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We extend earlier investigations of heavy-light pseudoscalar mesons to the vector case, using a simple
model in the context of the Dyson-Schwinger-Bethe-Salpeter approach. We investigate the effects of a
dressed quark-gluon vertex in a systematic fashion and illustrate and attempt to quantify corrections beyond
the phenomenologically very useful and successful rainbow-ladder truncation. In particular we investigate
the dressed quark-photon vertex in such a setup and make a prediction for the experimentally as yet
unknown mass of the B�

c, which we obtain at 6.334 GeV well in line with predictions from other
approaches. Furthermore, we combine a comprehensive set of results from the theoretical literature.
The theoretical average for the mass of the B�

c meson is 6.336� 0.002 GeV.
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I. INTRODUCTION

TheDyson-Schwinger-Bethe-Salpeter-equation (DSBSE)
approach is a modern nonperturbative framework based on
continuum quantum field theory [1–4] and is thus comple-
mentary to lattice-regularized QCD [5–10] and other modern
approaches to the strong-interaction sector of the standard
model of elementary particle physics.
Modern DSBSE studies with a phenomenological back-

ground mostly use a setup where a simple truncation is
combined with a sophisticated effective model interaction;
see Refs. [11–37] and references therein. Beyond the
most popular rainbow-ladder (RL) truncation, systematic
schemes exist to explore the infinite system of Dyson-
Schwinger equations (DSEs) in a symmetry-preserving
fashion [4,38]. In a concrete, numerical setup [39–43],
one faces increasing complexity [44–58] such that simple
models have an obvious advantage (e.g., Refs. [59–65] and
references therein).
A particularly simple effective interaction [66] is also

employed in our present work, which was used in the past
to study certain classes of diagrams or particular effects of
interest [3,38,67–73]. These can then easily serve as both a
testing ground for and a means to estimate missing effects
in a setup using a more sophisticated effective interaction.
In this work we continue an investigation of a systemati-

cally dressed quark-gluon vertex (QGV) which consistently
enters both the quark DSE and the meson Bethe-Salpeter
equation (BSE) via their respective integral-equation kernels
[67,69,74,75]. Following up on Ref. [75], our focus remains
on heavy-light mesons, which probe the underlying equa-
tions and their building blocks such as the QGV in different

ways. For example, dressing effects for the quark propagator
have been questioned and tested for the case of b quarks
[76–78], since one can make use of simplifying assumptions
about the heavy-quark propagator based on the large value of
the quark mass [79–86]. Ultimately, one goal is to check
heavy-quark symmetrypredictions [87] as, e.g., in relativistic
Hamiltonian dynamics [88–91] as well as reduced versions
of the BSE [92,93], where heavy quarks have been under
renewed investigation recently [94–97]. Another goal is
to prepare, e.g., investigations of the spectral difference of
parity partners in analogy to recent progress with QCD sum
rules [98–108].
The article is organized as follows. In Sec. II we briefly

sketch the setup used for the quark DSE, the QGV, and
the meson BSE. Results and discussion are presented in
Sec. III; conclusions follow in Sec. IV. Technical details are
collected in the appendices.

II. SETUP

Since this work is an extension of Refs. [67,69,75], we
only very briefly sketch the relevant formulas, mostly in
order to be able to understand and interpret the results
presented as well as to connect to the new details presented
in the appendices. For a more complete presentation of our
particular setup and approach, see Ref. [75]. More details
on the case of equal-mass constituents can be found in
Ref. [69], and the truncation scheme and basic assumptions
are laid out in Ref. [67]. Our calculations are performed in
Euclidean momentum space.

A. Quark DSE

The solution of a bound-state problem in the DSBSE
formalism requires knowledge of the building blocks and
their interactions. In our case the meson BSE requires us to
know the quark propagator for both the heavy and the light
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quark under consideration, and the quark-gluon interaction
as well as the gluon propagator. We go in medias res
by assuming the simplification inherent in the effective
interaction of Ref. [66], namely the Munczek-Nemirovsky
(MN) gluon-momentum dependence

DμνðkÞ ∼ G2δ4ðkÞ; ð1Þ

where Dμν is the renormalized dressed gluon propagator
and G is an effective coupling constant, which sets the scale
of the model. This transforms all integral equations into
algebraic equations. In addition, since this model is UV
finite, all renormalization constants are ¼ 1.
In particular, the quark DSE reads

S−1ðpÞ ¼ iγ · pþmq þ γμSðpÞΓC
μðpÞ; ð2Þ

where the renormalized dressed quark propagator S has the
form

SðpÞ−1 ¼ iγ · pAðp2Þ þ Bðp2Þ ð3Þ

¼ Aðp2Þðiγ · pþMðp2ÞÞ ð4Þ

with the dressing functions A and B or, alternatively, A and
M; mq is the current-quark mass, and flavor is inherent to
the solution depending on mq.
The renormalized dressed QGV is written as Γa

ν with
the color index a, which we write explicitly as Γa

μðpÞ ¼
λa

2
ΓμðpÞ. Furthermore, we have set G ¼ 1 in Eq. (2) and the

following, thereby obtaining all dimensioned quantities in
appropriate units of G. The model parameter C introduced
in Eq. (2) and its meaning are best illustrated via the DSE
for the QGV, following Ref. [69] obtained as the effective
equation

ΓC
μðpÞ ¼ γμ − CγρSðpÞΓC

μðpÞSðpÞγρ; ð5Þ

where the dependence on C stems from the effective
combination of the Abelian and non-Abelian correction
terms in the QGV DSE, and the value of C is chosen in
accordance with, e.g., lattice QCD or phenomenology.
Concrete possible values are C ¼ −1=8, corresponding

to Abelian-only dressing [67], C ¼ 0 corresponding to RL
truncation, and C ¼ 0.51, used in Ref. [69] as a result from
fitting to lattice quark propagators [109–111]. Herein, we
fix C ¼ 0.51 throughout for easy comparison and direct
connection to the earlier studies of Refs. [69,75].
To define our truncation scheme [67], we iterate Eq. (5)

such that the bare QGV serves as a starting value
ΓC
μ;0ðpÞ ¼ γμ and the recursion relation is

ΓC
μ;iðpÞ ¼ −CγρSðpÞΓC

μ;i−1ðpÞSðpÞγρ: ð6Þ

At a given order n in this scheme one has for the QGV

ΓC
μðpÞ ¼

Xn
i¼0

ΓC
μ;iðpÞ ð7Þ

and the fully dressed result for the QGV is obtained by
n → ∞. Note that the flavor content of Eqs. (5) and (6) is
implicitly carried by the factors of S.

