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Pionic dispersion relations in the presence of a weak magnetic field
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In this work, dispersion relations of z° and z* have been studied in vacuum in the limit of a weak
external magnetic field using a phenomenological pion-nucleon (zN) Lagrangian. For our purpose, we
have calculated the results up to one loop order in self-energy diagrams with the pseudoscalar (PS) and
pseudovector (PV) pion-nucleon interactions. By assuming a weak external magnetic field, it is seen that
the effective mass of the pion gets explicit magnetic field dependence, and it is modified significantly for
the case of PS coupling. However, for the PV coupling, only a modest increase in the effective mass is
observed. These modified dispersion relations due to the presence of the external field can have substantial
influence in the phenomenological aspect of the mesons, both in the context of neutron stars as well as in

relativistic heavy ion collisions.
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I. INTRODUCTION

The study of the properties of strongly interacting matter
in a magnetic field has become a research topic of
contemporary interest [1-12]. The applicability of field
theoretical calculations with the introduction of a magnetic
field lies in the study of the phenomenology of compact
stars which are laboratories of high density matter and
fields with strengths as high as eB ~ 1 MeV? observed in
some magnetars [13]. In fact, the incorporation of the
magnetic field effects to color superconducting phases in
the core of such stars can provide new insight into the
physics of neutron stars [14-21]. On the other hand, the
other domain, namely, relativistic heavy ion collisions, can
hardly be overlooked. Recently, it has been proposed that
for off-central heavy ion collisions, the intensity of the
magnetic field due to the presence of charged species can
be as high as eB ~ m2 ~ 0.02 GeV? (at RHIC) and eB ~
15m2 ~ 0.3 GeV? (at LHC) [22,23].

It will not be out of context here to recall that in view of
comparable mass scales of mesonic matter with field
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strengths, the study of pions (z° and z¥) begs further
attention. Many authors have studied pion properties either
restricted to the symmetric nuclear matter or with calcu-
lations performed in the nonrelativistic framework [24-29].
In a recent work, the authors of [30,31] have shown pionic
mode splitting in asymmetric nuclear matter (ANM). Using
the approximation of the hard nucleon loop and suitable
density expansions, they have studied pion propagation in
matter in the framework of the chiral effective Lagrangian
model [32]. In [31], they presented the density and
asymmetry dependent pion dispersion relations and effec-
tive masses for the various charged states of pions con-
sidering both pseudoscalar and pseudovector representation
of pion-nucleon interactions. It was shown that the effective
pion masses had large values in the pseudoscalar repre-
sentation compared to pseudovector representation. But
none of them considered the magnetic field effect in the
calculation of the self-energies. In the context of heavy ion
collisions, pions in nuclear matter might carry a bulk
amount of entropy which is explained by a modified pion
spectrum [33]. The pion-nucleon physics has been further
explored in the works of Anderson [34] where chiral
perturbation theory has been used for the systematic
calculation of the leading loop corrections to the thermal
mass and decay constant of pions at finite temperature and
magnetic background. Condensation of pions has been
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studied extensively in the works of [35,36]. The magnetic
field effects have been studied thoroughly in the context of
the NJL model [37—43], PNJL model [44,45], quark meson
model [46-50], PQM model [51,52], and linear sigma
model [53]. In a recent work, the authors of [54] showed the
modification of the charged B meson mass in the presence
of the external field. They have concluded that there is a
substantial decrease of the mass of the B mesons in the
limits of a strong and weak magnetic field. In fact, this
approximation of a weak field has been further explored in
the works of Ayala et al. [8]. In this work, the authors have
found that the field assists in formation of gluon condensate
and acts against quark deconfinement.

In view of these recent theoretical advancements, we
revisit the problem of pionic dispersion relations starting
from a phenomenological Lagrangian. In our work, we will
restrict ourselves to the calculation of the pion effective
mass in a uniform gauge field to one-loop order in vacuum.
For our calculations, we introduce the Feynman propaga-
tors for a spin 1/2 fermion in an external constant Abelian
field, best described by the Schwinger’s proper time
formalism [55]. This will manifest a consistent framework
for treating mesonic matter under the influence of the weak
limit of magnetic fields (eB < m2) compatible with
strengths observed in the interior of neutron stars. Due
to divergences inherited into the theory of self-energies, we
will remove them by regularization and subsequent renorm-
alization (by counterterms) of the modified self-energy of
the pions. The study of the pionic dispersion relations in the
presence of matter will be reported in a future work [56].

The paper is organized as follows. In Sec. II, we discuss
the formalism required for the explicit calculation of the
pion self-energies in the presence of a weak magnetic field.
We perform the calculations for pseudoscalar and pseudo-
vector coupling in subsections A and B, respectively. We
illustrate a consistent formalism for the fermionic propa-
gators using Schwinger’s proper time approximation fol-
lowed by regularization and renormalization of the vacuum
fluctuations. The results are presented in Sec. III. Finally, in
Sec. IV, we summarize and explain possible phenomeno-
logical implication of our results.

II. THE PION SELF-ENERGY

The effective pion propagator is given by resumming the
pion self-energy using the Dyson-Schwinger equation,

D(q) = D°(q) + D°(¢)T1(¢)D(q), (1)

where D%(gq) = (¢*> —m2 +ie)™! is the bare propagator
and I1(g) is the pion self-energy. The effective propagator
can be written as
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The pole of the effective propagator determines the
dispersion relation of the system with the modified mass
mi = /m2 +T(m:,q=0). To include the effect of
external magnetic field, we use Schwinger’s proper-time
method [55]. Let us consider the magnetic field along the z

direction with the choice of vector potential A =
(—By/2,Bx/2,0). In this choice, the momentum-space
Schwinger propagator can be written as [55]

_[> ds . (., ,tan(eBs) 5
S(k)/) COS(eBS)eXp|:lS<k” k5 5 " +ie

) )

X [(m +k||)exp(ieBsa3) —m
where m is the mass of the fermion. Note that the
Schwinger’s propagator for charged fermions usually con-
tains a phase factor. However, by suitable gauge trans-
formation of the vector potential, the phase factor can be
removed, and we can work with the momentum represen-
tation of the Fermion propagators [8,9]. We decompose the
metric tensor into two parts ¢** = g’l‘lb — ¢/, where gﬁ” =
diag(1,0,0,—1) and ¢ = diag(0, 1, 1, 0). In this notation,
we use ki = kg — k2, k7 = ki + k3 and 03 = iy 5. As we
focus on the weak-field approximation of the propagators
eB < m2, the propagators can be recast up to order (eB)?
as [57,58]

S(k) = SO (k) + eBSY (k) + (eB)*S? (k) + O((eB)?)

