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Dibaryons with two strange quarks and total spin zero
in a constituent quark model
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We investigate the symmetry property and construct the wave function of the dibaryon states
containing two strange quarks with § = 0 in both the flavor SU(3) symmetric and breaking cases. We
discuss how the color @ isospin ® spin states of dibaryon in the symmetry broken case of flavor SU(3)
can be extracted from the fully antisymmetric states in flavor SU(3). The stability of the dibaryon against
the strong decay into two baryons is then discussed, by using the variational method within a constituent
quark model with confining and color-spin interactions. To compare our results with those from lattice
QCD in the flavor SU(3) limit, we search for the stable H-dibaryon in a wide range of # meson masses.
We find that with the given potential, there is no compact six-quark dibaryon state in the SU(3) flavor
symmetry broken case with realistic quark masses as well as in the flavor SU(3) symmetric case in a wide

range of quark masses.

DOI: 10.1103/PhysRevD.93.074007

I. INTRODUCTION

Since Jaffe [1-3] suggested the possible existence of
tetraquarks and dibrayons in QCD, based on the one-gluon
exchange color-spin interaction, multiquark systems have
been explored in various models and searched for exper-
imentally over several decades. Attempts to find a stable
multiquark system have been made by many researchers
using the chromomagnetic model based on the color-spin
interaction. For example, for the X(3872), which by now
is widely believed to be a JP¢ = 1*+ state, Hpgassen [4,5]
suggested that it could be a tetraquark state with a strong
mixing of the color octet-octet component of the two
quark-antiquark pair within the color-spin interaction.
Silvestre-Brac and Leandri systematically classified
dibaryons consisting of light quarks within the flavor
SU(@3) symmetry [6] and those containing two different
types of heavy quarks [7]: These papers have discussed
the stability of the multiquark system and its relation to the
hyperfine splitting.

The dynamical problem of studying the stability of the
multiquark system has been studied mainly using the
variational method with a nonrelativistic Hamiltonian,
including the confinement and hyperfine potential. The
ground states of gqgg systems with L =0 have been
extensively calculated with the harmonic oscillator bases in
Refs. [8,9]. Calculations based on the simple Gaussian
spatial function have been made in Refs. [10-11] to study
the stability of the ¢gggg and ggQQ (Q = c or b) system,
respectively. Two of us [12] have also introduced the
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correlation between quarks in the Gaussian spatial function
to investigate its effect on the stability of the gg0Q (Q = ¢
or b) system. In addition to these variational methods, a
powerful tool, using the hyperspherical harmonic basis
functions, has been developed in Refs. [13,14] to solve the
four-body problem in the tetraquark.

The stability study in the dibaryon sector has also been
pursued with several other models [15-18]. For dibaryons
containing light quarks only, the H-dibaryon is expected to
be the most stable state as the color-spin hyperfine splitting
is most attractive, even compared to the two A baryons.
While the model study based on the Goldstone exchange
interaction casts some doubt on the existence of the H-
dibaryon [19], recent results from lattice QCD have
suggested that the H-dibaryon would be bound for massive
z mass [20,21]. Also, the H-dibaryon was found to be
bound in a chiral constituent quark model calculation [22].

The purpose of this paper is to find the color & isospin ®
spin states in the SU(3) flavor symmetry broken case
appropriate for the dibaryon containing two strange quarks
with § =0 that is compatible with a symmetric spatial
wave function, and then calculate the mass of the dibaryon
by using the variational method, with the color-spin hyper-
fine potential introduced in Ref. [23]. In particular, by
going through the systematic construction of the color ®
isospin ® spin states in general, we find the corresponding
state for the symmetry broken case of flavor SU(3). Lastly,
we search for the stability of the H-dibaryon in the flavor
symmetric limit of SU(3) as a function of the pion mass.
Through this work, we are able to verify if a compact H-
dibaryon exists in the symmetry breaking case or the
symmetric limit of SU(3) within the given Hamiltonian.
If the recent lattice result of stable H-dibaryon in the
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massive pion case turns out to be valid, our result strongly
suggests that the state should be a hadronic bound state and/
or loosely bound molecular state.

This paper is organized as follows. We first present the
Hamiltonian, and calculate the mass of both baryon octet
and decuplet to determine the fitting parameters of the
model, and construct the spatial wave function of the
dibaryon in Sec. II. In Sec. III, we construct the color ®
isospin ® spin states in both the flavor SU(3) symmetric
and broken cases, establishing the relation between the two
cases. We show the numerical results obtained from the
variational method in Sec. IV. Finally, we summarize the
results in Sec. V. The appendixes include some details of
the calculations.

II. HAMILTONIAN

To investigate the stability of the dibaryon, we adopt the
following nonrelativistic Hamiltonian that contains the
confinement and hyperfine potential for the color and spin
interaction:

H_ZXW+;>—Ewang§,(U
i=1 mi i<y

where m;s are the quark masses, A /2 is the color operator
of the ith quark for the color SU(3), and Vicj and ijs are the
confinement and hyperfine potential, respectively. For the
confinement potential, we take the half-linearizing poten-
tial and Coulomb potential as follows:
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Here, the first term comes from the perturbative one-gluon
exchange, and the second from the confining potential.
Although confinement is usually modeled by the linearly
rising potential, we choose a form that is less repulsive at
larger distance and is thus much closer to the string
breaking phenomena. We have checked that taking a
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linearly rising potential does not change the main con-
clusion of this work as has been also shown to be the case in
a more explicit calculation in a similar six-quark configu-
ration reported in Ref. [24].

For the hyperfine potential, we take the potential to be
dependent upon spin interaction as follows:
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Here, r;; is the distance between interquarks, |r; —r;|, and
both (r(;;) and «" are chosen to depend on the masses of
interquarks, given by
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The hyperfine potential splits the baryon octet as well as
baryon decuplet masses. Moreover, in the heavy quark
mass limit m; — oo, the functional form of the hyperfine
potential in Eq. (3) approaches 1/(m;m;) &(r). By intro-
ducing the additional parameters in Eq. (4), one is able to
reproduce the experimental observation that the mass
differences between psudoscalar and vector meson for
qq states decrease slower as a function of the masses than
that given by the inverse mass relation given in Eq. (3).

In the Hamiltonian, the fitting parameters have been
chosen to reproduce the experimental values of both the
baryon octet and decuplet masses using the variational
method and typically used constituent quark masses. The
fitting parameters are given in Table L.

As in our previous work [24], we choose the color ®
isospin @ spin state and the spatial wave function with a
simple Gaussian form for the baryons and calculate the
mass of both the baryon octet and decuplet with the new
fitting parameters using the variational method. The masses
are given in Table II.

TABLE 1. Parameters fitted to the experimental baryon octet and decuplet masses.

4 K ay D Ko a p m, my
0.309 (GeV)™! 0.123 1.049 (GeV)™/2 0994 GeV 035 GeV ~ 2.105GeV ~ 9.164 0347 GeV ~ 0.596 GeV
TABLEII. The mass of the baryon octet and decuplet obtained from the variational method. The third row shows the experimental data
[25] (units are GeV).

(.s)  ¢HNP 1h = 01 A (1hx 13) = (13 z G A 0 Q
Mass 0.974 1.344 1.115 1.217 1.554 1.398 1.233 1.7
Exp 0.938-0.939 1.314-1.321 1.115 1.189-1.197 1.53-1.531 1.382-1.387 1.23-1.234 1.672
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In calculating the mass of the dibaryon containing two
strange quarks with spin = 0, we need the spatial function
appropriate for the six-quark system with a certain sym-
metry property. Since we construct the color ® isospin ®
spin state of the dibaryon to be antisymmetric among
particles 1-4, and at the same time antisymmetric between
particles 5 and 6, which are denoted by {1234}{56}, the
symmetry property of spatial function should be symmetric
among particles 1-4, and at the same time symmetric
between particles 5 and 6, due to the Pauli principle; we
denote the symmetry property of the spatial function by
[1234][56].

In order to describe the six-quark system, we consider
the center of mass frame, so that the number of suitable
Jacobian coordinates of the system is reduced to 5. The five
Jacobian coordinates are given by

x—l(r rg) x—l(r r,+r3—1y)
1 NG s —Ts), 2 =5 I~y 13— Iy),
1 1
x3:§(r1—r2—r3+r4), x4:§(r1+r2—r3—r4),
1
xszﬁ(rl—|—r2+r3—|—r4—2r5—2r6). (5)

Then, we can construct the spatial wave function of the
dibaryon in a Gaussian form, which is used to carry out the
variational method, given by

R = exp[—(a(xy)? + b(x2)* + b(x3)* + b(x4)* + c(xs)?)],
(6)

where a, b, and ¢ are variational parameters. It is easily
found that the symmetry of the spatial wave function has
the [1234][56] property, required by the color ® isospin @
spin state of the dibaryon.

III. CLASSIFICATION OF THE DIBARYON
CONTAINING TWO STRANGE QUARKS
WITH SPIN =0

A. The state of the dibaryon with respect
to isospin states

In this section, we investigate the state of the dibaryon
containing two strange quarks with § =0, with flavor
symmetry represented by SU(2). The symmetry breaking of
SU(3) in flavor part is caused by taking the strange quark
mass to be heavier compared to m, (=m,;). When we
choose the symmetry of spatial function to be symmetric
under the exchange of any two particles among 1, 2, 3, and
4, and at the same time symmetric under the exchange of
two particles between 5 and 6, the fixing of the position of
two strange quarks onto the fifth and sixth is convenient to
classify the dibaryon state. The four light quarks except for
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two strange quarks would be characterized by introducing
the Young tableau corresponding to isospin states, as
follows:

IO; 11; I |

Here, the dimension of each isospin state is shown below
the Young tableau.

