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It appears that there are two resonances with JP ¼ 1=2− quantum numbers in the energy region near the
Λð1405Þ hyperon. The nature of these states is a topic of current debate. To provide further insight we use
Regge phenomenology to access how these two resonances fit the established hyperon spectrum. We find
that only one of these resonances is compatible with a three-quark state.
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Baryon spectroscopy remains as one of the main tools for
the investigation of strong interactions in quantum chromo-
dynamics (QCD). In the strange baryon sector, which
contains Λ and Σ hyperons, the first excitation of the
isospin-0 uds system is the Λð1405Þ [1]. It is approxi-
mately 300 MeV above the ground state, Λð1116Þ [2]. Its
spin and parity have recently been confirmed to be JP ¼
1=2− [3] but its composition is still debatable [4–14].
Lattice QCD computations related to the Λð1405Þ have
appeared only recently [4–6] and the results are incon-
clusive. For example, in Ref. [5] Λð1405Þ emerges as a
three-quark state while in Ref. [6] it seems to be more like a
K̄N molecule. Although the resonant nature of the Λð1405Þ
has been ignored in these calculations. On the phenom-
enological side, a combined amplitude analysis of K̄N
scattering and πΣKþ photoproduction [8–10] finds that in
the region of the Λð1405Þ there are actually two resonan-
ces, one located at 1429þ8

−7 − i12þ2
−3 MeV and the other at

1325þ15
−15 − i90þ12

−18 MeV [10,15].
In this article we employ Regge analysis [16] to shed more

light on the nature of the Λð1405Þ. From first principles it
follows that poles in partial waves are analytically connected
by Regge trajectories [17] and analytical properties of
trajectories, e.g., deviations from linearity, carry imprints
of the underlying quark-gluon dynamics [18–20].
To perform the analysis of the Regge trajectories we need

to know the pole positions of the low-lying hyperons that
belong to the Λ Regge trajectories. We also use the Σ Regge
trajectories as a benchmark. In Table I we list the hyperon
resonances with spin up to J ¼ 7=2 used in this analysis.
As discussed above, the lowest two Λ states are the ground

stateΛð1116Þ and theΛð1405Þ. The corresponding states in
the isovector sector are identified with the Σð1192Þ and the
Σð1385Þ. These states anchor the four leading Regge
trajectories. The Λð1116Þ, Σð1192Þ, and Σð1385Þ are well
established and their parameters are taken from the Review
of Particle Physics [2]. The two poles in the Λð1405Þ
region that we want to study are labeled as Λð1405Þa and
Λð1405Þb. Their parameters are taken from Ref. [10] (see
Table I). All remaining hyperons on the leading Regge
trajectories have masses above the K̄N threshold and spin
J ≥ 3=2. Parameters of these resonances are taken from the
recent analysis of K̄N partial wave amplitudes in Ref. [21],
which is based on an analytical coupled-channel K-matrix
approach.
The Regge trajectory, αðsÞ, is an analytical function

with right-hand discontinuities determined by unitarity.
Resonance poles, sp, fulfill the conditions ℜ½αðspÞ� ¼ J
and ℑ½αðspÞ� ¼ 0. It is customary to plot J vs ℜðspÞ
(Chew-Frautschi plot [22]), i.e., the projection of the real
part of the Regge trajectory onto the (ℜðspÞ,J) plane.
Figure 1 shows the Chew-Frautschi plot for the Λ and Σ
leading Regge trajectories. The dashed lines are depicted to
guide the eye. We note that each line contains two nearly
degenerate Regge trajectories corresponding to different
signatures; e.g., the Iη ¼ 0þ trajectory in Fig. 1(a) contains
the Λð1116Þ and the Λð1820Þ while Λð1520Þ and Λð2100Þ
lie on another trajectory with signature τ ¼ −1. In princi-
ple, trajectories with odd and even signatures are different.
However, the difference is due to exchange forces which, in
this case, appear to be weak, making the trajectories nearly
degenerate [16–18]. In the following we will treat these
states as if they were part of the same Regge trajectory.
In Fig. 1, the linear alignment of Λ and Σ resonances is*cesar.fernandez@nucleares.unam.mx
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apparent. This is common to ordinary (three-quark) bary-
ons [13,19,20]. Inspecting the real part of the leading 0−