(4)
where
k+m
S(0>(k) = 2 —m (5)
is the free fermionic propagator, and
iy y2(y.ky +m)
S (k) = TR (6)
—2k? 7.k
SO(k) = ——L o [k+m =255 (2 —m2) | (7)
& = m?)? 2

are the weak-field corrections to the propagator.

A. Dispersion relation with pseudoscalar zN coupling

We use a phenomenological PS pion-nucleon interaction
to write the Lagrangian density as

LPS = —ig, Wys(7- ,)0, (8)

nt

where g, is the pion-nucleon coupling constant. In Eq. (8),
W and @, are the nucleon and pion fields, respectively, and
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FIG. 1. Figure (a) represents the one-loop self-energy diagram
+

for z° and (b) represents the same for z=.

7 is the isospin operator. The one-loop contribution to the
pion self-energy is given by

Ty
x Tr[{il(q) }iSq (K){il(=q) }iSp(k+ q)].  (9)

where the subscripts a and b denote either p (proton) or n
(neutron). I'(g) is the corresponding vertex factor for the
pseudoscalar coupling of pions. Figure 1 will involve
various combinations of n and p, depending upon the
various charged states of pions. Let us explicitly calculate
|

) d*k
M9 (g) = —ig2 /
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the one-loop self-energy for z° shown in Fig. 1(a). In the
weak-field limit, the self-energy for z° is expressed as

Lo(q) = —ig; / (;lﬂl;

x TrlysiS, (k)ysiSz(k +q)] +[p = n]. ~ (10)

For a neutral pion, I'(¢) = —iysg, is the vertex factor. The
nonvanishing contribution for I1°(g) can be written as

Moa(q) = 15%(q) + (eB)S" (q) + (eB)1E0(g)

/2 2

+ (e85 (g). (11)

Upon evaluation of Dirac traces, it is seen that all terms
proportional to (eB) have vanishing traces. The reason for
the cancellation is either due to an odd number of y matrices
or off diagonal elements of the metric tensor. The B—
independent vacuum contribution of the self-energy is
expressed as

TelysiSy (k)ysiSy (k + q)) + [p — n)

)’
i [ TS mrs(h )| et = )
g} [ Gt~ ) e+ [ =
= f—j’z [%2 - [1 + é —rE+ 10g<47w2)} (mﬁ - q;)
- [ st = 350 = )2 t0glo =201 =001 4 10 (12)

where m,, (m,) is the mass of the proton (neutron). Here, £ =2 — % and p is an arbitrary scale parameter. y is the Euler-
Mascheroni constant. It is clearly seen that € in Eq. (12) contains the singularity, and it diverges as N — 4. To remove the
divergences, we need to add the counterterms in the Lagrangian [32]. Hence, after performing the renormalization, one can
obtain the modified pion self-energy as (explicitly shown in the Appendix A)

100 _ _ Ty [ a6 =m0l 31 =)
0

MR T g2 miy, — m2x(1 = x)

A
+ [m3 — 3¢%x(1 — x)] log— R
m

et R (13)

where Ap = mf, —¢’x(1 —x), and m,o is the mass of the neutral pion. The first term of the external magnetic field
dependent contribution to the self-energy can be obtained as (see Appendix B)

. d*k . .
() = —ig? [ 55Tl orsis) (+ )

2 1 m?:+x(1=x)g?
= —f—” dxx(1 —x){ B ( 4y (14)

71'2 0 A_R+ A%{
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The term proportional to (eB)?, i.e., H ( ) is given by (see Appendix B for details)

. d*k . .
n%%(q) = —ig2 / TrlysiSy) (k)ysiSy (k + )]

(2n)*
2 {/1 dx(1 2’ [i+ 7*x(1 —x) + i x(4x — 1) + m3, N 2x2q7 [q*x(1 — x) + m3)]
47 Lo R 3A% 30
1 1 ¢x(1-x)
1—x)? i) . 1
v )

In order to obtain the contribution of Hfz?,l)(q), we just replace k <> (k+¢) in Eq. (15), and we see that

Hi%‘”(q) and Hi%’o) are identical. It is seen that the contribution of the magnetic-field-dependent self-energy is

finite; i.e., no divergences appear. To simplify our calculation, we consider that the proton and neutron have the
same mass denoted by m. The complete expression of the self-energy for IT,0(g) for the pseudoscalar coupling can
be written as

A Ald [(q = m2)x(1 = x)(m* = 3¢x(1 - x)) Ag }

+ (m? = 3m2%,x(1 — x)) log—
AR ™

m* — miox(l —Xx)
eB)? [ 1 m?*+x(1-x)q
dx(1 —x) [ —+ ——
5 /) xx(1 —x) <AR + A2

! 1 @Px(1-x)+ @ x(dx—1)+m?>  2x°¢3 [¢°x(1 — x) + m?|
B 2 dx(1 = 3~ L L
. {A *(1=%) [AR " 3A% * 3A%

-l -2

If we do not distinguish between the neutron and proton mass, the expressions for the self-energy of I1,+(g) and

I1,-(g) are identical. For z*, the coupling constant g, gets replaced by v/2g,. Using the previous procedure, we can
easily calculate the self-energy for I1,=(g). The contribution from the diagram in Fig. 1(b) for I :(g) is obtained as
follows:

. Uold [q — x(l—xiim ~3g x(l—X)>+(m2—3m72[ix(l—x))logmz_mizil;(l_x)]
Z{Al [ L4 2x(1 = x) +ZZ§(4X_ 1)+ 2+2x2q2l[q2x3(23— x) +m2]]

+/0 dx(1 - x)? LLR——QLX(AI%_ x)] H (17)

Using Eq. (2) and Egs. (16) and (17), we can calculate the dispersion relations for z° and z* for pseudoscalar coupling.