In our case where we choose the symmetry of the
spatial function of the dibaryon to be [1234][56], the
color ® isospin ® spin state of the dibaryon is chosen
to be {1234}{56} in order to satisfy the Pauli principle.
When we fix the positions of the two strange quarks
onto the fifth and sixth, the partly antisymmetric state of
the color @ isospin @ spin state can be easily obtained
from classifying the multiplets of the direct four product
of [12];s multiplied by the direct two product of [6] s,
which represent the fundamental representation of
SU(12);s and SU(6)qg, respectively. Since the state
of {1234} by the direct four product of [12]., gives the
multiplet with dimension 495 corresponding to the
Young tableau [1%], and the state of {56} by the direct
two product of [6],¢ the multiplet with dimension 15
corresponding to the Young tableau [12], the dimension
of {1234}{56} is 495 x 15 =7425. This {1234}{56}
state can be decomposed into the direct sum of
representation ([2];, [6]g). The {1234}{56} state with
dimension 7425 decomposed into the direct sum of
representation ([2];, [6]¢) is given in Eq. (8). By using
the Young tableau, we can easily find that the multiplets
in Eq. (8) are {1234}{56}. Because the color state of
the dibaryon is supposed to be a physically observable
color singlet that corresponds to the Young tableau
[2,2,2], and the spin state of the dibaryon in our works
is confined to § = 0, which corresponds to the Young
tableau [3,3], we need the possible color @ spin states
by combining the color singlet with S = 0 state, which
we call the CS coupling scheme. Then, only the
color ® spin states obtained from the color spin (CS)
coupling scheme are allowed among the multiplets in
Eq. (8). Since the Young tableau corresponding to the
color ® spin states is [3,3], [2,2,1,1], and [1°], the
{1234}{56} states of the dibaryon with respect to S = 0
are given as ([1];,[490] ), ([1];. [189]¢). ([3];. [189]cs).
([5];. [189]g), and ([5];,[1]cs). We note that another
Young tableau [4,1,1] obtained from the CS coupling
scheme is excluded because the Young tableau [4,1,1]
does not belong to the multiplets of the color @ spin
state in Eq. (8).
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{1234}{56} {7425
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LJ 35
Lo (35]
(8)
B. Isospin ® color ® spin state of the dibaryon 159)= 1)2]3 1S9)= 1]2]4 1S9)= 1]3]4
Before constructing the color @ isospin @ spin state, we 41516 31516 2|5]6 (10)
emphasize that the {1234}{56} state of the dibaryon o 11215 oo [1]3]5
containing two strange quarks with S = 0 can be obtained |55)= 314|6 195)= 2l4l6|

from the CS coupling scheme with respect to isospin states,
but can also be derived from a fully antisymmetric color Q
flavor ® spin state, in which flavor is SU(3). For this
reason, we specifically indicate the flavor state in terms of
SU(3) symmetry; as we show later, we find that the
symmetry breaking of SU(3) from a fully antisymmetric
color ® flavor ® spin state of the dibaryon lead to the
{1234}{56} state.

As was shown in a previous paper by two of us [24],
the color singlet and S =0 state of the dibaryon are
given by the corresponding Young-Yamanouchi basis,
respectively.

(i) Color singlet: five basis functions with the Young

tableau [2,2,2],

|Cs)=

[cofo[m] [onfeo[—]
[e]o k] [=]e]]

(i) S = 0: five basis functions with the Young tableau
[3.31,

In order to construct the {1234}{56} state of the
dibaryon, we need to know the color @ spin state, which
can be derived from the CS coupling scheme. The CS
coupling scheme is technically completed by using the
Clebsch-Gordan (CG) coefficient, given by the following
formula [26],

S(A1P'dy'If"1p"q"y" [ f1pay)
= K([F1'lf"p" [ 1p)S(Fld'y' [l Y |f play).
(11)

where S in the left-hand (right-hand) side is a CG
coefficients of S, (S,_;) permutation group, and K is
an isoscalar factor, which is called the K matrix that
factorizes the CG coefficients of S, into CG coefficients
of S,_; multiplied by the isoscalar factor. In this notation,
[f,], which represents the Young tableau associated to
S,_1, can be obtained from [f], the Young tableau of S,
where the pgy represents the row positions of the last
three particles in the Young tableau [f], by removing the
nth particle. In order to obtain the CG coefficients of S,
we repeat the process of factorizing the CG coefficients
of S¢ further, until Eq. (11) is extended into the following
formula [27],

074007-4



DIBARYONS WITH TWO STRANGE QUARKS AND TOTAL ...

S(F1p'ay' " 1p"q"y" " |[flpayr)
=K'l 1" 1p)K ()14 [f yla" 1 f b))
X K([f' 1Y 1 o 1" 11 pgly)S

< (U P g P [F 1) (12)

where S in the third row is the CG coefficient of S;.
When we find out the CG coefficients using Eq. (12),
we use the results obtained by Stancu and Pepin [28]
about the relevant isoscalar factors for S4, S5, and Sy
appearing in Eq. (12), as shown in our previous
paper [24].

Then, we can calculate the CG coefficients between
the Young tableau [2,2,2] of the color singlet state and
[3,3] of S =0 state in making the representation of
[3,3], [2,2,1,1], and [1°] of the CS coupling scheme. The
color ® spin state is denoted by |C, S°), all of which are
given in Egs. (13)-(15).

We note that the basis function of the Young tableau
is expressed by the Young-Yamanouchi representation,
whose symmetry property is symmetric with respect to
any neighboring particles that lie in the same row, and is
antisymmetric with respect to any neighboring particles
that lie in the same column. The color @ spin state,
which consists of the linear sum of combining the color
singlet state with the S =0 state, is presented in
Appendix B.

The CS coupling scheme, which represents the color @
spin states for Young tableaux [3,3], [2,2,1,1], and [19], is
given as follows.

(i) CS coupling with Young tableau [2,2,1,1]: nine

bases functions,

112 13 11
3|4 2|4 315
C,Sh)=1— IC,S)= IIC, 8] =1
1] 9] =
6 6 6
113 14 11
. 2|5 . 2|5 } 316
1€)== 116, S%s)=1= 116, S%e)=p3=
o o B
113 14 15)
2|6 2|6 2|6
1€)== G ls) =3 116, Sa) =151 -
5 5 4
(13)

(ii) CS coupling with the Young tableau [3,3]: five bases
functions,
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1|2]3 1214 1|34
0 _ 0 _ 0 —
1215 113]5
0] \ 01,V — .
1, 8=t [, 87) =P 5
(14)

(iii) CS coupling with the Young tableau [1°]: one basis

function,
C.5%)= —=
5="T75
ne
B
0
56 s
A )
1 =4 I — 1
S EIE s I I I 7
0
5l6] . s [afo] o >
lﬁ 1124 ii 1(2(3
BB egRd Bl engn |
0
| s [sle] .. s

(15)

For the isospin part with / = 0, the constituent quarks
except for two strange quarks of the dibaryon comprise the
Young-Yamanouchi basis of the Young tableau [2,2] with
dimension 2, given by

_ L 79
viz!
1
= E@uudd + 2dduu — udud — uddu — duud — dudu),

1 1
= —I9 = —(udud — uddu — duud + dudu).
2=

(16)

Then, we can construct the {1234}{56} state of the
dibaryon with / = 0 and S = 0 by combining the isospin
state with the color @ spin state of the Young-Yamanouchi
basis [2,2,1,1],

{1234}{56}p27. 10, ¢, 50]

cs cs

By F?” we mean that this state originally comes from a
fully antisymmetric state with a flavor 27 multiplet, as the
symmetry breaking of flavor SU(3) is imposed on the
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constituent quarks. The symmetry property is easily per-
ceived in a sense that the linear sum of the Young-
Yamanouchi [2,2] basis ® Young-Yamanouchi [2,2] basis
gives [14] basis for particles 1-4, and particles 5-6 in the
color @ spin state are antisymmetric due to the positions in
the same column.

In addition to the state, {1234}{56} 2.0 ¢ o), there is
another state, originally coming from a fully antisymmetric
state with flavor singlet, as the symmetry breaking of flavor
SU(3) is imposed on the constituent quarks,

{1234}{56} (1,10 ¢, 50]

. IE SNEE
= 5008 | GBI Pl ., 09
IRRTIE] RN FIEIE
o1 | " Ble] s
(1234}{56} L (5)5(6)®
27.71 0] — —=
[F I ,C,S] \/g
NP1 F1 Ry
L I
_ofsle
"
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For the isospin part with I = 1, the constituent quarks,
apart from the two strange quarks of the dibaryon, comprise
the Young-Yamanouchi basis of the Young tableau [3,1]
with dimension 3, given by

23] 1 1

= I = Suuud — uduu — vudu — duuu),
4] Nivie \/12( )
24 1, 1

= —I, = —=(2uudu — uduu — duuu),
13f4] 1, 1

= —I; = —(uduu — duuu).

(19)

Then, we can construct the {1234}{56} state of the
dibaryon with / = 1 and S = 0 by combining the isospin
state with the color ® spin state of the Young-
Yamanouchi basis [2,2,1,1],

1[4 1[4
1 2
23] |- L [26) | v2 [2]5
4 | VBB V3 3]
ECS EC’S
1[3 1[3
1 2
Lof2le] w225 20)
V3 4] V3 4]
ECS ECS
1]2 12
RN e I i
V3 (4] V3 4
ECS ECS

In the same way, the {1234}{56} 2151 ¢ g0 originates from a fully antisymmetric state with a flavor 27 multiplet. In
this case, the symmetry property for particles 1-4 is easily perceived due to the fact that the linear sum of the Young-
Yamanouchi [3,1] basis ® Young-Yamanouchi [2,1,1] basis gives the [1#] basis. However, the symmetry property of
{56} between particles 5 and 6 is not easily obtained from the color ® spin state of the Young-Yamanouchi [2,2,1,1]
basis, since particles 5-6 are not positioned in the same column. The symmetry property of the Young-Yamanouchi
basis could make it possible to construct {56} between particles 5 and 6; for example, if we consider the following

formula,

(1
w

[ ]—

CS

1 1
2 2
3] 313
5] 5]

cs CS

where (56) is a permutation operator between particles 5 and 6, then we see the symmetry property between 5 and 6

by the following formula:
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1[4 1 14 1[4
1 2 3
_L]2le] | v22]5 :£(56)26 [2]6
V33 V33 2 3 3
i cs E cs E cSs E cs
(22)

Therefore, from the right-hand side in Eq. (22), we can
show that the left side in Eq. (22) is antisymmetric with
respect to the exchange between particles 5 and 6.

