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We study UAð1Þ symmetry and its relation to chiral symmetry at finite temperature through the
application of the functional renormalization group to the SUð3Þ quark-meson model. Very different from
the mass gap and mixing angel between η and η0 mesons, which are defined at the mean-field level and
behavior like condensates, the topological susceptibility includes a fluctuation-induced part which becomes
dominant at high temperature. As a result, the UAð1Þ symmetry is still considerably broken in the chiral
symmetry restoration phase.
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I. INTRODUCTION

It is well known that the UAð1Þ symmetry is broken in
the vacuum of quantum chromodynamics (QCD) by the
anomaly due to the nontrivial topology of the principal
bundle of the gauge field [1,2], which leads to the non-
degeneracy of η and η0 mesons [3–5]. As a strong
interacting system should approach its classic limit at high
temperature, all the broken symmetries including theUAð1Þ
are expected to be restored in a hot medium [6]. While the
relation between the UAð1Þ symmetry and chiral symmetry
in vacuum and at finite temperature has been studied for a
long time [7–13], it is still an open question whether the
UAð1Þ symmetry is restored in the chiral symmetric phase.
The lattice simulation is a powerful tool to study QCD

symmetries. By a proper definition, the topological charge
and its susceptibility are used to describe the UAð1Þ
anomaly in the pure gauge field theory and the unquenched
theory [14,15]. In both cases, the susceptibility drops above
the critical temperature Tc of the chiral restoration, but the
charge keeps an obvious deviation from zero at high
temperature T > Tc. The simulation for the instanton
model shows such a partial restoration, too [16]. From
the recent lattice simulations of the HotQCD [17] and
JLQCD [18] collaborations, while the UAð1Þ symmetry is
still broken at Tc from both groups, the JLQCD claimed the
UAð1Þ restoration at T ¼ 1.2Tc and the HotQCD observed
the opposite result.
To clearly understand the relation between theUAð1Þ and

chiral symmetries, we need to put the QCD system in the
chiral limit where the chiral phase transition at high
temperature is well defined. In a real case with nonzero
quark mass, the chiral symmetry cannot be fully restored by
thermodynamics, and, therefore, one possible mechanism

of the UAð1Þ breaking at high temperature is the residual
chiral breaking. Since the chiral limit cannot be realized in
lattice calculations where a nonzero pion mass is always
used, we need to consider effective models to clarify the
relation between the two symmetries. Two of the often
employed models are the Nambu–Jona-Lasinio (NJL) [19]
model at the quark level [20–24] and the linear sigma
model at the hadron level [25,26] and including quarks
(quark-meson model) [27,28]. At finite temperature and
density, the two models are widely used to discuss chiral
and UAð1Þ properties of strongly interacting matters; see,
for instance, [29–39].
In this work, we use the functional renormalization

group (FRG) method to study UAð1Þ symmetry and its
relation to chiral symmetry in the quark-meson model. As a
nonperturbative method, the FRG [40,41] has been used to
study phase transitions in various systems like cold atom
gas [42], nucleon gas [43], and hadron gas [44–49]. By
solving the flow equation which connects physics at
different momentum scales, the FRG shows great power
to describe the phase transitions and the corresponding
critical phenomena which are normally difficult to be
controlled in the mean-field approximation because of
the absence of quantum fluctuations. Instead of adding
hot loops to the thermodynamic potential in the usual ways
of going beyond the mean field, the fluctuations are
included in the FRG effective action through running the
RG scale from the ultraviolet limit to the infrared limit,
which, as an advantage, can automatically guarantee the
Nambu-Goldstone theorem in the symmetry breaking
phase. Based on our previous works in the linear sigma
[50] and NJL [51] models where we focused on the meson
masses, we calculate here in the SUð3Þ quark-meson model
the topological susceptibility and η − η0 mixing angle
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which describes directly and clearly the degree of UAð1Þ
symmetry breaking. We will see that while the UAð1Þ is
controlled by the chiral condensate in the chiral breaking
phase, it is dominated by fluctuations after the chiral
symmetry is restored.
The paper is organized as follows. In Sec. II we first

define in the quark-meson model the correspondent of the
topological charge density Q of QCD and then calculate
analytically the topological susceptibility χ. In Sec. III we
briefly review the FRG application to the quark-meson
model and introduce the pseudoscalar meson’s mixing
angle θP. In Sec. IV we numerically solve the FRG flow
equations with the grid method and show the temperature
dependence of the scalar and pseudoscalar mesons as well
as the mixing angle and the topological susceptibility. We
summarize in Sec. V.

