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We report a measurement of the νμ-nucleus inclusive charged-current cross section (¼ σcc) on iron using
data from the INGRID detector exposed to the J-PARC neutrino beam. The detector consists of 14 modules
in total, which are spread over a range of off-axis angles from 0° to 1.1°. The variation in the neutrino
energy spectrum as a function of the off-axis angle, combined with event topology information, is used to
calculate this cross section as a function of neutrino energy. The cross section is measured to be
σccð1.1 GeVÞ ¼ 1.10� 0.15 ð10−38 cm2=nucleonÞ, σccð2.0 GeVÞ ¼ 2.07� 0.27 ð10−38 cm2=nucleonÞ,
and σccð3.3 GeVÞ ¼ 2.29� 0.45 ð10−38 cm2=nucleonÞ, at energies of 1.1, 2.0, and 3.3 GeV, respectively.
These results are consistent with the cross section calculated by the neutrino interaction generators
currently used by T2K. More importantly, the method described here opens up a new way to determine the
energy dependence of neutrino-nucleus cross sections.

DOI: 10.1103/PhysRevD.93.072002

I. INTRODUCTION

Many recent long baseline neutrino oscillation experi-
ments use muon-neutrino beams, with neutrino energies
ranging from sub-GeV to a few GeV. The observed neu-
trino-nucleus charged-current (CC) interactions are then used
to infer neutrino oscillation parameters. In this energy region,
CC quasielastic and CC single-pion production reactions
dominate the total cross section, and so understanding these
channels is essential for precision measurements of the
oscillation parameters. Measurements of exclusive cross
sections, however, are complicated by reinteractions of the
final-state hadrons as they exit the nucleus, known as final-
state interactions (FSIs). FSIs can absorb or produce particles,
resulting in a different set of particles entering the detector
than would be expected from the initial interaction. For
example, the pion from aCC single-pion interactionmight be
absorbed in the nucleus, so the observable final state is similar
to that from a CC quasielastic event. The CC inclusive
channel ismuch less sensitive to these effects, since it requires
only the detection of a charged lepton (muon) from the
interaction.Aprecisemeasurement of this channel, combined
with exclusive measurements, will help improve our under-
standing of neutrino interactions in this energy region.
So far, the MINOS and T2K experiments have measured

the CC inclusive νμ cross section on iron [1,2] using

neutrino beams which cover the few-GeV region. The
former experiment measured the CC inclusive cross section
for neutrinos with energies above 3.5 GeV using the
MINOS near detector. The latter used the T2K near
detector, INGRID, to measure a flux-averaged CC inclusive
cross section at a mean energy of 1.51 GeV, where the rms
spread of the neutrino energy was 0.76 GeV (0.84 GeV)
below (above) this mean energy. The MINERνA experi-
ment also measured the CC inclusive cross section on iron,
but only the cross-section ratio of iron to CH has been
published [3]. The CC inclusive cross section on iron has
not yet been measured in the 2–3 GeV energy range, and a
measurement covering 1–3 GeV would provide a consis-
tency check between the T2K and MINOS results.
The T2K experiment is a long baseline neutrino oscil-

lation experiment in Japan [4]. T2K utilizes an almost pure
νμ beam produced as the decay product of πþ ’s and Kþ’s.
The beam is first measured by the near detector, ND280,
located 280 m downstream from the pion production target.
After traveling 295 km, the neutrinos are then observed at
the far detector, Super-Kamiokande. Oscillation parameters
are determined by comparing the neutrino interactions
observed at the near and far detectors.
T2Kwas built around the “off-axis beammethod,”where

detectors are intentionally placed off the central axis of the
neutrino beam (hereafter beam axis). The angle with respect
to the beam axis is called the off-axis angle: θOA. The
direction of the neutrino parent particles is distributed
around the beam axis, so θOA is approximately equal to
the angle between the parent particle and neutrino directions.
In this case, the energy of a neutrino produced from the
two-body decay (π → νμ þ μ) can be expressed as follows:

Eν ¼
m2

π −m2
μ

2ðEπ − pπ cos θOAÞ
; ð1Þ

where mπ and mμ are the masses of the pion and muon,
respectively, while Eπ and pπ are the energy and momen-
tum, respectively, of the pion. The relation between Eν and
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pπ for different θOA’s is plotted in Fig. 1, showing the
maximum neutrino energy reducing as θOA increases. This
indicates that the energy spectrum of the neutrino beam
peaks at a lower energy and has a narrower width as θOA
increases. In the T2K experiment, θOA ¼ 2.5° was chosen
so that the neutrino flux peaks around 0.6 GeV, an energy
which maximizes the oscillation probability of the muon
neutrino at the far detector.
The T2K INGRID detector is installed on the beam axis

at the near site. It consists of 14 identical modules, which
are spread over a range of θOA from 0° to 1.1°. Thus, the
peak of the neutrino energy spectrum differs among the
modules as in Eq. (1).
In this paper, we present a measurement of the νμ

inclusive CC cross section on iron in the energy range of
1–3 GeV with INGRID. This analysis uses data collected
from 2010 to 2013, corresponding to 6.27 × 1020 protons
on target (POT). The neutrino interactions at different
INGRID modules, which are distributed at different
positions and thus observed different beam spectra, is
used to extract the energy dependence of the cross section.
The topology of each event, which is based on the
kinematics of the outgoing muon, is also used to further
improve the sensitivity of this measurement to the neutrino
energy, since the two are directly related. The different
energy spectra and event topologies are combined to
construct a probability density function (PDF), which is
used to measure the cross section using the least χ2

method.
The paper is organized as follows. In Sec. II, we

describe the T2K near detector INGRID. Section III
introduces the Monte Carlo (MC) simulation used to
predict neutrino event rates at the INGRID detector and
describes the systematic uncertainties associated with this
model. Next, the analysis method used to extract the
energy dependence of the cross section is explained in
Sec. IV with a discussion of the remaining systematics in
Sec. V. Finally, the result of the analysis is presented
in Sec. VI.

II. THE T2K NEAR DETECTOR: INGRID

Situated 280 m downstream from the pion production
target, the INGRID detector monitors the neutrino beam
direction and intensity. It consists of 14 identical modules,
each of which is composed of nine iron target plates and 11
scintillator tracking planes. The iron plates and the tracking
planes are stacked in alternating layers forming a sandwich
structure, as shown in Fig. 2.
Each of the iron plates has dimensions of 124 × 124 cm2

and a thickness of 6.5 cm, providing a total iron mass of
7.1 ton per module. The module is surrounded by scintil-
lator veto planes, which detect charged particles coming
from outside of the module. Each tracking plane has two
layers of scintillator bars aligned orthogonally to one
another, enabling particles to be tracked in all three dimen-
sions as they pass through the plane. Theveto planes are also
formed from scintillator bars. The bars are coated in TiO2

reflectors to help contain scintillation light, which is then
captured by wavelength shifting (WLS) fibers which run
through the center of the bars. This light is then read out by a
multipixel photon counter (MPPC) [5,6], and the resultant
signal is digitized by the Trip-t front-end board [7], to give
the integrated charge and timing information. The integra-
tion cycle of the electronics is synchronized with the
neutrino beampulse structure, ensuring all data are captured.
The modules are installed in a cross shape centered on

the beam axis. An overview of the INGRID detector is
shown on the top in Fig. 3. An ID is assigned to each
module as shown on the bottom in Fig 3. Further details of
the detector and the basic performance of INGRID can be
found in Ref. [8].

III. SIMULATING NEUTRINO INTERACTIONS
IN THE INGRID DETECTOR

In this analysis, the cross section is measured by
comparing data to a prediction, which is calculated using
three sequential MC simulations:
(1) prediction of the neutrino flux at the INGRID

modules;

π

FIG. 1. Neutrino energy as a function of the pion momentum
for different θOA’s.

FIG. 2. Schematic drawing of an INGRID module. Each
module has nine iron target plates and 11 tracking planes, with
four veto planes covering the side surfaces.
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(2) simulation of the neutrino-nucleus interactions in the
iron target (56Fe);

(3) propagation of final-state particles through the de-
tector and modeling of its response.

After these processes, an event selection, which is detailed
in Sec. IV B, is applied to the output in the same way as
the data.

