the representation
Eq. (19) is not valid anymore [in this case the EVof the SSE
will be denoted as ~M0ðnSÞ]. Our calculations show
that
(1) The linear behavior of the ρ RT starts with nr ¼ 1,

because for the flattening potential (with γ ¼ 0.40 or
0.45) the mass difference μ21 ¼ ~M2ð2SÞ − ~M2ð1SÞ
remains large, μ21 ∼ 1.87ð5Þ GeV2, being still 20%
smaller than μ21 ¼ 4πσ0 in Eq. (19).

(2) For the nP and nD states the linear behavior starts
with nr ¼ 0.

(3) The slope μ2ðlÞ strongly depends on the parameter γ
in σðrÞ, Eq. (16), which characterizes the weakening
of the confining potential.

TABLE III. The masses of the lowest-lying states ðl ¼ 0; 1; 2Þ
and excited n3S1 states (in MeV) for the flattening potential:
case A with γ ¼ 0.40, δ ¼ 0 GeV; case B with γ ¼ 0.40,
δ ¼ 0.20 GeV; case C with γ ¼ 0.45, δ ¼ 0.20 GeV,
Λ ¼ 500 MeV.

δ ¼ 0 δ ¼ 0.20 δ ¼ 0.20

State Case A Case B Case C Exp.

13S1 698a 790 774 775 [1]
23S1 1430 1474 1468 1465 [1]

1493(15) [7]
33S1 1876 1920 1880 1909(42) [1]

1861(17) [7]
43S1 2172 2239 2170 2150(90) [1]

2254(22) [7]
13P2 1240 1312 1309 1318(1)
13D3 1590 1696 1690 1689(2)

aHere the hyperfine contribution ∼65 MeV is taken into
account.

A. M. BADALIAN and B. L. G. BAKKER PHYSICAL REVIEW D 93, 074034 (2016)

074034-6



The squared EV, ~M2
0ðnSÞ (in GeV2) ðnr ≥ 1), with

γ ¼ 0.40, 0.45, 0.50 can be approximated as

~M2
0 ¼ ð2.42þ 1.40nrÞ GeV2; for γ ¼ 0.40;

~M2
0 ¼ ð2.31þ 1.27nrÞ GeV2; for γ ¼ 0.45;

~M2
0 ¼ ð2.25þ 1.15nrÞ GeV2; for γ ¼ 0.50: ð22Þ

(The accuracy of these expressions is ∼1%.)
From Eq. (22) the important result follows that for the

flattening potential the squared EVs of the SSE have a
much smaller slope (two times smaller for γ ¼ 0.50), than
in the case of the purely linear potential Eq. (19), which
decreases for larger values of γ, i.e., a stronger flattening
effect. For the centroid mass the intercept is changed, while
the value of the slope is the same, so that the ρ trajectory
(nr ≥ 1) is

M2
cogðρÞ ¼ ð0.77þ 1.40nrÞ GeV2; for γ ¼ 0.40;

M2
cog ¼ ð0.80þ 1.27nrÞ GeV2; for γ ¼ 0.45;

M2
cog ¼ ð0.90þ 1.15nrÞ GeV2; for γ ¼ 0.50: ð23Þ

In all cases Mcogðρð1450ÞÞ ¼ ð1.44–1.47Þ GeV. However,
if the exponential screening of VGE and the hyperfine
interaction are taken into account, then the slope increases
while the intercept does practically not change. In the cases
A and C [see the parameters of the GE potential in
Eqs. (17), (18)] and for nr ≥ 1 we have

M2ðn3S1Þ ¼ ð0.78þ 1.40ð2ÞnrÞ GeV2 ðγ ¼ 0.40Þ;
M2ðn3S1Þ ¼ ð0.81þ 1.34ð1ÞnrÞ GeV2 ðγ ¼ 0.45Þ: ð24Þ

Thus for γ ¼ 0.45 the calculated ρ trajectory has
μ2 ¼ 1.34ð1Þ GeV2, in agreement with the results in
Refs. [11,26], where μ2 ¼ 1.365ð108Þ GeV2 was obtained
from the analysis of the Crystal Barrel data [2]. On the
contrary, the larger μ2 ¼ 1.40ð2Þ GeV2 for γ ¼ 0.40 agrees
with the slope, μ2 ¼ 1.43ð13Þ GeV2, predicted in Ref. [27].
Notice, that for γ ¼ 0.45 a better agreement is obtained for
the ρð1450Þ mass (see Table III).
In the same way, the radial RTs for the nP and nD states

were considered; it appears that for l ¼ 1, 2 the linear
behavior of the radial RT starts with nr ¼ 0 and the squared
EV of the SSE M2