II. TOPOLOGICAL SUSCEPTIBILITY IN THE
SUð3Þ QUARK-MESON MODEL

The topological susceptibility is a fundamental correla-
tion function in QCD and is the key to understanding the
dynamics in the UAð1Þ channel. In this section, we
calculate the topological susceptibility at finite temperature
within the framework of the three-flavor quark-meson
model.
In QCD, the axial current Jμ5 ¼ ψ̄γμγ5ψ is not conserved

due to the UAð1Þ anomaly induced by the instanton
effect,

∂μJ
μ
5 ¼ 2NfQðxÞ þ 2im0ψ̄γ5ψ ; ð1Þ

where m0 is the current quark mass, Nf ¼ 3 the number of
flavors, and Q the topological charge density

QðxÞ ¼ g2

32π2
Fa
μν
~Fμν
a ð2Þ

with the gluon field strength tensor Fa
μν and the coupling

constant g between the quark and gluon fields. The topo-
logical susceptibility χ is defined as the Fourier transform of
the connected correlation function hTðQðxÞQð0ÞÞi,

χ ¼
Z

d4xhTðQðxÞQð0ÞÞiconnected; ð3Þ

where T denotes the time-ordering operator.
We now define the correspondent of the topological

charge density Q in the three-flavor quark-meson model
through the conservation law (1). The Lagrangian density
of the model contains the meson section and quark section,

L ¼ Lm þ Lq: ð4Þ

The coupling between the quark and meson fields is
included in the quark section. Taking renormalizability

into account in Minkowski space, the meson section Lm
reads

Lm ¼ Tr½∂μΦ∂μΦ†� − ðm2ρ1 þ λ1ρ
2
1 þ λ2ρ2Þ

þ cξþ Tr½HðΦþ Φ†Þ�; ð5Þ

where the meson matrix Φ ¼ Taϕa and the trace Tr are
defined in the flavor space, the meson fields ϕa ¼ σa þ iπa
contain nine scalar mesons σa and nine pseudoscalar
mesons πa, the 3 × 3 Gell-Mann matrices Ta ¼ λa=2 for
a ¼ 1;…; 8 and T0 ¼ 1=

ffiffiffi
6

p
for a ¼ 0 obeys the relations

TrðTaTbÞ ¼ δab=2, ½Ta; Tb� ¼ ifabcTc and fTa; Tbg ¼
dabcTc with the structure constants fabc and dabc, m2 is
the meson mass parameter, c; λ1 and λ2 are the couplings
among mesons, and ρi for i ¼ 1, 2 are the chiral symmetry
invariants ρi ¼ TrðΦΦ†Þi.
The UAð1Þ symmetry breaking is through the term cξ

with ξ ¼ detΦþ detΦ† which mimics the UAð1Þ anomaly
of QCD. Note that the kinetic term Tr½∂μΦ∂μΦ†� and the
UAð1Þ breaking term preserve the SULð3Þ × SURð3Þ chiral
symmetry.
The quark section Lq reads

Lq ¼ ψ̄ðiγμ∂μ −m0 þ μγ0 − gΦ5Þψ ; ð6Þ

where the quark-meson interaction is through the meson
matrix Φ5 ¼ Taðσa þ iγ5πaÞ with the coupling constant g.
Since we focus on the temperature behavior of the UAð1Þ
and chiral symmetries in this work, we neglect in the
following the quark chemical potential matrix μ.
The terms Tr½HðΦþ Φ†Þ� in Lm and m0ψ̄ψ in Lq break

explicitly the chiral symmetry of the system and lead to
nonzero pion mass in vacuum, where the matrix H is
defined as H ¼ haTa with nine parameters ha.
For the UAð1Þ transformation at the quark level,

ψ → e−iθAγ5T
0

ψ ð7Þ

with the QCD vacuum angle θA, or

ψ → ψ − iθAγ5ψ=
ffiffiffi
6

p
ð8Þ

for an infinite small transformation, one has accordingly the
transformation for mesons in the quark-meson model

ψ̄mψn → ψ̄mψn − 2θAψ̄miγ5ψn=
ffiffiffi
6

p
;

ψ̄miγ5ψn → ψ̄miγ5ψn þ 2θAψ̄mψn=
ffiffiffi
6

p
; ð9Þ

or

σa → σa − 2θAπa=
ffiffiffi
6

p
;

πa → πa þ 2θAσa=
ffiffiffi
6

p
; ð10Þ
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which can be expressed in a compact way,

Φ → ð1þ i2θA=
ffiffiffi
6

p
ÞΦ;

detΦ → ð1þ i
ffiffiffi
6

p
θAÞ detΦ: ð11Þ

Under the transformations (8) and (11), only the
Kobayashi-Maskawa–’t Hooft (KMT) term cξ and the
two explicit chiral breaking terms m0ψ̄ψ and
Tr½HðΦþ Φ†Þ� in the Lagrangian density (4) change with
the variation

