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In the third fermion family and gauge symmetry of the Standard Model, we study the quark-quark,
lepton-lepton and quark-lepton four-fermion operators in an effective theory at high energies. These
operators have nontrivial contributions to the Schwinger-Dyson equations for fermion self-energy
functions and the W*-boson coupling vertex. As a result, the top-quark mass is generated via the
spontaneous symmetry breaking of (7t)-condensate and the W*-boson coupling becomes approximately
vectorlike at TeV scale. The bottom-quark, tau-lepton and tau-neutrino masses are generated via the explicit
symmetry breaking of W%-contributions and quark-lepton interactions. Their masses and Yukawa
couplings are functions of the top-quark mass and Yukawa coupling. We qualitatively show the hierarchy
of fermion masses and Yukawa couplings of the third fermion family. We also discuss the possible collider
signatures due to the vectorlike (parity-restoration) feature of W*-boson coupling at high energies.
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I. INTRODUCTION

The parity-violating (chiral) gauge symmetries and
spontaneous/explicit breaking of these symmetries for
the hierarchy of fermion masses and mixing angles have
been at the center of a conceptual elaboration that has
played a major role in donating to mankind the beauty of
the Standard Model (SM) for fundamental particle physics.
On the one hand, the composite Higgs-boson model or the
Nambu-Jona-Lasinio (NJL) [1] with four-fermion opera-
tors, and on the other the phenomenological model [2] of
the elementary Higgs boson, they are effectively equivalent
for the SM at low energies and provide an elegant and
simple description for the electroweak symmetry breaking
and intermediate gauge boson masses. The experimental
results of Higgs-boson mass 126 GeV [3] and top-quark
mass 173 GeV [4] begin to shed light on this most elusive
and fascinating arena of fundamental particle physics.

In order to accommodate high-dimensional operators of
fermion fields in the SM framework of a well-defined
quantum field theory at the high-energy scale A, it is
essential and necessary to study: (i) what physics beyond
the SM at the scale A explains the origin of these operators;
(i1) which dynamics of these operators undergo in terms of
their dimensional couplings (e.g., G) and energy scale y;
(iii) associating to these dynamics, where infrared (IR) and
ultraviolet (UV) stable fixed points of these couplings
locate and what characteristic energy scale is; (iv) in the IR
domain and UV domain (scaling regions) of these stable IR
and UV fixed points, which operators become physically
relevant (effectively dimension-4) and renormalizable fol-
lowing renormalization group (RG) equations (scaling
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laws), and other irrelevant operators are suppressed by
the cutoff at least O(A~2).

The strong technicolor dynamics of extended gauge
theories at the TeV scale was invoked [5,6] to have a
natural scheme incorporating the relevant four-fermion
operator

G tra) Thwrin) (1)

of the (7t)-condensate model of the Bardeen, Hill and
Lindner (BHL) [7] and notations will be given later in
Eq. (10). This relevant four-fermion operator (1) undergoes
the dynamics of spontaneous symmetry breaking (SSB) in
the IR domain (small G Z G,) of infrared fixed point G,
(critical value) associated with the SSB and characteristic
energy scale (vev) v ~239.5 GeV. The analysis of this
composite Higgs boson model was made [7] to show the
low-energy effective Lagrangian, RG equations, the
composite Goldstone modes (pseudoscalars Wwysy) for
the longitudinal modes of massive W* and Z° gauge
bosons, and the composite scalar (H ~wyy) for the
Higgs boson in the SM. On the other hand, these relevant
operators can be constructed on the basis of phenomenol-
ogy of the SM at low energies. In 1989, several authors
[7-9] suggested that the symmetry breakdown of the SM
could be a dynamical mechanism of the NJL type that
intimately involves the top quark at the high-energy scale
A. Since then, many models based on this idea have been
studied [10]. The low-energy SM physics was supposed to
be achieved by the RG equations in the IR domain of the
IR-stable fixed point with v =~ 239.5 GeV [6,7,9].
Nowadays, the top-quark and Higgs boson masses are
known and they completely determine the boundary con-
ditions for the RG equations of the composite Higgs boson
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model [7]. Using the experimental values of top-quark and
Higgs boson masses, we obtained [11,12] the unique
solutions to these RG equations provided the appropriate
nonvanishing form factor of the composite Higgs boson in
TeV scales where the effective quartic coupling of
composite Higgs bosons vanishes.

The form factor of composite Higgs boson H ~ () is
finite and does not vanish in the SSB phase (composite
Higgs phase for small G = G,), indicating that the tightly
bound composite Higges particle behaves as if an elemen-
tary particle. On the other hand, due to large four-fermion
coupling G, massive composite fermions W ~ (Hy) are
formed by combining a composite Higgs boson H with an
elementary fermion y in the symmetric phase where the
SM gauge symmetries are exactly preserved [13,14]. This
indicates that a second-order phase transition from the SSB
phase to the SM gauge symmetric phase takes place at the
critical point G.; > G,.. In addition the effective quartic
coupling of composite Higgs bosons vanishing at £ ~ TeV
scales indicates the characteristic energy scale of such a
phase transition. The energy scale £ is much lower than the
cutoff scale A (€ < A) so that the fine-tuning (hierarchy)
problem of fermion masses m; << A or the pseudoscalar
decay constant f, << A can be avoided [11].

In this article, after a short review that recalls and
explains the quantum-gravity origin of four-fermion oper-
ators at the cutoff A, the SSB and (7¢)-condensate model,
we show that due to four-fermion operators (i) there are the
SM gauge symmetric vertexes of quark-lepton interactions;
(i1) the one-particle-irreducible (1PI) vertex function of
W=*-boson coupling becomes approximately vectorlike at
TeV scale. Both interacting vertexes contribute the explicit
symmetry breaking (ESB) terms to Schwinger-Dyson (SD)
equations for fermion self-energy functions. As a result,
once the top-quark mass is generated via the SSB, other
fermion (v,,7,b) masses are generated by the ESB via
quark-lepton interactions and W*-boson vectorlike cou-
pling. In the third fermion family, we qualitatively show
the hierarchy of fermion masses and effective Yukawa
couplings in terms of the top-quark mass and Yukawa
coupling. In the concluding section, a summary of basic
points of the scenario and its extension to three fermion
families is given. In addition, we present some discussions
on the possible experimental relevance of running Yukawa
couplings obtained and parity-conservation feature of the
W=*-boson coupling at TeV scale [15].