For the isospin part with I = 2, the constituent quarks,
except for the two strange quarks of the dibaryon, comprise
the Young- Yamanouchi bases of the Young tableau [4] with
dimension 1, given by

= I’ = yuuu.

Then, we can construct the {1234}{56} state of the
dibaryon with / =2 and S = 0 by combining the isospin
state with the color @ spin state of the Young-Yamanouchi
basis [1°];

(23)

{1234}{56} 25,12, 50] [1]2] Tl
1 |- [34 ®
- 5)s(6) ® —=
#3)s(6)® —2 SEEEC
[1]3] [1]2]
1(2
+ |2]4 ®342 + 3]5 ®2§2
S0 0
506) ale) s
1|3
1|4
_ 2l5 ®124 11213
4|6 3]5]6 SO+ > ®456 '
c 3|6 o 50
(24)

In the same way, the {1234 }{56} 52s.p2 ¢ 0] Originates from
a fully antisymmetric state with a flavor 28 multiplet. In this
case, the symmetry property is easily understood due to the
fact that the color @ spin state of the Young-Yamanouchi
basis [1°] is fully antisymmetric among particles 1-6.

In addition to the state, {1234}{56} .52 ¢ 50, there is
another state, originally coming from a fully antisymmetric
state with a flavor 27 multiplet;

1
{1234}{56} (27,12, 50 = ,5(5)s(6) ® ; 6
4

cs
(25)

In this case, the symmetry property is easily understood
due to the fact that the color @ spin state of the
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Young-Yamanouchi basis [2,2,1,1] is antisymmetric
among particles 1-4, and antisymmetric in the exchange
of 5 and 6.

C. Completely antisymmetric flavor ® color ® spin
state of the dibaryon with § =0

Until now, we investigated the classification and the
flavor @ color & spin state of the dibaryon, which contains
two strange quarks with S = 0. From now on, as mentioned
in Sec. III B, we show that the isospin ® color @ spin state
of the dibaryon with S =0 found in Sec. III B can be
explicitly extracted from the completely antisymmetric
flavor @ color @ spin state, in the symmetry breaking
of SU(3) condition. As described in Ref. [6], from a point
of view of SU(3), the Young tableau of flavor state con-
taining two strange quarks for / =0,/ =1, and I =2 is
represented as follows:

(i) F = 1: five basis functions with the Young tableau

[2’2’2]’
1]2]
Fh=[3[4
56}
1[4]
F)=[2[5] -
BE

(i) F = 27: nine basis functions with the Young tableau

[4.2],
112(3|4 1(2(3(5 12|45
¢ a RGBT
1(3[4|5 112|3|6 12|4|6
= =Rl -2l
1|3(4|6 112|5|6 113|5|6

(iii) F = 28: one basis function with the Young tableau

[6],
|F2%)=[1]2[3]4]5[6] -

In Appendix A, each of the flavor states, which are used to
understand our procedure, is presented in detail.

In the same way as described in the previous paper [24],
we can construct the fully antisymmetric flavor ® color ®
spin state of the dibaryon with S =0 by combining the
flavor state with the color @ spin state, which is obtained
from CS couping scheme in Sec. III B. For each flavor
state, the fully antisymmetric flavor @ color ® spin state is
given as follows:
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1{5 1|4 1|3 112
12l3[4] _l26] _ |f2[3]s) [2fe] | [1[2[a]s] _[2[6] _ [1]3[4]s] _[3]6
Frosy=— | B8 s g2 e 2 e B S
V9 =] cs 5] s 5] s 5] s
14 113 112 1|3
112 2 11214 2 1134 1|2 214
N 3/6] 5| 6] 25y [1[3]ale] _[3[5] . 5[6]
a5, sl [l 2] 4 sl
6] cs 6] cs 6] cs 6] cs
1|2
1
_ [1]3]5]s] EIE
24, Bl
6] cs
(26)
Equation (26) is a fully antisymmetric state for / =0, I = 1, and I = 2, in which the flavor 27 multiplet lies
1|2 113]5 L3 112(5
1 0 1 3|4 by 5Tal6 - |24 02y alal6
|[F707S]>:_5 516 » csS 516 » cs
(27)
1|2 1 114
1|3]4 11214 112{3
S R = e A = < P [
cs
4 » s 416] cs 1316) .
Equation (27) is a fully antisymmetric state for / = 0, in which the flavor singlet state lies.
1 113
11315 112|5
3|4 0 + |2]4 02y
28 07y _
17, €. 5%) = [T2l3[aTT8 CIP O IR R I E G
(28)
1
1]2 3|4 3 11214 112]3
+ 5 oy =16 — 5 oy 516 + 5 by 11506
0 0 S0
416 3 6] ~ s 316]
Equation (28) is a fully antisymmetric state for / = 2, in K([f d ST ol
: : : f1pay) [f1palflp'q
which the flavor 28 multiplet state lies. Z 1e"a")
It should be noted that the so-called K [26] method is S(If g1
convenient when calculating the expectation value of x ([f ' /]y Lf p”q”]y I paly)
<|F1p'dy') @ L' 1p"q"y"),  (29)

—4iAj0;-0; (i < j=1~06)forafully antisymmetric state,
as all terms can be identified to —A$A¢os - 66, on account of
the symmetry property. Since only particles 5-6 are
relevant in the calculation of the expectation value of
—AA¢os - 06, we should expand the fully antisymmetric
states in terms of the states whose symmetry properties are
restricted to those between particles 5 and 6. To achieve our
goal, we use the K matrix defined in the following

equation:

where pg represents the row positions of the last two
particles in the Young tableau [f], y, those of the
remaining particles, and pg means either symmetry or
antisymmetry between the last two particles. By using
Eq. (29), [1°]g for color and spin part of Eq. (28) is
given in a compact form,
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19 V2 - 5
Ples = &
\/556 3 6|
(30)
3
*ié; 5/ ©
5Tg i 56|

In fact, the first and second terms on the right-hand side
of Eq. (30) can be expanded in terms of the sum of color
® spin states of Eq. (28);

11
0
5(6] . s
1]2
1
RS v BRI ETE S ETE1EI I
V2 5 4(6 416] o
5 C C
(31)
5] O 515
0
6] . s
___QL_; g ol1]3]4 B ;{_; 2 NEHEE
V3 5l6] ., V3 35l6]
416] ¢ g 416] < s
14
1
+E25 ®1§2 .
0
316 ¢ 5
(32)

In order to consider the symmetry breaking of SU(3) in
these fully antisymmetric states with respect to isospin I,
we need to restrict the position of the two strange quarks to
any two among the possible 15 (;C,) places. In our work,
the fixing of the positions of the two strange quarks onto the
fifth and sixth is performed by taking the cases where the
strange quark resides in other positions to zero; s(1), s(2),
5(3), and 5(4) — 0. Then, Eq. (26) exactly becomes equal
to 1/v/15 {1234}{56} 27,10 ¢ 50 for I = 0in Eq. (17) under
the condition, because the other terms of the flavor 27
multiplet except for |F3’) and |F3’) vanish as shown in
Appendix A. The factor 1/1/15, which will become clear
later, is related to the symmetry property of the fully
antisymmetric state. As another example for I = 1, Eq. (26)
exactly becomes equal to the 1/1/15 {1234}{56} (1.1 ¢ 501
in Eq. (20), because |F?7), |F37), and |F3’) terms of the
flavor 27 multiplet vanish as shown in Appendix A. With
this approach, we find that the completely antisymmetric

PHYSICAL REVIEW D 93, 074007 (2016)

flavor ® color ® spin state in Egs. (26)—(28) becomes the
{1234}{56} states obtained in Sec. III B with respect to L.

We need to investigate more to make the completely
antisymmetric flavor @ color @ spin state in terms of
{1234}{56} state prior to finishing this subsection.
According to the way of fixing two strange quarks, there
are 14 more partially antisymmetric states in addition to the
{1234} {56} state, where the two strange quarks are located
on the fifth and sixth position in the {1234}{56} states.