ΔL ¼ i2θA=
ffiffiffi
6

p
½3cðdetΦ − detΦ†Þ

þm0ψ̄γ5ψ þ TrðHðΦ − Φ†ÞÞ�: ð12Þ

On the other hand, according to Noether’s theorem, the
variation of the Lagrangian density by the UAð1Þ trans-
formation can be written as

ΔL ¼ ∂μ
∂L

∂ð∂μψÞ
Δψ þ ∂μ

∂L
∂ð∂μσaÞ

Δσa þ ∂μ
∂L

∂ð∂μπaÞ
Δπa

¼ ∂μ½ψ̄iγμΔψ þ ∂μσaΔσa þ ∂μπaΔπa�

¼ ∂μ

�
θAffiffiffi
6

p ðψ̄γμγ5ψ − 2∂μσaπa þ 2∂μπaσaÞ
�
; ð13Þ

where we have used the explicit expression of the meson
kinetic term

Tr½∂μΦ∂μΦ†� ¼ 1

2
ð∂μσa∂μσa þ ∂μπa∂μπaÞ: ð14Þ

From the comparison of (12) with (13), we have the
conservation law in the quark-meson model,

∂μJ
μ
5 ¼ ∂μðψ̄γμγ5ψ − 2∂μσaπa þ 2∂μπaσaÞ
¼ −12cIm detΦþ 2im0ψ̄γ5ψ þ 2iTrðHðΦ − Φ†ÞÞ:

ð15Þ

Taking the definition of the topological charge density (1)
and considering the meson degrees of freedom in the quark-
meson model, the above conservation law defines the
charge density QðxÞ in the model,

QðxÞ ¼ −2cIm detΦðxÞ: ð16Þ

Considering the idea that the KMT term in the quark-meson
model is used to mimic the UAð1Þ anomaly at the hadron
level, it is the only source of the topological charge density.
The last two terms in (15) come from the explicit chiral
symmetry breaking at the quark and hadron levels, and they
are not related to the UAð1Þ anomaly.
With the 18 scalar and pseudoscalar mesons, the charge

density can be explicitly expressed as a sum of all possible
products of three meson fields,

Q ¼ c
2

� ffiffiffiffiffi
2

27

r
π30 −

1ffiffiffiffiffi
27

p π38 −
1ffiffiffi
6

p π0

�X8
a¼1

ðπ2a − σ2aÞ þ 2σ20

�
þ 1

2
π3

�X5
a¼4

ðπ2a − σ2aÞ −
X7
a¼6

ðπ2a − σ2aÞ
�

þ 1ffiffiffi
3

p π8

�X3
a¼1

ðπ2a − σ2aÞ −
1

2

X7
a¼4

ðπ2a − σ2aÞ þ σ28

�
þ π1

�X5
a¼4

ðπaπaþ2 − σaσaþ2Þ þ
ffiffiffi
2

3

r
σ0σ1 −

2ffiffiffi
3

p σ1σ8

�

þ π2

�
π5π6 − π4π7 þ

ffiffiffi
2

3

r
σ0σ2 − σ5σ6 þ σ4σ7 −

2ffiffiffi
3

p σ2σ8

�
þ

ffiffiffi
2

3

r
π3ðσ0σ3 −

ffiffiffi
2

p
σ3σ8Þ

þ π4

� ffiffiffi
2

3

r
σ0σ4 − σ3σ4 − σ1σ6 þ σ2σ7 þ

1ffiffiffi
3

p σ4σ8

�
þ π5

� ffiffiffi
2

3

r
σ0σ5 − σ3σ5 − σ2σ6 − σ1σ7 þ

1ffiffiffi
3

p σ5σ8

�

− π6

�
σ1σ4 −

ffiffiffi
2

3

r
σ0σ6 − σ3σ6 þ σ2σ5 −

1ffiffiffi
3

p σ6σ8

�
þ π7

�
σ2σ4 þ

ffiffiffi
2

3

r
σ0σ7 − σ1σ5 þ σ3σ7 þ

1ffiffiffi
3

p σ7σ8

�

þ
ffiffiffi
2

3

r
π8σ0σ8

�
: ð17Þ

Having obtained the expression of the topological
charge density QðxÞ in the quark-meson model, we
calculate the topological susceptibility χ according to
the definition (3). By separating the fields φi ¼ σa,
πa into the condensate and fluctuation parts

