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We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite
conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magneto-
hydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we
consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm
and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm > 0), the
decay of the energy density slows down since the fluid gains energy from the magnetic field. For a
diamagnetic fluid (i.e., with χm < 0), the energy density decays faster because it feeds energy into the
magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time τ
with a power law∼τ−a, two distinct solutions can be found depending on the values of a and χm. Finally, we
also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a
temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD
data. We find that the temperature and energy density decay more slowly because of the nonvanishing
magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however,
rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion
collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.
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I. INTRODUCTION

It has recently been pointed out that extremely strong
magnetic fields are produced in relativistic heavy-ion
collisions. In general, their magnitude grows approximately
linearly with the center-of-momentum energy of the collid-
ing nucleons [1–3], and reaches B ∼ 1018–1019 G in Au-Au
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. In these collisions a new
form of hot and dense nuclear matter is created, commonly
knownas quark-gluon plasma (QGP) [4]. In theQGP, quarks
are deconfined and chiral symmetry is restored, such that
quarks are (approximately) massless and have definite
chirality and helicity. Thus, in the presence of very strong
magnetic fields, quarks will be polarized and will move
preferentially in the direction parallel (or antiparallel) to the
magnetic field. Therefore, if the numbers of left- and right-
handed quarks are not equal, a net charge current will be
induced, a phenomenon known as “chiral magnetic effect”
(CME) [5,6]. As well as charge currents, a chiral current can
also be induced by the magnetic field and gives rise to the
“chiral separation effect” (CSE). Combining these two
effects, a densitywave is expected to be inducedbymagnetic
fields, called “chiral magnetic wave” (CMW) [7], which
might break the degeneracy between the elliptic flows of π�

[8]. Recently, it has been found that these phenomena can be
interpreted in the language of the Berry phase and effective
chiral kinetic equations, which can be obtained by the

path-integralmethod [9–11],Hamiltonianapproaches [12,13],
and quantum kinetic theory via Wigner functions [14,15]; for
reviews and additional references see Refs. [16–18].
A possible origin of CME, CSE, and CMW is the chiral

anomaly, which is topologically invariant. Thus, these
effects are not expected to be significantly modified when
considering interactions between particles. In contrast,
there are also several interesting phenomena dominated
by the interactions. For example, instead of a strong
magnetic field, a chiral current and density wave can also
be induced by an electric field, the so-called “chiral electric
separation effect” [19–22]. Similarly, adding an electric
field perpendicular to the magnetic field, a chiral Hall
current is expected, called “chiral Hall-separation effect”
[22], which might cause an asymmetric charge and chirality
distribution in rapidity. These phenomena have drawn
considerable attention within the study of hot and dense
matter under the influence of strong magnetic fields.
A very popular and successful tool to describe heavy-ion

collision dynamics is relativistic hydrodynamics (see, e.g.,
Refs. [23–30]). In order to study some of the phenomena
mentioned above within a hydrodynamical approach, the
latter needs to be extended to include magnetic fields; i.e.,
one has to develop and apply a relativistic magnetohydro-
dynamical (MHD) framework. Although the magnetic field
created in heavy-ion collisions rapidly decays in the vacuum
[5] and might become very small even before the system
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reaches local thermal equilibrium, some recent studies have
shown that its decay might be substantially delayed in the
presence of an electrically conducting medium [31–33].
Thus, it is still presently unclear whether the effect of
magnetic fields on the dynamics of a heavy-ion collision
can be neglected or needs to be taken properly into account.
In analogy with our previous work [34] (hereafter paper

I), we define the dimensionless quantity, σ ¼ B2=e, to
measure the relative importance of the magnetic field, with
B being the magnitude of the magnetic field (measured in
units of GeV2) and e the energy density of the fluid.
Clearly, for regions where σ ≳ 1, the effect of the magnetic
fields cannot be ignored. Interestingly, in a typical mid-
central Au-Au collision (e.g., with impact parameter
∼10 fm at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV), the average magnetic field
is ∼10m2

π [1,2], with mπ the pion mass, and the energy
density is ∼10 GeV fm−3, thus giving σ ∼ 0.5. Further-
more, event-by-event simulations show that in certain
events σ could be even much larger than 1 in certain
regions [35]. Therefore, it is still very important to inves-
tigate relativistic MHD, ideally with a numerical code
solving the equations in 3þ 1 dimensions.
Before starting to investigate MHD numerically, it is

worthwhile to search for analytic solutions in some simple,
but nevertheless realistic, test cases. In paper I we have
considered one-dimensional, longitudinally boost-invariant
Bjorken flow [36]with a transversemagnetic field and in ideal
MHD, i.e., for infinite electrical conductivity and without
dissipative effects [34]. Quite remarkably, we found that
under these conditions the decay of the energy density is the
same as in the casewithout magnetic field. The reason is that,
for a transverse magnetic field, B=s (where s is the entropy
density) is conserved and the magnetic field is advected with
the fluid, as amanifestation of the “frozen-flux theorem”well
known from astrophysics and plasma physics [30,37].
In paper I we have neglected the effect of a nonzero

magnetization of the QGP [34]. In this work, we extend our
previous study to include a nonzero magnetization for the
scenario of a pure Bjorken flow. The final goals are those of
improving the theoretical understanding of the MHD
evolution of the QGP, but also of determining how the
magnetization of the QGP may have an influence on
measurable quantities, as recently suggested in Ref. [38]
in relation to the value of the elliptic flow parameter v2.
Within a linear approximation, the magnetization effect

can be described through the magnetic susceptibility χm,
which is the ratio of the magnetic polarization to the
magnetic field.1 Interestingly, numerous studies, e.g., from

lattice QCD [38,43–48] and from perturbative QCD [49],
using the Sakai-Sugimoto model [50], the functional
renormalization group [49], or other models [47,51–55],
have all suggested that in a confined phase (hadron phase)
the medium is diamagnetic, i.e., with χm < 0, while in the
deconfined QGP phase it is paramagnetic, i.e., with χm > 0.
As a result, by simply choosing different signs of χm, we
can investigate the dynamics of different phases with
nonzero magnetization.
In principle, the magnetic susceptibility χm of the QGP is