These states are given as follows: {3456}{12},
(2456}{13}, {2356}{14}, {2346}{15}, {2345}{16),
{1456}{23}, {1356}{24}, {1346}{25}, {1345}{26),
{1256}{34}, {1246}{35}, {1245}{36}, {1236}{45},

{1235}{46}, in addition to {1234}{56}. These states
are orthonormal to each other, because one has at least a
strange quark in a different position, in contrast to the others.
Moreover, the states for I are also obtained from the com-
pletely antisymmetric flavor @ color @ spin state, by
performing the same procedure with two strange quarks in
different positions presented above. For any [1°] with respect
to I, the completely antisymmetric state can be explicitly
expressed by

1
V15
+ {2346} {15} + {2345}{16} + {1456}{23}

4 {1356} {24} + {1346} {25} + {1345}{26}

+ {1256} {34} + {1246}{35} + {1245}{36}

+ {1236}{45} + {1235}{46} + {1234} {56}].
(33)

[19] = —— [{3456} {12} + {2456} {13} + {2356} {14}

As interesting points, we find that the other states in
Eq. (33) except for the {1234}{56} state can be directly
obtained from the {1234}{56} state, by using Eq. (37),
which are identities obtained from Eq. (33) itself. In
Eq. (37), (ij) is the permutation operator that exchanges
between i and j. From Eq. (37), we can introduce a formula
so as to simplify our arguments: we define the following
formula from the fact that the {1234}{56} state can be
extracted from the completely antisymmetric [19] state by
taking s(1), s(2), s(3), and s(4) — 0 so that

1
lim 10] = —— {1234} {56},
s(1),3(2),S(3),s(4)—>0[ ] \/ﬁ{ 156}
1
lim 10 = —— {1235}{46),
S(l),s(2),s(3),s(5)—>0[ ] \/B{ 146}
1
lim 10 = —— {12361}{45},
5(1),3(2),5(3),5'(6)—>0[ ] \/ﬁ{ 145}

lim [16]5\/%_5{3456}{12}. (34)

5(3),5(4),5(5),5(6)—0
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The acting of the permutation operator (ij) of the above equation on both sides can be defined so as to satisfy Eq. (37),
given by

ij lim 10 = lim ij)[1e
(J)s<1>.s<2),s<3>.s<4>ﬁo[ ] s((z’j)(1)>,s<<z'j><z>),s<<ij><3>>,s<<ij>(4>>ao( 2
= lim (—)[19]
s((i7)(1)).5((17)(2)).5((7)(3)).5((i/)(4)) =0
1
=——(i/){1234}{56}, 35
55 (1){1234){56) (35)

where the minus sign appearing in the third line of Eq. (35) is due to the fully antisymmetric property of [1°] when acted
upon by any permutation operator. When we apply (15) and (26) on both sides of the first line in Eq. (34), we have the same
equation to satisfy Eq. (37),

15)(26 lim 19 = lim 15)(26)[1°
15X )x<1>,s(2),s(3),s(4)—>o[ ] .V(S),s(6),.\'(3),s(4)—>0< )(26)[17]
1
= lim 1] = —— {3456} {12}. 36
[1°] = = (3450} (12} (36)

5(5),5(6),s(3),5(4)—0
Therefore, we find that {3456}{12} = (15)(26) {1234}{56}.
(34561 {12} = (15)(26){1234} {56},

{2456} {13} = (15)(36){1234}{56}. {2356}{14} = (15)(46){1234}{56},

{23461{15} = —(16){1234} {56},  {2345}{16} = —(15){1234}{56},  {1456}{23} = (25)(36){1234}{56},
{1356}{24} = (25)(46){1234}{56},  {1346}{25} = —(26){1234}{56},  {1345}{26} = —(25){1234}{56},
{1256}{34} = (35)(46){1234}{56},  {1246}{35} = —(36){1234}{56},  {1245}{36} = —(35){1234}{56},
{1236}{45} = —(46){1234}{56},  {1235}{46} = —(45){1234}{56}. (37)

Using Eq. (35), it is easily found that the right-hand side of Eq. (33) is fully antisymmetric. Also, it should be noted that

the expectation value of — Y M=% A¢ Ao,

-0 in terms of the [1 6] state with respect to I is simply reduced to that in terms of the

{1234}{56} state. For example, we have the following equation for / = 0, coming from the flavor singlet:

i<j i<j
+ ... ,+
N=6 N=6
(-Ss00)) | = (-Sxse
i<j {1234}{56}[1‘”1:10‘050: i<j

IV. CALCULATION OF THE EXPECTATION
VALUE OF THE HYPERFINE POTENTIAL

In this section, we calculate the expectation value of
the hyperfine potential of the dibaryon in terms of the
isospin @ color ® spin state found in Sec. III. Even
though the expectation value of the hyperfine potential of
the dibaryon can be directly obtained from the full flavor
® color ® spin wave function of the state, the symmetry
property of the state enables us to approach the expect-
ation value of the hyperfine potential of the dibaryon in
terms of the fully antisymmetric state mentioned in
Sec. III'C, namely, in terms of the isospin ® color ®

N=6 1 N=6
- Ao, - a-> = — K— AASo; -0
(- s ) ey =15 (-2

>{1234}{56}[F1¢,0A030] .

N=06

>{3456}{12}[F1 10.0.50) i<j >{2456}{13}[F1;10,c,sﬂ]

(38)

[

spin state. In calculating the expectation value of the
hyperfine potential of the dibaryon, it is more convenient
to use the well-established formula [29], which is
applicable for the fully antisymmetric state with SU(2)
flavor, given by

- Z /10/100' "0

i<j

4 4
- [3N(N—6) FAI(I+ D) 4SS+ 1) +2C, .

(39)
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where N is the total number of quarks in a system, and C,. = %/1"/1", that is, the quadratic Casimir operator of color SU
(3) in the system of N quarks. To apply this formula to the {1234}{56} state found in Sec. III C, we need to know the
color state among particles 1-4, and between 5 and 6, because both of the color states are not in color singlet states. We
can reexpress the {1234}{56} state for I by considering another way of constructing the {1234}{56} state;

12|
1 112 13]4 11 1]2 11 11214
\/§Z60 314 ; 12]564 V2214 , (456 2[4] |, 356
13
1
5 ®( 12 ®1ﬂﬂ 212 ®1ﬂ4 7213 @13M\) w0
s, V[3ld] | T[afs 6. 234, T[3564 224 , 2564
1[4]
11112 1124 111 11314
H2[5 ® ® 14 + 3l g 314) ® s(5)s(6),
3 Vs[4 |, Bl 6g  V2[2l4] |, [25 64
3/6 . r 20y (256
= 1|12 1/3]5 1[1]3 11215
[C, I°,5%2) = —|[3]4] @ (- ® _ ®
V2 V234 |, 246 v2[2]4] |, T[3]4)6
: (41)
L3 112 1]2]5 1[13 11315
21 @\ 5 ® - ® ® 5(5)s(6),
Vasla] |, Blafe g vRl2[4] | 246
56, 1 s T s

1
1 gop .+
\[C,I,SDf\/g
1 3[4]
B 56,
] 1[3[4]
B 2[5 64|,
(42)
1)2] 13 1]4|
o5 = 2 AEBE o B epld B o2 LB B e, )
46, = % e, =% Bl6, =
12 13
1C,17,5%:) = —= [[1]2[3]4] , 3[4] o> —[21] oREP° || @s6)s(6) (44)
\/‘ = ey, B BBl4f6
C C
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In the case for I =0, Eq. (17) and Eq. (18) can be rewritten in terms of Eqs. (40)-(41) as

(1234 (36} 1 0 = = [C.1057)) =L [[C.1. %),
(1234 (36} 0 = L 1C.1057)) = 22 [C.1. %), (45)

In the case for I = 2, both Eq. (24) and Eq. (25) can be rewritten in terms of Eqs. (43)—(44) as

V2

{1234}{56}[F27;I2.C,SO] == 7§|
V3
{1234}{56}[F28;I2.C,SO] = 7§|

Since the states in Egs. (40)—(44) have definite symmetry
properties, which are antisymmetric among particles 1-4, and
at same time antisymmetric between 5 and 6, the states
become eigenstates for both —> V= J4 AiSo;-0; and
—A$A¢os - o, respectively. Therefore, the states are orthonor—
mal to each other. If we focus on the Young-Yamanouchi
basis, which is partly represented with a solid line in
Eqgs. (40)—(44), the isospin, color, and spin states among
particles 1-4 can be easily calculated. For example, in
Eq. (40), among particles 1-4, the isospin state is in a
I = 0 due to the Young-Yamanouchi basis [2,2], and the
spin state is in a § = 1 due to the Young-Yamanouchi basis
[3,1]; the color state is in a color singlet for three quarks and in
a color triplet for one quark, while, for two quarks 5 and 6
without a solid line, the isospin state is in a / = 1 due to
5(5)s(6) represented by the symmetric Young-Yamanouchi
basis [2]; the spin stateisin a S = 1 due to the same reason as
the isospin state; and the color state is in an antitriplet. In this
way, the eigenstates are characterized by the following
equations:

N=d 16
=N kko; ofl[C.10.S,) =~ |[C. 10 8%,
i<j 3
8
~ii50s - ol [C.1°.8%)) = Z|[C.1°,°),). (47)
—ZM o;|[C, 19, 8°),) = —4][C, I°, $°],)
i<j
—gAeos - 0|[C, 10, SU],) = 4[[C, I°, SP,), (48)

AiAo; -0 > < AiAo; - o) > <
< ; [F',C.5) ; {1234}{56}[F1;10Acs° i<j

+ 8(=A{ASo - 05>{1234}{56}[F1;,o_c§)]

V3

[C. 12, 8%,) + fl[C 2,5%,).
V2
[C. 17, 5%,) —ﬁHC, 2, 5%,). (46)
cqc 1 0 8 1 0
—Zua aj|[C.1',5°) = ~|[C. 1", S°])
i<j 3
8
—2§A¢0s - o6|[C. 1", 8°]) = gl[C, ', 5%), (49)
cc 2 ¢0 56 2 ¢0
- o 01 ai|[C.17.8%,) = - |[C.I°. 8))
i<j
8
—2$460s - 06|[C. 17, 8°]) —gl[C I, 5%)), (50)
N=4
- szﬁ;ai ~6,|[C, 12, 8°,) = 20[C, 12, $°],)
i<j
—25A605 - 06| [C. 17, 8°],) = 4[[C, 17, 5°,). (51)

Using the above equations, Egs. (45)—(46) and Eq. (42), the
expectation value of both — ZN 4 AiA0; - 0; and —A5A¢os
o6 in terms of the {1234}{56} state for I found in Sec HI B
can be calculated, instead of directly taking the expectation by
means of the {1234}{56} state. For —A{S0; - o; between i
andj(i = 1,2,3,4,j = 5,6), where the number of choices for
i and j is 8, we note that each of the expectation values is the
same as that of —A{Ao; - 05, because the states have the
{1234}{56} symmetry. In order to calculate the expectation
value of —A{A{o; - 05, we must take advantage of Eq. (38).
For the case of I = 0 where the flavor state is in a singlet
before the symmetry breaking of SU(3), the expectation value
of the hyperfine potential in terms of a fully antisymmetric
state, |[F!, C, S°]), is rewritten, by using Eq. (38);

Z /1%“6 -0

>{1234}{56}[F1:,omo]
+ (—A5Acos - ‘75>{l234}{56}[F1;,QC_S()]' (52)
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Then, we have enough equations to calculate the (=A{450, - 05) (1234156} .