Considering a relativistic particle with mass m, moving in a homogeneous external magnetic field E, directed along the z
axis, the modified pion mass (m}?) is given by the following expression:

mi? = m2 + Rell(m}?,q = 0, B). (18)

The above expression is obtained by defining the effective pion masses by the positions of the pole of the propagator.
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B. Dispersion relation with pseudovector 7NN coupling

To obtain the self-energy in the pseudovector interaction, we start from the interaction Lagrangian,

nt

LY = %@’ysyﬂaﬂ(r@ﬁ,)\lﬂ, (19)

T

where f, is the pseudovector coupling constant. The vertex factor for the pseudovector coupling is (—i) 57” vs4. First, we
discuss the neutral pion self-energy. The contribution for the field-free part of z° is

119 q) = =112 ) Tlysas’? (s (+ ) + [p =

R Y S

It is seen that Eq. (20) diverges as N — 4. To remove the divergences, we use simple subtraction, obtaining

%% (q) = 15" (g) - 15" (m,.)
fom /' 5 m? — ¢*x(1 — x)
=(— — dx2 1 21
<m,, 4 Jo S mZx(1 = x) tlp =] 1)
) 2 A — o2 4m? — mio
= <f’”) (]—24m2 i tan"( Z 2) - fan~! — 2| (22)
m,) 4n q Vam? — g M0 4m? — m}zro

In the case of pseudovector coupling, we do not find any linear-order contribution of (eB), similar to the case of
pseudoscalar coupling for the same reason as mentioned before. Moreover, the contribution of the magnetic field comes

from the O((eB)?) terms. Hence, the value of HL},’I)(q) is given by (see Appendix C)

2 d*k
ni(g) =i <f—> / (2—4Tf[7545g)(k>7545$)(k +4q)]

m, )
1 x(x = 1)¢*2q% — ¢*) — m*q?
& / (1 = x)dx ( )a*( q”z q°) q] ‘ (23)
m,) 4n® Ay
The expression for Hfj'o)(q) is as follows (see Appendix C):
: (f2\? dk
5 (q) == i(L2) " 4 55 Tlysasy Wrsasy  + )
mg) (2z)*
AR /] (1-x)° 2| 3 a1 2 (1 2QL
=] — —q | 1-x)-=5—[x(1 - 2x
<mﬂ> 2|, dx 5 4 2AR+X( X) A2 [x(1 —x)g* + m?] Az + AL
1 24 g2 2,2
+/ dx(1 — x)? {inql%—x(l —x) qAZL”. (24)
0 R R

The value of Hi?;z)( ) is identical with H (q) because we consider m, = m, = m. Now we can easily calculate the self-

energy for neutral and charged pions and the expressions are as follows:
Mo(q) = 157 (g) + (B[N (g) + 20157 (9)]. (25)

Following the same procedures, we can obtain the charged pion self-energies for the pseudovector coupling:
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2 _ 2
4m= —m:, . m.

tan

(o) = (22) o |2

m,) 2n?

III. RESULTS AND DISCUSSIONS

We have considered the case of a weak magnetic field for
the numerical evaluation of our results. We have used the
condition that the field strength is much lower than the
squared pion mass (eB) < m2, which is our consideration
for the weak-field limit of the field. The pseudoscalar
coupling ¢2/(4x) is 14.1 [59] and for the pseudovector
case, we have taken the coupling f2/(4z) as 0.08 [60].

0.14 —— T ' ' ' ' '
| Tt~ - — 2" (s coupling)
RNy R —- 1" (PS coupling)
0135 RS |
S
[0)
S 013
. B
g
0.125

0.12

0.01
eB (GeVY)

FIG. 2. Effective pion mass as a function of the magnetic field
for PS coupling.

06 T | T | T | T | T ]
— ’//_
0.5+ n° (PS Coupling)
04
G 03 ="
8 T g, =0GeV, eB = 0.018 GeV*
0.2 -~ g,=025GeV,eB=0.018GeV® |
----- ‘= q,=0GeV, eB = 0.001 GeV* ]
0.1+ -+ q,=0.25GeV, eB=0.001 GeV* —|
0 1 | 1 | 1 | 1 | 1
0 0.1 0.2 0.3 0.4 0.5

q, (GeV) .

FIG. 3.

—x)%— [x(1 =x)qg*> +m?| <L—I—2x

q
4m?* — 612) My 4m* —m?,

2 41
AR

A%

Here, we have used the relation ¢*/(2m,)* = (f/m,)*.
Quantum fluctuations will invoke the possibility of the
usage of the Schwinger’s proper time propagators in the
presence of external magnetic field. Thus, we obtain
the vacuum contribution which needs to be suitably
renormalized to eliminate the divergences in the theory.
We have adopted the method of addition of mass counter-
terms for the PS coupling and the method of subtraction of
terms for the PV coupling, respectively. The details about
the renormalization procedure for PS coupling is high-
lighted in Appendix A. The correction terms which are
quadratic in field parameter (eB) contributes to the self-
energy of pions at one loop order and are devoid of any
divergences. The modified pion masses m:’ and m:* are
defined by the position of the pole of the effective
propagator and setting the three momentum label equal
to zero. Further, the dispersion relation of the pions are
evaluated numerically by setting the z— component of
momentum up to a maximum value of 0.175 GeV. The bare
pion masses have been fixed as mQ = 0.134 GeV
and mf = 0.139 GeV.

At first, we will consider the case of PS coupling of
pions. Figure 2 displays the effective mass of pion (m) as a
function of the background magnetic field and shows a
significant decrease in the effective mass for both the
neutral as well as charged pions in PS coupling. In addition,

0 0.1 0.2 0.3 0.4 0.5
q, (GeV)

The left panel shows the dispersion relation for neutral pion with the z component of momentum for pseudoscalar coupling.
The right panel shows a similar plot for the case of charged pions.
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0.14 . : : : : : .
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% Br
g L
0.134 _//_
0.132 L | I | . | .
0 0.005 0.01 0.015 0.02
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FIG. 4. Effective pion mass as a function of the magnetic field
for PV coupling.

itis seen in the inset of Fig. 2 that the rate of decrease of the
pion mass with the magnetic field is greater for the neutral
pion than the charged pion.

