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We investigate different methods to incorporate the effect of photons in hard processes. We compare the
two different approaches used for calculating cross sections for the two-photon pp → lþl−X process. In
one of the approaches the photon is treated as a collinear parton in the proton. In the second approach the
recently proposed kT factorization method is used. We discuss how results of the collinear parton model
depend on the initial condition for the QCD evolution and discuss an approximate treatment where the
photon is excluded from the combined QCD-QED evolution. We demonstrate that it is not necessary to put
the photon into the evolution equation as is often done, but it is sufficient to use a simplified approach in
which the photon couples to quarks and antiquarks, which by themselves undergo DGLAP evolution
equations. We discuss the sensitivity of the results to the choice of structure function parametrization and
experimental cuts in the kT factorization approach. We explicitly display regions of x andQ2 (arguments of
structure functions) relevant for different experiments. We compare the results of our calculations with
recent experimental data for dilepton production and find that in most cases the contribution of the photon-
photon mechanism is rather small. We discuss how to enhance the photon-photon contribution. We also
compare our results to those of recent measurements of exclusive and semiexclusive eþe− pair production
with certain experimental data by the CMS Collaboration.
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I. INTRODUCTION

The two-photon processes may lead to production of two
charged leptons and therefore compete with other sources
of dileptons, such as continuum Drell-Yan processes or
resonant production of vector quarkonia or Z0 bosons,
which produce dilepton pairs of large invariant masses.
Earlier studies of lepton pair production via γγ fusion in
inelastic proton-proton collisions can be found in [1–4]. For
a general review of the γγ fusion mechanism, see [5].
Inelastic processes are also included in the Monte Carlo
generator LPAIR based on [6].
At high energies and small dilepton transverse momenta,

also semileptonic decays of pairwise-produced charmed D
mesons may be an important ingredient of dileptons [7].
The actual contribution of different processes depends
strongly on the details of the experimental cuts.
The color singlet exchange of photons naturally leads to

rapidity gaps. If the rapidity veto on particles close to
the lþl− vertex is imposed, in addition, one can enhance the
relative contribution of the γγ processes compared to the
QCD Drell-Yan mechanism [8]. The invariant mass
distribution of the dileptons produced in the Drell-Yan

processes can be calculated in the collinear factorization
approach (see, e.g., the textbook [9]). If one wants to
address more differential distributions, say in the transverse
momentum of the lepton pair, one can turn to b space
resummation [10] or, especially in the small x kinematics,
kT factorization (see, e.g., [11–13]).
In this paper, we concentrate on the photon-photon-

induced production of charged leptons. A realistic estima-
tion of these processes requires more attention. In general,
there are three types of such processes which can be
classified according to whether the proton remnants appear-
ing “after” photon emission are just protons or baryon
resonances or a complicated continuum (see Fig. 1). In
principle, the elastic-elastic processes, with one elastic and
one inelastic or double inelastic processes, can be distin-
guished by detailed studies of the final state. However, in
practice, this separation may not be easy, and all of them
should be considered. Here, we concentrate rather on the
inelastic-inelastic processes.
There are two approaches in the literature in this context.

In one of the approaches, one can treat photons as collinear
partons in the proton. The application of this approach
requires the presence of a hard scale (e.g., a large photon
virtuality or large lepton transverse momenta). Such photon
partonic distributions were discussed in [14–18]. In some
of these approaches, the photon parton distribution function
(PDF) enters the DGLAP evolution equations. The
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treatment in [14] is somewhat simplified; here, only the
q → γ splitting is taken into account.
Below, we comment on the interrelation between the two

approaches. The photon PDF approach was applied in
many phenomenological studies, e.g., to a number of
photon-photon processes in [19] and to dilepton production
in [7] and recently in [20].
In another approach, one parametrizes the γ�p → X

vertices in terms of the proton’s structure functions. One
can assume that the photons are either collinear or allow
them to have transverse momenta and nonzero virtualities
[5]. Recently, we used a slightly simplified approach [4],
which takes advantage of the high energy limit and is
formulated in an analogous way as the kT factorization
approach often used in the context of two-gluon processes.
In this approach, one uses unintegrated photon distribu-
tions, in contrast to collinear distributions in the previous
approach and off-shell matrix elements for the γγ → lþl−
subprocess. We shall use this approach also in the
present paper.
The unintegrated photon distributions can be expressed

in terms of the proton structure functions. The structure
functions were measured in some different corners of very
rich phase space. In particular, they were studied in a so-
called deep inelastic regime with large Q2 where perturba-
tive treatment embedded in the DGLAP evolution equation

applies. In this corner of the phase space, the structure
functions are very well known. When going outside of the
perturbative regime, the situation is less clear. Several
parametrizations were presented in the literature [21–26].
The applicability of the different parametrizations is limited
and not well tested.
Thus, in two-photon processes, one may need structure

functions in very different corners of the ðx;Q2Þ space. It is
not clear a priori which regions are needed for particular
experiments, i.e., specific kinematical cuts. We discuss
some examples related to particular past and modern
experiments.
This paper is organized as follows: In Sec. III, we briefly

review the different formalism employed in our calcula-
tions and proposed recently in Ref. [4]. We also discuss the
different structure functions used as an input in the kT
factorization approach. In Sec. IV, we show our numerical
results of various dilepton distributions for the kinematics
and cuts relevant for different experiments. These are, at the
present highest available energies, ATLAS and CMS
experiments, which measure central rapidities, and the
LHCb experiment, with coverage at forward rapidities.
We also discuss examples for the lower energies of the
RHIC experiment, as well as data taken in 1980s from the
ISR experiments at still lower energy. We summarize our
results in the Conclusions section.