0ðnPÞ can be approximated as

~M2
0ðnPÞ ¼ ð3.11þ 1.25nrÞ GeV2 ðγ ¼ 0.45Þ: ð25Þ

Then, taking into account the self-energy and string
corrections we obtain for the centroid masses,

M2
cogðnPÞ ¼ ð1.64ð2Þ þ 1.25nrÞ GeV2: ð26Þ

From this expression one can obtain the aj radial RT,
taking into account the fine-structure splitting, which does
practically not change the slope, but introduces a fitting

parameter. For that reason we restrict ourselves to the RTs
for the centroid masses. Notice that μ2ðnPÞ ¼ 1.25 GeV2

practically coincides with the slope for the centroid masses
of the nS states, if γ ¼ 0.45.
For the nD trajectory the EVs of the SSE have a smaller

slope (nr ≥ 0),

~M2
0ðnDÞ ¼ ð4.36þ 1.11ð5ÞnrÞ GeV2 ðγ ¼ 0.45Þ ð27Þ

and

M2
cogðnDÞ ¼ ð2.8ð1Þ þ 1.11ð5ÞnrÞ GeV2 ðγ ¼ 0.45Þ:

ð28Þ

Notice, that the slope μ2ðlÞ decreases for increasing
angular-momentum l. At this point it is important to stress
that for physical nD states the GE contribution is much
smaller than that for the nS states, and therefore for the ρ3,
ρ2, and ρðn3D1Þ trajectories the slopes have to be close
to the one given in Eq. (28), where μ2ðDÞ ¼ 1.11ð5Þ GeV2,
if the fine-structure effects are neglected. Our result is in
agreement with μ2ða2Þ ¼ 1.00ð6Þ GeV2 and μ2ða1Þ ¼
ð1.084� 0.63Þ GeV2, predicted for the a1 and a2 RTs
from the analysis of experimental data in Ref. [26].
Now we briefly discuss the reasons why the mass differ-

ence μ21 ¼ M2ð2SÞ −M2ð1SÞ is large. The first reason is that
this factor is very large for the flattening potential (without
GE interaction), where μ21 ¼ 1.87ð5Þ GeV2 for the squared
EVofSSE.This result does not change, if a reasonable choice
of the parameters in σðrÞ is made. Secondly, if the
GE interaction is taken into account, then for the 1S state,
localized at rather small distances, the self-energy and
hyperfine corrections decrease the mass difference μ21 but
its value remains rather large, μ21 ¼ 1.56ð6Þ GeV2. This
number appears to be very close to what is observed in
experiment, μ21ðexpÞ ¼ 1.55ð7Þ GeV2 [1], if the central
values of the ρð775Þ and ρð1465Þ masses are used. Just
for that reason, the linear behavior of the ρ RT begins with
nr ¼ 1, while other radial RTs start with nr ¼ 0.

V. FLATTENING PHENOMENON:
THE PHYSICAL PICTURE

The dynamics of light mesons is more complicated than
that in heavy quarkonia, since light mesons, as rather
extended objects, are sensitive to detailed properties of
the confinement mechanism, which also affects the gluon
exchanges. Our approach is based on the background
perturbation theory (BPT) [46], which takes into account
the nonperturbative background with confinement and does
not contain unphysical singularities (the Landau ghost
poles and IR renormalons), present in standard perturbation
theory. Below, we illustrate how the BPT predicts three
effects, which are observed in experiment and especially
important for light mesons:
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(1) Stabilization of the coupling αsðq2Þ at q2 → 0,
αð0Þ≡ αcrit;

(2) Screening of αs at large distances;
(3) Flattening of the string tension at large distan-

ces, σ → σðrÞ.
Item 1. The basic feature of BPT is the gauge-invariant
treatment of confinement and gluon exchanges, when both
phenomena occur owing to the Wilson loop, where con-
finement creates the minimal-area surface (the so-called
confining film) and the gluon-exchange trajectories are
necessarily present inside this surface. As a result, the gluon
loops, appearing on these trajectories and responsible for
asymptotic freedom, create open loops in the confining
film, and this effect strengthens with increasing αs, leading
finally to the saturation of αsðq2Þ which in two-loop
approximation is given by αcrit ¼ 4π

β0t0
ð1 − β1

β2
0

ln t0
t0
Þ, where

t0 ¼ lnðM2
B

Λ2 Þ and with 10% accuracy M2
B ¼ 2πσ [41].