B. Meson BSE

The meson BSE in the current setup is simplified in a
similar fashion to the quark DSE, namely via the effective
interaction’s property (1). The solution of the BSE, the
Bethe-Salpeter amplitude (BSA) is often combined with the
quark propagators in the integration kernel to the so-called
Bethe-Salpeter wave function χ and we have

χðPÞ ≔ SðqþÞΓðPÞSðq−Þ: ð8Þ

The meson flavor is determined by the quark flavors of the
two factors of S, and the total meson momentum is the only
remaining variable, since the quark and antiquark momenta
are reduced to qþ ¼ ηP and q− ¼ −ð1 − ηÞP.
The momentum partitioning parameter η ∈ ½0; 1� is in

principle arbitrary in any covariant computation as a result
of the freedom in the definition of the quark-antiquark
relative momentum such that observables are independent
of η. However, our particular model interaction is over-
simplifying in the sense that not all possible covariant
structures of the BSA are retained. As a result, there is a
dependence on η, which is a model artifact and must be
properly analyzed in any study using this particular
interaction. Such an analysis was already performed in
Ref. [66] and also in our previous work on pseudoscalar
mesons in Ref. [75]; for our present study, this analysis
is presented in Appendix A. In the presence of such a
detailed analysis, this model artifact does not destroy the
model’s capacity to elucidate our investigation’s goals.
Furthermore, it is easily quantified and thus well under
control.
For the unequal-mass case in our setup, the BSE reads

(see Ref. [75] and Appendix C),

ΓMðPÞ ¼ −
1

2
½γμχMðPÞΓC

μðq−Þ
þ γμSðqþÞΛM

μ ðPÞ þ ΓC
μðqþÞχMðPÞγμ

þ ΛM
μ ðPÞSðq−Þγμ�: ð9Þ

The superscript label M denotes the type of meson under
study, since the structure of the correction term ΛM

μ depends
on the structure of the corresponding BSA. Herein we
consider the vector-meson case, for which all details are
given appropriately in the appendices.
The quark momenta q� in this equation denote the flavor

content and, in particular, the mass ordering among the
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quarks in that the heavier quark is associated with the
subscript þ.
While the first term on the rhs of Eq. (9) is straightfor-

ward to construct from a given QGV, the construction of the
second term is based on a recursion relation analogous to
the one for the QGV. Correction terms are summed up to a
particular order n to get ΛM as

ΛM
ν ðPÞ ¼

Xn
i¼0

ΛM
ν;iðPÞ; ð10Þ

and the full result is then obtained by n → ∞.
The recursion relation reads [67,69]

1

C
ΛM
ν;nðPÞ ¼ −γρχMðPÞΓC

ν;n−1ðq−ÞSðq−Þγρ
− γρSðqþÞΓC

ν;n−1ðqþÞχMðPÞγρ
− γρSðqþÞΛM

ν;n−1ðPÞSðq−Þγρ; ð11Þ

where quark flavors and properties in the factors of S and
Γν are given via the subscripts � in their argument, as
described above.
Evaluating the recursion relations to a desired order, one

uses the initial condition [67]

ΛM
ν;0ðPÞ ¼ 0: ð12Þ

In the pseudoscalar case for equal-mass quarks and
η ¼ 1=2 this implies [67]

ΛP
ν;0ðPÞ ¼ 0 ⇒ ΛP

νðPÞ≡ 0; ð13Þ

which was used as a testing case for our general setup in
Ref. [75]. In the vector case, however, no symmetry exists
to enable such a cancellation and thus an appropriate testing
case is the equal-mass result presented in Ref. [67]. Further
details on the construction of ΛV

ν ðPÞ are technical and thus
collected in Appendix B.

III. RESULTS AND DISCUSSION

We investigate the effect of QGV dressing on vector-
meson ground-state masses in the scheme described above
as a representative way to apply systematic corrections to
the often and well used RL truncation.
As mentioned above, our simplified model leads to

an artificial dependence on the momentum-partitioning
parameter η, which one must study, but nonetheless not
put in the center of attention. We present the dependence on
η in detail in Appendix A and produce corresponding error
bars in our comparison to experimental data below in
Fig. 1; however, other than this we focus on one particular
representative value for η and compare our results for
the various dressing stages in the scheme in physically
meaningful ways.
The study of mesons with unequal-mass constituents

was started in Ref. [75] for the pseudoscalar case. While we
presented also some detailed analysis of the quark propa-
gator dressing functions there, we will not repeat those
here. Instead, our focus is the vector-meson case in general
and two interesting items in particular. First, we study the
dressed quark-photon vertex by solving the inhomogeneous
BSE for the first time in the scheme under consideration
here. Second, we predict the mass of the B�

c meson via a

FIG. 1. Bound-state masses for ρ meson, φ, J=Ψ, ϒ, and all different flavored vector ground states as a function of n, given in GeV.
The dependence on η is illustrated via the error bars. Calculated results are given by blue dots; experimental data are represented by
horizontal lines [112].
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pseudoscalar-vector-splitting analysis. Overall, our results
allow not only qualitative, but also quantitative statements.
Our model parameters are fixed to the values used earlier

in Refs. [69] and [75]: C ¼ 0.51, G ¼ 0.69, and the current-
quark masses are mu ¼ 0.01 GeV, ms ¼ 0.166 GeV,
mc ¼ 1.33 GeV, mb ¼ 4.62 GeV. For the light isovector
case we assume isospin symmetry and the equality of the
current-quark masses of the u and d quarks.
Note that this set of parameters was originally found to

fit quarkonium vector-meson masses throughout the entire
quark-mass range. As a result, our numbers presented
below in Fig. 1 are not aimed at and should not be
understood in the sense of a pure theory-experiment
comparison. While in some cases agreement is excellent
and the use of splittings is a perfectly fine example of a
valid technique under our circumstances, we would like to
stress the emphasis on the size of dressing effects as they
are produced here.

A. Meson BSE

We present results for vector-meson ground-state
masses. In the figures in this section, we plot meson
masses as functions of the order n in our truncation scheme.
In addition, we discuss the differences of the various
masses from the fully dressed result at every n below.
Before we discuss the results and figures in detail, we
remark that it is possible that the homogeneous BSE does
not have a solution for a particular setup, configuration or
set of parameters. In such a case the corresponding data
point’s place in the figure is left empty.
Let us look at the convergence of the results with n and

the comparison with experimental data first. These results
are presented in Fig. 1 in several boxes, one for each quark-
flavor combination. The filled circles in the plots are our
results for each n, where available, for a fixed value of η in
each case. In particular, η ¼ 0.5 for the ρ, φ, J=Ψ, and ϒ,
0.6 for the K�, 0.75 for the B�

c, 0.8 for the D� and D�
s , 0.9

for the B�
s , and 0.95 for the B�.