FIG. 1. Different mechanisms of the two-photon production of dileptons.
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II. COLLINEAR FACTORIZATION APPROACH

A. Photons as partons in a hard process

Production of lepton pairs at large transverse momenta is
a hard process, to which standard arguments for factori-
zation apply, and collinear factorization should be an
appropriate starting point to calculate, e.g., rapidity or
transverse momentum spectra of leptons. In fact, the
dominant contribution to large invariant mass dilepton
pairs is, of course, the well known Drell-Yan process,
but nothing prevents us from also including photons as
partons along with quarks and gluons.
Then, the photon parton distribution, γðz;Q2Þ, of pho-

tons carrying a fraction z of the proton’s light-cone
momentum, obeys the DGLAP equation,

dγðz;Q2Þ
d logQ2

¼ αem
2π

Z
1

x

dy
y

�X
f

e2fPγ←qðyÞ
�
qf

�
z
y
;Q2

�

þ qf

�
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y
;Q2

��
þ Pγ←γðyÞγ
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z
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;Q2

��
:

ð2:1Þ

In the complete set of DGLAP equations, this photon
density is then again coupled to the quark and antiquark
distributions:

dqfðz;Q2Þ
d logQ2

¼ dqfðz;Q2Þ
d logQ2

����
QCD

þ αem
2π

Z
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δPQED
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: ð2:2Þ

Due to the smallness of αem, one would expect that the
effect of photons on the quark and antiquark densities can
be safely neglected, unless one is interested in high-order
perturbative corrections to the QCD splitting functions
themselves.
Accordingly, we find two different approaches to

DGLAP photons in the literature.
The first one, by Glück et al. [14], asserts that we can

neglect the photon density on the right-hand side of the
evolution equations. Then, at sufficiently large virtuality
Q2

0, the photon parton density can be calculated from the
collinear splitting of quarks and antiquarks q → qγ,
q → qγ.

dγðz;Q2Þ
d logQ2

¼ αem
2π

X
f

e2f

Z
1

z

dx
x
Pγ←q

�
z
x

�
½qfðx;Q2Þ

þ qfðx;Q2Þ�: ð2:3Þ

This equation is easily integrated and gives the photon
parton density as

γðz;Q2Þ ¼
X
f

αeme2f
2π
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One is left to specify—from some model considerations—
the photon density at some low scale γðz;Q2

0Þ, but one
may hope that at very large Q2 ≫ Q2

0 ∼ 1 GeV2 the part
predicted perturbatively from quark and antiquark distri-
butions dominates.
In addition to the above contribution from DGLAP

splitting, Glück et al. also add the Weizsäcker-Williams
flux from the coherent emission p → pγ� without proton
breakup as found in [5].
More recently, the Durham [15,16] and NNPDF [17]

groups have given a more involved treatment, in which the
photon distribution is fully incorporated into the coupled
DGLAP evolution equation. As usual with DGLAP evo-
lution, the photon parton density at a starting scale γðz;Q2

0Þ
needs to be specified. While Refs. [15,16] present model
approaches, in Ref. [17], an ambitious attempt to obtain
γðz;Q2

0Þ from a fit to experimental data is found.
Preliminary work by the CTEQ Collaboration [18] is also
based on QED-corrected DGLAP equations and attempts to
fit the photon distribution from the prompt photon pro-
duction ep → γeX at HERA, where in part of the phase
space the Compton subprocess eγ → eγ contributes.
It should be noted that in the approach of [15,16],

the input distribution γðz;Q2
0Þ contains the coherent—or

elastic—contribution with an intact proton in the final state.
Notice that due to the proton form factors the integral over
virtualities in the elastic case quickly converges, and the
elastic contribution is basically independent of Q2

0 as soon
as Q2

0 ≳ 0.7 GeV2.

B. From photon PDFs to cross section

In the collinear approach, the photon-photon contribu-
tion to the inclusive cross section for dilepton production
can be written as

dσði;jÞ

dy1dy2d2pT
¼ 1

16π2ðx1x2sÞ2
×
X
i;j

x1γðiÞðx1; μ2Þx2γðjÞ

× ðx2; μ2ÞjMγγ~lþl− j2: ð2:5Þ
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Here,

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

l

s

r
ðexpðy1Þ þ expðy2ÞÞ;

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

l

s

r
ðexpð−y1Þ þ expð−y2ÞÞ: ð2:6Þ

The above indices i and j denote i; j ¼ el; in, i.e., they
correspond to elastic or inelastic components similarly for
the kT factorization discussed in Sec. III, see also the
diagrams in Fig. 1. The factorization scale is chosen
as μ2 ¼ m2

T ¼ p2
T þm2

l .
The elastic photon distributions can be calculated with

the help of elastic electromagnetic proton form factors.
There is a subtlety with the inelastic contribution in the
collinear approach. Conventionally, one takes for
γðinÞðx; μ2Þ precisely the DGLAP-evolved distributions of
Sec. II A. However, these can also contain contributions
from elastic processes if the latter are supplied as an input
for the DGLAP contribution. It would therefore be more
appropriate to refer to them as “inclusive” contributions. To
anticipate a result from our numerical calculations, it turns
out indeed that DGLAP photons without elastic input are
very close to the contributions with a proton breakup
obtained in the kT factorization approach to be discussed.