trajectory shown in Fig. 1 we observe that both Λð1405Þa
and Λð1405Þb states could be attributed to the trajectory,
but only one can belong to it. In principle, the pole that does
not belong to the 0− leading trajectory could be either an
ordinary three-quark state or a nonordinary state. If it were
a three-quark state it should lie on a daughter Regge
trajectory that has to be, approximately, parallel to the
leading trajectory. However, this second pole cannot belong
to a daughter Regge trajectory because, if that were the
case, the daughter Regge trajectory would overlap the
leading trajectory. Hence, at least one of the Λð1405Þ states
is a nonordinary state; i.e., its composition should be
different from an ordinary three-quark baryon.
It is, in principle, possible that neither of the Λð1405Þ

poles belong to the 0− leading trajectory. To further address
this question, in Fig. 2 we plot J vs −ℑðspÞ. It is apparent
that both the Λ and the Σ trajectories follow a square-root-
like behavior implied by unitarity that implies a relation
between the phase-space volume and resonance widths
[17]. The Λ and the Σ leading trajectories correspond to
ordinary baryons as indicated by the linear behavior in the
Chew-Frautschi plot (Fig. 1). We find that all of these
trajectories also follow a square-root-like behavior when
the J vs−ℑðspÞ plot is considered. Hence, we conclude that

the Regge trajectory of ordinary baryons should follow
square-root-like behavior in the J vs −ℑðspÞ plot.
Inspecting Fig. 2(a) one concludes that Λð1405Þa appears
on the 0− Regge trajectory of ordinary, three-quark states
while the Λð1405Þb is a candidate for a new nonordinary
baryon resonance. In the following we summarize the
results of a quantitative analysis.
To assess the model dependence of these conclusions we

choose three alternative parametrizations of the Regge
trajectory. We define [18,23]

αðsÞ ¼ α0 þ α0sþ iγρðs; stÞ; ð1Þ

where α0, α0, γ, and st can be obtained by fitting the poles
s ¼ sp to ℜ½αðspÞ� ¼ J and ℑ½αðspÞ� ¼ 0. For ρðs; stÞ,
we use

iρAðs; stÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffi
s − st

p
; ð2Þ

iρBðs; stÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − st=s

p
; ð3Þ

1/2

3/2

5/2

7/2

5 4 3 2 1 0 1 2 3 4 5

J Natural parity

Λ(1116)

Λ(1520)

Λ(1820)

Λ(2100)

Unnatural parity

Λ(1830)

Λ(2020)

3/2+

Λ(1405)bΛ(1405)a

(sp) (GeV2) 

1/2

3/2

5/2

7/2

5 4 3 2 1 0 1 2 3 4 5

J Natural parity

Σ(1192)

Σ(1670)

Σ(1915)

Σ(2100)

Unnatural parity

Σ(1385)

Σ(1775)

Σ(2030)

(sp) (GeV2) 

FIG. 1. Chew-Frautschi plot for the leading Λ (a) and Σ (b)
Regge trajectories. Dashed lines are displayed to guide the eye.

TABLE I. Summary of pole masses (Mp ¼ ℜ ffiffiffiffiffispp ) and widths
(Γp ¼ −2ℑ ffiffiffiffiffispp ) in MeV. I stands for isospin, η for naturality, J
for total angular momentum, and P for parity. Naturality and
parity are related by η ¼ τPwhere τ is the signature. For baryons,
η ¼ þ1, natural parity, if P ¼ ð−1ÞJ−1=2, and η ¼ −1, unnatural
parity, if P ¼ −ð−1ÞJ−1=2. Errors for Λð1405Þ states have been
symmetrized for the calculations. Errors in Ref. [21] are
statistical.

IηJP Mp Γp Name Status Ref.

0−1
2
− 1429(8) 24(6) Λð1405Þa [10]

0−1
2
− 1325(15) 180(36) Λð1405Þb [10]

0−3
2
þ 1690.3(3.8) 46(11) � � � [21]

0−5
2
− 1821.4(4.3) 102.3(8.6) Λð1830Þ **** [21]

0−7
2
þ 2012(81) 210(120) Λð2020Þ * [21]

0þ1
2
þ 1116 0 Λð1116Þ **** [2]

0þ3
2
− 1519.33(34) 17.8(1.1) Λð1520Þ **** [21]

0þ5
2
þ 1817(57) 85(54) Λð1820Þ **** [21]

0þ7
2
− 2079.9(8.3) 216.7(6.8) Λð2100Þ **** [21]

1−3
2
þ 1385(2) 37(5) Σð1385Þ **** [2]

1−5
2
− 1744(11) 165.7(9.0) Σð1775Þ **** [21]

1−7
2
þ 2024(11) 189.5(8.1) Σð2030Þ **** [21]