a function of the temperature and of the magnitude of the
magnetic field. In practice, however, the variation of χm is
very small in the experimentally accessible region of
temperatures and magnetic fields. For example, from
lattice-QCD calculations [38,44] (see also Ref. [47]), for
ðeBÞ2 ¼ 0.007–0.2 GeV2 and T ¼ 100–350 MeV, the sus-
ceptibility is in the range 0≲ χm ≲ 0.05 (note that a
prefactor 4πα is required to convert the values of
Refs. [38,44,47] from SI to natural units). In view of this
and for the sake of simplicity, wewill first assume a constant
χm and then investigate the modifications of the dynamics
when χm is assumed to depend on the temperature.
This paper is organized as follows. In Sec. II, we

introduce the ideal-MHD framework with nonzero mag-
netization. We also discuss the conservation equations and
apply them to Bjorken flow in the presence of a magnetic
field. In Sec. III, we obtain the temporal evolution of the
energy density in ideal transverse MHD with magnetiza-
tion. As a useful comparison, we consider in Sec. IV the
decay of the energy density in the presence of an external
magnetic field undergoing a a power-law decay in proper
time. In Sec. V we solve the MHD equations numerically
for a temperature-dependent magnetic susceptibility and a
realistic equation of state (EOS). Finally, we summarize
and conclude in Sec. VI.
Throughout this work, we work in a flat spacetime with

the metric tensor gμν ¼ ημν ¼ diagfþ;−;−;−g, so that the
fluid four-velocity uμ satisfies uμuμ ¼ 1 and the orthogonal
projector to the fluid four-velocity is defined as
Δμν ¼ gμν − uμuν. We will also use the Levi-Civita tensor
with ϵ0123 ¼ −ϵ0123 ¼ 1. Note that in this convention,
contracting the indices of two Levi-Civita tensors will have
an additional minus sign, e.g., ϵμναβϵμνρσ ¼ −ðgαρgβσ − gασg

β
ρÞ.

II. IDEAL MHD WITH MAGNETIZATION

A. Covariant form of the MHD equations

In this section, we give a brief introduction to the Lorentz-
covariant form of ideal MHD with nonzero magnetization.
More details can be found in Refs. [56–59], which use the
same convention as this work, or in Refs. [60,61], which use
instead a þ2 signature for the metric.
We start by recalling that in the presence of an electro-

magnetic field, the (total) energy-momentum tensor of an
ideal fluid can be decomposed into two parts,

1Note that usually the magnetic susceptibility is related to the
quark condensate hψ̄σμνψi [39], and has been studied in a number
of works, see e.g., Refs. [40,41] for lattice QCD, Ref. [42] for other
theoretical studies. Here, we concentrate on the full magnetic
susceptibility, which is defined through a derivative of the pressure
(grand canonical potential);more detailswill be discussed inSec. II.
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Tμν ¼ Tμν
M þ Tμν

EM; ð1Þ
where

Tμν
EM ¼ −FμλFν

λ þ
1

4
gμνFαβFαβ; ð2Þ

is the contribution from the electromagnetic fields and

Tμν
M ¼ euμuν − pΔμν −

1

2
ðMμλFν

λ þMνλFμ
λÞ ð3Þ

refers to the matter part, with p being the thermodynamic
pressure [30]. The polarization tensorMμν can be expressed
directly through the derivatives of the grand canonical
potential Ω with respect to the electromagnetic field (or
Faraday tensor) Fμν as

Mμν ≡ −
∂ΩðT; μ; BÞ

∂Fμν
; ð4Þ

where T, μ, B are the temperature, the chemical potential,
and the strength of the magnetic field, respectively. In the
weak-field limit, the terms ∼Mμν in Eq. (3) can be
neglected.
The equations for the conservation of the (total) energy

and momentum are given simply by

∂μTμν ¼ 0; ð5Þ

and reduce, with the help of Maxwell’s equations, to the
well-known form

∂μT
μν
M ¼ −∂μT

μν
EM ¼ Fμλjλ; ð6Þ

with jμ being the charge current. Without loss of generality,
the electromagnetic field tensor can be decomposed as

Fμν ¼ Eμuν − Eνuμ þ ϵμναβuαBβ; ð7Þ

with

Eμ ≡ Fμνuν; Bμ ≡ 1

2
ϵμναβuνFαβ: ð8Þ

In the local rest frame of the fluid, where uμ ¼ ð1; 0Þ, the
spatial components of Eμ represent the electric-field three-
vector, while those of Bμ refer to magnetic-field three-
vector. We can next introduce the in-medium field-strength
tensor Hμν ≡ Fμν −Mμν and similarly decompose Hμν and
Mμν as

Mμν ¼ Pνuμ − Pμuν þ ϵμναβuαMβ;

Hμν ¼ Dμuν −Dνuμ þ ϵμναβuαHβ; ð9Þ
where

Pμ ≡ −Mμνuν; Mμ ≡ 1

2
ϵμναβuνMαβ; ð10Þ

Dμ ≡Hμνuν; Hμ ≡ 1

2
ϵμναβuνHαβ: ð11Þ

In the local rest frame the spatial components P, M are the
electric and magnetic polarization vectors, respectively.
Similarly, the spatial components D and H are the electric
displacement field and magnetic field intensity, respec-
tively. Note that the minus sign in the definition of Pμ is
coming from the fact that the polarization field in the
medium points in the direction opposite to the external
electric field. Hereafter, we will use Mμν instead of Hμν to
discuss the magnetization effects.
Besides the direction given by the fluid velocity, the

magnetic field singles out another special direction in the
system, which we associate with the spacelike unit vector2

bμ ≡ Bμ

B
; ð12Þ

where

B≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−BμBμ

p
; bμbμ ¼ −1: ð13Þ

In a linear approximation we can rewrite Mμ as

Mμ ≡Mbμ ¼ χmBμ; ð14Þ

where

M ≡ χmB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−MμMμ

p
: ð15Þ

Since BμBμ and MμMμ are Lorentz scalars, B and M
represent the magnitude of the magnetic field and the
magnetization in the local rest frameof the fluid, respectively.
In addition, χm is the magnetic susceptibility, which in
principle is a function of temperature and of the magnetic
field strength.3Asmentioned in the Introduction,wewill first