A. Neutrino flux

1. Flux prediction

A detailed description of the neutrino flux prediction
can be found in Ref. [9]. In the simulation, protons are
impinged upon the carbon target to produce hadrons, which
decay into neutrinos. FLUKA2008 [10] and GEANT/GCALOR
[11] are used to model hadron production in the target and
surrounding material. Propagation of the resulting particles
through the electromagnetic horns, which focus the charged
hadrons along the beam axis, is simulated using dedicated,
GEANT3-based [12] code, which also models the sub-
sequent decay of the particles. For each hadron decay

mode which produces neutrinos, the probability of the
neutrinos to be emitted in the direction of the INGRID
detector is calculated. The flux prediction is obtained by
weighting the generated neutrinos with these probabilities.
The flux is then tuned using hadron interaction data,
primarily from the NA61/SHINE experiment [13]. Other
hadron production data (Eichten et al. [14] and Allaby et al.
[15]) are also used to tune the simulation in regions of the
hadron production phase space that are not covered by
the current NA61/SHINE measurement. In this analysis,
the NA61/SHINE data taken in 2007 are used to correct the
neutrino flux [16,17].
The neutrino flavor content across different energy

regions at module 3 (one of the center modules) is
summarized in Table I. This shows that muon neutrinos
account for > ∼95% of the total flux for Eν < 3 GeV. The
muon-neutrino flux fraction then falls to less than 90% for
Eν > 3 GeV, where ν̄μ þ νe account for > ∼10% of the
total flux. Table II shows the νe to νμ flux ratio at modules 0
and 3, demonstrating that the difference in νe contamina-
tion between the different modules is very small.
Figure 4 shows the obtained muon-neutrino flux spectra

at the INGRID modules. The neutrino energy spectrum
changes with module position, with the spectrum at module
0 softer than that at module 3. This is because module 0 is
located at θOA ¼ 1.2° from the neutrino beam axis, and so
the neutrino flux passing through it is shifted to lower
energies due to the off-axis beam effect. This feature is,
indeed, essential for this cross-section measurement.

2. Flux uncertainties

The systematic error on the neutrino flux prediction
comes from uncertainties in hadron production and from
errors in the measurement of the proton beam, the horn
current, and the target alignment. The uncertainties in the

FIG. 3. Top: The INGRID detector. The modules are arranged
in a 10 m × 10 m cross. The two off-axis modules not located in
the arms of the cross are not used in this analysis. Bottom:
Module ID given to each module.

TABLE II. Ratio of the νe to νμ flux at modules 0 and 3.

Neutrino energy range (GeV)

Module 0–1 1–2 2–3 3–4 > 4

0 0.8% 0.6% 1.6% 3.0% 3.1%
3 0.9% 0.5% 0.8% 2.3% 4.1%

TABLE I. Fraction of the integrated flux by neutrino flavor in
each energy range at module 3.

Neutrino energy range (GeV)

Flavor 0–1 1–2 2–3 3–4 > 4

νμ 94.2% 96.8% 95.4% 89.7% 86.5%
ν̄μ 4.8% 2.7% 3.8% 7.9% 9.3%
νe 0.9% 0.5% 0.7% 2.0% 3.5%
ν̄e 0.1% 0.0% 0.1% 0.3% 0.6%
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hadron production are mainly driven by uncertainties in the
NA61/SHINE measurements and those in measurements
by Eichten et al. and Allaby et al. The second category of
flux errors is associated with inherent uncertainties and
operational variations in the beam line conditions. They
include uncertainties in the proton beam position, the beam
direction, the absolute horn current, the horn angular
alignment, the horn field asymmetry, the target alignment,
and the proton beam intensity. The method used to estimate
these flux uncertainties is described in Ref. [9]. Figure 5
shows the flux error at module 3, which includes all sources
of uncertainty, and demonstrates that the systematic error
on the neutrino flux is dominated by the uncertainties in the
hadron production model. The propagation of the flux error
in this analysis is described in Sec. VA.

B. Neutrino-nucleus interaction simulation

Neutrino-nucleus (Fe) interactions in the INGRID mod-
ule are simulated by a neutrino event generator, which is a
composite of different neutrino interaction models. NEUT

(version 5.1.4.2) [18] is used as the primary event generator
in this analysis. GENIE (version 2.8.0) [19], a different
neutrino interaction simulation package, is also used for
comparison. This section first describes the various inter-
action models simulated in the NEUT event generator and

then explains the systematic uncertainties associated with
each model. Details of the event generators used in T2K
can be found in Ref. [20].