II. FOUR-FERMION OPERATORS FROM
QUANTUM GRAVITY

A well-defined quantum field theory for the SM
Lagrangian requires a natural regularization (cutoff A)
fully preserving the SM chiral-gauge symmetry. The
quantum gravity naturally provides a such regularization
of discrete space-time with the minimal length a ~ 1.2a,,
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[16], where the Planck length ay ~ 107 cm and scale
Ay = m/ay ~ 10" GeV. However, the no-go theorem [17]
tells us that there is not any consistent way to regularize the
SM bilinear fermion Lagrangian to exactly preserve the SM
chiral-gauge symmetries, which must be explicitly broken
at the scale of fundamental space-time cutoff a. This
implies that the natural quantum-gravity regularization
for the SM should lead us to consider at least dimen-
sion-6 four-fermion operators originated from quantum-
gravity effects at short distances [18].

On the other hand, it is known that four-fermion
operators of the classical and torsion-free Einstein-Cartan
(EC) theory are naturally obtained by integrating over
“static” torsion fields at the Planck length,

Lec(e,w,y) = Lec(e,w) +@e Dy + GIy, (2)

where the gravitational Lagrangian Lgc = Lgc(e, ),
tetrad field e, (x)=ef(x)y,, spin-connection field w,(x)=
@i’ (x)6 45, the covariant derivative D, = d, — igw, and
the axial current J¢ = ry?y y of massless fermion fields.
The four-fermion coupling G relates to the gravitation-
fermion gauge coupling ¢ and fundamental space-time
cutoff a.

Within the SM fermion content, we consider massless
left- and right-handed Weyl fermions y/{ and w,’; carrying
quantum numbers of the SM symmetries, as well as three
right-handed Wey] sterile neutrinos yj,; and their left-handed

conjugated fields v{f = iy,(vg)*, where “f” is the fermion-
family index. Analogously to the EC theory (2), we obtain a
torsion-free, diffeomorphism and local gauge-invariant
Lagrangian,

L = Lgc(e,w) + ZW{,RE”DMW{,R + Zpﬁceﬂpﬂyff
f f

+ Gy + IRy + 207 TR )
+ G(lejL,y + ZJZjL,u + 2J’;€jL.u)v (3)

where we omit the gauge interactions in D, and axial
currents read

Be =Y 0l Pwlie  JL=D I @)
7 7

The four-fermion coupling G is unique for all four-fermion
operators and high-dimensional fermion operators (d > 6)
are neglected. If torsion fields that couple to fermion fields
are not exactly static, propagating a short distance £>a,
characterized by their large masses A o 77", this implies
the four-fermion coupling G o« A=2. We will in the future
address the issue of how the space-time cutoff a due to
quantum gravity relates to the cutoff scale A(a) possibly by
intermediate torsion fields or the Wilson-Kadanoff
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renormalization group approach. In this article, we adopt
the effective four-fermion operators (3) in the context of a
well-defined quantum field theory at the high-energy
scale A.

By using the Fierz theorem [19,20], the dimension-6
four-fermion operators in Eq. (3) can be written as

+ (G Ly + Tl ry + i+ 2T0jr,)  (5)

— G _(wlwkuhwl + o whwhvl). (6)
fr

which preserve the SM gauge symmetries. Equations (5)
and (6) represent repulsive and attractive operators respec-
tively. In Ref. [21], we pointed out that the repulsive four-
fermion operators (5) are suppressed by the cutoff O(A~2),
and cannot become relevant and renormalizable operators
of effective dimension-4 in the IR domain where the SSB
dynamics occurs.

Thus the torsion-free EC theory with the relevant four-
fermion operators read

L = Lgc + Z]/_/{,Reﬂpﬂl//{ﬂ + Z’jéceﬂpu”?
f f

=G> (Flyhikwl + K whwkvl) + He.  (7)

Ir

where the two-component Weyl fermions z//{ and z//J,;
respectively are the SU;(2) x Uy(1) gauged doublets
and singlets of the SM. For the sake of compact notations,
yf,’é is also used to represent V,f?, which has no SM
quantum numbers. All fermions are massless, they are

four-component Dirac fermions y/ = (y) + %), two-
component right-handed Weyl neutrinos u{ and four-
component sterile Majorana neutrinos vﬁ,, = (v{f +V£)
whose kinetic terms read

o, etDuy, Uye D,y = Uget D vk + D e Dk

(8)

In Eq. (7), f and f' (f,f =1, 2, 3) are fermion-
family indexes summed over respectively for three
lepton families (charge ¢ = 0, —1) and three quark families
(g =2/3,—1/3). Equation (7) preserves not only the SM
gauge symmetries and global fermion-family symmetries,
but also the global symmetries for fermion-number
conservations.

III. THE THIRD FERMION FAMILY

In this section, we discuss how the quark and lepton
Dirac mass matrices are generated by the SSB via four-
fermion operators. In Eq. (7), the four-fermion operators of
the quark sector are
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-G> W yRWRYL- 9)
ff

Due to the unique four-fermion coupling G and the global
fermion-family U, (3) x Ug(3) symmetry of Eq. (9), we
perform chiral transformations U; € U;(3) and Uy €
Ug(3) so that f = f' =1, 2, 3, the four-fermion operator
(9) is only for each quark family and all quark fields are
Dirac mass eigenstates. The four-fermion operators (9) read

Gl(Witra) (Towrip) + (Wi bry) (BRwi)] + “terms”,  (10)

where a, b and i, j are the color and flavor indexes of the
top and bottom quarks, the left-handed quark doublet yi* =
(7, b4) and the right-handed singlet w§ = t%, b%. The first
and second terms in Eq. (10) are respectively the four-
fermion operators of top-quark channel [7] and bottom-
quark channel, whereas “terms” stands for the first and
second quark families that can be obtained by substituting
t—u,cand b = d,s.