φiðxÞ ¼ hφii þ φfl
i ðxÞ and following Wick’s theorem, we

take a full contraction in the connected correlation function
hTðQðxÞQð0ÞÞi in terms of the meson condensates hφii
and the meson propagators Gijðx; yÞ ¼ Giiðx; yÞδij ¼
hφfl

i ðxÞφfl
i ðyÞiδij,
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χ ¼
�

c

12
ffiffiffi
6

p
�

2 X
i;j;k;l;m;n¼σa;πa

Z
d4x½aijklmnhφiihφjiGklðx; 0Þhφmihφni þ bijklmnhφiihφjiGklðx; 0ÞGmnð0; 0Þ

þ cijklmnGijðx; xÞGklðx; 0Þhφmihφni þ dijklmnhφiiGjmðx; 0ÞGklðx; 0Þhφni
þ eijklmnGijðx; xÞGklðx; 0ÞGmnð0; 0Þ þ fijklmnGinðx; 0ÞGjmðx; 0ÞGklðx; 0Þ�; ð18Þ

where the terms without the propagator Gðx; 0Þ between
the two points x and 0 are excluded from the connected
correlation function. The first four terms in the square
brackets, which are all with condensates, are diagrammati-
cally shown in Fig. 1(a), and the fifth and sixth terms,
which contain only closed propagators Gðx; xÞ and Gð0; 0Þ
and propagators Gðx; 0Þ between the space-time points x
and 0, are shown in Figs. 1(b) and 1(c). Since only the
scalar mesons σ0 and σ8 can couple to vacuum without
violating Lorentz invariance and parity, the classical field
hφi contains only two components hσ0i and hσ8i. This
largely reduces the terms in (18) and simplifies the
calculation of χ.
It is clear that the four terms shown in Fig. 1(a) control

the susceptibility χ in the chiral breaking phase at low
temperature where the condensates are nonzero. However,
the last two terms shown in Figs. 1(b) and 1(c) become
dominant in the symmetry restoration phase at high
temperature where the chiral condensate vanishes in the
chiral limit and fluctuations characterize the system. Note
that both theUAð1Þ breaking and the SUð3Þ flavor breaking
in the Lagrangian density (5) result in off-diagonal propa-
gators G08ðx; yÞ and G80ðx; yÞ, but by diagonalizing the
subspace a ¼ 0, 8, the off-diagonal elements disappear,
and there exist only diagonal propagators Gijðx; yÞ ¼
Giiðx; yÞδij. The lowest order contribution to the correlation
comes from the first diagram in Fig. 1(a), which involves
four condensates and one propagator Gðx; 0Þ,Z

d4xGllðx; 0Þ ¼
1

ð2πÞ4
Z

d4xd4pGllðpÞeip·x

¼ 1

M2
l

: ð19Þ

This term governs the topological susceptibility before the
chiral restoration, and the temperature dependence is from

the condensates hσ0iðTÞ and hσ8iðTÞ and mass MlðTÞ for
the meson species l, which will be calculated in the
framework of the functional renormalization group in the
next section.
For the closed propagators Gðx; xÞ and Gð0; 0Þ shown as

1PI diagrams in Figs. 1(a) and 1(b), by doing the Matsubara
frequency summation in the imaginary time formalism of
finite temperature field theory, one has

Gllðx; xÞ ¼ Gllð0; 0Þ

¼
Z

d4p
ð2πÞ4

i
p2 −M2

l

¼ T
Z

d3p
ð2πÞ3

X
n

1

ω2
n þ ϵ2l

¼
Z

d3p
ð2πÞ3

fðϵlÞ
ϵl

; ð20Þ

where ωn ¼ 2nπT with n ¼ 0;�1;�2; � � � the boson
frequencies, fðϵlÞ ¼ 1=ðeβϵl − 1Þ is the Bose-Einstein dis-
tribution function with β ¼ 1=T and meson energy

ϵl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

l

q
, and we have subtracted the divergent

term 1=ϵl in the last step by a simple renormalization.
The last diagram in Fig. 1(a) includes a 2PI loop between

the two condensates,Z
d4xGllðx; 0ÞGmmðx; 0Þ

¼
Z

d4xd4pd4q
ð2πÞ8 GllðpÞGmmðqÞeiðpþqÞx

¼ T2

Z
d3pd3q
ð2πÞ3

X
j;k

βδjkδðpþ qÞ
ðω2

j þ ϵ2l Þðω2
k þ ϵ2kÞ

¼ T2

Z
d3pd3q
ð2πÞ3

X
j;k

ðeiβωj − eiβωkÞδðpþ qÞ
ðiωj − iωkÞðω2

j þ ϵ2l Þðω2
k þ ϵ2mÞ

¼
Z

d3pd3q
ð2πÞ3

δðpþ qÞ
ϵ2l − ϵ2m

�
fðϵlÞ
ϵl

−
fðϵmÞ
ϵm

�
ð21Þ

with the meson energies ϵl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

l

q
and ϵm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þM2
m

p
, where we have subtracted again the divergent

terms in the last step.
Like Figs. 1(b) and 1(c) comes purely from the quantum

fluctuations and does not depend on the condensates

FIG. 1. Diagrammatic representation of the topological sus-
ceptibility χ with (a) and without (b),(c) explicit condensate
contribution. The dashed and solid lines indicate, respectively, the
meson condensates and propagators.
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explicitly. With a similar technique for the Matsubara
frequency summation used in (21), we have