In Fig. 3, we present the graph of the dispersion relation
of neutral pion (left panel) and charged pion (right panel)
for PS coupling scheme. In both the graphs, the trend is
similar in nature. In the limit of the low-z component of the
momentum, there is a moderate increase of the energy
variable for different perpendicular components of the
momentum (0 and 0.25 GeV) coupled with field strengths
(0.018 and 0.001 GeV?).

In contrast to PS coupling, it is observed that for PV
coupling the effective pion masses increases slightly with
the increase of external magnetic field strength as shown in
Fig. 4. The dispersions of neutral pion (left panel) and
charged pions (right panel) are displayed in Fig. 5 at
different magnetic field strengths and perpendicular com-
ponent of momentum (g;). We observe the increasing
nature of pion energy similar to that in case of PS coupling.
It is noticed that for a fixed ¢ the dispersion relations are
insensitive to the magnetic field both for PS and PV
couplings.

03 1 T 1 T 1 T 1T T 1 T T T 1
B 0 ) —
n (PV Coupling)
025 =
L
- -
3
G 02 o
e e
Rl
0.15 — q,=0GeV,eB=0.018 GeV* |
. -~ g,=0.1GeV, eB = 0.018 GeV*
r — q,=0GeV, eB=0.001 GeV*
=+ q,=0.1GeV, eB = 0.001 GeV’
0 T I T (R T S

.1
0 0.025 0.05 0.075 0.1

q, (GeV)

0.125 0.15 0.175

FIG. 5.
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IV. SUMMARY AND CONCLUSION

In this work, we have revisited the modification of the
pion dispersion relations by the introduction of the external
magnetic field on the charged and neutral pions. For our
purpose, we have used Schwinger’s proper-time method of
the fermion propagator in the presence of a background
magnetic field to effectively describe proton propagators in
the one-loop self-energy corrections. The effect of the
external magnetic field appears as corrections of order
(eB)? over the vacuum contribution to the pion self-energy,
which are relevant for the study of neutron stars and
relativistic heavy ion collisions. The phenomenology of
pions in nuclear matter is generally described by a chiral
invariant pion-nucleon interaction which leads to the
additional Lagrangian term L,yy = —(gzvn/294my)> ¥

@N}/"T\IIN(I:I X 8,41:1) known as the Weinberg-Tomozawa
term in the literature. We have calculated the contribution
from this term to the pion self-energy. We have found that
the contribution for the corresponding diagram for the
zzNN interaction vanishes at the (eB) and (eB)? order of
the external magnetic field. From the numerical estimates,
we notice the decreasing nature of the effective pion masses
in the case of PS coupling, while an increasing nature is
noticed for PV coupling. We reconfirm the result of the
vacuum fluctuation free-field contribution to the pion
self-energy with an earlier work [59,61]. The values of
the weak magnetic field are considered up to 0.018m2 as
relevant in the phenomenological scenario. However, we do
not include the medium modifications in our calculation
which will be reported soon in a future work. The results
obtained here serve as a theoretical framework for study at
finite density and/or temperature in the presence of an
arbitrary magnetic field [56]. Finally, it should be noted
that we have not incorporated the nucleon’s magnetic
moment in the present work. Inclusion of this will
contribute in (eB) order. However, we intend to investigate
this in the future.

03T T 1T T T T T T T T T T 1
i n"” (PV Coupling) ]
0.25 o
’/
-
3
S o2 ;
s T
— q,=0GeV,eB=0018GeV" _|
0.15 -~ q,=0.1GeV, eB=0.018 GeV’
L — q,=0GeV, eB=0.001 GeV* ]
‘= g, =0.1GeV, eB = 0.001 GeV*
0.1 T N TR R T O T NS
0 0025 0.05 0.075 0.1 0125 0.15 0.175

q, (GeV)

The left panel shows the dispersion relation for neutral pion with the z component of momentum for pseudovector coupling.
The right panel shows a similar plot for the case of charged pions.
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APPENDIX A: RENORMALIZATION
OF VACUUM FLUCTUATION OF
PION SELF-ENERGY

As the free space contribution of the pion self-energy
is plagued with infrared divergences, we need to add
counterterms with the original interaction Lagrangian to
make it finite. Therefore, the counterterm Lagrangian is
written as [32]

1 1
Lor = = 55100 (0 + m}).0p + 2, 07 (A1)

The values of the counterterms $; and f, are determined
from the renormalization conditions as

)
ﬁl B ( aq2 >q2=m§

pr = (H)qzzm%‘

(A2)

We have obtained the following counterterms for renorm-
alization of the vaccuum fluctuation part:

+ Al dx3x(1 = x) In(m?* — m2x(1 — x))

N /1 dxmzx(l —2x) —23m%x2(1 -
0 m* — mzx(1 — x)

X)T +[p =1

(A3)

P = —% {mszr—F <m2 _m7,2[> (1 +é—7+ln(47w2)>
- Al dx(m? = 3m2x(1 — x)) In(m* — m2x(1 — x))]
+[p — nl. (A4)

These two counterterms ensure that the pion propagators

D, = [¢*> — m2 —TIg(q)]~" reproduce the physical mass of

pions in free space. Thus, the renormalized pion self-energy
for PS coupling is obtained as
Mg (q.m;) =1(q) = p1(g> —mz) = o (AS)

which we have used in the calculation of Eq. (13).
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APPENDIX B: DETAILS OF THE CALCULATION
OF SELF-ENERGY FOR PSEUDOSCALAR
COUPLING

In this appendix, we highlight some of the important
steps required for calculation of the pion self-energy using
the Lagrangian for PS coupling. We start by calculation of
the traces of the terms in the self-energy as

TrlysS,(k)ysSy(k + q)]
= TrlysSY (k)ysqS\ (k B){r-SY (k
594 v5qS, " (k+ q) + (eB){rsSa (k)ys
x Sk + q) + 7sSS (k)5S (k + )}
+ (eB){ysS (k)ys S (k + ) + 758 (K)ys

x S (k+ ) + 7585 (K758, (k + q)} + O((eB)*)]

=T + (eB)[T, + T3] + (eB)*[T4 + Ts + T (B1)
where,

Ty = Tr[ySS((IO)(k)ySSg)) (k+q)]