The actual η dependence for each case is encoded in the
form of a systematic error in our results in Fig. 1: the error
bars are plotted from the lowest to the largest value of the
mass result for any given n. Thus, they are asymmetric and
the value of η chosen for the data point, as defined below,
can be also either the smallest or the largest value available
at this n.
It should be noted here that we chose each η via the

requirement to find a solution of the BSE for all n, if
possible. While this does not seem to work for odd values
of n, we are able to find η values such that a solution can be
obtained for n ¼ ∞ in addition to the even values of n.
As it turns out (see also the figures in Appendix A) this
corresponds to a value of η where the dressing effects for
the meson under consideration are close to minimal with
respect to their range as functions of η. The asymmetric
values given above also make sense in correlation to the

asymmetry of the quark-antiquark-mass content in each
meson. The various aspects of η and their influence on the
quark-propagator dressing functions have been discussed in
detail in our previous investigation for the pseudoscalar
meson case in Ref. [75]. One may, at this point, speculate
that an actual minimization of the dressing effects over the
η-parameters space would lead to values very similar to the
ones quoted here.
The largest error bars resulting from the η range appear

to be of the order of 20%, which is in rough agreement
with our previous work [75] as well as the analysis in the
original [66], where the authors quoted changes smaller
than 15%. However, our detailed analysis presented in the
plots in Figs. 6 and 7 in Appendix A clearly indicate
that the extreme values η ¼ 0 and 1 produce those masses
with the largest deviations from the data point chosen for
experimental comparison. In contrast to the observation
regarding close-to-minimal dressing effects for our chosen
values of η, one could state here that at the boundaries of
the η interval [0, 1] dressing effects appear to be maximal
instead. This effect can also be traced back to the extended
domain probed by extreme η values in the quark-propagator
dressing functions that are involved via the quark momenta
squared q2�, which are directly proportional to η2 and
ð1 − ηÞ2, respectively. It is on these extended domains that
dressing effects are larger than close to or in the spacelike
domain [75].
In this sense it is certainly correct to state that the error

bars in Fig. 1 should represent the entire range of η
observed in our calculations; on the other hand it also
means that in practice the extreme η values have to be taken
with a grain of salt in the sense that they may not be
representative to an amount that actually justifies the size
of these error bars and we in general regard them as
overestimates of more suitably defined systematic errors. In
addition, we remark that the figures in Appendix A also
show cases where very few or even only one of the η values
on our standard grid produce a solution of the correspond-
ing BSE. These cases are easily recognized by their small
error bars, which we chose not to rescale or blow up
artificially. Note that it is possible that solutions exist for
values of η that are not part of our standard grid.
In terms of the comparison to experiment and the

convergence behavior we find a clear pattern of higher,
even n lowering the meson mass with the fully dressed
result again being lower than the result for our largest finite
n presented here, namely n ¼ 4. For odd n in general no
solutions were found. We note at this point why we do not
find solutions in the odd-n cases: our solutions of the
homogeneous BSE are obtained by finding zeros of the
appropriate determinant. It turns out that for the odd-n
cases, the determinant becomes complex at and below
some particular negative value for P2. If a zero is found
above this value (which is the case for some of the
pseudoscalar cases studied in Ref. [75]), we have a
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solution. For the present investigation of vector mesons,
which are heavier than their pseudoscalar counterparts, it
appears that no zero of the determinant exists on the domain
where it is still real.
Experimental values for the quarkonia were fitted via the

quark masses, which is evident from the corresponding
subplots in Fig. 1. For the K�, agreement of the fully
dressed result and the experimental mass value is excellent;
in the other cases, experimental values are underestimated
by our results. An experimental value for the mass of the B�

c
meson is still missing, and we predict a value below via the
use of the pseudoscalar-vector mass splitting.
Next we have a look at the relative differences of meson

masses at each value of n compared to n ¼ ∞, defined via

Δmrel n
H ≔

Δmn
H

mn→∞
H

≔
mn

H −mn→∞
H

mn→∞
H

; ð14Þ

which is dimensionless. Note that instead of comparing the
difference to the fully dressed result here, one may also
divide by the RL result; however, such a construction is
uniquely related to Eq. (14) and, since the differences are
small, this choice does not affect our discussion.
The results for Δmrel n

H are plotted in Fig. 2. In addition,
the values for Δmrel 0

H are tabulated in the second data
column in Table I together with the absolute differences in
massΔm0

H for a given mesonH, which is obtained between
the fully dressed and RL results, given in the first data
column of Table I. Note that all values in this table are also
η dependent, and we calculate the ones presented here at the
η values given above for each meson case.
The results follow the expected pattern that, where

heavier quarks are involved, the dressing effects tend to

be smaller. While such a statement is certainly true
regarding the relative differences, the vector case is not
as clear in this regard as the pseudoscalar one, if one
considers the absolute differences.
More precisely, we find that in comparable cases like

the bottom-flavored mesons, the absolute differences are
smaller the heavier the other quark flavor is. The largest
absolute difference of almost 350 MeV from RL truncation
to the fully-dressed case is found, expectedly, for the
most unbalanced system, the B� meson case, whose value
is more than twice as large as for the corresponding
pseudoscalar, the B.
The smallest ΔmH, on the other hand, unsurprisingly

as well nonetheless, is found for the bottomonium case of

FIG. 2. Relative mass differences Δmrel n
H to the fully dressed result for ρ meson, φ, J=Ψ, ϒ, and all different flavored vector ground

states as a function of n analogous to Fig. 1. Note that by the definition (14) one obtains Δmrel∞
H ¼ 0 in each case.

TABLE I. Absolute and relative mass differences for the vector
mesons with all possible flavor combinations, together with the
corresponding pseudoscalar values adapted from Ref. [75]. Δm0

H
is given in GeV, while the other quantities are dimensionless
(see text).