2For completeness, and to avoid confusion, we note that in
general relativistic MHD a different notation is normally adopted
(see, e.g., Refs. [60,61]). First, the signature is spacelike, i.e.,
gμν ¼ ð−;þ;þ;þÞ. Second, bμ is defined as the magnetic field
four-vector measured in a comoving frame, while B still
represents the magnetic field three-vector measured by an
Eulerian observer. Third, when M ¼ 0, the energy-momentum
tensor takes the form Tμν¼ðeþpþb2Þuμuνþðpþb2=2Þgμν−
bμbν [cf. Eq. (30)].

3From the definition (14) and Eq. (23), χm can be obtained
through the expansion of the pressure or of the grand canonical
potential in the weak-field case, pðT; BÞ ¼ pðT; 0Þþ
χmB2=2þOðB4Þ. Unfortunately, χm is divergent and is related
to the electric charge renormalization in QED [38,48,49]. As a
result, it is common to define a renormalized magnetic suscep-
tibility, ~χmðTÞ≡ χðTÞ − χð0Þ [49]. In this work, we only consider
χm as a free parameter, avoiding the difficulties of possible
singularities.
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consider the case in which χm is a constant and subsequently
the case in which χm has a dependence on temperature.
Although event-by-event simulations of heavy-ion col-

lisions show that the electric field in the laboratory frame
could be as large as the magnetic field, we restrict our
attention here to the ideal transverse MHD limit. In such a
limit, the electric conductivity is assumed to be infinite
κ → ∞ (i.e., the medium is a perfectly conducting plasma),
thus requiring the electric field to vanish in the comoving
frame although the charge current jμ ¼ κEμ can be finite.
Alternatively, this can be seen as a condition on the electric
and magnetic fields in the lab frame, E, B, which are related
via the simple algebraic relation Eþ v × B ¼ 0, with v
being the three-velocity of the fluid, also in the lab frame.
As a result, in the ideal-MHD limit and a linear approxi-
mation, the electric polarization vector Pμ and the electric
displacement field Dμ can be neglected in Eq. (1).
Under these assumptions, Maxwell’s equations simplify

considerably, and the first couple of Maxwell equations is
given by

ϵνμαβ∂νFαβ ¼ 0; ð16Þ

or, equivalently,

∂νðBμuν − BνuμÞ ¼ 0: ð17Þ

Alternative expressions can be obtained after contracting
Eq. (17) with Bμ to obtain

1

2
ðuα∂αÞB2 þ B2∂αuα þ B2bμbν∂νuμ ¼ 0; ð18Þ

or when considering Eq. (17) in the local rest frame, in
which case it reduces to the following well-knownMaxwell
equations:

∇ · B ¼ 0;

∂tB ¼ −∇ × E ¼ ∇ × ðv × BÞ: ð19Þ

Similarly, the second couple of Maxwell equations is
instead given by

∂μHμν ¼ jν; ð20Þ

which can be seen as constraint conditions for the charge
density and external fields. Because these equations will
not be part of our following discussion, we discuss them
only briefly. In nonrelativistic plasma physics, the charge
density j0 and its time derivative ∂tj0 are negligible when
compared to the other terms in Eq. (20), so that the latter
reduce to Ampere’s law, i.e., ∇ × B ¼ j and to ∇ · j ¼ 0. In
relativistic ideal MHD, on the other hand, the fluid is
perfectly conducting and Eμ, Dμ, Pμ vanish in the comov-
ing frame of the fluid, so that Eq. (20) becomes

ϵμναβ∂μ½uβðBα −MαÞ� ¼ jν: ð21Þ

Let us now turn to the thermodynamical relations that
will be useful in the remainder of this work. We recall that
for a perfect fluid in thermodynamical equilibrium (see,
e.g., Refs. [30,48,56,58,62])

eþ p ¼ Tsþ μn; ð22Þ

where n is the baryon number density and μ the associated
chemical potential. Furthermore, from the definition of the
grand canonical potential ΩðT; μ; BÞ≡ −pV, the magni-
tude of the magnetic polarization vector is given by

M ¼ −
1

V
∂Ω
∂B

����
T;μ

¼ ∂p
∂B

����
T;μ

: ð23Þ

This implies that

dp ¼ sdT þ ndμþMdB; ð24Þ

and thus that

de ¼ Tdsþ μdn −MdB: ð25Þ

In ultrarelativistic heavy-ion collisions, the net baryon
number density and the chemical potential are vanishingly
small at midrapidity; therefore, for the sake of simplicity,
we will only consider the case of zero baryon chemical
potential throughout this work. Then, the thermodynamic
relations (22), (24), and (25) reduce to

eþ p ¼ Ts; ð26Þ

dp ¼ sdT þMdB; ð27Þ

de ¼ Tds −MdB; ð28Þ

while the sound speed is defined as

c2s ≡ ∂p
∂e

����
s;B

: ð29Þ

B. Conservation equations and EOS

Inserting the definition of the Faraday tensor (7) into the
expression of the (total) energy-momentum tensor Eq. (1),
in ideal MHD the latter can expressed as [57,58]

Tμν ¼ ðeþ p −MBþ B2Þuμuν −
�
p −MBþ 1

2
B2

�
gμν

þ ðMB − B2Þbμbν; ð30Þ

where M, B, and bμ are defined in Eqs. (12) and (14).
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The projection of the energy-momentum equation (5)
along the four-velocity vector uν expresses the conservation
of energy [30] and is given by