C. Initial condition for collinear photon PDF

In the MRST2004(QED) approach, the inelastic con-
tribution to the initial photon distribution is parametrized
as [16]
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0Þ ¼

αem
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ð2:7Þ

Above, uðx;Q2
0Þ and dðx;Q2

0Þ are valencelike distribu-
tions at the initial scale Q2

0. In an actual calculation,
MRST2004(QED) uses current quark masses, which

causes the logðQ2
0

m2
q
Þ values and, as a consequence, also

the initial photon distributions to be artificially large (the
consequences for lepton production is discussed when
showing corresponding cross sections). It would seem
more reasonable to use rather constituent quark masses
than the current ones, see also [27] for a discussion of
this issue. We show that this leads to large differences in
photon distributions at finite running scales Q2.
Before discussing results for cross sections for lþl−

production, we concentrate for a while on the collinear
photon distributions. To illustrate the effect of the initial
input in Fig. 2 we show both the original MRST2004(QED)
photon distribution and a similar result obtained by ignor-
ing the initial input, which, as discussed above, may be
questionable. The results are shown for different evolution
scales μ2 ¼ Q2

0, 10, 100, 1000, 10; 000 GeV2. We observe
a sizable difference between the resulting photon distribu-
tions obtained within the two approaches. Because in
calculating the cross section the photon distributions enter
twice in the cross section formula, for the first and second
proton, one can expect that the cross section obtained with
the different PDFs may differ considerably. We return to
this issue in the Results section.

III. kT FACTORIZATION APPROACH

Recently, a new formalism was proposed in Ref. [4].
Here, we repeat relevant elements. In this approach, we
start from the Feynman diagrams shown in Fig. 1 and
exploit the high-energy kinematics. Let the four-momenta
of the incoming protons be denoted as pA, pB. At high
energies, the proton masses can be neglected so that
p2
A ¼ p2

B ¼ 0, 2ðpA · pBÞ ¼ s. The photon-fusion produc-
tion mechanism in leptonic and hadronic reactions is in
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FIG. 2. Collinear photon distributions for different scales. The left panel is for the standard MRST2004(QED) parton distribution,
while the right panel is for the case when the initial input at μ2 ¼ 2 GeV2 is set to zero, i.e., completely neglected. In both panels, the
uppermost curve corresponds to μ2 ¼ 104 GeV2 and μ2 drops monotonically from the top to the bottom curves.
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great detail reviewed in [5], where also many original
references can be found. In the most general form, the
invariant cross section is written as a convolution of density
matrices of photons in the beam particles and helicity
amplitudes for the γ�γ� → lþl− process. In a high energy
limit, where dileptons carry only a small fraction of the total
center-of-mass energy, the density-matrix structure can be
very much simplified, and there emerges a kT factorization
representation of the cross section [4].
The unintegrated photon fluxes introduced in [4] can be

expressed in terms of the hadronic tensor as

F in:el
γ�←Aðz; qÞ ¼

αem
π

ð1 − zÞ

×
Z �

q2

q2 þ zðM2
X −m2

AÞ þ z2m2
A

�
2

·
pμ
Bp

ν
B

s2
Win;el

μν ðM2
X;Q

2ÞdM2
X: ð3:1Þ

Here, the integral over M2
X for the inelastic fluxes starts

from a threshold M2
thr ¼ ðmA þmπÞ2. In the case of elastic

fluxes, the M2
X integral receives only a contribution from

the delta function [see Eq. (3.16)], and M2
X is set to

M2
X ¼ m2

A. It is important to mention that one may as well
take Eq. (3.1) differentially in M2

X and in this way obtain a
fully unintegrated photon flux. This allows for the direct
calculation of distributions in MX, which is not possible in
the collinear approach in a straightforward way.
The unintegrated fluxes of Eq. (3.1) enter the cross

section for dilepton production as

dσði;jÞ

dy1dy2d2p1d2p2
¼

Z
d2q1
πq21

d2q2
πq22

F ðiÞ
γ�=Aðx1; q1ÞF ðjÞ

γ�=Bðx2; q2Þ

×
dσ�ðp1; p2; q1; q2Þ
dy1dy2d2p1d2p2

; ð3:2Þ

where the indices i; j ∈ fel; ing denote elastic or inelastic
final states. The longitudinal momentum fractions of
photons are obtained from the rapidities and transverse
momenta of final state leptons as

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þm2

l

s

r
ey1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p22 þm2

l

s

r
ey2 ;

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þm2

l

s

r
e−y1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p22 þm2

l

s

r
e−y2 : ð3:3Þ

The explicit form of the off-shell cross section
dσ�ðp1;p2;q1;q2Þ=dy1dy2d2p1d2p2 can be found inRef. [4].