Ty = TrlysSy (K)rsSy (k + )]

Ty = TrlysSa) (K)rsSy) (k + q)]

Ty = Tr[?’ssgl)<k)75521>(k +q)]

Ts = Tr[ysSS (k)75 (k + )]

Ts = TrlysS& (k)rsSy (k + q)] (B2)

T, gives the field free case for the pion self-energy. As
mentioned previously in the text, T, and 7’5 are individually
zero as the traces vanish. The terms 74, T5 and Ty
contribute to the first order in field corrections which are
quadratic in the magnetic field variable. Using the standard
procedure of Feynman parametrization (FP) [62], the
nonrenormalized vacuum contribution to the self-energy
is obtained as Eq. (12). Further, renormalization of Eq. (12)
gives Eq. (13) devoid of any divergences. T, is evaluated as

Ty = TrlysSa’ (K)rsS, (k+ ) (B3)
As we are considering the proton loop in Fig. 1(a), both the

masses are to be considered as proton mass. Therefore, we
rewrite the above equation as

Ty = Trlysy r2(r-ky +m,)ysyiva(yv-(k+ q)y +mp)
1

[k = myPP[(k + q)* = m]?

X

1
(k2 = miP[(k + q)* = m]?

(B4)

= 4[mj — ky.(ky + q))]
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where we have used,

rivarky) = (r-(k+q)rirz

r1radyiva =2(r-q) — 4 (BS)

Using FP (and substituting k — (k — xq)), we obtain,

(B6)

Ty=—
[k — )

where, A” = ki + Ag. Solution of the momentum integral
is as follows:
|

PHYSICAL REVIEW D 93, 074033 (2016)

_ 4Alx(l —x)dxr[4]/%

[k — Ayl

(B7)

In order to evaluate the above integration, we will use
4-momentum integrals involving the parallel and
perpendicular components. Here, we list the following
identities that will be required for the evaluation of the
pion self-energy:

Identity 1:

dzkEn 1

[Gowari] e/

(27)* [kg, + 4]

=if ég <41n>r[i[1}” <A1”> B i<4i>2ﬁr[§[;1l] <Al>

i1

(4x)2 T4 A%

Identity 2:

/ kK _i/cﬂkl
Qa) [k —at ) (@2n)?

__i/aﬂkLiFH—Z] (L
B (2m)*4n T4 \4

I 1 1

T any T A

(B3)
dzkEu _k%n
(27)* [k, + Ay]*
PR RN
) - (4n)’T4] (AR> 2|
(B9)

Therefore, using the above identities, we obtain the first correction terms to the pion self-energy as mentioned already

in Eq. (14):
211 1 m2+x(1=x)g;
(1,1) gx P Il
IT =-== dxx(1 -x)|—+——5—— B10
500 == B [ a1 - |+ (B10)
Next, we evaluate the term 7. We start with the trace as follows:
2 0
To = TrlysSe (k)ysSy” (k+ q)
vkio, o 5 —-2Kk%
=Trl|y <k+m - ——(k*—=m ))y (k44 +m3)
[ | PR P PR = m3 (K + q)? = m})
4{[k (k+ q) —m3] 2 + [K3 +ky.q1] ! (B11)
= . q)—m 1.9 .
T e I R (R R

Now, using the usual procedure of FP, we obtain

074033-9
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[k + k.g(1 = 2x) + ¢*x(x = 1) = m2] [k — 2xk,.q, + x*¢3]
[k = AjP

T6:4

kK 4 qix(x=1)+ (ki.g)(1 = 2x)
1 - Aﬁ}j . (B12)

_|_

Similar to the evaluation of the 7, term, we will make use of the following identities:

Identity 3:
d'k KK i 13
| & G- aF @A, (B13)
Identity 4:
'k KB alzklk2 1 T[4 1
/(277)4 [kﬁ—An]S__l/W t4zT(5] A}
i Tt i1
S TGP TSTAIA G T A (B
Identity 5:
/ d*k (ki-q.)° __l./dzlq 2 g 1TH 1
o)tk —ayP (27)2"* 2 4xT5] Af
i ¢ 1 1
~ T 2T .
Identity 6:
/d“k 1 _i/aﬂkli%i
Qr)*[kd — AP (27)? 4z T[5] Af
i THIEIr i TR
T GoPTEITH A, (02 TTS) A (B10)
Identity 7:

Q2r)* [k — Ay (4x)* T Ag

FrR 11
/ L . (B17)

Therefore, we obtain the second-order correction to the pion self-energy as
20) _g_}ZT [/1 dx(1 =z [ 1 @x(1—x)+ ¢ x(4x—1)+ m%, N 2x2¢% [¢*x(1 = x) + m%,]
0

(
1 - —
o )= A 3A2 3A%

+/01dx(1-x)2[i—mﬂ. (B18)

A A2

APPENDIX C: DETAILS OF THE CALCULATION OF SELF-ENERGY
FOR PSEUDOVECTOR COUPLING

The same formalism for the calculation of the correction terms in PS coupling can be applied to the PV coupling. So, we
start by calculation of the traces of the terms in the self-energy as

074033-10
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Tr(ys4S,(k)ys4S,(k + q)]
— TrlysgSy (K)ysaSY (k + q) + (eB){rsaSy (k)7s4Sy) (k + q) + 754S%) (k)ysaSY (k + q)}

+ (eB)*{rs4S (k)ysaSs) (k + q) + 1545y (k)ysaSy” (k + q) + rs4SS (k)ysaSy) (k + q)} + O((eB)?)]