0 ¼ uν∂μTμν

¼ uα∂αeþ ðeþ p −MBþ B2Þ∂αuα þ Buα∂αB

þ ðMB − B2Þuμbν∂νbμ

¼ uα∂αeþ ðeþ pÞ∂αuα þMuα∂αB; ð31Þ

where we have used that uαbα ¼ 0 and Maxwell’s equa-
tions (18). Using the thermodynamical relations (28), it is
straightforward to conclude that a flowconserves entropy, i.e.,

∂μðsuμÞ ¼ 0; ð32Þ

thus confirming that the thermodynamical relations (28) are
consistent with the energy-momentum tensor (30) [56–58].
Proceeding in a similar manner, the projection of the

conservation equation (5) in the direction orthogonal to the
four-velocity uμ expresses the conservation of momentum
[30] and is given by

0 ¼ Δνα∂μTμν

¼ ðeþ p −MBþ B2Þuμ∂μuα

− Δνα∂ν

�
p −MBþ 1

2
B2

�

þ Δνα∂μ½ðMB − B2Þbμbν�: ð33Þ

Later on, we will show that a Bjorken flow with nonzero
magnetization obeys Eq. (33).
The set of equations presented so far needs to be closed

by an EOS, and because we are here searching for analytic
solutions, we have considered two EOSs that are particu-
larly simple. The first one has been adopted already in
paper I and is given by

e ¼ 1

c2s
p; ð34Þ

where the sound speed is cs ¼ 1=
ffiffiffi
3

p
when the fluid is

ultrarelativistic [30].
Clearly, the EOS (34) is independent of the degree of

magnetization or of the strength of the magnetic field,
which are however accounted for in the second EOS we
consider, i.e., the one for a conformal fluid in a four-
dimensional spacetime and in the presence of a magnetic
field [56]

e ¼ 1

c2s
p − 2MB ¼ 3p − 2MB: ð35Þ

The EOS above can be obtained through a conformal
transformation [48,56], or simply by setting to zero the

trace of the energy-momentum tensor, i.e., Tμ
μ ¼ 0, and

obviously reduces to the ultrarelativistic-fluid EOS in the
case of zero magnetization. In Refs. [48,63], these two
EOSs are named respectively EOSs for the “B-scheme” and
the “Φ-scheme,” since they correspond to a fixed B or a
fixed magnetic flux Φ during a conformal (compression)
transformation, respectively.
Before concluding this section, we will introduce a very

important theorem in ideal MHD, the frozen-flux theorem.
With the help of Eq. (17) and entropy conservation (32),
we find

Δμνuα∂α

�
Bμ

s

�
¼ 1

s
Bμ∂μuν; ð36Þ

which is the covariant form of the frozen-flux theorem. In
the local rest frame it reduces to

∂
∂t

�
B
s

�
¼ B

s
· ∇v: ð37Þ

In more physical terms, the condition (37) implies that
magnetic fields will evolve with the degrees of freedom of
the fluid [30,34,60,61].

C. Generalized Bjorken flow

We next discuss the generalization of the Bjorken flow
investigated in paper I to the case with nonzero magneti-
zation. Here too, for the sake of finding an analytic
solution, we consider a longitudinally boost-invariant
Bjorken flow [34,36], whose four-velocity is

uμ ¼
�
t
τ
; 0; 0;

z
τ

�
; ð38Þ

where τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
is the proper time. After adopting

Milne coordinates, xμ ¼ ðτ; x; y; ηÞ with

η≡ 1

2
ln

�
tþ z
t − z

�
; ð39Þ

being the spacetime rapidity. Using such coordinates, the
four-velocity simplifies to uμ ¼ ð1; 0Þ, with the directional
derivative and four-divergence given respectively by

uμ∂μ ¼ ∂τ; ∂αuα ¼
1

τ
: ð40Þ

In relativistic heavy-ion collisions, the magnetic field
points normally into the transverse direction, i.e.,
perpendicular to the z direction if this is taken to the beam
axis. Hence, we choose the three-vector B to be parallel to
the y direction and homogeneous in the transverse plane,
i.e.,
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B ¼ Bey: ð41Þ

In this case, the magnetic field does not change in Milne
coordinates and the frozen-flux theorem (36) gives

∂τ

�
B
s

�
¼ 0; ð42Þ

which implies that B=s is conserved, or more explicitly, that

B
B0

¼ s
s0
; ð43Þ

with B0 and s0 being the initial magnetic field and the
entropy density, respectively. As already mentioned above,
the condition (43) means that the magnetic field is advected
and distorted by the fluid motion in the same way as a fluid
element [34]; identical considerations apply also for astro-
physical plasmas, where the rest-mass density is normally
used in place of the entropy density [30,60,61]. Inserting
the velocity from Eq. (38) into Eq. (32), Eq. (43) becomes

B
B0

¼ s
s0

¼ τ0
τ
; ð44Þ

thus introducing a simple scaling with proper time.
Finally, let us consider the momentum conservation

Eqs. (33), which will ultimately yield the well-known
Bjorken scaling law. In the case in which the susceptibility
χm is a constant, the last term in Eq. (33) reduces to

Δα
ν∂μ½ðMB − B2Þbμbν�
¼ ðχm − 1Þ½∂μðBμBαÞ − uνuα∂μðBμBνÞ�: ð45Þ

Using now the four-velocity (38) and the magnetic field as
given by Eqs. (41), (44), it is straightforward to show that
such a term vanishes, reducing Eq. (33) to

0 ¼ ðeþ p −MBþ B2Þ∂τuμ − Δνμ∂ν

�
p −MBþ 1

2
B2

�
:

ð46Þ

When μ ¼ η, Eq. (46) reads

∂η

�
p −MBþ 1

2
B2

�
¼ 0; ð47Þ

thus showing that all thermodynamic variables depend only
on the proper time τ, which is the time-honored Bjorken
scaling. On the other hand, when μ ¼ x, y, Eq. (46)
becomes

∂τui −
1

eþ p −MBþ B2
∂i

�
p −MBþ 1

2
B2

�
¼ 0:

ð48Þ

Not surprisingly, when the pressure and the magnetic fields
are uniform, the second term in the equation above
vanishes, implying that the motion will be geodetic, i.e.,
will have constant velocity.