A. Inelastic vertices

We now first concentrate on the inelastic processes with
the breakup of a proton. Then, the hadronic tensor is
expressed in terms of the electromagnetic currents as

Win
μνðM2

X;Q
2Þ ¼

X
X

ð2πÞ3δð4ÞðpX − pA − qÞ

× hpjJμjXihXjJ†νjpidΦX; ð3:4Þ

and its elements can be measured in inclusive electron
scattering off the target. We express it in terms of the virtual
photoabsorption cross section of transverse and longi-
tudinal photons. To this end, we introduce the covariant
vectors/tensors

eð0Þμ ¼
ffiffiffiffiffiffi
Q2

X

r �
pAμ −

ðpA · qÞ
q2

qμ

�
;

X ¼ ðpA · qÞ2 þm2
AQ

2;

eð0Þ · eð0Þ ¼ þ1 ð3:5Þ

and

δ⊥μνðpA; qÞ ¼ gμν −
qμqν
q2

− eð0Þμ eð0Þν : ð3:6Þ

Here, δ⊥μν projects on photons carrying helicity �1 in the

γ�p-cms frame, and eð0Þμ plays the role of the polarization
vector of the longitudinal photon. Notice that q · e0 ¼
qμδ⊥μν ¼ 0 so that the hadronic tensor has the convenient
gauge invariant decomposition

Win
μνðM2

X;Q
2Þ ¼ −δ⊥μνðpA; qÞWin

T ðM2
X;Q

2Þ
þ eð0Þμ eð0Þν Win

L ðM2
X;Q

2Þ: ð3:7Þ

The virtual photoabsorption cross sections are defined as

σTðγ�pÞ ¼
4παem
4

ffiffiffiffi
X

p
�
−
δ⊥μν
2

�
2πWin

μνðM2
X;Q

2Þ;

σLðγ�pÞ ¼
4παem
4

ffiffiffiffi
X

p e0μe0ν2πWin
μνðM2

X;Q
2Þ: ð3:8Þ

It is customary to introduce the dimensionless structure
function FiðxBj; Q2Þ; i ¼ T, L as

σT;Lðγ�pÞ ¼
4π2αem
Q2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2Bjm

2
A

Q2

r FT;LðxBj; Q2Þ; ð3:9Þ

where

xBj ¼
Q2

Q2 þM2
X −m2

A
: ð3:10Þ

Then, our structure functions WT;L are expressed through
the more conventional FT;L as
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Win
T;LðM2

X;Q
2Þ ¼ 1

xBj
FT;LðxBj; Q2Þ: ð3:11Þ

In the literature, one often finds rather F1ðxBj; Q2Þ,
F2ðxBj; Q2Þ structure functions, which are related to FT;L

through

FTðxBj; Q2Þ ¼ 2xBjF1ðxBj; Q2Þ;

F2ðxBj; Q2Þ ¼ FTðxBj; Q2Þ þ FLðxBj; Q2Þ
1þ 4x2Bjm

2
A

Q2

: ð3:12Þ

Now, performing the contraction with pμ
Bp

ν
B, we get

pμ
Bp

ν
B

s2
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2Þ ¼
�
1 −

z
xBj
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4x2Bj

�
F2ðxBj; Q2Þ
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þ z2

4x2Bj
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X −m2
p
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In the deep inelastic region F2 ∼ FT þ FL and using
2xBjF1 ∼ F2 in the second term, we can write more
succinctly

pμ
Bp

ν
B

s2
Win

μνðM2
X;Q

2Þ ¼ Q2 · fT

�
z
xBj

�
xBjF2ðxBj; Q2Þ;

ð3:14Þ

with

fTðyÞ ¼ 1 − yþ y2=2 ¼ 1

2
½1þ ð1 − yÞ2�: ð3:15Þ

A brief comment on the relation of these formulas to
those found in [4] is in order. Above, we always keep the
momentum fractions z of photons in evidence, as this
exposes the relation to the collinear formalism in the
clearest fashion. It should be stressed that due to the
high-energy kinematics adopted by us, our formalism
applies to z ≪ 1. In the numerical calculations, we there-
fore always substitute 2xF1 → F2, and the structure func-
tion F1 does not appear explicitly in our calculation. All
equations agree with those given in [4] up to terms of
order z2.