H Δm0
H Δmrel 0

H Δm0
HðPÞ [75] Δmrel 0

H ðPÞ [75]
ρ 0.226 0.294 0.011 0.078
φ 0.208 0.204 � � � � � �
J=Ψ 0.105 0.034 0.048 0.016
ϒ 0.027 0.003 0.016 0.002
K� 0.224 0.250 0.031 0.072
D� 0.205 0.106 0.059 0.034
B� 0.346 0.068 0.124 0.025
D�

s 0.237 0.116 0.074 0.039
B�
s 0.171 0.033 0.099 0.019

B�
c 0.122 0.020 0.150 0.024
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theϒ, where we find only 27 MeV; still this is almost twice
as large as in the pseudoscalar counterpart, the ηb. These
ratios are of interest, in particular, since the values of the
hyperfine splitting in heavy quarkonia was an issue of
recent debate.
Overall, we find that relative dressing effects are of the

order of 30% for the ρ and K�, and go down to a few
percent for the B�

c or even below one percent for theϒ. The
sizes of relative dressing effects increase with a decrease of
either the meson mass or the sum of the quark masses in the
meson, which is a natural outcome and interpretation.
Regarding absolute dressing effects we find that these are

significantly more pronounced in the vector-meson case
than the pseudoscalar one. We also see that a two-loop
vertex dressing (n ¼ 2) already covers half or more of
the dressing effect of the full vertex as compared to the
RL result, with the remaining difference—except for the
light-meson cases—being below 5%.
On another general note, absolute as well as relative

dressing effects appear to be of the same order of
magnitude for mesons from the categories with equal- or
unequal-mass constituents.
In terms of the interpretation of RL studies in general we

can state that effects are sizable and worth studying, but at
the same time they are systematic and do not a priori
destroy the validity and predictive power of a sophisticated
and well-controlled RL investigation, which can be useful
by utilizing, e.g., mass splittings, trends or cases protected
by the symmetries of the theory in a careful and compre-
hensive manner.

B. Mass of the B�
c

Next, we make a prediction for the mass of the B�
c

meson. Its value is as yet unknown experimentally and
has been predicted in the literature, e.g., in the quark
model (QM) [113–135], light-front quark model (LFQM)
[136–138], reductions of the BSE (BSR) [139–141], with
the nonrelativistic renormalization group (NRG) [142],
QCD sum rules (QCDSR) [143–145], an RL study in the
DSBSE approach (MT-RL) [33], and lattice QCD (LAT)

[146–150]. In Table II we compare these results from
the literature and add our own, ignoring error bars in
each case.
We present two of our own values in this table, namely

one for our RL case in column two and the result for the
fully dressed setup in column one. The RL result is
included to allow better comparison with regard to the
RL study and result in Ref. [33], which uses a more
sophisticated effective interaction, the MT-model [11].
Our full result agrees very nicely with the predictions

from the various approaches and studies. We obtain the
number via calculating the hyperfine mass splitting between
the B�

c and Bc mesons and adding it to the experimentally
measured mass of the Bc, which is 6.275� 0.001 GeV
[112]. We note here that for the DSBSE study of Ref. [33]
we have adjusted their published result in a similar manner,
i.e., computed their value of the splitting and added it to the
experimental pseudoscalar mass.
Investigating the η dependence of this splitting for each

n shows again a situation where a very small range of η
values is available at n ¼ ∞ and all values at our chosen η
are the largest or smallest available. This is illustrated in
the left and right panels of Fig. 3, where again the
dressing effects appear close to minimized by our choice
of η. Plotting our splitting as a function of n in our scheme
in the right panel of Fig. 3 we observe that RL truncation
overestimates it at 0.087þ0.136

−0.003 GeV and corrections
reduce its value to the full result of 0.059þ0.001

−0.028 GeV.
The error bars, also plotted in the figure, again represent
the results’ dependence on η with the interpretation as a
systematic error as explained above. Incorporating the
error bar into our result for the B�

c mass, we arrive at
6.334þ0.001

−0.028 GeV.
To obtain a better picture of the overall comparison of

the various results among each other, we have collected
them in Fig. 4. The references together with their character-
istic as noted in Table II are given below each data point,
while the year of the study is shown above.
For the data points plotted we used the central value of

each calculation together with an error bar as follows: for

TABLE II. Comparison of predictions of the B�
c meson mass.

MN Full MN RL MT-RL [33] LAT [146] LAT [147] LAT [148] LAT [149]
6.334 6.362 6.419 6.320 6.315 6.330 6.332
LAT [150] NRG [142] BSR [139] BSR [140] BSR [141] QCDSR [143] QCDSR [144]
6.329 6.323 6.406 6.345 6.316 6.300 6.317
QCDSR [145] LFQM [136] LFQM [137] LFQM [138] QM [113] QM [114] QM [115]
6.334 6.346 6.310 6.330 6.339 6.346 6.340
QM [116] QM [117] QM [118] QM [119] QM [120] QM [121] QM [122]
6.340 6.329 6.370 6.321 6.372 6.344 6.328
QM [123] QM [124] QM [125] QM [126] QM [127] QM [128] QM [129]
6.337 6.330 6.340 6.320 6.317 6.308 6.341
QM [130] QM [131] QM [132] QM [133] QM [134] QM [135]
6.332 6.324 6.325 6.338 6.329 6.333
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those results, where an error bar is explicitly given in the
reference, we include it as provided; where no error bar is
provided, we choose a default size for an appropriate
error bar via an argument from Ref. [119], where the
authors listed an error of �0.036 GeV for their quark-
model result in order to “get an idea of systematic errors
inherent in quark models.” Concretely, we set the
default error to �0.03 GeV, which provides a reasonable
picture as well as a solid basis for the next step: to arrive
at an interesting estimate of the overall theory prediction
for the mass of the B�

c, we perform a standard weighted
average of all values and errors, whose result is inserted in
Fig. 4 and also plotted underneath the data as a horizontal
red line. For the two cases of asymmetric errors we

treated the average of the upper and lower error as a
symmetric error instead to simplify the procedure. The
averaged result is 6.336� 0.002 GeV, which may serve as
a more suitable number to compare to than the individual
theoretical results.

C. Quark-photon vertex

A case of immediate interest in the investigation of the
quantum numbers JPC ¼ 1−− is the dressed quark-photon
vertex [151–154]. It can be obtained consistently from the
inhomogeneous version of the vector BSE, which is a
straightforward computation once the BSE kernel has been
defined and computed [39,41,42].

FIG. 4. B�
c mass values including error bars (blue data points) taken from the references as listed on the lower axis in the figure,

corresponding to Table II. Years of appearance are given on the upper axis for each data point. The horizontal red line is the average; its
error is about the size of the thickness of the line. The value and error of the average are provided in the insert.