PHYSICAL REVIEW D 93, 074007 (2016)
. Using Eq. (45),

[F1:10,¢.50)

N=6 3 N=4 3 1 N=4
< Zﬂcl G c0; >HF1 CSO = Z Zﬂ ﬂ. 0 0 |[C10 SO] > —|—Z<—}.gﬂ.805 . 06>|[C,10,S0]1> +Z<—Zﬂcﬂcg O; >|[C10 SO] >
i<j i<j i<j
1
+t3 (—454605 - 06) 1c.10.50),) + 8(—A{4501 - 05) (1.0 501, (53)

In the first line of Eq. (53), the expectation value is —24, by
making use of another formula [29], which is very well
known for flavor SU(3) symmetry, given by

— Z /1‘/1‘0 0

i<j

4

where Cp=31A"2F. Then, we can calculate the
(414501 - 05)(p1.p . 50)» since the other terms in Eq. (53)
are given by Egs. (47)—(48). In this way, we can find the
expectation value of —AfAjo;-o; about the other
{1234}{56} state for I, without taking the trouble of direct
calculation.

The process for calculating the expectation value for the
cross terms between different states follows a similar path.
For the cross term between {1234}{56} 1. c 0 and
{1234}{56} 2.0 ¢ 5], the terms other than the expectation
value of the (—A{ASo, - 05) are obtained by using Eq. (45)
and Egs. (47)-(48), while the expectation value of the
(=A{ASo; - 05) is obtained by the following equation:

<W”C§W—§i%aaHPCS% 0. (55)

i<j

The final results for the matrix elements are summarized in
Table IIl. The corresponding matrix elements for the
baryon in isospin symmetric states are given in Table IV.

TABLE III.
and flavor.

The matrix element of —

It is interesting to discuss the hyperfine factors for the
difference between a dibaryon state and its lowest two
baryon threshold. In the SU(3) symmetric limit, all quarks
have the same mass. In this case, the hyperfine factors
appearing in the three columns in Tables III-IV contribute
with equal strength to the potential. Therefore, the factor for
the I =0,F' state is 6 x (=5/6) +8 x (=11/4) +3 =
—24, while that for the two A state is —16, resulting in
an attractive contribution with a factor —8. However,
consider the limit where the strange quark mass becomes
infinitely heavy. Then, the contribution from the second
and third column in Tables III-IV does not contribute. This
does not have any effect on the two A threshold but the
dibaryon hyperfine factor now becomes just —5. Hence, it
is natural that the dibaryon could become stable when the
strange quark mass decreases. However, when the SU(3)
symmetric mass increases, the attraction will become
smaller. As will be borne out in the next section, although
one still cannot find a bound state, the general tendency
seems to be true.

For the expectation value of 74 appearing in the
confinement potential, the matrix elements are calculated
in the same procedure as in the hyperpotential case, and
using the following:

——N+2C (56)

Zlcﬂc _

i<j

We summarize all matrix elements for both hyperfine
and confinement potential of the dibaryon in Tables III and
V. To compare matrix elements for hyperfine potential of

—(4{4S0; - o) for hyperfine potential of the dibaryon with respect to isospin

Isospin Flavor —(,1?,15@ . 0j> i<j=14

1=0, F' -5/6
I=0, F7 —13/18
Cross terms 1/(6v/3)
I=1, F” 4/9
=2, F% 16/5
I=2, F¥ 146/45
Cross terms —2v/2/(15V/3)

—11/4 3
13/12 11/3
-1/(4V73) 1/V3
1/3 8/3
16/5 16/5
-28/15 52/15

V2/(5V3) —4v2/(5V/3)
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TABLE IV. The matrix element of —(4{A¢c; - ;) for hyperfine
potential of the baryon spectrum.

Baryon —</‘Lij,§61 . 62) —</1i1361 . D'3> —</1(2/1562 . O'3>
N ~8/3 -8/3 ~8/3

A —8 0 0

= 8/3 ~16/3 ~16/3

> 8/3 ~16/3 ~16/3

the dibaryon, we show that of the baryon in Table I'V. For
matrix elements for confinement potential of the baryon, it
is very easy to show from Eq. (56) that —(4{4$) (i < j =1,
2, 3) is 8/3. We note that direct calculations of the
expectation value of both hyperfine and confinement
potential in terms of the {1234}{56} state, which is
obtained in Sec. III B, is equal to those mentioned above.

V. NUMERICAL RESULTS

In this section, we analyze the numerical results obtained
from the variational method, by using a total wave function
that consists of the spatial function in Eq. (6) as the trial
function and the color @ isospin @ spin state constructed in
the previous section. Since there are two color ® isospin ®
spin states for I =0, given by {1234}{56} 51,0 ¢ 0 and
{1234}{56} 27,0 c 50}, the expectation value of the

Hamiltonian is a 2 by 2 matrix in terms of the two color
® isospin ® spin states. Therefore, the ground state for

PHYSICAL REVIEW D 93, 074007 (2016)

I =0 must be represented as the mixing form of
{1234}{56}[F';I°.C,S°] and {1234}{56}[,?27;,0@50]. For the
same reason, the ground state for / = 2 must be represented
as a mixed state of {1234}{56} .2 c g0 and {1234}x
{56}[F28;I2,C,S0] .

Table VI shows the result of the analysis for the mass of
the dibaryons containing two strange quarks with S = 0,
with respect to I. Table VII shows the matrix element of the
expectation value of the Hamiltonian for / = 0 and I = 2.
As we see in Table VI, there are no bound dibaryons against
the strong decay into two baryons. It should be emphasized
that our approach only probes compact six-quark states
based on color confining and color-spin potential. To probe
molecular configuration, we have to include possible long
range forces induced by meson exchange potentials.
Moreover, the trial spatial wave function should have
sufficient parameters to allow for largely separated two
baryon states. Therefore, the nonexistence proves that there
are no compact six-quark dibaryon states possible. In
=0 and [ =2, the {1234}{56} 1. state and
{1234}{56} ;2.2 ¢ 0| state are overwhelmingly dominant
terms in each ground state, respectively, so that the mixing
effect is nearly negligible.

So far, we investigated the stability of the dibaryon in the
realistic case of broken SU(3) flavor, where we took m to
be heavier than m, (=m,). We now consider the possibility
of a stable H-dibaryon in the flavor SU(3) symmetric limit.
Such a possibility was recently proposed by lattice

TABLE V. The matrix element of —(l;’/lj ) for confinement potential with respect to isospin and flavor.

Isospin Flavor —(ﬂ;‘lj.) i<j=1-4

—(A525) i=1-4,j=5,6

—(A525) i =5,j=6

I1=0,F' 7/6 11/12 5/3

I1=0, F7 5/6 17/12 -1/3

Cross terms 1/(2\/§) —V3/4 V3

I=1, F7 4/3 2/3 8/3

=2, F® 16/15 16/15 16/15
I=2,F¥ 14/15 19/15 4/15

Cross terms _2\/5/(5\/§) V6/5 -4v/6/5
TABLE VI. The mass of the dibaryon with respect to the (/, S = 0) state. The binding energy Ep is taken to be the

difference between the mass of the dibaryon and the lowest two baryon threshold. The unit of the mass and the

variational parameters are GeV, and fm~2, respectively.

(1,S) (0,0) (1,0 (2,0)

Type uuddss uuudss UUUUSS

Mass 2.549 2.88 2918
Variational parameters a=23,b=17,¢c=2.1 a=19,b=1.1,c=1.1 a=15b=09,c=1.7
Decay mode AA =N PBY

Ep 0.319 0.562 0.484
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TABLE VII. The matrix for the expectation values of the
Hamiltonian. The upper and lower matrices are for / = 0 and
I = 2, respectively.

Basis functions uuddss
[F?7;1°,C, 89, [F';1°,C, 89 2967 —0.0018
—-0.0018  2.549
Basis functions UULUSS
[F3;1%,C, S, [F¥; 1%, C, S 3219 -0.0168
-0.0168 2919

calculation [20,21]. In Ref. [21], using the baryon-baryon
potential extracted from lattice QCD in the flavor SU(3)
limit, the H-dibaryon was found to be stable for pseudo-
scalar meson mass of 673-1015 MeV. Under such a
circumstance, since the strange quark mass m, is identified
with the m,,, the flavor @ color @ spin state should be fully
antisymmetric, only if we choose the spatial function to be
fully symmetric. So, for the flavor ® color & spin state with
full antisymmetry, we use the |[F', C, $°]) state in Eq. (27),
and for the spatial function with full symmetry, we use that
introduced in our previous paper [24]. Moreover, to
compare our work with the result of the previous paper,
we try to search for the existence of the stable H-dibaryon
in a wide range of 7 meson mass.

For this purpose, we keep most of the parameters in
Eq. (1) the same, but refit D and «, to better reproduce the
meson spectrum. The fitting parameters, including m,. and
m,,, are given in Table VIII. The meson masses obtained
from the variational method with the fitting parameters are
given in Table IX.