B. Elastic vertices

Let us now isolate the elastic contribution to the hadronic
tensor, which we need to describe the photon flux in
processes in which the proton stays intact. In this case, the
structure functions WT;L are most conveniently written in
terms of the electric and magnetic form factorsGEðQ2Þ and
GMðQ2Þ of the proton

Wel
T ðM2
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2Þ ¼ δðM2

X −m2
pÞQ2G2
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Wel
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X;Q
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EðQ2Þ: ð3:16Þ

The contribution to the photon flux is then again obtained
by contracting
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B
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4
G2

MðQ2Þ
�
:

ð3:17Þ

C. Unintegrated photon fluxes

Let us now give explicit formulas for the unintegrated
fluxes in a form which makes it easy to compare them, for
example, with fluxes of virtual photons given by Budnev
et al. [5]. The quantity to compare is the differential
equivalent photon spectrum

dnin;el ¼ dz
z
d2q
πq2

F in;el
γ�←Aðz; qÞ: ð3:18Þ

The fluxes in [5] are given differentially in the virtuality
Q2 instead of the transverse momentum q2 ¼ ð1 − zÞ
ðQ2 −Q2

minÞ. We therefore substitute
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·
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Q2 −Q2
min
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AÞ þ z2m2
A
¼ Q2 −Q2

min

Q2
ð3:19Þ

so that we obtain

dnin ¼ αem
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4x2Bj

�
F2ðxBj; Q2Þ

Q2 þM2
X −m2

p

þ z2

4x2Bj

2xBjF1ðxBj; Q2Þ
Q2 þM2

X −m2
p

�
dM2

X ð3:20Þ

and for the elastic piece

dnel¼αem
π

dQ2

Q2

dz
z
ð1−zÞ

�
1−

Q2
min

Q2

�

×

�

1−

z
2

�
24m2

pG2
EðQ2ÞþQ2G2

MðQ2Þ
4m2

pþQ2
þz2

4
G2

MðQ2Þ
�
:

ð3:21Þ
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It is also interesting to convert the integration overM2
X into

one over xBj. To this end, we note that

dM2
X

Q2 þM2
X −m2

p
→

dxBj
xBj

; xmin ¼
z

1 − z2 m2
p

Q2

;

xmax ¼
Q2

Q2 þ ð2mp þmπÞmπ
: ð3:22Þ

Furthermore,

ð1 − zÞ
�
1 −

Q2
min

Q2

�
¼ z

xBj

�
xBj
xmin

− 1

�
¼ 1 −

z
xBj

−
z2m2

p

Q2
:

ð3:23Þ

Then, we obtain for the photon flux

zdninðz;Q2Þ
dzd logQ2

¼ αem
π

Z
xmax

xmin

dxBj
xBj

�
1 −

z
xBj

−
z2m2

p

Q2

�

×

��
1 −

z
xBj

þ z2

4x2Bj

�
F2ðxBj; Q2Þ

þ z2

4x2Bj
2xBjF1ðxBj; Q2Þ

�
: ð3:24Þ

In the deep inelastic limit xmin → z, xmax → 1 and assuming
F2 ¼ 2xBjF1, this obtains the form

dninðz;Q2Þ
dzd logQ2

¼ αem
2π

Z
1

z

dxBj
xBj

Pγ←q

�
z
xBj

�

×
F2ðxBj; Q2Þ

xBj

�
1 −

z
xBj

�
; ð3:25Þ

with the splitting function

Pγ←qðyÞ ¼
1þ ð1 − yÞ2

y
: ð3:26Þ

The “parton densities of photons”, which can be compared
to the collinear factorization fluxes are

γin;elðz; μ2Þ ¼
Z

μ2 dQ2

Q2

dnin;elðz;Q2Þ
dzd logQ2

: ð3:27Þ

D. Structure functions as input for
unintegrated fluxes

Here, we show a few different parametrizations of the
proton structure function F2.
The different parametrizations taken from the literature

are labeled as follows:
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FIG. 3. The proton structure function F2ðx;Q2Þ as a function of x for Q2 ¼ 0.225 GeV2 (top left), Q2 ¼ 1.25 GeV2 (top right),
Q2 ¼ 2.5 GeV2 (bottom left), and Q2 ¼ 4.5 GeV2 (bottom right). Shown are different parmetrizations available in the literature.
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(i) ALLM [21,22]. This parametrization gives a very
good fit to F2 in most of the measured region.

(ii) FJLLM [23]. This parametrization explicitly in-
cludes the nucleon resonances and gives an excellent
fit of the CLAS data.

(iii) BDH [24]. This parametrization concentrates on the
low x or high mass region. It features a Froissart-like
behavior at very small x.

(iv) SY [25]. This paramerization of Suri and Yennie
from the early 1970s does not include QCD-DGLAP
evolution. It is still today often used as one of the
defaults in the LPAIR event generator.

(v) SU [26]. A parametrization which concentrates to
give a good description at smallish and intermediate
Q2 at not too small x.

We also show F2 calculated from the CTEQ6L para-
metrization [27].
In Fig. 3 we show the proton structure function

F2ðx;Q2Þ obtained from the various fits at Q2 ¼ 0.225,
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FIG. 4. The proton structure function F2ðx;Q2Þ as a function of
x at Q2 ¼ 2.5 GeV2 shown with a logarithmic x-axis to make
visible the small x behavior of different parametrizations. Here,
also HERA data are included.
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FIG. 5. The inelastic-inelastic contribution to dilepton invariant mass distributions for the ISR (upper left), PHENIX (upper right),
ATLAS (lower left), and LHCb (lower right) experiments for different structure functions.
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1.25, 2.5, 4.5 GeV2 as a function of Bjorken-x in Fig. 3. In
Fig. 4, we show the structure function F2ðx;Q2Þ at Q2 ¼
2.5 GeV2 but this time with a logarithmic abscissa to
emphasize the low x behavior of different parametrizations.
Also shown are the HERA data at low x. Experimental data
on the figures are taken from the compilation [28] and
from [29,30].
Here, we see that the Suri-Yennie fit corresponds to a

unit intercept Pomeron and does not describe the small x
rise of the proton structure function.
A surprising lesson is that the old Suri-Yennie [25] fit still

gives a reasonable description of F2 except of very small x.
For an explicit account of resonances, it is recommended

to use Fiore et al. [23], but care has to be taken to stay
within the resonance region, as the quality of the fit beyond
this region quickly deteriorates.
The overall best description appears to be given by the

ALLM [21,22] fit.