FIG. 3. Left panel: B�
c − Bc mass splitting as a function of n and η in our scheme. Right panel: B�

c − Bc mass splitting as a function of n
in our scheme for fixed η ¼ 0.75 (blue circles); error bars indicate variations with respect to η.
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The vertex has the general structure

ΓμðQ; kÞ ¼ ΓL
μ ðQ; kÞ þ

X8
i¼1

Ti
μðQ; kÞfiðQ; kÞ; ð15Þ

where the arguments are the relative quark-antiquark
momentum k and the (photon) total momentumQ, the eight
covariants Ti

μ are transverse with respect toQ, and the longi-
tudinal part ΓL

μ ðQ; kÞ is fixed via the vector Ward-Takahashi
identity and can be written in the Ball-Chiu construction
[155] as the longitudinal projection with respect to Q of

ΓBC
μ ðQ; kÞ ¼ iγμΣAðQ; kÞ

þ 2kμ½ik · γΔAðQ; kÞ þ ΔBðQ; kÞ�: ð16Þ
In particular,

ΣAðQ; kÞ ¼ Aðk2þÞ þ Aðk2−Þ
2

; ð17Þ

ΔAðQ; kÞ ¼ Aðk2þÞ − Aðk2−Þ
k2þ − k2−

; ð18Þ

ΔBðQ; kÞ ¼ Bðk2þÞ − Bðk2−Þ
k2þ − k2−

; ð19Þ

with the (anti)quark momenta k� defined analogously as
in the homogeneous BSE above as kþ ¼ kþ ηQ and
k− ¼ k − ð1 − ηÞQ, which entails

k2þ ¼ k2 þ 2ηk ·Qþ η2Q2; ð20Þ

k2− ¼ k2 − 2ð1 − ηÞk ·Qþ ð1 − ηÞ2Q2; ð21Þ

k2þ − k2− ¼ ð2η − 1Þð2k ·QþQ2Þ: ð22Þ
In our case, after the simplification via Eq. (1), we

remain with

k2þ ¼ η2Q2; ð23Þ

k2− ¼ ð1 − ηÞ2Q2; ð24Þ

k2þ − k2− ¼ ð2η − 1ÞQ2 ð25Þ

and thus

ΣAðQÞ ¼ Aðη2Q2Þ þ Aðð1 − ηÞ2Q2Þ
2

; ð26Þ

ΔAðQÞ ¼ Aðη2Q2Þ − Aðð1 − ηÞ2Q2Þ
ð2η − 1ÞQ2

; ð27Þ

ΔBðQÞ ¼ Bðη2Q2Þ − Bðð1 − ηÞ2Q2Þ
ð2η − 1ÞQ2

: ð28Þ

In the case of the quark-photon vertex, the quark and
antiquark in the BSE have equal flavor and mass due to the
nature of the electromagnetic interaction. For the standard
setting in such a case, η ¼ 0.5, we obtain

k2þ ¼ k2− ¼ Q2=4; ð29Þ

ΣAðQÞ ¼ AðQ2=4Þ; ð30Þ

ΔAðQÞ ¼ A0ðQ2=4Þ; ð31Þ

ΔBðQÞ ¼ B0ðQ2=4Þ; ð32Þ

so that under normal circumstances with finite values of
A0ðQ2=4Þ and B0ðQ2=4Þ, the Ball-Chiu vertex reduces to

ΓBC
μ ðQÞ ¼ iγμAðQ2=4Þ: ð33Þ

As we discuss explicitly in Appendix B, for the transverse
vector covariants, only two are left nonzero by the model’s
simplifications and one can easily solve the inhomo-
geneous BSE to obtain the corresponding solutions.
In Fig. 5 we plot the nonzero amplitudes as functions

of the total momentum squared to illustrate the size of
dressing effects for the dressed quark-photon vertex in
our (MN) scheme. The quark mass is chosen to be the

FIG. 5. Inverse of the transversal component 1=f1 of the quark-photon vertex for different n in the MN model studied herein together
with a sophisticated (Maris-Tandy, MT) model [11] result in RL truncation for comparison (see text). Left panel: Detailed view in the
region around Q2 ¼ 0. Right panel: Large-scale view without error bars on the MN curves to emphasize the asymptotic behavior.
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light-quark mass. The most prominent sets to look at are
the case n ¼ 0, which corresponds to the rainbow-ladder-
truncation result and is depicted by the blue disks, and
n ¼ ∞, which represents the result from the fully dressed
QGV and is depicted by the red boxes. In addition, to
highlight the rapid convergence of this function in our
scheme, we also plotted the cases n ¼ 2 and n ¼ 4, which
are almost on top of the n ¼ ∞ result; however, in order not
to overcrowd the figure, odd values of n are left out here.
In short, the difference between the RL truncated result

and any of the dressed versions is sizable, while all dressed
solutions among themselves are hard to distinguish, and
differences are minor. In the absence of the dependence on
a relative momentum squared, the behavior seen here may
well be interpreted as the prototype of variation of the P2

dependence of elements of the quark-photon vertex beyond
RL truncation in the sense that already the first order in our
scheme provides a result close to the fully dressed case.
In each case, we have, as required by our own state-

ments, studied the model-artificial η dependence of the
MN results and depicted the variation via error bars on each
of the curves. As it turns out, such a dependence is stronger
for larger values of Q2 and negligible around Q2 ¼ 0.
The central curve is always given by the natural choice
of η ¼ 0.5.
To complete the picture, we also plot the corresponding

component for a dressed quark-photon vertex obtained with
a sophisticated model interaction (the Maris-Tandy/MT
model [11]) in RL truncation in analogy to the study in
Ref. [151]. More precisely, we plot the inverse of the zeroth
Chebyshev moment at zero relative momentum squared as
a function of Q2, which corresponds to our MN-RL curve
and serves as a baseline to impose putative dressing effects
as they are studied here. This kind of comparison is
supported as a result of the calculational restrictions due
to the truncation scheme’s adherence to the symmetry
requirements of the theory represented by the relevant
Ward-Takahashi identities, which are respected in both the
MT and MN cases, as discussed above.
In the figure we have also plotted three dotted lines for

ease of orientation, namely: a horizontal line at 1=f1 ¼ 0,
which clearly shows the position of zeros in each curve, i.e.,
the ρ-pole positions (note that such a pole contribution is
present in every single case); a vertical line at Q2 ¼ 0,
which marks the transition from the timelike to the space-
like region of photon momentum; finally, a horizontal line
at 1=f1 ¼ 1, which indicates the limit of the asymptotic
behavior of all curves for Q2 → ∞, i.e., the perturbative
limit in which all curves agree by construction.
To better illustrate both the details of the various curves

as well as their asymptotic behavior, we provide two panels
in Fig. 5. The left panel shows a detailed view of the region
around Q2 ¼ 0, and includes error bars as well as multiple
curves from the MN truncation scheme. The right panel on
the other hand shows only three curves without error bars

and very nicely documents them approaching the pertur-
bative limit.