We now increase z# mass smoothly by varying the
constituent quark mass from 347 to 917 MeV. The resulting
mass difference between the H-dibaryon and two A

TABLE VIII. Parameters fitted to the experimental meson
masses.

Parameter D Ko m, m, my,
Value 0.954 0.252 0.347 1.793 5.23
Unit GeV GeV GeV GeV GeV

TABLE IX. Meson masses obtained from the variational
method. The third row indicates the experimental data [25].
(Units are GeV.)

Meson & p D D* n. Jy Y nb

Mass 0.146 0.775 1.892 2.024 2.989 3.096 9.398 9.471
Exp  0.139 0.775 1.869 2.006 2.983 3.096 9.398 9.46
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FIG. 1. The mass difference (AE) between the H-dibaryon and
two A baryons as a function of the pion mass in the SU(3) limit.
(Units are MeV.)

The expection value of [r;~7 |
09r
0.8F

0.7F

0.6
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05 . . . L
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FIG. 2. The expectation value of the distance between inter-
quarks ((|r; —r;|)) for the H-dibaryon (blue dotted curve) and A
baryon (green dotted curve) as a function of the pion mass in the
SU(3) limit. The expectation value of |r; —r;| is the same for any
i and j (i < j) as the spatial wave function for both the H-
dibaryon and A baryon are fully symmetric. (Units are x axis
MeV and y axis fm.)

baryons is plotted in Fig. 1 as a function of the pion mass.
First, it should be noted that when m; is reduced to m,,, the
mass difference decreases to below 170 MeV, which is
smaller than that of the realistic case given in Table VI. This
result is consistent with the hyperfine interaction becoming
larger as discussed in the previous section. On the other
hand, as one increases the pion mass, as can be seen in
Fig. 1, it is found that the mass difference between the
H-dibaryon and two A baryons increases monotonously.
This seems to be a consequence of the overall weakening of
the hyperfine interaction due to the prefactors proportional
to the inverse quark masses. The wave function is also
becoming more compact as can be seen from Fig. 2, which
makes the contribution from the additional kinetic term
larger. Hence, one can conclude that even in the flavor
SU@3) symmetric limit, there is no stable compact H-
dibaryon for a wide range of pion masses. But to probe a
possible molecular bound state, further input in the
Hamiltonian and trial wave function would be needed.

VI. SUMMARY

For the dibaryon containing two strange quarks with
S =0, such as uuddss, uuudss, and uuuuss, we have
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constructed the flavor @ color @ spin state both in the
flavor SU(3) symmetric and breaking cases appropriate for
the symmetric spatial wave function, satisfying the Pauli
principle. We showed that the possible dibaryon states
could be classified in terms of the symmetry property of the
Young tableau. It is found that the symmetry breaking of
flavor SU(3) reduces the fully antisymmetric states in
flavor SU(3) to the color @ isospin ® spin states in flavor
SUQ2).

In order to investigate the stability of the dibaryon, we
adopted the nonrelativistic Hamiltonian, including confine-
ment and hyperfine potential, and calculated the mass of the
dibaryon, by using the variational method. We conclude
that there are no compact bound dibaryons states that are
stable against the strong decay into two baryons in both the
symmetric and symmetry breaking limit of flavor SU(3). It
should be noted that the spatial wave function that we used
as shown in Sec. II is limited to symmetric configurations.
However, it is important to improve the spatial part to
include possible correlations between quarks as was taking
into account in Ref. [30] through the orbital mixed
symmetry [4,2]. We leave such improvements as an
important future work. Further improvements in the poten-
tial as well as a more sophisticated spatial trial wave
function are needed to probe the largely separated two
baryon molecular bound state.
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APPENDIX A: FLAVOR STATE IN SUQ3)

In Appendix A, we systematically investigate how to
find out the flavor state, in which lies SU(3), by introducing
a generator operator. As mentioned in Sec. IIIC, we
presented the flavor states, which correspond to the
Young-Yamanouchi basis. In dealing with each flavor
multiplet, in particular, it should be noted that for a given
flavor multiplet, the representation of the flavor states is
different with respect to isospin. First, we consider the
flavor 27 multiplet with nine dimensions, concerning
I=0,1I=1, and I = 2. For a given I, once we find one
state among the flavor multiplets, the others can be easily
obtained by applying a permutation operator.

1. Flavor 27 multiplet with 7 = 0

The |F37) state with I = 0 is obtained by introducing the
following generator operator,

PHYSICAL REVIEW D 93, 074007 (2016)

1 11
27 — 27
Gli=0= 752121 > oAT,

' o€eSy

(A1)

where AT _| = (AsAg + AysAsg), A;j = 1—(ij), and Sy
is a permutation group for particles 1-4.

The action of the A}7,_, on u(1)u(2)s(3)s(4)d(5)d(6)
gives 2uussdd+2ddssuu—udssud—udssdu—dussud—
dussdu, which is denoted by 19s(3)s(4), because the four
quarks except for two strange quarks s(3) and s(4) are in
the 19 represented in Eq. (16). Since 7,5, 6 = > ,e5, 0
for €S, and (56)A7_, = A7}_((56), the G{_,
u(1)u(2)s(3)s(4)d(5)d(6) represent the |F}’) state with
I = 0, whose symmetry property has [1234][56].

2. Flavor 27 multiplet with I =1

The |F37) state with I = 1 is obtained by introducing the
following generator operator,

GY) I=1= (A2)

8\/73'2 S56A11 1

cES,

where AT_| = (Aj5As + AxsAze + AssAg), and Ssq =
1+ (56). The action of the G{/_; on u(1)u(2)u(3)x
s(4)d(5)s(6) gives the |F?) state with /= 1, whose
symmetry property has [1234][56], for the same reason.

3. Flavor 27 multiplet with I = 2

The |F?7) state with I = 2 is obtained by introducing the
following generator operator,

1 11
G = Wis220 > AT, (A3)

' o€E€S,

where AT}, = (15426 + AgsAj6)-

The action of the A?,_, on u(1)u(2)u(3)u(4)s(5)s(6)
gives 2uuuuss -+ 2 SUUUU—SUUUUS—S UUUS U—US UUS U—
usuuus, which is denoted by 21%s(5)s(6)+21%s(1)s(2)—
I2s(1)s(6)—1s(1)s(5)—1%s(2)s(5)—1I%5(2)s(6), because
the four quarks except for two strange quarks are in the I?
represented in Eq. (23). Then, G¥',_, u(1)u(2)u(3)u(4)x

5(5)s(6) represent the |F27) state with [ = 2, whose sym-
metry property has [1234][56], for the same reason.

4. Flavor 28 multiplet with I = 2

For the |F?%) state with one dimension, the state with
I =2 is obtained by introducing the following generator
operator,
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w _ 1 11 particles 4-6. The |F}) state with / =0 is obtained by
= Eam 2O (A" ihntroducing the follow] t ¢
15 = introducing the following generator operator,
1
where S is a permutation group for particles 1-6. Gé,[:o = 6 Z (-1)% Z (—=1)"=, (AS)
The action of the G228, on u(1)u(2)u(3)u(4)s(5)s(6) €S53 €S53

gives the |F?) state with / = 2, whose symmetry property  where (=1)°is 1 if o is an even permutation, and —1 if o is an
has [123456], because 7 ) _,c5. 0 = D _,e5, 0 for 7 € Sg. odd permutation, and the first permutation group S is applied

on particles 1-3, and the second on particles 4—6. The action
5. Flavor singlet with 7 =0 of the G§,_, on u(1)d(2)s(3)u(4)d(5)s(6) gives the |FJ)

For the flavor singlet, it is convenient to deal with the  state with / = 0, whose symmetry property has {123} {456},
|[F}) state, because the flavor singlet state comes from the ~ because 7 > oes, (F1)70=(=1)"es, (—1)%0 for w € Ss.