In Eq. (7), the four-fermion operators relating to the
lepton Dirac mass matrix are

~GY [PL ek ER e + (Ell)(BheD)). (1)
fr

where Dirac lepton fields # and 7} are the SM SU, (2)

doublets and singlets respectively, and 1/;e are three sterile
neutrinos. Analogously to the quark sector (9), we perform
chiral transformations U; € U;(3) and Uy € Ug(3) so
that f = f’, the four-fermion operators (11) are only for
each lepton family and all lepton fields are Dirac mass
eigenstates. Namely, the four-fermion operators (11)
become

GZ[(ziLfR)(ERfLi) + (CoR)@ReL)), (12)
7

where three right-handed sterile neutrinos z/,"’} (¢ = e, p, 1),
the left-handed lepton doublets ) = (v4,7,) and the
right-handed singlets £p.

In the IR domain of the SM, the four-fermion coupling
G Z G, and the SSB leads to the fermion-condensation
My = -G(p'y/) =md;p #0, two diagonal mass
matrices of quark sectors ¢ = 2/3 and ¢ = —1/3 satisfying
3 4 3 mass-gap equations. It was demonstrated [22] that
as an energetically favorable solution of the SSB
ground state of the SM, only top-quark is massive
(m® = —G(p,y,) # 0), otherwise there would be more
Goldstone modes in addition to those become the longi-
tudinal modes of massive gauge bosons. In other words,
among four-fermion operators (10) and (12), the (7r)-
condensate model (1) is the unique channel undergoing
the SSB of SM gauge symmetries, for the reason that this is
energetically favorable, i.e., the ground-state energy is
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minimal when the maximal number of Goldstone modes
are three and equal to the number of the longitudinal
modes of massive gauge bosons in the SM. Moreover, the
four-fermion operators (11) of the lepton sector do not
undergo the SSB leading to the lepton-condensation
My ==G({ €0y = mydpp # 0, ie., two diagonal mass
matrices of the lepton sector (¢ =0 and ¢ = —1). The
reason is that the effective four-lepton coupling (GN,.)/N.
1S N_.-times smaller than the four-quark coupling
(GN.), where the color number N, = 3. In the IR domain
(G = G,) of the IR-stable fixed point G. (the critical
value), the effective four-quark coupling is above the
critical value and the SSB occurs, whereas the effective
four-lepton coupling is below the critical value and the SSB
does not occur.

As a result, only the top quark acquires its mass via the
SSB and four-fermion operator (1) of the top-quark channel
becomes the relevant operator following the RG equations
in the IR domain [7]. While all other quarks and leptons do
not acquire their masses via the SSB and their four-fermion
operators (9) and (11) are irrelevant dimension-6 operators,
whose tree-level amplitudes of four-fermion scatterings are
suppressed O(A~2), thus their deviations from the SM are
experimentally inaccessible [21]. However they acquire
their masses because their SD equations acquire the ESB
induced by the W*-boson vectorlike coupling and quark-
lepton interactions, see Secs. V and VI. It is difficult to
analyze the SD equations of three fermion families all
together. Beside, the fermion masses in the third fermion
family are much heavier than those in the first or second
fermion family, and the off-diagonal element is much
smaller than the diagonal one in the family mixing
matrices, like the Cabibbo-Kobayashi-Maskawa (CKM)
one. For these reasons and observations, to the leading
order of approximation, we focus on the third fermion
family in this article so as to first qualitatively explain and
show how the bottom quark, tau lepton and tau neutrino
acquire their masses as functions of the top-quark mass.

IV. THE (#t)-CONDENSATE MODEL

In this section, briefly recalling the BHL(7¢)-condensate
model [7] for the full effective Lagrangian of the low-
energy SM in the scaling region (IR domain) of the IR-
fixed point, we explain why our solution is radically
different from the BHL one though the same renormaliza-
tion procedure and RG equations are adopted in the IR
domain. It is important to compare our solution with the
BHL one, as well as discuss its difference from the
elementary Higgs model.

A. The scaling region of the IR-stable fixed
point and BHL analysis

Using the approach of large N .-expansion with a fixed
value GN,. to involve the most fermion loops (since each
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loop provides a factor of N,), it is shown [7] that the top-
quark channel of operators (10) undergoes the SSB
dynamics in the IR domain of IR-stable fixed point G..
As a result, the A2-divergence (tadpole-diagram) is
removed by the mass gap equation, the top-quark channel
of four-fermion operator (1) becomes physically relevant
and renormalizable operators of effective dimension-4.
Namely, the effective SM Lagrangian with the bilinear
top-quark mass term and Yukawa coupling to the
composite Higgs boson H at the low-energy scale u is
given by [7]

L = Lignesc + 90(Wp1gH + Heel) + AL

2
+Zy|D,H* = m}H H — 30 (HTH)?, (13)

gauge

all renormalized quantities received fermion-loop contri-
butions are defined with respect to the low-energy scale y.
The conventional renormalization Z,, = 1 for fundamental
fermions and the unconventional wave-function renormal-
ization (form factor) Z y for the composite Higgs boson are
adopted

5 1 Zyy
Zy(u) = 20) 9:(u) = Zl—H/zgto;
T — Au) 7o Zan

where Zyy and Z,y are proper renormalization constants
of the Yukawa coupling and quartic coupling in Eq. (13).
The SSB-generated top-quark mass m,(u) = G2 (u)v/v/2.
The composite Higgs boson is described by its pole-
mass m%(u) = 2A(u)v?, form-factor Zy(u) = 1/3%(u),
and effective quartic coupling A(u), provided that Z () >
0 and A(x) > 0 are obeyed. After the proper wave-function
renormalization ZH(,u), the Higgs boson behaves as an
elementary particle, as long as Zy(u) # 0 is finite.