1. The NEUT neutrino event generator

Given a neutrino energy and a detector geometry, NEUT
determines the interaction mode of an event and calculates
the kinematics of the final-state particles. It also simulates
FSIs for hadrons as they traverse the target nucleus. The
following interaction modes are provided for both CC and
neutral-current (NC) interactions by NEUT:

(i) quasielastic scattering (CCQE or NCQE),
(ii) resonant pion production (CC1π or NC1π),
(iii) deep inelastic scattering (CCDIS or NCDIS), and
(iv) coherent pion production.
Here N and N0 denote nucleons, l is the lepton, and A is

the target nucleus.

2. Neutrino interaction model uncertainties

Table III summarizes the parameters used for modeling
neutrino interactions in NEUT. The systematic parameters
listed in the table were evaluated in the previous analyses
of neutrino oscillation from T2K [21,22] and fall into the
following four categories:

(i) MQE
A , MRES

A , and the nuclear model.—
These parameters are used for modeling CCQE

and CC1π interactions. A 16.5% error is assigned
to the axial vector masses, which comes from a
comparison of external measurements of these
parameters. The uncertainty on the Fermi momen-
tum and binding energy are estimated from electron
scattering data [23]. The uncertainty in the nuclear
model is evaluated by exchanging the Relative Fermi
Gas (RFG) nuclear model with the spectral function
model described in Ref. [24].

(ii) π-less Δ decay and W shape.—
In the resonant pion production process, baryon

resonances, mainly Δ’s, can interact with other
nucleons in the target nucleus and disappear without
pion emission. The π-less Δ decay parameter is
introduced to take into account the uncertainties in
this process. TheW shape parameter is introduced to
modify the shape of the momentum distribution of
pions from NC single pion production interactions
so that it matches MiniBooNE data [25].

(iii) Normalization parameters.—
Normalization parameters are used to change

the overall normalization of the cross section. The
normalizations for CCQE and CC1π are defined
separately for different energy regions. The uncer-
tainties on the normalizations are mostly determined
from the MiniBooNE data. The CC other shape
parameter is introduced as an energy-dependent
uncertainty on CCDIS and CC resonant interactions,
where the resonance decays into a nucleon and

PO
T

)

FIG. 4. Muon-neutrino fluxes at modules 0, 1, 2, and 3.

FIG. 5. Fractional flux error at module 3, including all sources
of uncertainty.
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photon, kaon, or eta. According to the MINOS
measurement [1], the relative uncertainty on the
CC inclusive cross section on iron, which is domi-
nated by CCDIS, is approximately 10% at 4 GeV.
Using this as a reference point, the error on the
CCDIS and CC resonant cross section is scaled
using the following formula:

δσCCother
σCCother

¼ 0.4 GeV
EνðGeVÞ

: ð2Þ

Although the error goes to infinity as Eν approaches
0 GeV, this error does not have a significant
contribution to the total cross-section error for the
lower neutrino energy region because the inter-
actions have a threshold energy of approximately
0.6 GeV and a small cross section in the 1 GeV
energy region. Finally, the 1πEν shape parameter is a
weighting factor as a function of neutrino energy.
This is introduced to cover the discrepancy between
the MiniBooNE measurement of the CC1π cross
section versus Eν and the NEUT prediction using the
best fit parameters obtained from the fit to the
MiniBooNE data [26]. This discrepancy is as large
as 50% at 600MeV, so an error of 50% is assigned to

this weighting factor. In the nominal NEUT, this
weighting is not applied (“off” as in Table III).

(iv) Pion FSI.—
There are three pion FSI processes of interest in

the T2K energy range: absorption, charge exchange,
and QE scattering. In addition to these interactions,
the particle production process, defined as “inelastic
scattering,” was considered, since it is the dominant
process at higher pion energies. Uncertainties on the
FSI parameters are estimated using external data
sets [27].

Propagation of these uncertainties is described in
Sec. V B.