III. ENERGY-DENSITY EVOLUTION

A. Ultrarelativistic fluid

Using Eq. (31) and the definition of the susceptibility in
Eq. (14), the energy conservation equation (31) reads

∂τeþ
eþ p
τ

þ 1

2
χm∂τB2 ¼ 0: ð49Þ

Before we look for solutions, let us remark that if χm ¼ 0
and thusM ¼ 0, i.e., if we neglect the magnetization of the
fluid, then Eq. (49) is the same as in the standard Bjorken
flow without magnetic fields. As discussed in paper I, we
would still have the contribution of the magnetic field in the
energy-momentum tensor (30), but this would not affect the
decay of the energy density [34].
With the help of the frozen-flux theorem (44), Eq. (30)

can be rewritten as

∂τeþ
eþ p
τ

−
χmB2

0

τ3
τ20 ¼ 0; ð50Þ

so that, after introducing the dimensionless quantities

~e≡ e
e0

; σ0 ≡ B2
0

e0
; ð51Þ

and using the EOS (34) for an ultrarelativistic fluid,
Eq. (50) can be written as

∂τ ~eþ ð1þ c2sÞ
~e
τ
−
χmσ0τ

2
0

τ3
¼ 0: ð52Þ

Setting as the initial condition ~e0 ≡ ~eðτ0Þ ¼ 1, the
solution of this differential equation is given by

~eðτÞ ¼
�
τ0
τ

�
1þc2s

−
χmσ0
1 − c2s

��
τ0
τ

�
2

−
�
τ0
τ

�
1þc2s

�
: ð53Þ

Recalling now that the total energy density is given by
the double contraction of the energy-momentum tensor
along the four-velocity

etot ≡ Tμνuμuν ¼ eþ 1

2
B2; ð54Þ

and after introducing the dimensionless total energy
density as
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~etot ≡ etot
e0

¼ ~eþ 1

2
σ0

�
B
B0

�
2

; ð55Þ

the analytic evolution of the energy density in a Bjorken
flow with nonzero magnetic susceptibility is given by

~etot ¼
�
τ0
τ

�
1þc2s

þ σ0

�
1

2

�
τ0
τ

�
2

−
χm

1 − c2s

��
τ0
τ

�
2

−
�
τ0
τ

�
1þc2s

�	
;

ð56Þ

showing that, at late times, the energy density decays
as ∼1=τ1þc2s .
To better understand the properties of the solution (56)

we can take a closer look at the differential equation (49),
which tells us that there are two sources to the variation
of the energy density. The first one is proportional to
−ðeþ pÞ∂αuα ¼ −ðeþ pÞ=τ and is related to the expan-
sion of the fluid. It obviously leads to an adiabatic decrease
of the energy density. The second term is proportional to
−M∂τB ∝ χm=τ3 and will have a different behavior
depending on the magnetic properties of the fluid. In
particular, if the fluid is paramagnetic (i.e., if χm > 0),
then the fluid will gain energy from the magnetic field and
the rate of energy-density decrease will be smaller than
without magnetization. On the other hand, if the fluid is
diamagnetic (i.e., if χm < 0), then the fluid has to spend
additional energy to expel the magnetic field, leading to an
energy-density decrease that is much faster than without
magnetization. This behavior is summarized in Fig. 1,
where we plot the solution (53) for χmσ0 ¼ 0, �0.1, �0.5
in the case c2s ¼ 1=3. The left panel shows the evolution of
the dimensionless energy density relative to a fluid with
positive susceptibility (χmσ0 ¼ 0.1, 0.5), while the right

one refers to a fluid with negative susceptibility
(χmσ0 ¼ −0.1, −0.5). In both cases, the black lines indicate
the case with zero susceptibility, i.e., the classical Bjorken
evolution.

B. Magnetized conformal fluid

Next, we turn to discuss the solutions for a fluid with the
EOS (35) for a magnetized conformal fluid. In this case,
Eqs. (49) and (50) become

∂τ ~eþ
4

3

~e
τ
−
1

3

χmσ0
τ3

¼ 0; ð57Þ

whose solution can be found as in the previous case and
reads

~eðτÞ ¼
�
τ0
τ

�
4=3

−
1

2
χmσ0

��
τ0
τ

�
2

−
�
τ0
τ

�
4=3

�
; ð58Þ

while for the total dimensionless energy density it is
given by

~etot ¼
�
τ0
τ

�
4=3

þ σ0
2

��
τ0
τ

�
2

− χm

��
τ0
τ

�
2

−
�
τ0
τ

�
4=3

�	
:

ð59Þ

Comparing the solution (55) with (58), it is easy to
conclude that the solution of a magnetized conformal fluid
is the same one as in the case of an ultrarelativistic fluid,
which however has smaller effective magnetic susceptibil-
ity, i.e., χm → χm=3. In Fig. 2, we compare the solutions
(55) and (58) for the two different EOSs considered. Note
that for a positive susceptibility, the fluid with the EOS (35)
of a magnetized conformal fluid will gain less energy from
the magnetic field than for the EOS (34) of an ultra-
relativistic fluid, thus being closer to the case when the

FIG. 1. The evolution of the energy density, Eq. (53), with c2s ¼ 1=3 and the EOS (34). In the left panel, the solid, dashed, and dash-
dotted lines are for χmσ0 ¼ 0, 0.1, 0.5, respectively, while in the right panel, the solid, dashed, and dash-dotted lines are for χmσ0 ¼ 0,
−0.1, −0.3, respectively.
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magnetic field is absent. One can draw similar conclusions
for negative susceptibilities.