In the scaling region of the IR-stable fixed point where
the SM of particle physics is realized, the full one-loop RG
equations for running couplings g,(#*) and A(u?) read

dg, (9., . 9 17_\.
16ﬂ27t’=(—93—895—19%—59%>gn (15)

16:;2%: 12[22 + (g2 —A)A+B -7},
where one can find A, B and RG equations for running
gauge couplings g%’m in Eqs. (4.7), (4.8) of Ref. [7]. The
solutions to these ordinary differential equations are
uniquely determined, once the boundary conditions are
fixed. In 1990, when the top-quark and Higgs masses

=Inu, (16)

were unknown, using the composite conditions Zy = 0 and
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Using experimentally measured SM quantities (including m, and my) as boundary values, we uniquely solve the RG equations

for the composite Higgs-boson model [7], we find [11,12] the effective top-quark Yukawa coupling g,(u) (left) and effective Higgs
quartic coupling A(u) (right). Note that A(£) =0 at £~ 5.14 TeV and A(u) < 0 for u > &.

A=0 as the boundary conditions at the cutoff A, the
analysis of the RG equations (15) and (16) for Z(u) and
:1(;1) was made to calculate the top-quark and Higgs-boson
masses by varying the values of cutoff A. It was found that
the cutoff A varies from 10* to 10" GeV, the obtained top-
quark and Higgs-boson masses are larger than 200 GeV.

B. Experimental boundary conditions for
RG equations and our analysis

We made the same analysis and reproduced the BHL
result. However, in Refs. [11,12] we further proceed our
analysis by using the boundary conditions based on the
experimental values of top-quark and Higgs-boson masses,
m; =% 173 GeV and my = 126 GeV. Namely we adopt
these experimental values and the mass-shell conditions

m,(m,) = g2(m,)v/V2 ~ 173 GeV,
my(my) = [22(my)]"/?v ~ 126 GeV (17)

as the boundary conditions of the RG equations (15)
and (16) to determine the solutions for Zy(u) and :l(y)
in the IR domain of the energy scale » = 239.5 GeV,
where the low-energy SM physics is achieved with m, =
173 GeV and my ~ 126 GeV.

As a result, we obtained the unique solution (see Fig. 1)
for the composite Higgs-boson model (1) or (13) as well as
at the energy scale &,

Em51TeV, Zy~126, 1) =0, (18)
and effective quartic coupling vanishes A(€) =0. As
shown in Fig. 1, or Fig. 2 in Ref. [12], our solution shows

the following three important features: (I) The squared

Higgs-boson mass m2 = 2A(u)v? changes its sign at

u = &, indicating the second-order phase transition from
the SSB phase to the gauge symmetric phase for strong four-
fermion coupling [13]. (II) The form-factor Zj (n) #0
shows that the tightly bound composite Higgs particle
behaves as if an elementary particle for 4 < £. Recall that
in the BHL analysis Z (€) = 0 and A(€) = 0 are demanded

for different £ values. (II) The effective form-factor Z (&)
of the composite Higgs boson is finite, indicating the
formation of massive composite fermions ¥ ~ (Hy) in
the gauge symmetric phase [13]. This critical point of the
phase transition could be a ultraviolet (UV) fixed point
for defining an effective gauge-symmetric field theory for
massive composite fermions and bosons at TeV scales [12],
and there are some possible experimental implications [21].
We do not address this issue in this article.

C. Compare and contrast

It is important to compare and contrast our study with the
BHL one [7]. In both studies, the definitions of all physical
quantities are identical, the same RG equations (15) and
(16) are used for the running Yukawa and quartic couplings
as well as gauge couplings. However, the different
boundary conditions are adopted. We impose the infrared
boundary conditions (17) that are known nowadays, to
uniquely determine the solutions of the RG equations, the
values of the form-factor Z (&) # 0 and high-energy scale
E[A(E) = 0]. As shown in Fig. 1, Zy (1) = 1/3(u) [A(1)]
monotonically increases (decreases) as the energy scale y
increases up to &£. Both experimental m, and my values
were unknown in the early 1990s, in order to find low-
energy values m, and my close to the IR-stable fixed point,
BHL [7] imposed the compositeness conditions Zz (A) = 0

and E(A) = 0 for different values of the high-energy cutoff
A as the boundary condition to solve the RG equations. As
a result, too large m, and my values (Table I in Ref. [7])
were obtained, and we have reproduced these values.
However, these BHL results are radically different from
the present results of Eqgs. (17), (18) and Fig. 1, showing
that the composite Higgs boson actually becomes a more
and more tightly bound state, as the energy scale u
increases, and eventually combines with an elementary
fermion to form a composite fermion in the symmetric
phase. This phase transition to the gauge symmetric phase
is also indicated by A(u) — 0" as y — £ + 0~ at which the
1PI vertex function Z,y in Egs. (14) and (13) vanishes.
On the other hand, we compare and contrast our result
with the study of the fundamental scalar theory for the
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FIG. 2. We present the tadpole diagrams of quark-lepton interactions (19) of the third fermion family, which contribute to quark and

lepton ESB masses m in SD equations (35)—(42).