Z
d4xGllðx; 0ÞGmmðx; 0ÞGnnðx; 0Þ

¼
Z

d4xd4pd4qd4k
ð2πÞ12 GllðpÞGmmðqÞGnnðkÞeiðpþqþkÞx

¼ T3

Z
d3pd3qd3k

ð2πÞ6
X
i;j;k

βδi;jþkδðpþ qþ kÞ
ðω2

i þ ϵ2l Þðω2
j þ ϵ2mÞðω2

k þ ϵ2nÞ

¼
Z

d3pd3qd3k
ð2πÞ6 δðpþ qþ kÞ

×
X

ijk¼lnm;mln;nml

�
ϵ2i − ϵ2j − ϵ2k

ðϵ2n − ϵ2l − ϵ2mÞ2 − 4ϵ2l ϵ
2
m

fðϵjÞfðϵkÞ
ϵjϵk

þ ϵi þ ϵj
ðϵi þ ϵjÞ2 − ϵ2k

fðϵkÞ
2ϵlϵmϵn

�
ð22Þ

with the meson energies ϵl¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

l

q
, ϵm¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þM2

m

p
,

and ϵn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

n

p
, where we have used the relationship

between two distribution functions fðϵlÞfðϵmÞ=fðϵlþϵmÞ¼
fðϵlÞþfðϵmÞþ1 and again subtracted the divergent terms
not accompanied by any distribution function.
The momentum integration of the three terms with two

distribution functions in (22) is convergent obviously and
can be simplified further. For instance, it reads

Z
d3p3qd3k
ð2πÞ6

δðpþ qþ kÞðϵ2n − ϵ2l − ϵ2mÞ
ðϵ2n − ϵ2l − ϵ2mÞ2 − 4ϵ2l ϵ

2
m

fðϵlÞfðϵmÞ
ϵlϵm

¼
Z

dpdqpq
32π4

ln

���� ððϵl þ ϵmÞ2 − ϵþ2
n Þððϵl − ϵmÞ2 − ϵþ2

n Þ
ððϵl þ ϵmÞ2 − ϵ−2n Þððϵl − ϵmÞ2 − ϵ−2n Þ

����
×
fðϵlÞfðϵmÞ

ϵlϵm
ð23Þ

with the meson energies ϵþn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ qÞ2 þM2

n

p
and

ϵ−n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − qÞ2 þM2

n

p
. The momentum integration of

the other three terms with only one distribution function
in (22) is divergent, and the renormalization is done in
Ref. [52]. For instance, it reads

Z
d3pd3qd3k

ð2πÞ6 δðpþ qþ kÞ ϵm þ ϵn
ðϵm þ ϵnÞ2 − ϵ2l

fðϵlÞ
2ϵlϵmϵn

¼ 1

32π4

�
−
Z

1

0

dα ln

�
α
M2

m

M2
l

þ ð1 − αÞ
�
M2

n

M2
l

− α

��

− γE þ ln

�
4π

μ2

M2
l

��Z
dpp2

fðϵlÞ
ϵl

ð24Þ

with the Euler constant γE and the factorization scale
μ ¼ 1 GeV.

III. QUANTIZATION WITH THE FUNCTIONAL
RENORMALIZATION GROUP

We now review the application of the functional renorm-
alization group to the SUð3Þ quark-meson model; the
details can be seen in Refs. [26,28,31,39,50]. The core
quantity in the framework of the FRG is the averaged
effective action Γk at a momentum scale k in Euclidean
space. In quantum field theory, fluctuations are included in
the effective action Γ by functionally integrating the
classical action,

Γ½Φ;ψ � ¼
Z

DΦ†DΦDψ̄Dψe−Scl½Φ;ψ � ð25Þ

with Scl½Φ;ψ � ¼
R
d4xLðΦ;ψÞ. However, working out

this integration is almost impossible if there is any
interaction involving in the Lagrangian density. As an
effective way adopted in the FRG, an averaged action
which is a function of the renormalization group scale k is
introduced [40],