IV. ENERGY-DENSITY EVOLUTION WITH
AN EXTERNAL MAGNETIC FIELD

A. Ultrarelativistic fluid

We now extend our discussion to case of an external
magnetic field which is suitably tuned to decay following a
power law in proper time, i.e.,

BðτÞ ¼ B0

�
τ0
τ

�
a
; ð60Þ

where a is a constant and the case a ¼ 1 falls back to the
case discussed in the previous section [cf. Eq. (44)]. Given
the typical and very short time scales involved in heavy-ion
collisions, this scenario is rather unrealistic, but we con-
sider it here partly because it was also investigated in paper
I [34] and partly because it allows us to obtain another
interesting analytic solution. Another important simplify-
ing assumption is that we will take the external field to be
much stronger than any magnetic field produced at the
collision. This implies that we can neglect the latter and,
more importantly, that such external field does not have to
satisfy Maxwell’s equations (17) coupled to the fluid.
Under these somewhat academic assumptions, the

energy-momentum conservation Eq. (61) with the
Bjorken velocity becomes

∂τeþ
eþ p −MBþ B2

τ
þ 1

2
∂τB2 ¼ 0; ð61Þ

where we used the fact that bμ is nonvanishing only in
the y direction, so that −B2uμbν∂νbμ ¼ 0 ¼ MBuμbν∂νbμ.
Inserting Eq. (60) into Eq. (61) yields

∂τeþ
eþ p
τ

þ ð1 − a − χmÞ
B2
0τ

2a
0

τ2aþ1
¼ 0: ð62Þ

It is simple to check that when a ¼ 1, Eq. (62) reduces to
Eq. (52) and when χm ¼ 0, Eq. (62) is also consistent with
the results of Ref. [34].
Using the EOS (34), we find

∂τ ~eþ ð1þ c2sÞ
~e
τ
þ ð1 − a − χmÞσ0

τ2a0
τ2aþ1

¼ 0: ð63Þ

The solution is

~eðτÞ ¼
�
τ0
τ

�
1þc2s

− σ0
1 − a − χm
1þ c2s − 2a

��
τ0
τ

�
2a
−
�
τ0
τ

�
1þc2s

�

ð64Þ

for a ≠ ð1þ c2sÞ=2, and

~eðτÞ ¼
�
τ0
τ

�
1þc2s þ 1

2
σ0ð1 − c2s − 2χmÞ

�
τ0
τ

�
1þc2s

log

�
τ0
τ

�

ð65Þ

for a ¼ ð1þ c2sÞ=2. One can also get Eq. (65) by taking the
limit a → ð1þ c2sÞ=2 for the solution (64). The normalized
total energy density is then

~etot ¼
�
τ0
τ

�
1þc2s

− σ0
1 − a − χm
1þ c2s − 2a

��
τ0
τ

�
2a
−
�
τ0
τ

�
1þc2s

�

þ 1

2
σ0

�
τ0
τ

�
2a
; ð66Þ

for a ≠ ð1þ c2sÞ=2, and

~etot ¼
�
τ0
τ

�
1þc2s þ 1

2
σ0ð1 − c2s − 2χmÞ

�
τ0
τ

�
1þc2s

log

�
τ0
τ

�

þ 1

2
σ0

�
τ0
τ

�
2a
; ð67Þ

for a ¼ ð1þ c2sÞ=2.
Since the term ½ðτ0=τÞ2a − ðτ0=τÞ1þc2s �=ð1þ c2s − 2aÞ is

always positive, from Eq. (64) we see that the effect of
nonzero magnetization enters only through the prefactor
1 − a − χm. More precisely, when a > 1 − χm, ~e decays
more slowly than in the case without magnetic fields, and
when 0 < a < 1 − χm, ~e decays faster. One can reach the
same conclusion by analyzing the sign of the last term in
Eq. (62). We can demonstrate our conclusion in two limits
and, for simplicity, we assume χm > 0. For a → 0, the
magnetic field is constant in proper time and does not
evolve with the fluid. Thus, the fluid energy density must
decay faster in order to sustain this constant magnetic field.
For a → ∞, the magnetic field decays very rapidly and its

FIG. 2. The evolution of the energy density. The black line is
the solution without magnetic fields. The dashed and dash-dotted
lines are for the solutions for the EOSs considered with
χmσ0 ¼ 0.5, respectively.
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energy will be transferred to the fluid due to the energy-
conservation law. So, one can expect a peak of the energy
density near the initial time, which is associated with a
resistive “reheating” of the fluid [34].
We show these solutions in Fig. 3. Since χm is very small

for the QGP, we choose a typical value χm ¼ 0.01 in the left
panel of Fig. 3. The black solid line is for the case without
magnetic field, σ0 ¼ 0, while the blue dashed, orange dash-
dotted, and green dash-dotted lines are for a ¼ 1=3, 2=3,
3=2, respectively, for the case σ0 ¼ 0.5. For a > 1 − χm the
energy density decays more slowly and for a < 1 − χm, it
decays faster than without magnetization, respectively. In
the right panel of Fig. 3, fixing χm ¼ 0.01 and a ¼ 2, the
blue dashed, orange dash-dotted, and green dash-dotted
lines are for σ0 ¼ 0.5, 1.0, 5.0, respectively. If σ0 is large
enough, we can observe the initial “reheating” effect.