elementary Higgs particle. The study of the high-order
corrections to the RG equations of elementary Higgs
quartic coupling “4” and measured Higgs mass shows that
A(u) becomes very small and smoothly varies in high
energies approaching the Planck scale [23]. This is a crucial
result for the elementary Higgs-boson model. This result is
clearly distinct from the intermediate energy scale £ ~ TeV
obtained in the composite Higgs-boson model, where the
quadratic term A? is removed by the mass gap equation of
the SSB and an “unconventional” renormalization for the
form factor of composite Higgs field is adopted [7]. Instead
in the calculations of high-order corrections to the RG
equations of the elementary Higgs quartic coupling “1,” the
quadratic term A? is removed in the MS prescription of the
conventional renormalization for elementary scalar fields. It
is worthwhile to mention that in Ref. [24] it is shown in the
elementary Higgs-boson model that the quadratic term
from high-order quantum corrections has a physical impact
on the SSB and the phase transition to a symmetric phase
occurs at the scale of order of TeV. Apart from described
and discussed above, the effective four-fermion interaction
theory has different dynamics from the fundamental scalar
theory for the elementary Higgs particle, in particular for
strong four-fermion coupling G, e.g. the formations of
boson and fermion bound states [13]. Nevertheless, all
these studies of either the elementary or the composite
Higgs-boson model play an important role in understanding
new physics beyond the SM for fundamental particles.

V. ORIGINS OF EXPLICIT SYMMETRY
BREAKING

Once the top-quark mass is generated via the SSB,
other fermion (v,,7,b) masses are generated by the
ESB via quark-lepton interactions and W*-boson vector-
like coupling.

A. Quark-lepton interactions

Although the four-fermion operators in Eq. (7) do not
have quark-lepton interactions, we consider the following
SM gauge-symmetric four-fermion operators that contain
quark-lepton interactions [25],

G[(Z17r)(bfwria) + (£ 0R) (T ria)] + terms, — (19)

where 77 = (v7,7;) and wy;, = (174, b1,) for the third
family. The terms represent for the first and second families
with substitutions: 7 — e, u, ¥ — v°, ¥, and t — u, ¢ and
b — d,s. These operators (19) should be expected in the
framework of Einstein-Cartan theory and SO(10) unifica-
tion theory [26]. Once the top-quark mass m, is generated
by the SSB, the quark-lepton interactions (19) introduce the
ESB terms to the SD equations (mass-gap equations) for
other fermions.

In order to show these ESB terms, we first approximate
the SD equations to be self-consistent mass gap equations
by neglecting perturbative gauge interactions and using the
large N .-expansion to the leading order, as indicated by
Fig. 2. The quark-lepton interactions (19), via the tadpole
diagrams in Fig. 2, contribute to the tau lepton mass m<
and tau neutrino mass mif’, provided the bottom-quark mass
mS® and top-quark mass m° are not zero. The latter m{® is
generated by the SSB, see Sec. IV. The former m$ is
generated by the ESB due to the W*-boson vectorlike
coupling and top-quark mass mP, see next Sec. V.B. The
superscript “sb” indicates the mass generated by the SSB.
The superscript “eb” indicates the mass generated by the
ESB. These are bare fermion masses at the energy scale £.

Corresponding to the tadpole diagrams in Fig. 2,
the mass-gap equations of tau lepton and tau neutrino
are given by

m,fl: =2Gm®

[ e = 1 = (/N
(20)

(2z)*

(27)*

me® = 2GmsP

[ e = o = (N
e1)

Here we use the self-consistent mass-gap equations of the
bottom and top quarks [see Egs. (2.1) and (2.2) in Ref. [7]]:
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= 26N s / P - (mY, (22)
= 26N 5 / U2 = (m)2, (23)

and the definitions of Dirac quark, lepton and neutrino bare
masses in general read

M = —(1/2N )G wa) = —(G/N) (i war.) (24)

mlg(]:pton = _(1/2)G<2f> = _G<ZLKR>7 (25)
and m® . = —(1/2)G{¢,¢,) = —=G{(£,,.£,). The nota-
tion (- - -) does not represent new SSB condensates, but the

1PI functions of fermion mass operator § y .z, i.e., the self-
energy functions X, that satisfy the self-consistent SD
equations or mass-gap equations. It is important to note
the difference that Eq. (23) is the mass-gap equation for the
top-quark mass m$® generated by the SSB, while Eq. (23) is
just a self-consistent mass-gap equation for the bottom-quark
mass m$> # 0, as given by the tadpole diagram. The tau-
neutrino mass and tau-lepton mass m<" are not zero, if the
top-quark mass m;® and bottom-quark mass mS are not zero.
This is meant to the mass generation of tau neutrino and tau
lepton due to the ESB terms introduced by the quark-lepton
interactions (19), quark masses m;® and mS". It will be further
clarified that these ESB terms are actually the inhomo-
geneous terms in the SD equations, which have nontrivial
massive solutions without extra Goldstone bosons produced.
In the next section, we are going to show the other type of
ESB term due to the W*-boson Vectorlike coupling, that is
crucial to have the bottom-quark mass mj b generated by the

ESB, once the top-quark mass mS is generated by the SSB.

B. W*-boson coupling to right-handed fermions

In addition to the ESB terms due to quark-lepton
interactions, the effective vertex of W*-boson coupling to
right-handed fermions at the energy scale £ also introduces
the ESB terms to the Schwinger-Dyson equations for other
fermions, once the top-quark mass m;, is generated by the
SSB. We study this effective vertex in this section.

In the low-energy SM obeying chiral gauge symmetries,
the parity symmetry is violated, in particular, the W*-boson
couples only to the left-handed fermions, i.e., i(g,/v/2) VP
In order to show that the four-fermion operators (7) induce a
1PI vertex function of Wff -boson coupling to the right-
handed fermions, see Fig. 3, we take the third quark family in
Eq. (10),

L = Lyineic + G0l try) (Bwrin) + G bry) (Dhwiin),
(26)

as an example for calculations. The leading contribution to
the nontrivial 1PI vertex function is given by
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FIG. 3. We adopt the third quark family (z, ) as an example to
illustrate the 1PI vertex function of Wj-boson coupling to right-
handed Dirac fermions induced by four-fermion operators (10).
¢, p and p’ are external momenta, ¢ and k are internal momenta
integrated up to the energy scale £. The cross “x” represents self-
energy functions of Dirac fermions, which are the eigenstates of
mass operator. A CKM matrix U,; associates to the W-boson
coupling g,.