E. Monte Carlo generator

In contrast to our previous studies [4], all calculations
performed within the kT factorization approach were
performed with a Monte Carlo event generator, where

the formulas presented above (see also [4]) were imple-
mented. This Monte Carlo program is used to generate
events (four-momenta of leptons and outgoing protons/
excited systems) which are then transformed to distribu-
tions with the help of the standard software Root [31]. The
typical number of events generated in our studies is a few
million. A more detailed description of the event generator
is presented elsewhere [32].

IV. RESULTS

Most of the experiments for the dilepton production
concentrate on determination of dilepton invariant mass
distributions. In Fig. 5, we show invariant mass distribu-
tions of dilepton pairs produced in the photon-photon
inelastic-inelastic mechanism for kinematical conditions
relevant for different experiments. We show results
obtained with different parametrizations of the structure
functions known from the literature. Surprisingly, the
different structure functions give quite different results.
For completeness in some cases (when possible), we also
show the result obtained in the collinear approach with the
MRST2004(QED) photon distribution (solid black line)
and a similar one when ignoring the initial input (long-
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FIG. 6. The ðelastic-inelasticÞ þ ðinelastic-elasticÞ contribution to dilepton invariant mass distributions for the ISR (upper left),
PHENIX (upper right), ATLAS (lower left), and LHCb (lower right) experiments for different structure functions.
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dashed black line). The result obtained within the collinear
approach with the MRST2004(QED) distribution is much
above the results obtained within the kT factorization
approach. In our opinion, this is mainly related to the
large input photon distribution at the initial scale Q2

0 ¼
2 GeV2 [see Eq. (2.7)] discussed in the context of Fig. 2. If
the input is discarded (long-dashed black line) the collinear
result is similar to the results obtained within the kT
factorization. The inelastic-inelastic contribution gives only
a small fraction of the measured cross section for most
experimental conditions (ATLAS [33], LHCb [34],
PHENIX [35]). For the ISR [36] experiment, it is relatively
larger. Notice, that for its applicability, the collinear
approach needs the presence of a hard scale, in this case,
the invariant mass of the dilepton system or a large
transverse momentum of leptons. This requirement is in
fact satisfied for most of the experimental data shown in
our plots.
In Fig. 6, we show dilepton invariant mass distributions

for elastic-inelastic and inelastic-elastic (added together)
contributions. As for inelastic-inelastic contribution, the
results strongly depend on the parametrization of the

structure functions used. The spread of results for different
F2 from the literature is now, however, significantly smaller
than in the case of inelastic-inelastic contributions where
the structure functions enter twice (into both photon flux
factors). As for the double inelastic case, we also show a
result for the collinear approach. The mixed components
give a similar contribution to the dilepton invariant mass
distributions as the inelastic-inelastic one.
For comparison in Fig. 7, we show some examples (for

ATLAS and LHCb experiments) of dilepton invariant mass
distributions obtained in collinear approximation with so-
called neural network parton distributions (NNPDF2.3
QED) [17] including photon PDFs and their uncertainties.
The specific statistical method leads to large “uncertainties”
related to the photon-photon (inelastic-inelastic and elastic-
inelastic) contributions. The uncertainty is particularly
large for the LHCb experiment, i.e., for small invariant
masses (in our calculation here, we have assumed μ2 ¼
m2

T ¼ p2
T þm2

l for the factorization scale). In our opinion,
the traditional uncertainty bands are overestimated and, in
fact, uncertainties may be slightly smaller. For comparison,
we have shown also a kT factorization result obtained with
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the ALLM structure function (the one which describes the
experimental deep inelastic structure function F2 rather
well in a broad range of x and Q2). In all the cases, the
corresponding distributions are inside the rather broad
uncertainty bands. In the case of the kT factorization
approach, a similar analysis of uncertainties is not straight-
forward. There the uncertainties can be quantified by a
difference associated with a different choice of structure
functions. Clearly, the lower limit of uncertainties is much
smaller than in the collinear approach.
It is very interesting to understand which regions of