flavor singlet for particles 1-3, and the flavor singlet for F?" multiplet for I = 0:
|
[FT) = %[los(l) $(2) + 1s(1)s(3) + 19s(1)s(4) + 135(2)s(3) + 1}s(2)s(4) + 1s(3)s(4)],
|F37) % [——IO s(2) + 3I0 (1)s(2) — %I?s(l)s@) + %Igs(l)s@) + 1%(1)s(5) + %I?s(l)s(4) - %I?S(Z)s(?’)
+%I(2)s(2) (3) + %s(2)s(5) + %I?S(Z)S(“-) +195(3)s(5) + %I?S(B)s@) )
) ﬁ [ SI85(1)5(2) = 185(1)5(2) = £ 195(1)5(4) + ¢ 10s(1)5(3) + 3 13s(1)s(4) + 3 185(1)s(3) = £ s(1)s(5)
% Ds(1)s(5) - —Ios(2) (4) + él(l)s(2)s(3) + 3185(2)5(4) + %135(2)s(3) - é]?s(2)s(5) + %Igs(2)s(5)
+ 19s(4)s(5) + %I(l)s(3)s(5) + %I(l)s(3)s(4) ,
F) =7 |~ 05(053) = 85(1)53) =  15(1)54) = 8514 = 3 s 01)s(5) = 3 B(0)s(5) +  s2)4)
+%I?s(2)s(3) —I—%ISS(3)S(4) —I—%I(z)s(2)s(4) + 213s(2)s(3) + %I?S(z)S(S) + %Igs(3)s(5) + %Igs(2)s(5)
3 1(4)5(5).
F9) = s [~ S 0(005(2) = B5(1)52) =S 5(0)5(3) = 3s(1)s(3) + Hs1)5(6) + 3 s(0)5(5) + 3 45(1)5)
~ S 10(2)5(3) = 185(2)5(3) + 1s(2)s(6) + 5 135(2)5(5) + 3 Hs(2)s(4) + Bs(3)5(6) + 3 s(3)s(5)
+ %I?s(3)s(4)} ,
27 \/§ 470 270 270 270 0 170 170
[Fe') = Wi [ —51is(1)s(2) +3035(1)s(2) =51s(1)s(4) +511s(1)s(3) = Is(1)s(4) = 3135(1)s(3) — g 1ys(1)s(6)
42 85(1)5(6) = 1 (1)s(5) + 3 185(1)5(5) = g s(2)s(4) + & 145(2)5(3) = Bs(2)s(4) = 3 35(2)5(3)
— £I5(2)5(6) + 2 35(2)5(6) — 15 135(2)s(5) + 5 85(2)5(5) + 15(4)5(6) + 5 1s(3)5(6) + 5 s(4)s(5)
—l—%l?s(S)s(S) +gl?s(3)s(4) ,
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F7) = 275 | =5 5(0s(3) + 3 85(1)5(3) = S 85(1)5(4) + 3 195(1)5(4) = 1 85(1)5(6) = 5(1)s(6)
_%10 (1)s(5) —%Igs(l)s(S) +%I?s(2)s(4) +%I?s(2)s(3) — 105(3)5(4) —%Igs(2)s(4)
S S()5(3) + 3 s(2)5(6) + 2 185(3)5(6) + 2 15(2)5(6) + 13 195(2)5(5) + 5 5(3)s(5)
—|—%I§s(2)s(5) —|—%Igs(4)s(6) —|—%I(Z)s(4)s(5) .
F) = s | S 1(0)5(2) = 5(0)5(3) = B5(1)5(4) = 3 85(1)5(5) = S85(1)5(5) = 3 Bs(1)s(6) = 3 85(1)s(6)
- %I?S(z)S(S) - %I?S(Q)S(‘l-) - %I(I)S(Z)S(S) - %Igs(2)s(5) - %I?S(Z)S(6) - %ISS(Z)S(@ + %I?s(3)s(4)
+ 195(3)s(5) + 195(3)s(6) + 19s(4)s(5) + 19s(4)s(6) + 2195(5)s(6) |,
Fg) = 4\\/[?_0 Bz?sa)s(s) — S I05(1)5(4) = 3 185(1)5(5) + 3 85(1)(5) = 3 195(1)5(6) + 3 35(1)5(6) ~ 3 Fs(2)s(3)
3 H52)s(4) + 3 5(2)s(5) = 5 185(2)5(5) + 5 85(2)5(6) = 5 35(2)5(6) ~ 135(3)5(5) = 13s(3)5(6)
+ 195(4)s(5) + 195(4)s(6) + 2195(5)s(6) | . (A6)

F?" multiplet for [ = I:

27>

2 L 1s(1)s(4) + ——115(1)s(5) +

123" 8v/3 !

1 1
8—\/§I}s(2)s(5) + EI%S(Z)S(@ - 12\/§

1 1 1
ﬁl}s(4)s(5) + ng}s(4)s(6) - 6—\/§I%s(l)s(2)

83
1 1 1 1 1
- ngis(l)s(?;) - 6—\/§I§s(l)s(4) - ngés(Z)s@) - 6—\/§I%s(2)s(4) - m[és(?))s@),

7 \/5 1 \/§ 1 \/g 1 \/5 1 1 1 \/5 1
1Y) = =3 Hs(1)5(2) = 3 Tis(1)s <3>+%11s<1>s<4>—511s<1>s<5>—nglsmsw—gz 52)s(3)

\/5 1 \/g | 1 1 \/5 1 \/g 1
32 1152)5(4) =33 1s2)5(5) = - = s(2s(6) +32 1s3)5(4) =32 1hs(3)s(5) = =

\/§ 1 1 1 1 1
+§1 s(4)s (5)+W 15(4)s (6)+ﬁlls(5)s(6)+W§12S(1)S(2)

Ys(1)s(5 )—l—%lés(l)s(@ + s(2)s(3) —

1 . 3
ngzs@s(“)

Is(1)s(3) %@s(z)s@),

1
R liss3) -

1
ng%s(Z)sM) +

L
8—\/§11s(3)s(6) +

=-———71Iis(1)s(2) -

\f —=1is(1)s(6)

sf
5(2)s(3) -

_W ] ]s(3)s(4)

+ ! I1s(3)s(5) +

15(3)s(6)

5 flés( )5(3)

1 1
18V3 Sflzs( )s(4)

2 . 1
ﬁlzs(3)s(5) + ngzs(3)s(6)

_9\/52

1 2 4 _
——1)s(2)s(5) + mlzs(Z)s(@

1
35
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|F37) =

) =

|F37) =

F9) =

PHYSICAL REVIEW D 93, 074007 (2016)

_gl%s(l)s(z) +\;—12_61%s(1)s(3) —*ﬁ—?lhﬂp@) —\;—gdl%s(l)s(S) —%?zgs(l)s(@ +*§_£61}s(2)s(3)
- g’“@)s(“) - g’%s(z)s(@ ‘%’MZ)S@ + glis(&s@) - gl%s@s(s) + {gz}s@)s@
+¢9£61%s<1>s<2> 0 1 1)53) + Y00 1 1)500) + Y00 s 1)5(5) = Y00 1s1)5(6) — Yol 1s2)5(3)
+%GS(2)S(4) + %?158(2%(5) — %Qs@)s(@ - \g—g_ozgs@)s(z;) - *g_;—olés(g)s@ +\g_1)_0,5s(3)s(6)
_ QQM)S(S) + g—g_olés(4)S(6) + \g—g_olés(S)s(@ + glés(l)s(Z) - g%s(l)s(?,) - \élo_olgs@)s@)
_ \%’As(l)s(s) + éi(fzés(l)s(é) —%As(z)s@) - \g—roolés(Z)sM) -~ ‘gioozgs(z)s(s) + \gi(f’lgs(z)s(@,
_glismsc) —gl}s(l)s@) —gz}s(l)s(s) —%115(1)s(6) +g1{s(2)s(3) +§1}s<2>s<4>
0 152)5(5) + Y20 15(2)s(6) + Yo 13 (1)5(3) + Y0 He(1)5(4) + Yod Bs(1)(5) - Yok 1s(1)s(6)
B %15(2)43) B %Iés(z)s(“) ‘%’53(2)5(5) + %%(2)%) - %@Nl)sm -l-%lés(l)s@)
S0 5 1)505) 2 1s1)s(6) ~ Y 1s(2)5(3) — L0 s2)s4) o 1s(2)s(5) + Y 1s(2)s(6)
- \/%I%S@)SW - \/%GSB)S(S) +\%3—01és(3>s(6) - \/%1§s(4)s(5) + \/%155(4)“6) +\/i§(_)1§s(5)s(6),
—fﬁ s(1) <2>—£061}s<1> <3>+£0611 (1) <4>+1“81—0611s<1> (5)+\£)61}S(1) (6)_{£11s(2> (3)
+g 15(2)s(4) \I/T?I% (2) (5)+gl% (2)5(6) % Ls(3)s( )+\1/T1§1}s(3) 6”%” (3)s(6)
—gé’i (4)5(5)—\é£61}s(4)s(6)—\g261{ (5)s(6) \gzg (1)s(2)+‘ﬁ?lgs(ns(s)_g];s(l)s@)
B \2—1_50’53(1”@ + \2—1_50155(1%(6) + \ﬁ—l_;)lés@)sﬁ) - \Z—I_SOI%S(Z)SM) - \2—1_5()1;s(2)s<5) +\2—1_501;s(2)s(6)
B g’és(”s(“) - glﬁs@)s(ﬁ') +glés(3)s(6) + glés(l)s(z) + glgs(l)s@) + glés(Z)s(B),
g—gz%s(l)s@) —ﬁﬁl}s(l)sﬁ) +§)I%s(l)s(4) —g—gl}su)s(S) —Z—fz}s(l)s(@ —%I%S(z)sg)
+£f%s<2>s<4> - %I%s@)s@ - f—fns(z)s(é) - ﬁ—gf}s@)s@) + f—?z%s@)s@ + zg—fz%s@)s@

<2 a(1)0(2) + Y2 38(1)5(3) = Y2 Ha(1)5(4) = Y 135 (1s(5) + Y2 Ba(1)5(6) + Y2 1s2)s3)

2 1) =22 152)s5) 4 15 (2)5(6) + 2 5(3)5(4) +-22 11(3)5(5) = L2 s (3)5(6)
+\3/—§15s(4)s(5) - g/—gds(4)s(6) + *éz;s@)s(s) + \l/—fzgs(l)s(z) - ‘;_(f_zgs(l)s(g) _ \l/_glgs(l)s(@
+\2/—§Iés(1)s(5) - gés(l)s(é) - §I§S(2)s(3) - %Iés@)s(@ +\2/—§1;s(z)s(5) - g;;s(z)s(@’
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1F2) = Y03 1 (1)5(3) + Y2 115 (1)5(4) = S 1(1)(5) 22 115(1)5(6) = Y02 1(2)5(3) — 2 Ha(2)s(4)
L8 1 2)5(5) + Y2 15(2)5(6) = Y2 1 (1)5(3) = Y2 1(1)5(4) = Y2 1(1)5(5) + Y 1s(1)s(6)
I8 1 53)+ L2 121s) + Y2 162155) 2 115(2)5(6) + 02 s(1)s03) +- 2 s(1)s(4)
Y5 5 1)5(5) + 22 5(1)5(6) = 5 152)5(3) — L2 Hs(2)s4) + 2 1s(2)5(5) -2 s 2)s(6

ez 35(3)5(4) + 3 Hs(3)s(5) = = s(3s(6) + 5 7= s(4)5(5)
~ S S )S(6) + =15 (5)5(6),