—a b —a = lg = c
G*(7{ bra) (DY WLh’)(WLtRu)(Z?QWLh){\/%ILL'(VﬂPL)bLW;}
—l—Gz(Za bra) (B t1y) (D% 1ra) (1) {T1e (r* PL)bS Wi}

V2

g i Ty = CTaTie
:l\/—%szRa’{{ZRafL]V’Lbb%][be’ch][}’”PLMbLbL]}t%W;

(27)

. g U/ Z 7, o 7 o

= 1722G2Ncb}e [tREL |71 [by bR) ™ [t T )P [y P ]
X [bLBL]M}i?QW/T (28)

= i TP (p, p) W (p = p), (29)

N

where two fields in brackets [- - -] in the line (27) mean the
contraction of them, as shown in Fig. 3, the color degrees (N .)
of freedom have been summed and spinor indexes are
explicitly shown in the line (28). I}/ (p’, p) represents the
effective vertex function of W*-boson coupling to the right-
handed fermions 7 and by,

o= 61)] o
L (P - 61>2 b-quark
|7k ta/2) - T”
(k + 61/2) - mz
(k= q/2) = my|
| (k(— q/q2/>2)— mib] | (0)
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Based on the Lorentz invariance, the 1PI vertex can be
written as

9

V2

where TW(p, p') is the dimensionless Lorentz scalar.
Besides, this vertex function (31) remains the same for
exchanging b and ¢. The same calculations can be done by
replacing ¢ — u,c and b — d, s, as well as 1 - v,,v,, v,
and b — e, pu, 1.

As shown in Fig. 3 and Eq. (31), the two-loop calculation
to obtain the finite part of the dimensionless Lorentz scalar
I'"(p,p') is not an easy task. Nevertheless we can
preliminarily infer its behavior as a function of energy p
and p’. For the case p < m, and p’ < my,, the vertex
function TV (p, p') x (GE*)*(m,/E)*(m,/E)* < 1 van-
ishes in the IR domain of IR-fixed point of weak
four-fermion coupling [7], where the SM with parity-
violating gauge couplings of W* and Z° bosons are
realized. For the case p > m, and p' > m,, TV (p, p’) «
(GE»?(p'/E)*(p/E)? increases as p and p’ increase.
In addition the four-fermion coupling G increases its
strength as energy scale increases, i.e., the §(G)-function
is positive [12]. This implies that in high energies (p/&)? <
1 and/or (p'/€)* <1, the vertex function I'Y(p, p’) =
Y[(p/E)% (p'/€)?] does not vanish and the W*-boson
coupling to fermions is no longer purely left handed. On the
other hand, at the high-energy scale, the dependence of
the vertex function T'(p,p’) on fermion masses is
negligible, and 'V (p, p’) is approximately universal for
all quarks and leptons.

OV (p.p') = i==r,PrTV (p. p'). (31)

VI. SCHWINGER-DYSON EQUATIONS

After discussing the simplest mass-gap equations (20)
and (23) and the effective W*-boson coupling vertex (31),
we turn to the SD equations for fermion self-energy
functions by taking gauge interactions into account. It is
known that in the SM the W* boson does not contribute to
the SD equations for fermion self-energy functions X;.
However, due to the nontrivial vertex function (31), the W*
gauge boson has the contribution, as shown in Fig. 4, to SD
equations at high energies. This contribution not only
introduces an explicit symmetry breaking term, but also
mixes up SD equations for self-energy functions of differ-
ent fermion fields via the CKM mixing matrix [25,27].

In the vectorlike gauge theory, SD equations for fermion
self-energy functions were intensively studied in Ref. [28].
In the Landau gauge, SD equations for ¢ and b quarks are
given by

np) = [ R o

y (p=p)? pP+E(p)
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W (p' —p)

br(p)

gz‘Utb‘Z

FIG. 4. We adopt the third quark family (7, b) as an example to
illustrate the general W*-boson contribution to the fermion self-
energy function X(p). The bottom-quark self-energy function
%, (p) is related to the top-quark one Z,(p’).

i) =3 [ TAEL B ()

v (p=p)? PP+E(p)

where the integration fp, = [d*p'/(2x)* is up to the cutoff
E.Vy3(p.p') and V_, 5(p, p’) are the vertex functions of
vectorlike gauge theories. In Eq. (32), the bare mass term
m® comes from the SSB, see the simplest mass-gap
equation (23) and discussions in Sec. IV. Instead, the bare
mass term mf)b in Eq. (33) comes from the ESB terms due to
the effective W*-boson coupling vertex (31) and the self-
consistent mass-gap equation (22). We neglect corrections
to vertex functions of vectorlike gauge interactions, for
example, V,/3 = (2¢/3)? and V_; /3 = (¢/3)? in the QED
case. Since the vertex function I'(p, p’) in Eq. (31) does
not vanish only for high energies, we approximately treat it
as a boundary value at the scale &,

a, = o) (ru/aV2),  @(E) = B(E)/4x,
FW(pv p/)lp,p’—n‘," (34)

Tw

where a. = 7/3. This means that the contributions of Fig. 4
are approximately boundary terms in the integral SD
equations (32) and (33), see the following equations (35)—
(38). Thus we neglect possible right-handed couplings of
the would-be Nambu-Goldstone bosons in the Landau
gauge, which could have effects on the explicit gauge
symmetry breaking. In the future we will study these effects
in some more detail.