B. Magnetized conformal fluid

We conclude this section by considering the evolution
under external magnetic field (60) when the fluid obeys the
EOS (35) for a magnetized conformal fluid. In this case,
Eq. (62) becomes

∂τ ~eþ
4

3

~e
τ
þ σ0

�
1 − a −

1

3
χm

�
τ2a0
τaþ1

¼ 0: ð68Þ

The solution can be obtained similarly as above and reads

~eðτÞ ¼
�
τ0
τ

�
4=3

−
σ0
2

3 − 3a − χm
2 − 3a

��
τ0
τ

�
2a
−
�
τ0
τ

�
4=3

�

ð69Þ

for a ≠ 2=3, and

~eðτÞ ¼
�
τ0
τ

�
4=3

þ σ0
3
ð1 − χmÞ

�
τ0
τ

�
4=3

log

�
τ0
τ

�
ð70Þ

for a ¼ 2=3. The normalized total energy density is

~etot ¼
�
τ0
τ

�
4=3

þ σ0
2

��
τ0
τ

�
2

−
3 − 3a − χm

2 − 3a

��
τ0
τ

�
2a

−
�
τ0
τ

�
4=3

�	
ð71Þ

for a ≠ 2=3, and

~etot ¼
�
τ0
τ

�
4=3

þ σ0
3
ð1 − χmÞ

�
τ0
τ

�
4=3

log

�
τ0
τ

�

þ σ0
2

�
τ0
τ

�
2

ð72Þ

for a ¼ 2=3. The behavior of Eq. (69) can be discussed in a
manner similar to the previous case of an ultrarelativistic
fluid. When a > 1 − χm=3, ~e will decay more slowly than
in the case without magnetic field, and when 0 < a ≤
1 − χm=3, ~e will decay faster than in the case without
magnetic field.

V. ENERGY-DENSITY EVOLUTION
WITH TEMPERATURE-DEPENDENT

MAGNETIC SUSCEPTIBILITY

After the rather academic discussion of the previous
section, we will now consider a more realistic scenario. For
the sake of simplicity, we will choose the temperature T as
an independent variable and express all quantities as a
function of T. We also choose the EOS named “s95n-v1”
parametrization of Ref. [64], which is also obtained from
lattice QCD [65]. We will use lattice-QCD data for the

FIG. 3. Left panel: the solutions (64), (65) for different values of the parameters. We choose χm ¼ 0.01. The black solid line is for the
case without magnetic field. For σ0 ¼ 0.5, the blue dashed, orange dash-dotted, and green dash-dotted lines are for a ¼ 1=3, 2=3, 3=2,
respectively. Right panel: the same as in the left panel but for χm ¼ 0.01 and a ¼ 2. The black solid line is for the case without magnetic
fields. The blue dashed, orange dash-dotted, and green dash-dotted lines are for σ0 ¼ 0.5, 1.0, 5.0, respectively.
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magnetic susceptibility χm as a function of T and inves-
tigate the effect of the magnetization across the deconfine-
ment phase transition.
The behavior of the magnetic susceptibility as a function

of the temperature has been studied in lattice-QCD calcu-
lations following several different approaches (see, e.g.,
Refs. [45,46,48,49]). Since we concentrate on the decon-
finement phase transition and we expect that χmðTÞ
becomes negative in the hadronic phase, we choose the
data from Ref. [48]. Noting that a power-law behavior
ðT=Tc − 1Þn with n ¼ const is typical for quantities near a
phase transition, we capture the analytical behavior of the
data by expressing χmðTÞ as a polynomial in powers of
T=Tc − 1, i.e.,

χmðTÞ ¼
X
n¼0

cn

�
T
Tc

− 1

�
n
; ð73Þ

where Tc is the transition temperature and the first six
coefficients appearing in Eq. (73) are given by c0 ¼ 0.0082,
c1 ¼ 0.0374, c2 ¼ 0.0039, c3 ¼ −0.0427, c4 ¼ 0.0430,
and c5 ¼ −0.0138.
Similarly, we introduce the parameter k2s, defined as

k2sðTÞ≡ p
e
; ð74Þ

which is a function of T. Note that k2s is reminiscent of, but
distinct from, the square of the sound speed c2s . The latter is
in fact defined as in Eq. (29) and will in general be different
from the simple ratio of the pressure and energy density
[the only exception being the EOS of an ultrarelativistic
fluid (34) or the EOS normally used in cosmology p ¼ we
[30]]. Hence, the parameter k2s does not have a precise
physical significance, but should be seen mostly as a
mathematically convenient definition that allows us to

express the pressure in terms of the energy density and
hence obtain an analytic solution. Having said that, it is
interesting also to remark that k2s and c2s are rather similar,
as shown in the right panel of Fig. 4, where we compare our
fitting functions for χm and k2s with the original data from
Refs. [48] and [64].
From the s95n-v1 parametrization of Ref. [64], pðTÞ and

eðTÞ can be obtained by integrating over the temperature
the trace anomaly θðTÞ≡ eðTÞ − 3pðTÞ

pðTÞ ¼ T4

Z
T

T1

θðT 0Þ
T 05 dT 0; ð75Þ

where we choose T1 ¼ 1 MeV and the trace anomaly is
given in Ref. [64],

θðTÞ ¼ T4

�
d2=T2 þ d4=T4 þ c1=Tn1 þ c2=Tn2 ; T ≥ T0;

a1T þ a2T3 þ a3T4 þ a4T10; T < T0;

ð76Þ

with d2 ¼ 0.2654 GeV2, d4 ¼ 6.563 × 10−3 GeV4, c1 ¼
−4.370 × 10−5 GeVn1 , c2 ¼ 5.774 × 10−6 GeVn2 , n1 ¼ 8,
n2 ¼ 9, T0 ¼ 171.8 MeV, a1 ¼ 4.654 GeV−1, a2 ¼
−879 GeV−3, a3¼8081GeV−4, a4 ¼ −7039000 GeV−10.
The ansatz in Eq. (76) parametrizes lattice-QCD data when
T ≥ T0, while it parametrizes data for a hadron resonance
gas when T < T0. Inserting Eqs. (75), (76) into Eq. (74),
we can get an estimate of k2sðTÞ.
As shown in Fig. 4, we also obtain the (squared) speed of

sound c2s as a function of T from the s95n-v1 parametriza-
tion of Ref. [64],

c2s ¼
s
T
dT
ds

; ð77Þ

FIG. 4. Left panel: magnetic susceptibility χm. The filled red circles refer to the data in Ref. [48], while the solid line shows the fit given
by Eq. (73). Right panel: behavior of k2s ¼ p=e and of c2s . The dashed line shows the speed of sound given by Eq. (77) from the
parametrization of Ref. [64]. Finally, the solid green line provides the ratio between the pressure and energy density; note the close
similarity between k2s and c2s .
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where entropy density s≡ ð4pþ θÞ=T is computed from
the trace anomaly and Eq. (75).
Since it is not trivial to obtain the energy density e and

the entropy density s as functions of T, we will use the
thermodynamical relation (28)

e ¼ Ts
1þ k2s

¼ s0τ0
τ

T
1þ k2s

; ð78Þ

where in the second equality we used the conservation of
entropy. Inserting this into the differential equation (50)
yields