1þ1
2
þ 1192 0 Σð1192Þ **** [2]

1þ3
2
− 1666.3(7.0) 26(19) Σð1670Þ **** [21]

1þ5
2
þ 1893.9(7.2) 59(42) Σð1915Þ **** [21]

1þ7
2
− 2177(12) 156(19) Σð2100Þ * [21]
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iρCðs; stÞ ¼
s − st
π

Z
∞

st

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − st=s0

p
s0 − st

ds0

s0 − s

¼ 2

π

s − stffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðst − sÞp arctan

ffiffiffiffiffiffiffiffiffiffiffi
s

st − s

r
: ð4Þ

Model C is the analytic continuation of the phase space
(dispersive approach) where α0 and α0 are the subtraction
constants. It is motivated by the relation between the
imaginary part of the Regge trajectory and the width of
the resonances [17]. Models A and B are alternative
phenomenological parametrizations. Model B should not
be trusted on the left-hand cut that should not be present in
αðsÞ. For each model we fit the 0þ, 1þ, and 1− trajectories
that we use as benchmarks. For the 0− trajectory we fitted
the three trajectories depending on which of the two
Λð1405Þ poles is included to lie on the trajectory.
We refer to this trajectory as 0−aðbÞ when Λð1405ÞaðbÞ is
included or as 0−c when neither pole is included. To obtain

the parameters and their uncertainties we proceed as
follows. First, we randomly choose values for the pole
positions sp by sampling a Gaussian distribution according
to the uncertainties given in Table I. We use the least-
squares method to fit the trajectory parameters, Eq. (1), by
minimizing the distance d between the trajectory αðsÞ
evaluated at the complex pole position s ¼ sp and the real
angular momenta J,

d2 ¼
X
poles

f½J −ℜαðspÞ�2 þ ½0 − ℑαðspÞ�2g: ð5Þ

The procedure is repeated, each time obtaining a new set of
trajectory parameters. The expected value of each param-
eter is computed as the mean of the 104 samples and the
uncertainty is given by the standard deviation. The results
are summarized in Table II.
The canonical values of the intercept α0 and slope α0 can

be found in, e.g., Refs. [16,24]. Typically, these parameters
are obtained from fits to the real part of the trajectory only,
i.e., using the relation J ¼ ᾱ0 þ ᾱ0M2 with M being the
Breit-Wigner mass of the resonance. The canonical values
are ᾱ0 ≃ −0.6 and ᾱ0 ≃ 0.9 GeV−2 for the 0þ trajectory
and ᾱ0 ≃ −0.8 and ᾱ0 ≃ 0.9 GeV−2 for the 1þ trajectory
[16]. These yield good results, for example, when applied
to backward Kþp → Kþp reaction at high energy, where
hyperon exchange far from threshold dominates the cross
section [24]. The intercepts α0 for the 0þ and 1þ trajectories
were also obtained in Ref. [25] by fitting the high-energy
kaon backward scattering data (with α0 fixed to 1 GeV2)
yielding α0 ¼ −1.24 or −1.15 for the 0þ trajectory and
α0 ¼ −0.9 or −0.8 for the 1þ. If we limit our analysis to
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FIG. 2. Projections of the leading Λ (a) and Σ (b) Regge
trajectories onto the (−ℑðspÞ, J) plane. Dashed lines are
displayed to guide the eye.

TABLE II. Fitted parameters of the leading Regge trajectories
as defined in Eq. (1). The parameter γ has units of GeV−1 for
model A and is dimensionless for models B and C.

Model Iη −α0 α0 (GeV−1) γ st (GeV2)

A 0−a 3.3(1.5) 1.68(43) 0.56(50) 2.44(65)
0−b 2.19(76) 1.37(24) 0.35(31) 1.2(1.1)
0−c 3.4(1.9) 1.70(58) 0.62(48) 2.60(82)
0þ 1.25(58) 1.09(12) 0.37(19) 2.63(78)
1− 0.317(86) 0.924(27) 0.236(21) 1.79(14)
1þ 0.858(64) 0.913(19) 0.113(27) 1.47(45)

B 0−a 3.5(1.7) 1.75(52) 1.02(77) 2.43(58)
0−b 2.6(1.3) 1.50(38) 0.81(67) 1.5(1.1)
0−c 3.4(1.9) 1.73(59) 1.17(76) 2.64(69)
0þ 1.22(86) 1.09(20) 0.52(35) 2.08(94)
1− 0.41(13) 0.953(39) 0.482(48) 1.92(13)
1þ 0.855(88) 0.913(23) 0.203(57) 1.6(1.1)