Γk½Φ;ψ � ¼
Z

DΦ†DΦDψ̄Dψe−ðS½Φ;ψ �þΔSk½Φ;ψ �Þ; ð26Þ

where the scale dependence is carried by the additional
action ΔSk½Φ;ψ � ¼

R
d4x½TrðΦ†RB

kΦÞ þ ψ̄RF
kψ �, and the

infrared cutoff functions RB
k for bosons and RF

k for fermions
should be properly chosen to suppress the fluctuations at
low momentum. Once k approaches zero, there would be
no fluctuations suppressed. In this way, all the fluctuations
are gradually included as k evolves from the ultraviolet
limit to the infrared limit. Details of the evolution are coded
in the flow equation for the averaged action Γk [40],

k∂kΓk ¼
1

2
Tr

k∂kRB
k

ΓBð2Þ
k þ RB

k

− Tr
k∂kRF

k

ΓFð2Þ
k þ RF

k

; ð27Þ

where ΓBð2Þ
k and ΓFð2Þ

k are second order functional deriv-
atives of Γk with respect to the boson and fermion fields. In
our calculation below, we choose the cutoff functions as the
optimized regulators [41]

RB
k ðpÞ ¼ p2

�
k2

p2
− 1

�
Θ
�
1 −

p2

k2

�
ð28Þ

for bosons and

RF
k ðpÞ ¼ ip

� ffiffiffiffiffi
k2

p2

s
− 1

�
Θ
�
1 −

p2

k2

�
ð29Þ

for fermions.
To solve the flow equation, we take the local potential

approximation [40] which is good enough if we consider
only the condensates and meson spectra. At this level, all
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the fluctuations are supposed to be included in an effective
potential UkðΦÞ, which is reduced to the classical potential

UΛðhΦiÞ ¼ m2hρ1i þ λ1hρ1i2 þ λ2hρ2i
− chξi − h0hσ0i − h8hσ8i ð30Þ

at the ultraviolet limit k ¼ Λ where all the fluctuations are
supposed to vanish. Assuming homogeneous condensates
and after doing directly the momentum integration and
Matsubara frequency summation at finite temperature, the
flow equation (27) is simplified as a partial differential
equation for the effective potential [50],

∂kUkðhΦiÞ ¼
k4

12π2

�X
b

1

Eb
coth

Eb

2T
− 12

X
f

1

Ef
tanh

Ef

2T

�

ð31Þ

with 18 boson and three fermion energies Eb¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM2

b

q
, ðb¼πa;σaÞ, and Ef¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM2

f

q
, ðf ¼ u; d; sÞ.

The two independent condensates hσ0i and hσ8i or the
light (chiral) and strange condensates hσui ¼

ffiffi
2
3

q
hσ0i þffiffi

1
3

q
hσ8i and hσsi ¼

ffiffi
1
3

q
hσ0i −

ffiffi
2
3

q
hσ8i are determined by

the minimization of the potential,

∂UkðhΦiÞ
∂hσui ¼ ∂UkðhΦiÞ

∂hσsi ¼ 0: ð32Þ

This leads to the scale dependence of the condensates hσuik
and hσsik. The dynamical quark and meson masses are
defined as the coefficients of the quadratic terms ψ̄ψ , πflaπflb ,
and σflaσ

fl
b in the Lagrangian density after the separations

πa ¼ hπai þ πfla and σa ¼ hσai þ σfla ,

Mu ¼ Md ¼ m0 þ
1

2
ghσuik;

Ms ¼ m0 þ
1ffiffiffi
2

p ghσsik;

ðM2
SÞab ¼

∂2UkðΦÞ
∂σa∂σb

����
Φ→hΦi

;

ðM2
PÞab ¼

∂2UkðΦÞ
∂πa∂πb

����
Φ→hΦi

: ð33Þ

The meson masses are just the eigenvalues of the curvature
of the effective potential UkðΦÞ. They form two 9 × 9

matrices M2
S and M2

P, and seven of their diagonal elements
are the masses of the scalar mesons a0 and κ and
pseudoscalar mesons π and K. Because of the UAð1Þ
breaking and the SUð3Þ flavor breaking, there exists one
independent nonzero off-diagonal element for each matrix,
ðM2

SÞ08 ¼ ðM2
SÞ80 and ðM2

PÞ08 ¼ ðM2
PÞ80. Diagonalizing

the meson subspace a ¼ 0, 8 generates the pseudoscalar
mesons η and η0 and the corresponding scalar mesons
which are the eigenstates of the Hamiltonian of the
model [2,39],

η0 ¼ cos θPη − sin θPη0;