=T + (eB)[T + T3] + (eB)*[T} + T + Tg], (C1)
where
Ty = Tr[ysqs (k)rsqS '(k+q)]
le = Tr[ys4S. (k)J’s (k +q)]
r[ySqS (k)7545 (k +q)]
r[?sqS (k)ysf[S 'k + q)]
= TrlysqS (K)ys4Sy (k + q)]
Ty = TrlysqSi” (k)rsqSy (k + q)). (C2)
T is evaluated as
T, = TrlysqSy (K)ysaSy (k+ q)]
1
= Tr[ysqiyiya2(y-ky + my)ysdiviya(v.(k + q); +m,)]
I 14 II P [kz—mf,}Z[(k—&—q)z—m%,]z
4
= A [qz(kﬁ + (ky - qy)) + 2(kogs — k3qo)* + ¢* — 26]ﬁ]’ (C3)
where A, = [k* — m3]*[(k 4+ ¢)* — m3]*. Using FP [and substituting k — (k — xq)], we obtain
4
T, = EYNG @[k + x(x = D)gj + (1 = 2x) (ky - q)] + 2(kogs — k3q0)* + ¢* — 24, (C4)
I
where Ay = ki + Ap. Therefore, we need to evaluate the integral
d*k
——T
/ (2r)* 4
1 d*k ¢k + x(x = 1)g3 + (1 = 2x)(ky - + 2(kogs — k3q0)* + m%(g* — 243
:4/ x(l—x)dxl"[4]/ 451 [ I ( )q" ( ) (K 2QI|)] . (kogs — k3qo) »(q q”)‘ (C5)
0 (27) [k|| - AII]
i : kodk k k
Identity 8: d Od 3 LA ) (C8)
—Ap)?
dk dk k2 1 1 1 :
[ o e ©
I Identity 11:
Identity 9:
/ d’k | 1 1 (c9)
/ / dkodk3 k2 111 ) (27)? (K2 + Ag)? 4z Ag’
=—l— .
k Ay ) 4 T'[4] ZAﬁ
Therefore, using the above identities, we obtain the first
Identity 10: correction terms to the pion self-energy as
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2 1 1 x(x = Dg*(2q% = ¢*) — m*q3
' (g) = (f—> —/ x(1 —x)dx{ b= Vg 24y =) = may] (C10)
0

m 47 A12e

b

As we have not differentiated between the masses of the neutron and proton, the terms 75 and T are identical. We start by
evaluating the trace in the T’ term,

T, = TrlysqSy (k)rsaSy (k + q)]

_ vk, o, —2k%
_2k2L 2 k2 - m%
= Tr {{754@54(’3 +4) + vsqysqmy} — {754(7/ ki )ysd(k+ 4) Z H : (C11)

where Ag = (k* — m3)*((k + ¢)* — m3). The first term in {} in Eq. (C11) gives

Trlysqkysd(k + 4) + ysdrsamy ki = 42(k.q)* + ¢*(k.q) — ¢°K* = ¢*m} ]k}
=42(k- q)*k% — ¢*K* 3+ 22 (k- 9)* ] — X*¢*K*q7 + ¢*x(x — 1)g* — mp]kT
= 2x(1=2x)q* (k- q)(ky - q1) + X*¢*q7 [x(x = 1)g* = m] + (1 = 2x)¢* (k- g)k}
+ (1 =2x0)x°q* (k- q)q7 —4x(k-q)*(ky - q1) +2xg°k* (ky - q1) = 2xq*[x(x = 1)g* = mp|(k - q1),  (Cl2)

where we have used FP by using k — (k — x¢). In a similar way, following the procedure of FP, the second term in {} in
Eq. (C11) gives

Trlysq(y - k1 )ys4(k + 4)]
=42(q-k)(q- ki) —q*(k-ki) +q*(g- k1))
= 4[2(/& : CIJ_)2 + qzki —x(x — l)qzqu - 2(kn : Q||)(ki “qy)+2x(k- ‘I)qzl - qz(ki : C]L)]- (C13)

Now the denominator in Eq. (C11) is also modified by the momentum substitution as

1 1
Ag (K =mp)*((k+q)* — mj)
1

=—x. (C14)
[k — Ay
We have used the following identities to arrive at the second correction term. They are listed as follows:
Identity 12:
/ dk (k-q)k% q_z/ dk R q_z/ d'k (kj —k)k3
@)tk —aP 4 Cotlg-aP 4 @0 [k -ayP
;2
i g1 3
— 4 _ - 2 C15
(4r)? 4 T[5] Ag (CI3)
Identity 13:
/ A L ) (c16)
(27) [k|| — Ay (47)°T'[5] Ag

Identity 14:
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/d“k (k- q)? _q_z/ d*k K2
2n)* [k — A d ) )= AP

Identity 15:

i ¢TI
 (4n)> 4 T[5] A}

(C17)

i T3 1 c1s)

/ Pk R
(27)* [k — Ay

Identity 16:

(47)*T[5] A%

JEEX RN EOWE Sk

(2a)* [k — Ayt

I q]

~ (4n)? 2 TH|T[3] Ag

(27)2"+ 2 4xT[4] A

1 i P11

A, (C19)

(4r)? 2

Using the above identities in addition to identities 4—7, we obtain the second correction term to the pion self-energy as

(2.0) ZANEE /l (1-xP° ,[3 a1 2 (1 it
0 _ e " 2| 2 eIk — 1) - — 22 L
70 (Q) <m ) 471_2 |: 0 X 3 q 2AR X(X )A% + [x(x )q ml’] A% + X A%

b

1 24 2 2
+/ dx(l—x)z{q—i_iql—x(x—l)qzl
0 Ak

Ag

(C20)

[1] K. Tuchin, Phys. Rev. C 83, 017901 (2011).

[2] K. Tuchin, Phys. Rev. C 88, 024910 (2013).

[3] K. Tuchin, Phys. Rev. C 91, 064902 (2015).

[4] L. Xia, E. V. Gorbar, V. A. Miransky, and 1. A. Shovkovy,
Phys. Rev. D 90, 085011 (2014).

[5] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and X. Wang,
Phys. Rev. D 88, 025043 (2013).

[6] 1. A. Shovkovy, Lect. Notes Phys. 871, 13 (2013).

[7]1 A. Ayala, C. A. Dominguez, L. A. Hernandez, M. Loewe,
and R. Zamora, Phys. Rev. D 92, 096011 (2015).

[8] A. Ayala, C. A. Dominguez, L. A. Hernandez, M. Loewe,
J. C. Rojas, and C. Villavicencio, Phys. Rev. D 92, 016006
(2015).

[9] A. Ayala, J.J. Cobos-Martnez, M. Loewe, M. E. Tejeda-
Yeomans, and R. Zamora, Phys. Rev. D 91, 016007
(2015).

[10] A. Ayala, M. Loewe, and R. Zamora, Phys. Rev. D 91,
016002 (2015).