(Q2
1;MX) and (Q2

2;MY) space contribute in the measured
spectra. We start our review from distributions in MX (or
MY). The corresponding results for the inelastic-inelastic
component are shown in Fig. 8. Again, we show results for
the ISR (left top panel), PHENIX (right top panel), ATLAS
(left bottom panel), and LHCb (right bottom panel) experi-
ments. The dominant contributions come from the region of
very small missing masses MX (or MY). This is not
necessarily the region where the standard evolution equa-
tion applies for the description of the F2 structure function.
In general, the Fiore et al. [23] and Suri-Yennie [25]
parametrizations give much bigger cross sections in the
region of small missing masses. In this plot, the resolution

in missing mass is rather coarse (ΔMX ¼ 2.5 GeV). If the
resolution of the distribution (binning) was improved, one
could observe even peaks corresponding to nucleon reso-
nances excited by virtual photons for the Fiore et al.
parametrization. As seen in Fig. 3, the Suri-Yennie para-
metrization averages extremely well the structures in the
more detailed Fiore et al. parametrization. Clearly, the
Fiore et al. parametrization is not adequate for large MX
(MY) masses. All this demonstrates how important it is to
use a “proper” structure function.
In Fig. 9, we show some examples of two-dimensional

distributions ðMX;MYÞ for different parametrizations of the
structure functions as an example for the PHENIX kin-
ematics. Here, we focus on small values of MX and MY to
resolve apparent differences. Clearly, the different para-
metrizations give very different results. In the case of the
Fiore et al. parametrization, one can observe now (with
better resolution) resonance lines for MX or MY slightly
bigger than 1 GeV.
In Fig. 10, we show two-dimensional distributions

ðQ2
1; Q

2
2Þ for four different experimental conditions speci-

fied in the figure caption. In most of the cases, rather large
photon virtualities contribute. This is especially true for the
ATLAS experiment with large cuts on the lepton transverse
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momenta [33]. In the case of the old ISR experiment [36] or
more recent PHENIX experiment [35], the situation is very
different, and clearly, contributions from F2 nonperturba-
tive regions come into the game and should be carefully
analyzed. For the case of LHCb, in contrast to other cases,
the distribution in Q2

1 ×Q2
2 is not symmetric along the

diagonal which is related to asymmetric forward coverage
of the LHCb experiment.
Summarizing this part, we have shown that with typical

experimental cuts the contribution of photon-photon fusion
is much smaller than the dilepton experimental data and
constitutes typically less than 1% of the measured cross
sections. Somewhat larger fractions are found in [37],
which concentrates on very large dilepton invariant masses
Mlþl− > 100 GeV. Notice that our approach is best justi-
fied at M2

lþl−=s ≪ 1.

In most of the cases considered so far, Drell-Yan
processes dominate [12,13]. However, the two-photon
processes are interesting by themselves. Can they be
measured experimentally? In order to reduce the Drell-
Yan contribution and relatively enhance the two-photon
contribution, one can impose an extra condition on lepton
isolation. First, trials have been already done by the CMS
Collaboration [8]. In their analysis, extra lepton isolation
cuts were imposed in order to eliminate the otherwise
dominating Drell-Yan component. In Figs. 11, 12, and 13,
we show our results for two different (SY and ALLM)
parametrizations of the structure functions for distributions
in dimuon invariant mass, in transverse momentum of the
pair, and in the relative azimuthal angle between μþμ−.
Here, the kT factorization approach is at a clear advantage
over the collinear approach. Indeed, for the latter, only the
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invariant mass distribution can be obtained at leading
order. In the collinear approach, the second and the
third distributions are just Dirac delta functions in pT;pair

and ϕμþμ− , respectively. To lift this restriction, one would
have to go to the next-to-leading order, where, e.g., a
transverse momentum of the pair can be generated in 2 → 3
processes.
SY and ALLM parametrizations give almost the same

contributions to all the distributions considered. In the
first evaluation, we have taken into account integrated
luminosity of the experiment (L ¼ 63.2 pb−1) as well as
experimental acceptances given in Table 5 in Ref. [8].
Rather good agreement with the low statistics CMS
experimental data is achieved (for both parametrizations
of structure functions used in the figures) without includ-
ing any extra corrections due to absorption effects leading
to destroying the rapidity isolation of leptons and a
damping of the corresponding cross section for the
photon-photon mechanisms. This result is interesting by
itself. It may mean that the absorption effects are small or
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alternatively that a contamination of the Drell-Yan con-
tribution is still not completely removed. Both effects
should be therefore studied in more detail in the future.
This can be done by full Monte Carlo simulations of both
processes and clearly goes beyond the scope of the present
analysis.
For completeness and comparison in Fig. 14, we show

the invariant mass distribution obtained within the col-
linear factorization approach with μ2 ¼ m2

T . We present
results for the case when the initial input at Q2

0 ¼ 2 GeV2

[see Eq. (2.7)] is included (thick red lines) as well as when
it is discarded (thin blue lines) as discussed in Sec. II A.
The results obtained in the latter case are slightly larger
than those obtained within the kT factorization approach
(see Fig. 11), especially when the MRST(QED) input is
included and above the CMS experimental data. Our
observation agrees with an observation made in [18].