IV. CONCLUSIONS

We have extended earlier DSBSE studies in a systematic
truncation scheme using a simple effective-interactionmodel
together with a dressed QGV to the unequal-mass case of
vector mesons. After a general analysis of dressing effects
in both the quarkonia and the various flavored mesons, we
focused on two items of special interest, namely the mass
of the B�

c meson and the dressed quark-photon vertex.
The general pattern of dressing effects confirms expect-

ations where dressing effects beyond RL truncation are
stronger, the lighter the involved quark content is. We found,
rather importantly, that such effects are more pronounced in
the vector-meson case than in the pseudoscalar case studied
earlier. This entails that mass (such as hyperfine) splittings
are modified significantly by corrections in a systematic
truncation scheme such as the one presented here.
Using such a calculated splitting between the B�

c and the
Bc mesons, we predicted the mass of the former and put
our result in the context of other predictions available in
the literature. Our number, 6.334þ0.001

−0.028 GeV compares well
with the rest of the literature, and our comparison to the RL
result sheds some light on possible changes of correspond-
ing results at higher order in a systematic scheme such as
the one presented here.
In addition we have provided an average of a com-

prehensive set of results from the theoretical literature.
The averaged result for the mass of the B�

c meson is
6.336� 0.002 GeV.
To obtain results for the dressed quark-photon vertex, we

presented solutions for the inhomogeneous vector-vertex
BSE for the first time in the context of a truncation scheme.
Our simple-model convergence picture was contrasted to an
RL calculation with a more sophisticated model interaction
and analogies were discussed in detail.
Our results support both studies of corrections to RL

truncation as well as sophisticated and well-controlled RL
studies as such, since they can be performed with a much
more comprehensive scope in mind. Furthermore, we have
once again demonstrated the strength of the use of mass
splittings as tools with predictive power in our approach.
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APPENDIX A: η DEPENDENCE
OF MESON MASSES

In this appendix we collect data and plots about
the details of the dependence of the meson masses on the
momentum-partitioning parameter η as a function of the
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order n in our scheme. The corresponding plots are shown
in the various panels of Figs. 6 and 7 for the equal- and
unequal-mass cases, respectively. The alternating pattern of
convergence of the odd and even n numbers described
earlier in Ref. [75] is difficult to observe herein, since there
is, again, a distinct lack of solutions for odd n on our main η
grid points. Still, convergence with n is observed as well as
a pronounced η asymmetry for the heavy-light case, which
is the source of the large error bars plotted in Fig. 1. Despite
this artificial behavior a detailed study such as ours remains
true to the systematic character of both the approach and
the truncation scheme presented here and, in particular,
validates the qualitative as well as quantitative statements
made above.

APPENDIX B: VECTOR KERNEL DETAILS

Following Refs. [67,69,75] we collect the details of the
BSA, the correction term Λ, and the QGV in this appendix.
The recursion relations for the QGV Γμ, Eq. (6) and
the BSE correction term ΛMμ, Eq. (11) are detailed, in
particular with respect to Dirac structures.
From the 12 covariant structures of the full QGV, Eq. (1)

reduces this set to three nonzero ones:

ΓμðpÞ ¼ α1ðp2Þγμ þ α2ðp2Þγ · ppμ − iα3ðp2Þpμ: ðB1Þ

With the initial condition that the QGV be bare

ΓμðpÞ0 ¼ γμ ðB2Þ
one can construct the QGV via its recursion relation at
any order by expressing the functions ðα1; α2; α3Þ given in
Eq. (B1) in terms of the quark propagator dressing
functions A and B. By inserting the result back into the
quark DSE one obtains algebraic equations for AðsÞ and
BðsÞ via Dirac-trace projections onto the two covariant
quark propagator structures.
In order to compute ΛMμðPÞ a suitable decomposition in

terms of Dirac covariants has to be found, depending on
the quantum numbers appropriate for the meson M under
consideration (in our case a vector meson). In our setup the
vector BSA has two nonvanishing components from the
eight general structures, namely

Γξ
1−ðPÞ ¼ f1ðP2Þγ · εξðPÞ − f2ðP2ÞσμνεξμðPÞP̂ν ðB3Þ

with the unit vector P̂ ≔ P=
ffiffiffiffiffiffi
P2

p
and

σμνaμbν ≔
i
2
ðγ · aγ · b − γ · bγ · aÞ: ðB4Þ

εξμðPÞ, ξ ¼ 1, 2, 3 are polarization vectors with respect to P.
The corresponding Dirac projections are

FIG. 6. Meson bound-state masses as functions of n and η, given in GeV. Even n are depicted by dashed lines, odd ones by dotted
lines, and the fully summed result by a solid line. If no solution is found, no surface is plotted at the corresponding n. Left upper panel: ρ.
Right upper panel: φ. Left lower panel: J=Ψ. Right lower panel: ϒ.
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F ξ
1 ≔

1

12
γ · εξðPÞ; ðB5Þ

F ξ
2 ≔ −

1

12
σμνε

ξ
μðPÞP̂ν; ðB6Þ

such that

Tr
X
ξ

½F ξ
jΓ

ξ
1−ðPÞ ¼ fjðP2Þ�; j ¼ 1; 2: ðB7Þ

We construct Λ1−μ following Ref. [67] for direct com-
parability as

Λξ
μðPÞ¼β1ðP2ÞεξμðPÞþβ2ðP2ÞiεξμðPÞγ · P̂

þβ3ðP2ÞiP̂μγ ·εξðPÞ−β4ðP2ÞστνεξτðPÞP̂νγμ

−β5ðP2ÞiστνεξτðPÞP̂νP̂μþβ6ðP2Þγ ·εξðPÞγμ; ðB8Þ

where the subscript denoting the vector case has been
omitted. The corresponding Dirac projections are

Pξ
μ;1 ≔

1

4
εξμðPÞ; ðB9Þ

Pξ
μ;2 ≔ −

i
4
εξμðPÞγ · P̂; ðB10Þ

Pξ
μ;3 ≔ −

i
4
P̂μγ · εξðPÞ; ðB11Þ

Pξ
μ;4 ≔ −

1

4
στνε

ξ
τðPÞP̂νγμ; ðB12Þ

Pξ
μ;5 ≔

i
4
στνε

ξ
τðPÞP̂νP̂μ; ðB13Þ

FIG. 7. Same as Fig. 6. Left upper panel: K�. Right upper panel: D�. Left center panel: B�. Right center panel: D�
s . Left lower panel:

B�
s . Right lower panel: B�

c.
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Pξ
μ;6 ≔

1

4
γ · εξðPÞγμ; ðB14Þ

such that

βj ¼ ðMÞjkTr
X
ξ

½Pξ
μ;kΛ

ξ
μ�; ðB15Þ

where the matrix M (the vector case 1− is assumed
implicitly from now on) is given by

M ¼ 1

2

0
BBBBBBBBB@

3 0 0 0 1 −1
0 3 −1 −1 0 0

0 −1 3 1 0 0

0 −1 1 1 0 0

1 0 0 0 3 −1
−1 0 0 0 −1 1

1
CCCCCCCCCA
: ðB16Þ

The scalar functions ~β ≔ fβjg, j ¼ 1;…; 6 are obtained
at a particular order n in the truncation via the recursion
relation (11), resulting in