Item 2. For the same reason, the scalar qq loops,
appearing in the film (of large size), lead to the screening
of the GE interaction, since any gluon trajectory, propa-
gating inside the confining film, is interrupted by the scalar
loops and those create an effective mass of the gluon. In
addition, there is a difference between the free propagation
(free Green’s function of the gluon) and the gluon propa-
gation inside the surface with confinement. This compli-
cated phenomenon was studied in Ref. [47] for zero
temperature and in Ref. [48] for the deconfined phase,
where it occurs due to the color-magnetic confinement.
This effect at zero temperature, when both color-electric
and color-magnetic confinement collaborate, is not yet
finally settled and therefore in our paper we exploit the
effective screening parameter δ for the screening mass. Our
analysis has shown that for the exponential form of
screening δ ¼ 0.20 GeV is the preferable value, while
suppression of the GE potential is too strong for δ ¼
0.30ð0.10Þ GeV.
Item 3. For excited light mesons, confinement occurs in a

highly excited string, when the Wilson loop has a free
boundary and several typical features, partly discussed
above. Namely, there exist

(i) a finite density of the qq loops in the confining film,
which leads to the dependence of the string tension
on r, σ → σðrÞ;

(ii) a possibility to decay, virtually or really, into a pair
(or several) mesons, so that if the distance r in the
confining potential σr exceeds the separation,
Rf ∼ 2rπ ≃ 1.2 fm, then the flattening of the poten-
tial is expected.

The first feature can also be seen in the T dependence of
σðrÞ: when the density of the qq loops grows with
increasing temperature T, then the potential Vðr; TÞ
becomes more and more flat, as it was observed on the
lattice [49]. Another manifestation of the flattening phe-
nomenon was recently studied in Ref. [50]: while applying

a magnetic field parallel to the confining film, it was
observed that the density of the qq loops increases and the
string tension σðrÞ flattens, in agreement with the lattice
data [51].
Both features, flattening due to a finite qq density and

the existence of the critical length Rf ∼ 2rπ are embodied in
the form of the string tension, Eq. (16), which is used in
our paper.
In conclusion we give the rms radius of the ρðnSÞ

mesons, rs ¼ h
ffiffiffiffiffi
r2

p
inS, calculated for the sets of the

parameters Eqs. (17), (18): for ρð775Þ, rsð1SÞ ¼
ð0.71–0.73Þ fm and for ρð1450Þ, rs ¼ ð0.9–1.0Þ fm.

VI. THE LEPTONIC WIDTHS OF
ρðn 3S1Þ AND ρð1 3D1Þ

The decay constants fV and leptonic widths of the
ρðn3S1Þ mesons are calculated here, considering them as
pure qq states, i.e., taking Cqq ¼ 1.0 in the WF given in
Eq. (3). For the decay constant in the vector channel fV we
use the expression from Ref. [52], where the correlator of
the currents (in different channels) is derived using the
functional integral representation and on the final stage
expanding this correlator in the complete set of eigenfunc-
tions of the RSH H0, Eq. (6). This gives

f2V ¼ 12e2q
jψnð0Þj2ξV
MVðnSÞ

¼ 3e2qjRnð0Þj2ξV
πMVðnSÞ

; ð29Þ

and

Γeeðn3S1Þ ¼
4πα2f2VβQCD

3MV
: ð30Þ

Here, for a light meson with mq ¼ 0 the relativistic factor
ξVðnSÞ is

ξV ¼ ω2
n þ 1

3
p2

2ω2
n

; ð31Þ

which for the ground and excited states are almost equal,
ξð1SÞ ¼ 0.70ð1Þ and ξðnSÞ ¼ 0.72ð1Þ, ðn ¼ 2; 3; 4Þ, if the
static potential with the parameters Eqs. (17), (18) is used
(for the ρ-mesons the average e2q ¼ 1=2). The factor
βQCD ¼ 1 − 16

3π αs ¼ 0.40 takes into account the radiative
corrections [53] and here we use for all (n3S1) states the
same coupling αsðμsÞ ¼ 0.353 (at the scale μs ∼ 1.0 GeV).
If the confining potential flattens at large distances, then the
WFs at the origin RnSð0Þ ∼ ð0.36–0.33Þ GeV3=2ðn ¼ 2–4Þ
have close values, while for the ground state the WF
R1Sð0Þ ¼ ð0.376� 0.008Þ GeV3=2 is larger, and for the
ρð775Þ the decay constant and leptonic width are

fV ¼ ð245� 6Þ MeV; ð32Þ

where the uncertainty comes from that in the WF at the
origin, and
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Γeeðρð775ÞÞ ¼ ð7.0� 0.3Þ keV: ð33Þ

To calculate the leptonic widths of the higher ρðnSÞ,
it is convenient to use the ratio of the leptonic widths,
Γeeðn3S1Þ=Γeeðρð775ÞÞ, where the factors ξðnSÞ and βQCD
drop out. This gives