Following the approach of Ref. [28], we convert
Egs. (32) and (33) to the following boundary value
problems (x = p?, a = e?/4x):

d (2/3)%a xZ,(x)

B+ T

=0, (35

E2T(E?) + Z,(E%) —m® =, |Uy Py (%) + mP,  (36)

and
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(1/3)’a_xZ,(x)

d 25
)+

dx a,

=0, (37)

E5,(82) + Z4(8?) = &, |U P2, (82) + mi>. (38)

The boundary conditions (36) and (38) are actually the
mass-gap equations of ¢ and b quarks at the scale &, the
a,,-terms come from the contribution of Fig. 4, mib- and
miP-terms come from Eqs. (22) and (23). Analogously, we
obtain the following boundary value problem for the v, and
7 leptons:

d s _
E(x z, (x)) =0, (39)

E%, () +1,(8) = a|U, T (E) +mP.  (40)

and
d , a xZ.(x)
i (x*Z;(x)) w2200 0, (41)

522/1(52) + 21(52) = w|U'n/,|2ZIJr (x) =+ mgb’ (42)

where U, _is the element of Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) mixing matrix. The boundary conditions
(40) and (42) are actually the mass-gap equations of v, and 7
leptons at the scale &, the a,,-terms come from the con-
tribution of Fig. 4, m&"- and mgP-terms come from Eqs. (21)
and (20). In the rhs of self-consistent mass-gap equa-
tions (36), (38), (40) and (42), only the top-quark mass
term mS is due to the SSB, see Eq. (20) and Sec. IV, whereas
the a,,-terms are the ESB terms due to the effective vertex
(31), see Fig. 4, whereas the mS’-, mS"- and m¢ -terms are
ESB terms, satisfying the self-consistent mass-gap equa-
tions, e.g., Egs. (21)—=(23) due to the quark-lepton inter-
actions (19), four-fermion interactions (10) and (12). All
ESB terms are functions of the top-quark mass term m:,
which is the unique origin of the ESB terms. The SD
equations (35)—(42) are coupled, become inhomogeneous
and we try to find the nontrivial massive solutions for the
bottom quark, tau lepton and tau neutrino.

Suppose that the SSB for the top-quark mass does not
occur (m® = 0), fermion bare masses m are zero and the
W-boson contribution vanishes («,, = 0). In this case the
SD equations (35)—(42) are homogenous. It was established
[28] that only trivial solutions ,(p) = 0 to homogeneous
SD equations exist in the weak coupling phase a < a,,
however, inhomogeneous SD equations have nontrivial
solutions

p
Zs(p) xmy <_2
my

2\ 7
) , my < p <€, (43)

2 .
where the factor (£7)” comes from the corrections of
f

perturbative gauge interactions and y < 1 is the anomalous
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dimension of fermion mass operators. Actually, when x >
Z/(x) and the nonlinearity in SD equations is neglected,
Egs. (35), (37) and (41) admit the solution [29],

m> 1 2 2\ (ay/4a,)
Zf(x)cx—fsinh[—ﬂl—%ln('u—z)] cxmf<'u—2> ' ,
17 2 a, my my

(44)

“f =1, b,1” x = p> « u® and u is the infrared scale. In
Egs. (43) and (44), the infrared mass scales m, = m(u)
are proportional to the inhomogeneous terms attributed to
the ESB terms, which are in our scenario «,,-terms and
mass terms m;b. Equation (39) for v, -neutrino (a; = 0)
admits the solution X, (x) = m, (u) that is related to the
inhomogeneous term of the ESB at the infrared scale pu.

VII. THE MASSES OF THIRD FERMION FAMILY

First we try to find the massive solutions
(m,_,m;,my,m;) to the mass-gap equations, Eqgs. (36),
(38), (40) and (42) at the energy scale £. In these equations,
the term &2X(E?) can be neglected, since £2X;(£?) =
rZi(E%) < Z;(£%), where Eq. (43) is used. We define
the bare masses %,(E%) = m? ~ m®, £,(£%) = m) ~ m,
() =mlxmP, and T, (E2) = m) ~m. As a result,
we approximately obtain

my) % a,|Ug, [Pmg +m} /N, <m/N.,  (45)
m? & a, U7, [Pmy) +my /N, <2my /N, (46)
md aW|Utb|2m(b) + NcmgT + mP ~ mP, (47)

ml ~ a,|Up,[*m? + N.m? ~ a,,m?, (48)

where |Uy,|~1.03 [30] and |U%, | < 1. Equations (45)
and (47) are used in the last inequality of Eq. (40).
Equations (45)—(48) show that at the energy scale &, the

ESB masses m{ , m? and m{, are originated from the SSB

mass m?. The last step in Eqs. (45)-(48) shows the
dominate contributions: (i) the v -neutrino acquires its

mass m)_from the 7-quark mass m{ via the quark-lepton

interaction (19), (ii) the b-quark acquires its mass mg from
the t-quark mass m? via the CKM mixing, (iii) the z-lepton
acquires its mass m? from the bottom-quark mass mg via
the quark-lepton interaction (19) and z-neutrino mass mgr
via the PMNS mixing. In this article, we only indicate that
the tau neutrino Dirac mass relates to the top-quark mass
without further discussions, since the problem of neutrinos
masses is complex for their Dirac or Majorana feature. We
will discuss in the future that the Dirac mass m,(,)r of the left-
handed neutrino v; and right-handed sterile neutrino vg, as

well as the large Majorana mass of Majorana neutrino

073001-9



SHE-SHENG XUE
gb,ﬂ' (u’)

0.015

. . . . In(u/M
" - 5 " n(K/M)

FIG. 5. We plot the Yukawa couplings g,(x) and g,(u) from
1>05GeVto ExS TeV.

(vg +vg) generated by the four-fermion operator
G (Vv (Verse) in Eq. (7), in order to see if the smallness
of gauged Majorana neutrino masses is consistent with
experimental data.