~βi ¼ MðG−~αi−1− þGþ~αi−1þ þL~βi−1Þ; ðB17Þ
which can be evaluated when the matrices G� and L
are known. ~αþ and ~α− denote the coefficients of the QGV
decomposition corresponding to the þ and − arguments
appearing in their defining quark propagators as given
above. With the definitions

B− ≔ Bðp2
−Þ; ðB18Þ

Bþ ≔ Bðp2þÞ; ðB19Þ

A− ≔ ðη − 1Þ
ffiffiffiffiffiffi
P2

p
Aðp2

−Þ; ðB20Þ

Aþ ≔ η
ffiffiffiffiffiffi
P2

p
Aðp2þÞ; ðB21Þ

and

Δ− ≔ A2
− þ B2

−; ðB22Þ

Δþ ≔ A2þ þ B2þ; ðB23Þ

as well as

Θ− ≔ A−Aþ − B−Bþ; ðB24Þ

Θþ ≔ A−Aþ þ B−Bþ; ðB25Þ

Ξ− ≔ A−Bþ − AþB−; ðB26Þ

Ξþ ≔ A−Bþ þ AþB−; ðB27Þ

and

Φ− ≔ BþA2
− − 2A−AþB− − BþB2

−; ðB28Þ

Φþ ≔ AþA2
− þ 2A−B−Bþ − AþB2

−; ðB29Þ

Ψ− ≔ B−A2þ − 2A−AþBþ − B−B2þ; ðB30Þ

Ψþ ≔ A−A2þ þ 2AþB−Bþ − A−B2þ; ðB31Þ

one obtains

ML ¼ 2C
Δ−Δþ

0
BBBBBBBBB@

2Θ− −2Ξþ 0 −2Ξþ 0 2Θ−

−Ξþ −Θ− 0 −2Θ− 0 −2Ξþ
0 0 Θþ −2B−Bþ −Ξ− 2B−Aþ
0 0 0 Θ− 0 Ξþ
0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA
: ðB32Þ

In the equal-mass case, as presented in Ref. [67] one obtains

ML ¼ 1

4Δ2

0
BBBBBBBBB@

2Δ 0 0 0 0 2Δ
0 −Δ 0 −2Δ 0 0

0 0 A2Q2 − B2 2B2 −2AB
ffiffiffiffiffiffi
Q2

p
−2AB

ffiffiffiffiffiffi
Q2

p
0 0 0 Δ 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA

ðB33Þ
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with the replacements C → − 1
8
and P2 → 4Q2, which is

identical to the result given in Ref. [67] except for a factor
of 2 in element (3, 3) of this matrix.

The two matrices G− and Gþ are associated with
the corresponding quark propagators with the þ and −
arguments as defined above:

MG− ¼ −C
Δ2

−Δþ

0
BBBBBBBBB@

−4Δ−Bþf1 − 4Δ−Aþf2 0 0

−4Δ−Aþf1 þ 4Δ−Bþf2 0 0

−4B−Ξ−f1 − 4B−Θþf2 −2q2−Φþf1 þ 2q2−Φ−f2 −2
ffiffiffiffiffiffi
q2−

p
Φ−f1 − 2

ffiffiffiffiffiffi
q2−

p
Φþf2

2Δ−Aþf1 − 2Δ−Bþf2 0 0

0 0 0

0 0 0

1
CCCCCCCCCA
; ðB34Þ

which is to be understood as a 6 × 3 matrix, and its corresponding analog

MGþ ¼ −C
Δ−Δ2þ

0
BBBBBBBBB@

−4B−Δþf1 þ 4A−Δþf2 0 0

0 0 0

−4AþΘþf1 þ 4Ξ−Aþf2 −2q2þΨþf1 − 2q2þΨ−f2 2
ffiffiffiffiffiffi
q2þ

p
Ψ−f1 − 2

ffiffiffiffiffiffi
q2þ

p
Ψþf2

−2A−Δþf1 − 2B−Δþf2 0 0

0 0 0

0 0 0

1
CCCCCCCCCA
: ðB35Þ

In the equal-mass case, again with the replacements
C → − 1

8
and P2 → 4Q2 this becomes

MðG− þGþÞ ¼
1

2Δ2

0
BBBBBBBBB@

2ðBf1 þ A
ffiffiffiffiffiffi
Q2

p
f2Þ 0 0

A
ffiffiffiffiffiffi
Q2

p
f1 − Bf2 0 0

−A
ffiffiffiffiffiffi
Q2

p
f1 þ Bf2 0 0

−A
ffiffiffiffiffiffi
Q2

p
f1 þ Bf2 0 0

0 0 0

0 0 0

1
CCCCCCCCCA
;

ðB36Þ

which is identical to the result given in Ref. [67] except for
an overall factor of 1=Δ.

APPENDIX C: PROOF OF KERNEL
CONSTRUCTION

In this appendix we present a short proof that our
kernel construction in fact satisfies the axial-vector
Ward-Takahashi identity (AVWTI), as required by the
general setup of the truncation scheme. The AVWTI can
be written in its integral form as [156]

Z
Λ

q
fSðqþÞγ5 þ γ5Sðq−ÞgGHKGH

EF ðk; q; PÞ

¼ fΣðkþÞγ5 þ γ5Σðk−ÞgEF; ðC1Þ

whereK is the quark-antiquark scattering kernel used in the
meson BSE, q� are the (anti)quark momenta, and EFGH
denote color, Dirac, and flavor indices.
In the following, we show that the kernel in Eq. (9)

satisfies this equation. Alternatively, one can in principle
also reverse the argument to arrive at the kernel construc-
tion starting out from the AVWTI.
The gluon-loop dressed QGV correction term to the

BSE kernel, as defined in Eqs. (10) and (11), leads to a
corresponding correction to the AVWTI of the form