C 0−a 3.9(2.1) 1.69(41) −2.2ð2.7Þ 2.92(87)
0−b 2.21(86) 1.30(22) −0.7ð1.1Þ 1.4(1.2)
0−c 3.1(2.1) 1.57(58) −1.4ð1.4Þ 2.78(80)
0þ 1.54(85) 1.10(12) −1.3ð1.1Þ 3.06(91)
1− 0.26(21) 0.861(32) −0.471ð63Þ 1.91(26)
1þ 1.09(22) 0.944(32) −0.47ð29Þ 2.87(50)
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the real parts parametrized by linear functions we obtain
ᾱ0 ≃ −0.74 and ᾱ0 ≃ 0.98 GeV−2 for 0þ and ᾱ0 ≃ −0.89
and ᾱ0 ≃ 0.92 GeV−2 for 1þ. The results of our analysis
(Table II) obtained by fitting trajectory parameters in the
resonant region using latest values of the pole positions
(Table I) are consistent with the earlier fits.
To further assess the quality of the fits shown in Table II

we perform the following consistency check. For a given
model at a given s, αðsÞ is computed as the mean value
of the 104 fits performed to obtain the parameters listed
in Table II. At the location of the poles, s ¼ sP one
should find, within fit uncertainties, ℑ½αðspÞ� ¼ 0 and
ℜ½αðspÞ� ¼ J. The extent to which these conditions are
satisfied is depicted in Fig. 3. For the 0þ and 1− trajectories,
for all models the agreement is excellent. The 1þ trajectory
shows the superiority of the dispersive model C. It recovers
ℑ½αðspÞ� ¼ 0 for all of the poles while models A and B do
not. Model C has some difficulty to recover ℜ½αðspÞ� ¼ J
for J ¼ 3=2 and 5=2 resonances, but it still provides a
better description than models A and B. The disagreement
between the Regge model and the data is most likely due to
the small uncertainty in the pole parameters, which, as
discussed in [21], may have been underestimated for some

resonances due to systematics in the data. For the 0−a
trajectory all of the models reproduce ℜ½αðspÞ� ¼ J and
ℑ½αðspÞ� ¼ 0 although there is certain tension at J ¼ 3=2
for the real part of the Regge trajectory. This is expected
after inspection of Fig. 1(a). On the other hand, for all the
models, the fitted 0−b trajectory fails to fulfill the conditions
ℑ½αðspÞ� ¼ 0 and the condition ℜ½αðspÞ� ¼ J is violated
for the 3=2þ state. It also fails to reproduce the ℑ½αðspÞ� ¼
0 condition for Λð1405Þb. Fits to 0−c have no information
about the Λð1405Þ states and we can check if we obtain
ℜ½αðsÞ� ¼ 1=2 and ℑ½αðsÞ� ¼ 0 at either of the two
Λð1405Þ poles. We find that the 0−c fit provides the correct
result for theΛð1405Þa state but not for theΛð1405Þb where
the condition ℑ½αðspÞ� ¼ 0 is not satisfied. The consistency
check supports the qualitative results obtained from Figs. 1
and 2 inspection.
We find a consistent picture for the leading hyperon

Regge trajectories. Using the Σ and 0þ trajectories as the
benchmark for the ordinary, three-quark states we find that
one of the Λð1405Þ poles, denoted here as Λð1405Þa, which
has pole mass 1429 − i12 MeV, belongs to the 0− leading
Regge trajectory and therefore is most likely dominated by
the ordinary three-quark configuration. The Λð1405Þb pole,
located at 1352 − i90 MeV, does not belong to either the
0− leading Regge trajectory or a close by daughter. Hence,
Λð1405Þb does not seem to fit the common pattern of a
linear Regge trajectory of known three-quark hyperons
possibly indicating its nonordinary nature. This result is
consistent with quark-diquark model expectations which
find only one of the Λð1405Þ states [12,13], large Nc
calculations obtaining a three-quark state in the Λð1405Þ
region [14], and with lattice QCD calculations obtaining
either a three-quark [5] or a K̄N [6] state. Further studies
should assess if the nature of Λð1405Þb is that of a
pentaquark or a molecular state, although the last inter-
pretation is favored by the literature [8–10].
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ℑ½αðspÞ�, which should be equal to zero. For the 0−c columns, the
lowest points represent the αðsÞ predictions of the 0−c fit at
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