η8 ¼ sin θPηþ cos θPη0; ð34Þ

where θP is the mixing angle in the pseudoscalar channel
and can be expressed in terms of the masses,

tan 2θP ¼ 2ðM2
PÞ08

ðM2
PÞ00 − ðM2

PÞ88
: ð35Þ

Note that the definition of the mixing angle (34) is different
from the often used one; see, for instance, Ref. [11]. While
these definitions are different, the idea of using the mixing
angle as a measure of UAð1Þ breaking is kept in any
definition, and the difference does not affect the topological
susceptibility χ, since it depends only on the condensates
and meson masses; see (18)–(24).
In the chiral limit, it is reduced to

tan 2θP ¼ 2
ffiffiffi
2

p
ð36Þ

in the chiral restoration phase, which leads to a constant
mixing angle θ≃ 350 after the phase transition. In a real
case, we expand the angle in powers of the chiral
condensate hσui at high temperature where chiral symmetry
is partially restored and hσui becomes small,

tan 2θP ¼ 2
ffiffiffi
2

p �
1 −

9hσui
2ððM2

SÞ11 − ðM2
SÞ44Þ

�
þOðhσui2Þ;

ð37Þ

where the strange condensate hσsi hides in the scalar meson
masses in the denominator, and the relation between
the masses and the light condensate ðM2

PÞ00 − ðM2
PÞ88 ∼

ðM2
SÞ11 − ðM2

SÞ44 þOðhσuiÞ is used. For the scalar chan-
nel, we can introduce the mixing angle θS in a similar way.
In the chiral limit, there is no mixing θS ¼ 0 in the chiral
symmetry restoration phase due to ðM2

SÞ08 ¼ 0.
It is necessary to note that we can analytically prove the

Goldstone theorem corresponding to the spontaneous chiral
symmetry breaking in the FRG frame.

IV. NUMERICAL RESULTS

We now numerically solve the flow equation (31) for the
effective potentialUk together with the gap equations for the
condensates hσui and hσsi. Both sides of the flow equation
dependonly on hσui and hσsi or hρ1i and hρ2i; it is then a first
order differential equation with initial conditionUk¼Λ at the
ultraviolet limit, and we can numerically solve the effective
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potential as a whole in a two-dimensional grid [28]. The
evolution of the potential is evaluated by discretizing the
potential in the plane of hρ1i and hρ2i. We also adopt
the clamped cubic splines to evaluate the derivatives of the
potential with respect to hρ1i and hρ2i and interpolate the
potential in order to find the global minimum.
We first solve the flow equation in vacuum. We choose

the ultraviolet momentum Λ ¼ 1 GeV which is the typical
scale of effective models at the hadron level. The initial
potential UΛ is so chosen to fit the pseudoscalar meson
masses Mπ , MK , Mη, and Mη0 , decay constants fπ and fK ,
and dynamical quark mass or chiral condensate hσui in
vacuum. For our calculation in the real case, we take
the renormalization parameters m2

Λ ¼ ð867.76 MeVÞ2,
λ1Λ ¼ −32=3, and λ2Λ ¼ 50, the UAð1Þ breaking parameter
c ¼ 4807.84 MeV, the chiral breaking parameters hu ¼
2ð120.73 MeVÞ2 and hs ¼

ffiffiffi
2

p ð336.41 MeVÞ2, and the
Yukawa coupling strength g ¼ 6.5. Considering the fact
that the system at high enough momentum is dominated by
the dynamics and not affected remarkably by the temper-
ature, the temperature dependence of the initial condition of
the flow equation at the ultraviolet momentum can be safely
neglected. Therefore, we take the temperature-independent
initial condition UΛðTÞ ¼ UΛ in vacuum.
We now show the temperature dependence of the

condensates in Fig. 2. In the chiral limit with hu ¼ 0,
the light condensate hσui, which is the order parameter of
the chiral phase transition, continuously drops with temper-
ature and goes to zero at the critical temperature
Tc ¼ 140 MeV. In the real case with nonzero hu, the
chiral phase transition becomes a crossover, and the order
parameter decreases very rapidly around the critical tem-
perature. The temperature dependence of the strange
condensate hσsi is rather smooth in comparison with the
light condensate; it decreases with temperature gradually
and is nonzero in the symmetry restoration phase.
The masses of the nine scalar mesons σ, κ, f0 and a0 and

nine pseudoscalar mesons π, K, η, and η0 are shown in

Fig. 3 as functions of temperature. In the chiral limit, π’s are
the three Goldstone modes, their mass is maintained at zero
in the chiral breaking phase. At the critical point, σ
becomes also massless. In the symmetry restoration phase,
it is easy to find ðM2

SÞ00 ¼ ðM2
PÞ11 and ðM2

SÞ44 ¼ ðM2
PÞ44,

which means the degeneration of π’s and σ and K’s and κ’s.
In the real case, the degeneration disappears, but the
corresponding scalar and pseudoscalar mesons approach
each other at high temperature. While the η and η0 mass
splitting becomes much weaker in the chiral restoration
phase than in the symmetry breaking phase, it does not
vanish. This indicates UAð1Þ symmetry breaking even at
extremely high temperature.
Figure 4 shows the mixing angles θP and θS as functions

of temperature in the chiral limit and real case. At T ¼ 0,
the angles are determined by the meson masses in vacuum.
In the chiral limit, the pseudoscalar angle increases with
temperature from the starting value θP ≃ −5°, then crosses
zero and jumps up suddenly at the critical point of the chiral

FIG. 2. The light and strange condensates hσui=2 and hσsi=
ffiffiffi
2

p
as functions of temperature in the chiral limit (dashed lines) and
real case (solid lines).