[11] A. Ayala, L. A. Hernndez, A.J. Mizher, J. C. Rojas, and C.
Villavicencio, Phys. Rev. D 89, 116017 (2014).

[12] M. Loewe, C. Villavicencio, and R. Zamora, Phys. Rev. D
89, 016004 (2014).

[13] R.C. Duncan and C. Thompson, Astrophys. J. 392, L9
(1992).

[14] M. G. Alford, J. Berges, and K. Rajagopal, Nucl. Phys.
B571, 269 (2000).

[15] E. V. Gorbar, Phys. Rev. D 62, 014007 (2000).

[16] E.J. Ferrer, V. de la Incera, and C. Manuel, Phys. Rev. Lett.
95, 152002 (2005); Nucl. Phys. B747, 88 (2006).

[17] E.J. Ferrer and V. de la Incera, Phys. Rev. D 76, 045011
(2007).

[18] K. Fukushima and H.J. Warringa, Phys. Rev. Lett. 100,
032007 (2008).

[19] J. L. Noronha and I. A. Shovkovy, Phys. Rev. D 76, 105030
(2007).

[20] B. Feng, D. Hou, H.-C. Ren, and P.-P. Wu, Phys. Rev. Lett.
105, 042001 (2010).

[21] S. Fayazbakhsh and N. Sadooghi, Phys. Rev. D 82, 045010
(2010); 83, 025026 (2011).

[22] D.E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl.
Phys. A803, 227 (2008).

[23] V. Skokov, A.Y. Illarionov, and V. Toneev, Int. J. Mod.
Phys. A 24, 5925 (2009).

[24] C. Gale and J. 1. Kapusta, Phys. Rev. C 35, 2107 (1987).

[25] E. Oset, H. Toki, and W. Weise, Phys. Rep. 83, 281 (1982).

[26] A.B. Migdal, E. E. Saperstein, M. A. Troitsky, and D. N.
Voskresensky, Phys. Rep. 192, 179 (1990).

[27] V.F. Dmitriev and T. Suzuki, Nucl. Phys. A438, 697 (1985).

074033-13


http://dx.doi.org/10.1103/PhysRevC.83.017901
http://dx.doi.org/10.1103/PhysRevC.88.024910
http://dx.doi.org/10.1103/PhysRevC.91.064902
http://dx.doi.org/10.1103/PhysRevD.90.085011
http://dx.doi.org/10.1103/PhysRevD.88.025043
http://dx.doi.org/10.1007/978-3-642-37305-3
http://dx.doi.org/10.1103/PhysRevD.92.096011
http://dx.doi.org/10.1103/PhysRevD.92.016006
http://dx.doi.org/10.1103/PhysRevD.92.016006
http://dx.doi.org/10.1103/PhysRevD.91.016007
http://dx.doi.org/10.1103/PhysRevD.91.016007
http://dx.doi.org/10.1103/PhysRevD.91.016002
http://dx.doi.org/10.1103/PhysRevD.91.016002
http://dx.doi.org/10.1103/PhysRevD.89.116017
http://dx.doi.org/10.1103/PhysRevD.89.016004
http://dx.doi.org/10.1103/PhysRevD.89.016004
http://dx.doi.org/10.1086/186413
http://dx.doi.org/10.1086/186413
http://dx.doi.org/10.1016/S0550-3213(99)00830-5
http://dx.doi.org/10.1016/S0550-3213(99)00830-5
http://dx.doi.org/10.1103/PhysRevD.62.014007
http://dx.doi.org/10.1103/PhysRevLett.95.152002
http://dx.doi.org/10.1103/PhysRevLett.95.152002
http://dx.doi.org/10.1016/j.nuclphysb.2006.04.013
http://dx.doi.org/10.1103/PhysRevD.76.045011
http://dx.doi.org/10.1103/PhysRevD.76.045011
http://dx.doi.org/10.1103/PhysRevLett.100.032007
http://dx.doi.org/10.1103/PhysRevLett.100.032007
http://dx.doi.org/10.1103/PhysRevD.76.105030
http://dx.doi.org/10.1103/PhysRevD.76.105030
http://dx.doi.org/10.1103/PhysRevLett.105.042001
http://dx.doi.org/10.1103/PhysRevLett.105.042001
http://dx.doi.org/10.1103/PhysRevD.82.045010
http://dx.doi.org/10.1103/PhysRevD.82.045010
http://dx.doi.org/10.1103/PhysRevD.83.025026
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.298
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.298
http://dx.doi.org/10.1142/S0217751X09047570
http://dx.doi.org/10.1142/S0217751X09047570
http://dx.doi.org/10.1103/PhysRevC.35.2107
http://dx.doi.org/10.1016/0370-1573(82)90123-5
http://dx.doi.org/10.1016/0370-1573(90)90132-L
http://dx.doi.org/10.1016/0375-9474(85)90013-2

ADHYA, MANDAL, BISWAS, and ROY

[28] P. A. Henning and H. Umezawa, Nucl. Phys. A571, 617
(1994).

[29] C.L. Korpa and R. Malfliet, Phys. Rev. C 52, 2756
(1995).

[30] S. Biswas and A.K. Dutt-Mazumder, Phys. Rev. C 74,
065205 (2006).

[31] S. Biswas and A.K. Dutt-Mazumder, Phys. Rev. C 77,
045201 (2008).

[32] T. Matsui and B.D. Serot, Ann. Phys. (N.Y.) 144 (1982)
107.

[33] I. M. Mishustin, F. Myhrer, and P. J. Siemens, Phys. Lett. B
95, 361 (1980).

[34] J. O. Andersen, Phys. Rev. D 86 (2012) 025020.

[35] A.B. Migdal, Rev. Mod. Phys. 50, 107 (1978).

[36] G. Colucci, E.S. Fraga, and A. Sedrakian, Phys. Lett. B
728, 19 (2014).

[37] S.P. Klevansky and R. H. Lemmer, Phys. Rev. D 39, 3478
(1989).

[38] V.P. Gusynin, V. A. Miransky, and 1. A. Shovkovy, Phys.
Lett. B 349, 477 (1995); Nucl. Phys. B462, 249 (1996).

[39] A.Yu. Babansky, E. V. Gorbar, and G.V. Shchepanyuk,
Phys. Lett. B 419, 272 (1998).