A. Kinematical domain of the structure functions

In the previous section, we have shown that the results of
our approach strongly depend on the parametrization
of the structure functions both for the elastic-inelastic
and inelastic-inelastic contributions. Here, we better visu-
alize why it may be so. For this purpose, let us look at
distributions in the variables which enter the structure
functions, namely, Q2 and xBj [see Eq. (3.10)].
In Fig. 15, we show the two-dimensional distributions in

½log10ð−t2Þ; log10ðxBj2Þ� for the four different experiments
discussed also in the previous section for the elastic-inelastic
processes. Here, we denote −t2 ¼ Q2

2=ð1 GeV2Þ, and the
subscript “2” refers to the “inelastic leg” (note that for
the elastic leg xBj ≡ 1, and Q2 is controlled by the proton
size). In all the calculations, the ALLM structure function
was used.
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At lower energies (ISR, RHIC), typically xBj ∼ 0.1 and
Q2 < 1 GeV2. Clearly, this is a nonperturbative region
where the familiar leading twist DGLAP fits are not valid
and higher twists become important. Some models tried
to address this region of the phase space, see e.g., [26].
Even for the ATLAS experiment, xBj ∼ 0.1. Here, how-
ever, Q2 is already partly in the perturbative DGLAP
region. Still, a sizable nonperturbative contribution can
be observed.
For the LHCb experiment, due to the forward rapidity

coverage, we have a large contribution also from the region
of very small xBj.
In Fig. 16, we show similar distributions for the inelastic-

inelastic component. The conclusions here are exactly the
same as for the elastic-inelastic component.
In Fig. 17, we show two-dimensional distributions in

(log10ðxBj1Þ; log10ðxBj2Þ). Most of the distributions are

symmetric with respect to the log10ðxBj1Þ ¼ log10ðxBj2Þ
line. The asymmetry for the LHCb experiment is due to
asymmetry of the rapidity coverage of the LHCb
experiment.
How do the results depend on the parametrization of the

structure function? For illustration in Fig. 18, we show the
distribution in the Bjorken variable xBj for the ATLAS
experiment. We show both the cases of the elastic-inelastic
(left panel) and inelastic-inelastic (right panel) components.
The shapes only weakly depend on the structure function
parametrization, while the normalizations are rather
different. The distributions for elastic-inelastic and
inelastic-inelastic cases are very similar. The uncertainties
(differences between results for different parametrizations)
are naturally bigger for the inelastic-inelastic case than for
the elastic-inelastic one, as here the structure function
enters quadratically.
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V. CONCLUSIONS

In the present paper, we discussed in detail the produc-
tion of dilepton pairs (eþe− or μþμ−) in photon-photon
processes in proton-proton scattering at high energies.
We have compared two different distinct theoretical
approaches.
In the first approach, the photon is treated as a collinear

parton in the proton and included into generalized (QCD,
QED) DGLAP equations. We discussed and demonstrated
that it is not necessary to keep photon distribution in the
evolution equation. It is sufficient to couple the photon to
other partons (quarks/antiquarks) in the proton that undergo
usual DGLAP evolution equations. We discussed also the
issue of the initial condition for the photon distribution at
the initial scale. In this context, we discussed the para-
metrization/prescription proposed by MRST04(QED) [15]
with their initial input as well as when starting evolution
from zero input. The two prescriptions lead to quite
different results for photon distributions and, in conse-
quence, also for charged lepton observables for finite
scales.
In the second approach, we take into account the fact that

photons are off shell and include their transverse momenta
and/or virtualities. We have shown that for typical kin-
ematical conditions of modern experiments, especially at
the LHC, the photon virtualities are fairly large, which puts
doubts on the standard (collinear) parton model treatment.
The kT factorization approach uses unintegrated photon
distributions, which are expressed in terms of F2 structure
functions [4]. Different model parametrizations known
from the literature have been used in the present study.
The final results depend strongly on the choice of the
parametrization. We identified regions of the ðQ2

i ;MiÞ,
Q2

i ; xi spaces which give significant contribution to the
cross section for different experimental conditions. For
example, for the experimental cuts of the recent
ATLAS experiment [33], the mostly perturbative region
(Q2

i > 4 GeV and MX, MY > 3 GeV) contributes.
Therefore, reliable predictions with accuracy better than

10% are possible. In contrast, for the old ISR [36] and
more recent PHENIX [35] experiments, substantial con-
tributions come from the regions MX, MY > 3 GeV, and
Q2

i < 1 GeV. In this case, one should use explicit para-
metrizations which fit the experimental data in this corner
of the space. The calculation should take into account also
resonance contributions. The ranges of xi (arguments of the
structure functions) are displayed for different present and
past experiments. Rather large and moderate xi > 10−2

give the dominant contribution.
Finally, a comment on possible diffractive production

of dileptons is in order. Namely, instead of an “elastic”
photon exchange, there could appear the exchange of a
Pomeron, where the dilepton pair is produced in the
subprocess γp → lþl−p, the so-called timelike Compton
scattering (TCS). At large dilepton masses, the Pomeron
exchange could be modeled by a gluon ladder [38].
Calculations in [39] show that the TCS contribution is at
the percent-level compared to the elastic-elastic γγ dis-
tribution. It can dominate the elastic-elastic contribution
at larger pTpair though. Estimates of the partially inelastic
processes involving TCS are not available in the liter-
ature. A discussion of the possibility of extracting TCS
from the interference with the γγ amplitude is found
in [40].
In the present paper, we discussed the production of

dileptons. A similar analysis may be repeated, e.g., for
photon-photon induced production of WþW− pairs. So far,
only the first approach was applied [19].
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