∂τ

�
T

ð1þ k2sÞτ
�
þ T
τ2

−
τ0
τ3

T0

1þ k2sðT0Þ
σ0χm ¼ 0: ð79Þ

After solving Eq. (79), we can simply obtain the energy
density via

~e≡ eðτÞ
e0

¼ τ0
τ

TðτÞ
T0

1þ k2sðT0Þ
1þ k2sðTðτÞÞ

: ð80Þ

Choosing the initial temperature T0, the initial time τ0,
and the critical temperature Tc as

T0 ¼ 200 MeV; Tc ¼ 180 MeV; τ0 ¼ 0.5 fm=c;

ð81Þ
we solve Eq. (79) numerically and show the results in Fig. 5
for different σ0 ¼ 0, 1.0, 2.5, 25, respectively. Note also
that the decay of temperature and energy density is slowed
down due to the magnetization effect. This is consistent
with Eq. (79), which implies that the magnetic field
becomes a source to reheat the system.
As a rough estimate, we can evaluate σ0 in a typical

Bjorken flow for the QGP. For 200 AGeV Au-Au
collisions, the magnetic field can reach values of
B ∼ 10m2

π ∼ 0.44 GeV, while the energy density of the

magnetic field will be 1
2
B2 ∼ 5 GeV fm−3. The initial

energy density of the fluid e0 will be ∼10 GeV fm−3.
Thus we find σ0 ¼ B2

0=e0 ≃ 0.5, which is close the value
for the blue solid lines in Fig. 5. Overall, this shows that for
a Bjorken flow, the magnetization effect of the QGP can be
ignored. On the other hand, for an ultralarge magnetic field,
e.g., σ0 ¼ 25 which corresponds to B≳ 50m2

π , the temper-
ature will increase, and then decrease; i.e., the system is
first reheated by the magnetic field. In that case, which is
similar to the one shown in Fig. 3, the QGP can survive
longer than otherwise expected.

VI. CONCLUSION

We have studied the evolution of the energy density of
the QGP produced, for instance, by the collision of two
heavy ions, when this is described as a one-dimensional,
longitudinally boost-invariant flow with a transverse
magnetic field, i.e., a transverse Bjorken flow within the
ideal-MHD limit. This represents a rather straightforward
extension of our previous work [34] to the case in which the
flow has a nonzero magnetization as described via a
magnetic susceptibility χm, which we have taken to be
either constant or to depend on temperature.
Under these conditions for the Bjorken flow, we were

able to obtain analytic solutions relative to two different
EOSs, i.e., the EOS (34) for an ultrarelativistic fluid and the
EOS (35) for a magnetized conformal fluid. Interestingly,
we find that all results for a magnetized conformal fluid can
be obtained from the solutions for an ultrarelativistic fluid
after a simple scaling of the susceptibility, i.e., by replacing
χm → χm=3. We also find that for a paramagnetic fluid, i.e.,
with χm > 0, the fluid gains energy from the decay of the
magnetic field, thus with an energy density decaying more
slowly than in the case without magnetic fields. On the
other hand, for a diamagnetic fluid, i.e., with χm < 0, the
fluid loses energy to the magnetic field and the energy

FIG. 5. Evolution of temperature T (left panel) and normalized energy density ~e ¼ e=e0 (right panel) as a functions of proper time τ.
We choose initial temperature T0 ¼ 200 MeV, initial time τ0 ¼ 0.5 fm=c, and critical temperature Tc ¼ 180 MeV. The black dashed,
blue solid, magenta dotted, and green dot-dashed lines are for σ0 ¼ 0, 1.0, 2.5, 25, respectively.
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density will decay more rapidly than in the absence of a
magnetic field.
We have also considered the case where the magnetic

field is external and very large, with an evolution that
follows a power-law behavior in proper time with exponent
a. The solutions in this case can be distinguished in terms
of two scenarios. The magnetic field decays more slowly
than in the ideal-MHD case for a > 1 − χm, while the
decay is more rapid for a < 1 − χm.
If the magnetic field or, strictly speaking, σ0 ¼ B2

0=e0, is
large enough, the fluid will absorb energy in excess of the
decay caused by the expansion. In that case, one will
observe a peak in the energy density at the early stage. This
is a resistive “reheating” of the fluid. The amount of this
increase depends on the magnetic-field strength and hence
will increase with σ0 and a. However, at late times, its
energy density will decrease with an asymptotic rate that is
the same as in the Bjorken flow, i.e., ∝ τ−4=3.
Finally, we have also considered a temperature-

dependent magnetic susceptibility and a realistic equation
of state given by lattice-QCD data. We find that the

magnetization effect of the QGP will slow down the decay
of temperature and energy density. However, for realistic
values of the magnetic susceptibility and initial magnetic
field, this effect can be ignored, at least in a one-dimen-
sional Bjorken flow. For an ultralarge magnetic field, on the
other hand, the system might be reheated and the QGP may
survive longer than expected.
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Note added in proof.—When thisworkwasbeingcompleted,
we learned that another group, Ref. [66], has investigated
within a 3þ 1-dimensional ideal-hydrodynamics approach
the magnetization effects of an external magnetic field on the
anisotropic expansion of the QGP.
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