[40] D. Ebert and K.G. Klimenko, Nucl. Phys. A728, 203
(2003).

[41] B. Hiller, A. A. Osipov, A. H. Blin, and J. da Providencia,
SIGMA 4, 024 (2008).

[42] J.K. Boomsma and D. Boer, Phys. Rev. D 81, 074005
(2010).

[43] B. Chatterjee, H. Mishra, and A. Mishra, Phys. Rev. D 84,
014016 (2011).

[44] R. Gatto and M. Ruggieri, Phys. Rev. D 82, 054027 (2010);
83, 034016 (2011).

PHYSICAL REVIEW D 93, 074033 (2016)

[45] K. Kashiwa, Phys. Rev. D 83, 117901 (2011).

[46] E.S. Fraga and A.J. Mizher, Phys. Rev. D 78, 025016
(2008).

[47] M. Frasca and M. Ruggieri, Phys. Rev. D 83, 094024
(2011).

[48] A. Rabhi and C. Providencia, Phys. Rev. C 83, 055801
(2011).

[49] J.O. Andersen and R. Khan, Phys. Rev. D 85, 065026
(2012).

[50] J. O. Andersen and A. Tranberg, J. High Energy Phys. 08
(2012) 002.

[51] A.J. Mizher, M. N. Chernodub, and E. S. Fraga, Phys. Rev.
D 82, 105016 (2010).

[52] V. Skokov, Phys. Rev. D 85, 034026 (2012).

[53] D. C. Duarte, R. L. S. Farias, and R. O. Ramos, Phys. Rev. D
84, 083525 (2011).

[54] C.S. Machado, R. D. Matheus, S. I. Finazzo, and J. Noronha,
Phys. Rev. D 89, 074027 (2014).

[55] J. Schwinger, Phys. Rev. 82, 664 (1951).

[56] M. Mandal et al. (to be published).

[57] T. K. Chyi, C. W. Hwang, W. FE. Kao, G. L. Lin, K. W. Ng,
and J.J. Tseng, Phys. Rev. D 62, 105014 (2000).

[58] J. Navarro, A. Sanchez, M. E. Tejeda-Yeomans, A. Ayala,
and G. Piccinelli, Phys. Rev. D 82, 123007 (2010).

[59] J. Piekarewicz, Phys. Rev. C 48, 1555 (1993).

[60] T. Ericson and W. Weise, Pions and Nuclei (Oxford
University, New York, 1998).

[61] J. Piekarewicz and A. G. Williams, Phys. Rev. C 47, R2462
(1993).

[62] M.E. Peskin and D.V. Schroeder, An Introduction to
Quantum Field Theory (Addison-Wesley, Reading, MA,
1995).

074033-14


http://dx.doi.org/10.1016/0375-9474(94)90713-7
http://dx.doi.org/10.1016/0375-9474(94)90713-7
http://dx.doi.org/10.1103/PhysRevC.52.2756
http://dx.doi.org/10.1103/PhysRevC.52.2756
http://dx.doi.org/10.1103/PhysRevC.74.065205
http://dx.doi.org/10.1103/PhysRevC.74.065205
http://dx.doi.org/10.1103/PhysRevC.77.045201
http://dx.doi.org/10.1103/PhysRevC.77.045201
http://dx.doi.org/10.1016/0003-4916(82)90106-3
http://dx.doi.org/10.1016/0003-4916(82)90106-3
http://dx.doi.org/10.1016/0370-2693(80)90169-0
http://dx.doi.org/10.1016/0370-2693(80)90169-0
http://dx.doi.org/10.1103/PhysRevD.86.025020
http://dx.doi.org/10.1103/RevModPhys.50.107
http://dx.doi.org/10.1016/j.physletb.2013.11.028
http://dx.doi.org/10.1016/j.physletb.2013.11.028
http://dx.doi.org/10.1103/PhysRevD.39.3478
http://dx.doi.org/10.1103/PhysRevD.39.3478
http://dx.doi.org/10.1016/0370-2693(95)00232-A
http://dx.doi.org/10.1016/0370-2693(95)00232-A
http://dx.doi.org/10.1016/0550-3213(96)00021-1
http://dx.doi.org/10.1016/S0370-2693(97)01445-7
http://dx.doi.org/10.1016/j.nuclphysa.2003.08.021
http://dx.doi.org/10.1016/j.nuclphysa.2003.08.021
http://dx.doi.org/10.1103/PhysRevD.81.074005
http://dx.doi.org/10.1103/PhysRevD.81.074005
http://dx.doi.org/10.1103/PhysRevD.84.014016
http://dx.doi.org/10.1103/PhysRevD.84.014016
http://dx.doi.org/10.1103/PhysRevD.82.054027
http://dx.doi.org/10.1103/PhysRevD.83.034016
http://dx.doi.org/10.1103/PhysRevD.83.117901
http://dx.doi.org/10.1103/PhysRevD.78.025016
http://dx.doi.org/10.1103/PhysRevD.78.025016
http://dx.doi.org/10.1103/PhysRevD.83.094024
http://dx.doi.org/10.1103/PhysRevD.83.094024
http://dx.doi.org/10.1103/PhysRevC.83.055801
http://dx.doi.org/10.1103/PhysRevC.83.055801
http://dx.doi.org/10.1103/PhysRevD.85.065026
http://dx.doi.org/10.1103/PhysRevD.85.065026
http://dx.doi.org/10.1007/JHEP08(2012)002
http://dx.doi.org/10.1007/JHEP08(2012)002
http://dx.doi.org/10.1103/PhysRevD.82.105016
http://dx.doi.org/10.1103/PhysRevD.82.105016
http://dx.doi.org/10.1103/PhysRevD.85.034026
http://dx.doi.org/10.1103/PhysRevD.84.083525
http://dx.doi.org/10.1103/PhysRevD.84.083525
http://dx.doi.org/10.1103/PhysRevD.89.074027
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1103/PhysRevD.62.105014
http://dx.doi.org/10.1103/PhysRevD.82.123007
http://dx.doi.org/10.1103/PhysRevC.48.1555
http://dx.doi.org/10.1103/PhysRevC.47.R2462
http://dx.doi.org/10.1103/PhysRevC.47.R2462