In order to find the fermion self-energy function (43) or
(44) at the infrared mass scale yu, we need to solve the
inhomogeneous SD equations (35), (37) and (41) with the
boundary values (45)—(48). This is still a difficult task. To
the leading order, neglecting the corrections from pertur-
bative gauge interactions, we use Eqgs. (46) and (48) to
approximately obtain the bottom quark and z-lepton masses
at the infrared mass scale p,

me(u) ~ 2N my(p),  my(p) & ami(p),  (49)
in terms of the top-quark mass n,(x) = g,(u)v/+/2, and we
define the bottom-quark and tau-lepton Yukawa couplings

my(u) = gy()v/V2,  m(u) = g.(w)v/V2, (50)

which are obviously related to the top-quark Yukawa
coupling g,(u). In Fig. 5, the Yukawa couplings g,(u)
and g,(u) are plotted. Comparing them with the Yukawa
coupling g,(¢) in Fig. 1, one finds the hierarchy pattern of
the Yukawa couplings in the third fermion family.

Using the top-quark mass-shell condition and experi-
mental values of top- and bottom-quark masses: m, =

G,(m,)v/\/2 ~ 173 GeV and m,, ~ 4.2 GeV, as well as the
SU(2) gauge-coupling value g3(&) ~ 0.42, we numerically
obtain the a,,- and y,,-values at the energy scale &,

my

~ (2 .—M]zl.xl‘zz | 1
e /N () |20 — 19 102/N,) (51
and y,, ~0.85(2/N,.) ~O(1) in Eq. (34). Note that g,(u)
in Fig. 1 has received the contributions from the
renormalized gauge couplings g;,3(x) of the SM, see
Sec. IV. Thus we approximately determine the finite part
of vertex function TV (p, p’) (31), since we have not
calculated it.

In the determination of the z-lepton mass, we take into
account the corrections of perturbative gauge interactions
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by adopting the RG solutions for fermion masses [31] (the
number of quark flavors Ny = 6),

my(u)/m? = (G5 (u)]3 7 [g1 ()] /19,
my(u)/my = (3 (1)]¥ 7 [0 ()] /%, (52)

and m.(u)/m = (g, ()] ~*/*°. We use Egs. (49), (50), (52)
and the z-lepton mass-shell condition

m; = gr(m‘c)[gl (m7>]_1/2[g3<m1)}_8/71)/\/§ (53)

to uniquely determine the z-lepton mass m, ~ 1.59 GeV.
This is a qualitative result, since we have only considered
in the inhomogeneous SD equation the possible
dominate contributions to the tau lepton mass and neglected
other contributions, e.g., the fermion-family mixing.
Nevertheless, the result is in a qualitative agreement with
the experimental value m, ~ 1.78 GeV, and consistently
shows the hierarchy spectrum of fermion masses m,, m,,
and m, in the third family. It should be emphasized that
these qualitative results cannot to be quantitatively com-
pared with the SM precision tests. The quantitative study is
a difficult and challenging task and one will probably
be able to carry on it by using a numerical approach in
the future.

VIII. A BRIEF CONCLUSION AND
SOME REMARKS

Our goal in this article is to present a possible scenario
and understanding of the origins and hierarchy spectrum of
fermion masses in the third family of the SM. We obtain
the fermion masses, Yukawa couplings and their relations,
as well as the energy scale £~ 5.1 TeV at which the
second-order phase transition occurs from the SSB phase to
the gauge symmetric phase. All these results are prelimi-
narily qualitative, and they should receive the high-order
corrections and some nonperturbative contributions.
Nevertheless, these results may give us some insight into
the long-standing problem of fermion-mass origin and
hierarchy. We will present the similar study including
the first and second families, as well as neutrinos by taking
into account the fermion-family mixing to understand the
hierarchy spectrum of SM fermions: from top quark to
electron neutrino [32]. It is much more complicated to solve
the SD equations for the SM fermion masses, however, the
basic scenario is simply the same. Due to the ground-state
(vacuum) alignment of the effective theory of relevant
operators, the top-quark mass is generated by the SSB, and
other fermion masses are originated from the ESB terms,
which are induced by the top-quark mass via the fermion-
family mixing, quark-lepton interactions and vectorlike
W=*-boson coupling at high energies. As a consequence,
fermion Yukawa couplings are functions of the top-quark
Yukawa coupling.
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In this article, the top-quark Yukawa coupling g,(u) in
fact relates to the nonvanishing form-factor Z(u) of
composite Higgs boson, see Eq. (14). Both of them, as
shown in Fig. 1, are of the order of unity and slowly vary
from 1 GeV to 5 TeV. This means that the composite Higgs
boson is a tightly bound state, as if an elementary Higgs
boson. In addition, relating to the top-quark Yukawa
coupling g,(u), the Yukawa couplings g,(u) and g,(u)
also slowly vary from 1 GeV to 5 TeV, see Fig. 5. These
features imply that it should be hard to have any detectable
nonresonant signatures in the LHC p p-collisions, showing
the deviations from the SM with the -elementary
Higgs boson.

To end this article, we would like to mention that the
vectorlike feature of W*-boson coupling at high energy £ is
expected to have some collider signatures on the decay
channels of W*-boson into both left- and right-handed
helicity states of two high-energy leptons or quarks. The
branching ratios of different helicity states are expected to
be almost the same, given the qualitative estimation of
Egs. (34) and (51). This contrasts to the helicity
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suppression in the low-energy SM due to its W*-boson
coupling being purely left handed, recalling the helicity
suppression of pion decay into an electron and the
corresponding electron antineutrino. On the other hand,
the forward-backward asymmetry in top-quark pair pro-
duction measured by the CDF [33] and DO [34] at the
Fermilab Tevatron p p collisions seems to be larger than the
SM (QCD) result. This may be related to the vectorlike
(parity-restoration) feature of W*-boson coupling at high
energy, since the top-quark pair can be produced by d, s,
and b quarks in the ¢-channel via the W*-boson exchange.
We will study it in detail.
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