Λ̄M
ν ðPÞ ¼

X∞
i¼0

Λ̄M
ν;iðPÞ; ðC2Þ

with

1

C
Λ̄M
ν;nðPÞ ¼ −γρfSðqþÞγ5 þ γ5Sðq−ÞgΓC

ν;n−1ðq−ÞSðq−Þγρ
− γρSðqþÞΓC

ν;n−1ðqþÞfSðqþÞγ5 þ γ5Sðq−Þgγρ
− γρSðqþÞΛ̄M

ν;n−1ðPÞSðq−Þγρ: ðC3Þ

Using the recursion relation for the QGV (6), this
becomes

1

C
Λ̄M
ν;nðPÞ ¼ −γρSðqþÞγ5ΓC

ν;n−1ðq−ÞSðq−Þγρ − γ5ΓC
ν;nðq−Þ

− ΓC
ν;nðqþÞγ5 − γρSðqþÞΓC

ν;n−1ðqþÞγ5Sðq−Þγρ
− γρSðqþÞΛ̄M

ν;n−1ðPÞSðq−Þγρ: ðC4Þ
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Upon insertion of the lower-order correction term
Λ̄M
ν;n−1ðPÞ in Eq. (C4), it can be seen that the first and

fourth terms in Eq. (C4) are canceled by the second and
third terms of the Λ̄M

ν;n−1ðPÞ contribution.
Therefore, the recursion (C4) collapses to

1

C
Λ̄M
ν;nðPÞ ¼ −γρSðqþÞγ5ΓC

ν;0ðq−ÞSðq−Þγρ − γ5ΓC
ν;nðq−Þ

− ΓC
ν;nðqþÞγ5 − γρSðqþÞΓC

ν;0ðqþÞγ5Sðq−Þγρ
− γρSðqþÞΛ̄M

ν;0ðPÞSðq−Þγρ: ðC5Þ
From ΛM

ν;0ðPÞ ¼ 0, it follows that Λ̄M
ν;0ðPÞ ¼ 0.

Because of ΓC
ν;0ðq�Þ ¼ γν and the anticommutation

properties of the Clifford algebra, the first and fourth terms
cancel each other and Eq. (C5) reduces to

1

C
Λ̄M
ν;nðPÞ ¼ −γ5ΓC

ν;nðq−Þ − ΓC
ν;nðqþÞγ5: ðC6Þ

Hence,

1

C
Λ̄M
ν ðPÞ ¼ −γ5ΓC

νðq−Þ − ΓC
νðqþÞγ5: ðC7Þ

The AVWTI becomes

Z
Λ

q
fSðqþÞγ5 þ γ5Sðq−ÞgGHKGH

EF ðk; q; PÞ

¼ −
1

2

�
γνfSðkþÞγ5 þ γ5Sðk−ÞgΓC

νðk−Þ

þ ΓC
νðkþÞfSðkþÞγ5 þ γ5Sðk−Þgγν

þ γνSðkþÞΛ̄M
ν ðPÞ þ Λ̄M

ν ðPÞSðk−Þγν
�
EF

ðC8Þ

¼ fγνSðkþÞΓC
νðkþÞγ5 þ γ5γνSðk−ÞΓC

νðk−ÞgEF ðC9Þ

¼ fΣðkþÞγ5 þ γ5Σðk−ÞgEF; ðC10Þ

which is the desired result, where

γμSðpÞΓμðpÞ ¼ ΓμðpÞSðpÞγμ ðC11Þ

has been used.

APPENDIX D: ALGEBRAIC GAP EQUATIONS

In our recursive setup, the coupled equations for the
various dressing functions contain polynomials of increas-
ing order with increasing order in the recursion. The fully
summed solution is obtained via a geometric sum and thus
produces equations involving polynomials of a finite order
as well.
Here we present the algebraic equations resulting for A

and B at the orders used in our study, namely
n ¼ 0; 1; 2; 3; 4;∞, including explicitly the current-quark
mass m, the coupling G as well as the strength parameter C.
For n ¼ 0 one has RL truncation and the Dirac-projected

gap equations for A and B read

A ¼ 1þ 2AG
Δ

; ðD1Þ

B ¼ mþ 4BG
Δ

: ðD2Þ

For n ¼ 1 the Dirac-projected gap equations for A and B
read

A ¼ 1þ 2AG
Δ

þ 8ACG2

Δ2
þ 4AB2CG2

Δ3
; ðD3Þ

B ¼ mþ 4BG
Δ

þ 12BCG2

Δ2
−
4B3CG2

Δ3
: ðD4Þ

For n ¼ 2 the Dirac-projected gap equations for A and
B read

A ¼ 1þ 2AG
Δ

þ 8ACG2

Δ2
þ 4ACG2ðB2 þ 2CGÞ

Δ3
−
16AB4C2G3

Δ5
; ðD5Þ

B ¼ mþ 4BG
Δ

þ 12BCG2

Δ2
−
4BCG2ðB2 − 8CGÞ

Δ3
−
32B3C2G3

Δ4
þ 16B5C2G3

Δ5
: ðD6Þ

For n ¼ 3 the Dirac-projected gap equations for A and B read

A ¼ 1þ 2AG
Δ

þ 8ACG2

Δ2
þ 4ACG2ðB2 þ 2CGÞ

Δ3
þ 32AC3G4

Δ4
−
16AB2C2G3ðB2 − 3CGÞ

Δ5
−
32AB4C3G4

Δ6
þ 64AB6C3G4

Δ7
; ðD7Þ

B ¼ mþ 4BG
Δ

þ 12BCG2

Δ2
−
4ðB3CG2 − 8BC2G3Þ

Δ3
−
16ð2B3C2G3 − 7BC3G4Þ

Δ4

þ 16ðB5C2G3 − 11B3C3G4Þ
Δ5

þ 160B5C3G4

Δ6
−
64B7C3G4

Δ7
: ðD8Þ
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For n ¼ 4 the Dirac-projected gap equations for A and B read

A ¼ 1þ 2AG
Δ

þ 8ACG2

Δ2
þ 4ðAB2CG2 þ 2AC2G3Þ

Δ3
þ 32AC3G4

Δ4
þ 16ð−AB4C2G3 þ 3AB2C3G4 þ 2AC4G5Þ

Δ5

þ 32ð2AB2C4G5 − AB4C3G4Þ
Δ6

−
64ð6AB4C4G5 − AB6C3G4Þ

Δ7
−
256AB8C4G5

Δ9
þ 256AB6C4G5

Δ8
; ðD9Þ

B ¼ mþ 4BG
Δ

þ 12BCG2

Δ2
−
4ðB3CG2 − 8BC2G3Þ

Δ3
−
16ð2B3C2G3 − 7BC3G4Þ

Δ4

þ 16ðB5C2G3 − 11B3C3G4 þ 24BC4G5Þ
Δ5

þ 160ðB5C3G4 − 6B3C4G5Þ
Δ6

−
64ðB7C3G4 − 18B5C4G5Þ

Δ7

−
768B7C4G5

Δ8
þ 256B9C4G5

Δ9
: ðD10Þ

Finally, for the fully summed vertex, the resulting gap equations are

A ¼ 1þ 3AG
A2sþ B2 − 2CG

−
AGðA2sþ B2 − 4CGÞ

A4s2 þ 2A2sðB2 − CGÞ þ B4 þ 2B2CG − 8C2G2
; ðD11Þ

B ¼ mþ BG
�

3

A2sþ B2 − 2CG
þ A2sþ B2 þ 4CG
A4s2 þ 2A2sðB2 − CGÞ þ B4 þ 2B2CG − 8C2G2

�
: ðD12Þ
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