FIG. 3. The scalar and pseudoscalar meson massesMS andMP
as functions of temperature in the chiral limit (right panel) and
real case (left panel).

FIG. 4. The pseudoscalar and scalar mixing angles θP and θS as
functions of temperature in the chiral limit (dashed lines) and real
case (solid lines).
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phase transition, and finally keeps as a constant θP ≃ 35° in
the symmetry restoration phase, as we analyzed in the last
section. In the real case, the sudden jump disappears, and
the angle gradually approaches 35° in the high temperature
limit. The temperature behavior of the scalar angle θS is
very similar to the chiral condensate hσui. In contrast with
θP, it drops continuously with increasing temperature. In
the chiral restoration phase, it disappears in the chiral limit
and is still sizeable in the real case.
Now we come to the topological susceptibility χ, which is

the most straightforward criterion for the quantum anomaly.
From its expression shown in Eq. (18) or Fig. 1, it contains
the condensate-dominated part and the fluctuation-induced
part indicated, respectively, by dashed and dotted lines in
Fig. 5. Using the known condensates hσui and hσsi and the
mesonmassmatricesM2

S andM
2
P with off-diagonal elements

ðM2
SÞ08, ðM2

SÞ80, ðM2
PÞ08, and ðM2

PÞ80, we can directly
calculate the susceptibility by summarizing all six-field
correlations in (18). An alternative way is to diagonalize
the subspace with a ¼ 0, 8 and use the 18 scalar and
pseudoscalar eigenstates of the model and the mixing angels
θS and θP. The two calculations are equivalent. In both the
chiral limit case and real case, while the condensates control
the susceptibility in the chiral symmetry breaking phase, and
around the critical point, the fluctuations become the
dominant contribution at high temperature. Different from
the condensate-controlled part, which drops continuously
with increasing temperature, the fluctuation-induced part
goes upwith temperature.As a result, therewill be stillUAð1Þ
symmetry breaking in the chiral symmetry restoration phase.
Since theKMT term introduced in themeson section of the

quark-meson model is used to effectively describe the
topological charge (2) induced by the gluon fields of
QCD, the topological susceptibility calculated here is an
analogy to theYang-Mills topological susceptibility χYM [10–
12]. However, we took some approximations in our calcu-
lations. For instance, we considered only meson condensates
and propagators in (18) and neglected the contribution from
all the higher correlations. Therefore, as an effective χ
calculated at the hadron level, it can be considered as an

approximation of the lattice simulated χYM.What wewant to
emphasize in this paper is the importance of the fluctuations.
Without the fluctuations, it is impossible to correctly describe
the behavior of the UAð1Þ breaking at high temperatures.

V. CONCLUSION

We investigated the UAð1Þ symmetry and its relation to
the chiral symmetry at finite temperature by applying the
functional renormalization group to the SUð3Þ quark-
meson model. We calculated the mass gap and mixing
angel between η and η0 mesons and the topological
susceptibility to see if the UAð1Þ symmetry is restored at
high temperature. Since the mass gap and mixing angle are
defined through meson masses at the mean-field level, the
former approaches zero and the latter becomes a constant in
the chiral symmetry restoration phase. This means that the
two symmetries are restored at almost the same critical
temperature. However, this is the conclusion in mean-field
approximation. When the fluctuations are included in the
calculation of the topological susceptibility, which is the
most straightforward criterion for the anomaly, the con-
clusion is very different. The susceptibility contains two
parts, the condensate-controlled part, which behaves like
the mass gap and mixing angle, and the fluctuation-induced
part, which becomes dominant in the chiral restoration
phase. The former drops and the latter goes up with
increasing temperature. As a result of the competition,
the full susceptibility is still remarkably large when the
chiral symmetry is restored. It is necessary to note that our
discussion here on UAð1Þ and chiral symmetries is in the
scope of hadrons. Beyond the scope, the quantum and
thermal fluctuations at the meson level will break down due
to meson melting in a hot medium, and the susceptibility
should finally disappear at extremely high temperature
because of the nontrivial gluon configurations fading out.
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FIG. 5. The topological susceptibility χ as a function of temperature in the chiral limit (left panel) and real case (right panel). Dashed
and dotted lines are the contributions controlled by the condensates and fluctuations, respectively, and solid lines are the full results.
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