) = = 1s(1)5(2)+ Y2 15011503 + 22 11500)508) + L2 15(23) + Y82 Ha@s4) -2 31509
VI 5(1)502) + L2 1 1)53) + Y2 (11504 + 202 Ha(1)s(5) + 202 1(1)5(6) + o0 s(2)s(3)
88 )+ L2 1215 + o2 1(21(6) =2 5 (3)5(4) — 5 1(3)5(5) — L2 s(3)s(6)
VI 145 (4)5(5) Y2 Hs(4)5(6) +- L 1s(1)(5) + Y s(1)5(6) + L0 Hs(2)s(5) + S 1(2)5(6),

1F) = 2 1(1)5(3) = L2 15(1)s4) 2 152)5(3) + 2 1s2)5(4) + 32 1(1)5(3) = L2 1s(1)s(4)

3 1(1)5(5) = L2 5(1)5(6) = 152)5(3) + 32 15 2)s(4) + Y2 12)s(5) + 2 1s(2)(6)
Y3 15(1)5(5) + X2 15(1)5(6) 32 1152)5(5) = X2 15(2)s(6) 22 153)5(5) = Y2 11s(3)s(6)
+*1/—0§1;s(4)s(5) +\1/—§1;s(4)s(6). (A7)

F?7 multiplet for [ = 2:

27—Lzss—zss—zss—zss—2ss—zss—zss
FY) = = 0205(5)5(6) = 3P54)5(6) = 3P5(3)s(6) = 3E5(2)(6) ~35(1)5(6) = 35(4)5(5) = 3(3)s(5)

—31%5(2)s(5) = 317s(1)s(5) + 2I%5(3)s(4) + 21%5(2)s(4) + 217s(1)s(4) + 21%5(2)s(3) + 21%s(1)s(3)
+21%s(1)s(2)],
|F37) = 1—12 [21%5(1)s(2) + 2I%s(1)s(3) — 21%s(1)s(4) + I?s(1)s(5) = 31%s(1)s(6) + 2I%5(2)s(3) — 21%s(2)s(4)
+1%5(2)s(5) = 31%5(2)s(6) — 217s(3)s(4) + I*s(3)s(5) — 31%5(3)s(6) — 31%s(4)s(5) + 91%s(4)s(6)],
1
62
+ 1%5(2)s(5) — 31%5(2)s(6) — 217s(3)s(4) — 2I%5(3)s(5) + 61%5(3)s(6)],

|F37) = [21%5(1)s(2) = PPs(1)s(3) + ?s(1)s(4) + I>s(1)s(5) = 31%s(1)s(6) — I*s(2)s(3) + I*s(2)s(4)

F7) = ig [Ps(1)s(3) + Ps(1)s(4) + IPs(1)s(5) = 3%s(1)s(6) — I*s(2)s(3) — I*s(2)s(4) — I*5(2)s(5)

+ 31%5(2)5(6)],
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27y =

2 1 [2s(1)s(2) + I?s(1)s(3) = I?s(1)s(4) = I*s(1)s(5) + I*s(2)s(3) — I*s(2)s(4) — I*s(2)s(5)

3v2
—I?s(3)s(4) — I*s(3)s(5) + 3I7s(4)s(5)],
27y = 6\1@ [2%5(1)s(2) — Ps(1)s(3) + Ps(1)s(4) = 21%5(1)s(5) — I>s(2)s(3) + I%s(2)s(4) — 21%5(2)s(5)
—21%5(3)s(4) + 41°s(3)s(5)],

1

27y = Ve [Ps(1)s(3) 4+ Ps(1)s(4) —21%5(1)s(5) — I?s(2)s(3) — I?s(2)s(4) + 21%5(2)s(5)],
7 = ig[ﬂzs(l)s@) —I?s(1)s(3) = I>s(1)s(4) — I>s(2)s(3) — I>s(2)s(4) + 21%s(3)s(4)],
1) = 3 [s(1)s(3) = Ps(1)s(4) = Ps(2)s(3) + Ps(2)s(4)). (AS)

F? multiplet for [ = 2:

|F2) = \/% [Ps(1)s(2) + IPs(1)s(3) + Ps(1)s(4) + PPs(1)s(5) + I*s(1)s(6) + I>s(2)s(3) + I*s(2)s(4)

+ 1%5(2)s(5) + I*s(2)s(6) + I*s(3)s(4) + I*s(3)s(5) + I*s(3)s(6) + I*s(4)s(5) + I*s(4)s(6)
+ I25(5)s(6)]. (A9)

F! multiplet for I = 0:

IFD) = s B19S(5)5(6) = 204)5(6) = 215(4)5(5) + 3195(2)5(5) = 25s(2)(3) + 4185(1)5(2) = 21(1)5)
£ 31(2)5(6) + 35(1)55) ~H()5(6) + 1)) + 415(3)s(4) ~2s(3)5(5) = 2145(2)s
152155 + Hs(1)5(6) + 3151)5(6) + H3(1)(5) ~23s(1)5(4)

Ry =2
£ 2(E)6) + 1B5(2)(6) ~ B5(1)55) - 1(2)5(6) + 245(2)s(4) ~ (2)5(5) + (16
~Es(1)5(6) + F5(1)5(5) ~ 21351504

L 2105(4)5(6) — 2195(4)5(5) + 2185(2)5(4)  2185(2)5(3) + 41%5(1)s(2) = 2135(1)5(3) — 195(2)s(6)

8v/6
+195(2)s(5) +219s(1)s(4) — 2195(3)s(6) + 195(2)s(6) + 219s(3)s(5) — I9s(2)s(5) + Is(1)s(6)

_10 (1)s(6) — I%s(1)s(5) + I2s(1)s(5)],

[4195(5)s(6) — 219s5(4)s(6) — 219s5(4)s(5) + 2195(3)s(5) + 195(2)s(5) — 210s(1)s(3) + 219s(1)s(3)
|F3) =

|Fl) = 24\/_ [6195(4)s(6) — 6195(4)s(5) +4195(3)s(4) — 6195(2)s(3) + 619s(1)s(3) — 2195(3)s(6) + 2195(3)s(5)

+2095(2)s(4) — 219s(1)s(4) — 3195(2)s(6) — 195(2)s(6) + 3195(2)s(5) + 195(2)s(5) + 310s(1)s(6)
+I° (1)s(6) = 317s(1)s(5) — 135(1)s(5)]

)s(
|F3) = [ 5(3)s(6) = 195(3)s(5) + I95(3)s(4) — 195(2)s(6) + 195(2)s(5) — 135(2)s(4) + 195(1)5(6)
—10 (1)s(5) + I3s(1)s(4)]. (A10)

We note that the flavor multiplet bases are orthonormal to each other, that is, (F §{|F§ ) = 6,0k
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APPENDIX B: CS COUPLING

In Appendix B, we present the color ® spin basis, which is obtained from the CS coupling scheme. As mentioned in
Sec. III B, the CG coefficient of combining the color singlet basis with the S = 0 basis is calculated by using Eq. (11). The
color ® spin basis represented by the Young-Yamanouci basis [2,2,1,1] and [3,3] is given as follows. Young-Yamanouci
basis [2,2,1,1]:

e = Y2 1c) @159 +L01Ca) @ 1) + ey @ 151 - L ey @ 151 - YElcy @ 15
V3
“Bieye sy,
6
€5 = =L1cy @15 - 2ic) ® 159 + L2 1cs) ©159 - 2 ic) © 159 + L 1Co) 159
V6
+—1C1) ® |59),
4
e ==L 1c) @15 -11c) @ 59 + 210 © 15 -2 cx) © 159 -2 1C2) 1)
ey @15 - Ley @ 1) - Ylc) @ 15 + Yo lcy @ 59+ [cs) ® 15,
e = =210 @157 ~11C) @ 50~ Y2 i) @ 1Y + 22 [Co) 159 + 113} @ 15
ey @ish+ i) 015 + Y2 1ch 815 - Llc) o1 + 2 1c) 50,
e = 21c) @ 159 +21C2) @ 159 + icw @ 11 - 2 cy) @ I58) L) @ 15
Vi Vi
Lieyeisy+Liee s,
6 6
e.5) = - Licy @15t + Zicy @ 15+ Licy @ Is) + 1 1c @ 151~ L 1cs) @ 159
Leyeish+ Zicy el -Liey @ sh+ Ly @ I+ Lcs) 91,
le.5%) = - Licy @15t + Ly @ 1) -2 1c) 9159 -11c) @ 159 - L[cx) © 159
“Bie) 15 -11c0 ®159 +L1co @ 15 —Llcs) ® 15 + 2y @ 151,
o5 = - 2Zics @ 15 + i @ 15 -2 1cy) 0159 -2y @ [ + 2 [Co) ® 59
Ry iy +LIc) @ s
fc.8%) =2 c) @I) -2 ic) @159 + L2 (c) @18 - i @ sy + U= c) @Iy, (B

Young-Yamanouci basis [3,3]:
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V2 V2

V2 V2

V2 V2

V2

€.57) = 3 1C1) ® [83) +1C2) @ Is8) +1C2) @ [ + [Cs) @ )]

fe.5) — e @ 15 + 22 i) @ Is) —L2[cx) 0 15 -2 (e @ 11 + L2 @ [5)
-5lcs) @ 1),

fe.5) = =221 @ Is%) + 2 1c2 @ 159 —L21C2) 159 + L2 1cx) 159 + L2 [cy) 1Y
+3165) @ 159,

fe.s) = =221c) @ 15 + L2 1Co) @ 1) + 210 @ 51 ~ L2 Cx) @ 1Y) + Y2 1) @[S
+31C5) ® 159,

.5 = 210y @ 159 +221C2) ® 15 + 210 @ Is1) + 2 1C 151 + L2 1c) @ 15

1
—§|C5> ® |59).

(B2)
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