Γeeð23S1Þ ¼ 0.24Γeeðρð775ÞÞ ¼ 1.7ð1Þ keV;
Γeeð33S1Þ ¼ 0.14Γeeðρð775ÞÞ ¼ 1.0ð1Þ keV;
Γeeð43S1Þ ¼ 0.096Γeeðρð775ÞÞ ¼ 0.7ð1Þ keV; ð34Þ

where the uncertainties come from the experimental errors
in the ρðnSÞ masses and the WFs at the origin. Notice that
in a realistic situation the leptonic widths of the excited
ρðnSÞ mesons may be smaller, if the qq component Cqq in
their WFs is less than 1.0.
The leptonic widths of the (n3D1) states are calculated

defining their WFs at the origin via the second derivative,
according to the prescription from Ref. [54]: RnDð0Þ ¼
5R00ð0Þ
2
ffiffi
2

p
ω2
nD
, where R00

1Dð0Þ ¼ 0.026ð1Þ GeV7=2 and ωð1DÞ ¼
0.536 GeV. It gives R1Dð0Þ ¼ 0.163ð3Þ GeV3=2, which is
not very small due to the small value of the kinetic energy
ωnD ∼ 0.5 GeV. The other parameters are ξð1DÞ ¼ 0.69,
βQCD ¼ 0.40, Mð13D1Þ ¼ 1.72ð2Þ GeV, so that the lep-
tonic width

Γeeð13D1Þ ¼ 0.26ð5Þ keV ð35Þ

is rather small. However, its value may increase owing to
the 2S − 1D mixing, and for a mixing angle θ ¼ 21° the
leptonic widths of ρð1450Þ and ρð1700Þ become almost
equal:

Γeeðρð1450ÞÞ ¼ 1.0ð1Þ keV;
Γeeðρð1700ÞÞ ¼ 0.75ð6Þ keV ðθ ¼ 21°Þ: ð36Þ

Here it was assumed that in the WFs of ρð1450Þ and
ρð1700Þ the qq components are equal.

VII. CONCLUSIONS

We have studied the light-meson properties with the use
of the RSH, which allows us to investigate the light-meson
dynamics without introducing fitting parameters. It appears
that the universal static potential, successfully applied to

heavy quarkonia, gives rise to small masses of the lowest
states with l ¼ 0, 1, 2 and at the same time large masses of
the excited states. To explain the physical spectrum, two
effects, the screening of the GE interaction and the flat-
tening of the confining potential, which appear owing to
quark-loop creation, are to be taken into account. We have
demonstrated the following properties.
(1) The screening of the GE potential, taken as an

exponential function with the screening parameter
δ ¼ 0.20 GeV, gives the masses of the lowest-lying
states for each l in agreement with experiment.

(2) The slope of the radial RT is very sensitive to the
value of the parameter γ, which determines the
flattening of the string tension σðrÞ: at large dis-
tances σðrÞ → σ0ð1 − γÞ. The parameter γ could be
extracted from the experimental masses of ρð1900Þ
and ρð2150Þ, if these were measured with better
accuracy, while now it is taken from the range
γ ¼ 0.43� 0.03.

(3) From our calculations two values for the slope of the
ρ trajectory are obtained, μ2ðρÞ ¼ 1.40ð2Þ GeV2 for
γ ¼ 0.40 and μ2ðρÞ ¼ 1.34ð1Þ GeV2 for γ ¼ 0.45,
neither result contradicts the existing experimen-
tal data.

(4) The linear behavior of the radial RT starts with
nr ¼ 0 for the nP and nD trajectories, while the
linear behavior of the ρ trajectory begins with the
first excitation, nr ¼ 1, since the large value of
the mass difference, M2ðρð1450ÞÞ −M2ðρð775ÞÞ ¼
1.56ð6Þ GeV2 [or the relatively small value of the
ρð775Þ mass] is a dynamical property of the 1S
ground state.

(5) The leptonic widths Γeeðρð775ÞÞ ¼ 7.0ð3Þ keV,
Γeeðρð1450ÞÞ ¼ 1.7ð1Þ keV, Γeeðρð1900ÞÞ ¼
1.0ð1Þ keV, Γeeð2150ÞÞ ¼ 0.7ð1Þ keV, and
Γeeðρð1700ÞÞ ¼ 0.26ð5Þ keV are calculated consid-
ering them as pure qq states. If 2S − 1D mixing
is possible, then for the mixing angle θ ¼ 21°
comparable values of the leptonic widths
Γeeðρð1450ÞÞ ¼ 1.0ð1Þ keV and Γðρð1700ÞÞ ¼
0.75ð6Þ keV are obtained.
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