C. Detector simulation

The particle type and kinematic information provided by
NEUT is passed to the detector simulation built within a
GEANT4 framework [28]. All the detector components are
modeled in the simulation. The energy deposited by each
particle in the scintillator planes is converted into a number
of photoelectrons, taking into account the nonlinear
response of the scintillator, light collection efficiency
and attenuation of the WLS fiber, and the nonlinearity
of the MPPC response. The nonlinear response of the

TABLE III. Neutrino interaction systematic parameters, nominal values, uncertainties (1σ), and interaction types (CC, NC, or
CCþ NC). The first, second, and third groups represent the model parameters, the ad hoc parameters, and the pion FSI parameters,
respectively. A 1 or 0 in the nominal value column means that the effect of the systematic parameter is implemented or not implemented
by default [21,22].

Parameter Nominal value Uncertainty (1σ) Interaction type

MQE
A

1.21 GeV 0.20 GeV CC

MRES
A 1.21 GeV 0.20 GeV CCþ NC

Fermi momentum (Fe) 250 MeV=c 30 MeV=c CC
Binding energy (Fe) 33 MeV 9 MeV=c CC
Spectral function 0 (off) 1 (on) CC
π-less Δ decay 0.2 0.2 CCþ NC
W shape 87.7 MeV 45.3 MeV CCþ NC
CCQE normalization (Eν ≤ 1.5 GeV) 1 0.11 CC
CCQE normalization (1.5 ≤ Eν ≤ 3.5 GeV) 1 0.30 CC
CCQE normalization (Eν ≥ 3.5 GeV) 1 0.30 CC
CC1π normalization (Eν ≤ 2.5 GeV) 1 0.21 CC
CC1π normalization (Eν ≥ 2.5 GeV) 1 0.21 CC
CC coherent normalization 1 1.0 CC
CC other shape 0 0.1 at Eν ¼ 4.0 GeV CC
NC 1π0 normalization 1 0.31 NC
NC coherent pi normalization 1 0.30 NC
NC 1π� normalization 1 0.30 NC
NC other normalization 1 0.30 NC
1π Eν shape 0 (off) 0.50 CCþ NC
Pion absorption 1 0.5 CCþ NC
Pion charge exchange (Pπ < 500 MeV=c) 1 0.5 CCþ NC
Pion charge exchange (Pπ > 400 MeV=c) 1 0.3 CCþ NC
Pion QE scattering (Pπ < 500 MeV=c) 1 0.5 CCþ NC
Pion QE scattering (Pπ > 400 MeV=c) 1 0.3 CCþ NC
Pion inelastic scattering 1 0.5 CCþ NC
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ADCs on the front-end electronics is also modeled based on
the results of charge injection tests.
Particles generated in the wall upstream of the INGRID

detectors are also propagated into the detector simulation
and are treated as a background (BG) source.
The hadronic interaction of particles in the detector is

simulated by GEANT4 using the FTFP_BERT physics list.
In this physics list, the GEANT4 Bertini cascade model is
used to simulate nuclear reactions by hadrons with kinetic
energies below 5.5 GeV. For particles with kinetic energies
above 5 GeV, the list uses the Fritiof model [29,30].

IV. ANALYSIS METHOD

A. Overview

First, neutrino interactions are selected in each INGRID
module. The different neutrino energy spectra sampled by
the different modules provide a way of extracting the
energy-dependent cross section. The selected events are
further categorized according to the topology of their final-
state muon in order to improve the sensitivity of the
samples to the energy of the incoming neutrino. A PDF
is then constructed relating the different INGRID modules
and event topologies to the neutrino energy. Finally, to
extract the CC inclusive cross section, a χ2 fit is performed
between the selected events and the PDFs.

B. Neutrino event selection

A detailed description of the event selection for neutrino
interactions at INGRID can be found in Refs. [2,31]. A
brief explanation of each step of the selection is given here.
A typical selected muon-neutrino interaction candidate is
shown in Fig. 6.
(1) Preselection.—

The integrated charge and timing of hits in each
channel are recorded with a 2.5 photoelectron
threshold. If there are more than three hit channels
within a 100 ns time window, these hits are

combined to form a hit cluster. The scintillator
planes are then searched to find those with at least
one hit in both their X- and Y-oriented layers. Such a
plane is called an “active plane,” and events with two
or more active planes are selected.

(2) 2D track reconstruction.—
A “cellular automaton” tracking algorithm [32] is

applied to hits in the X and Y planes to obtain tracks
in the XZ view and YZ view, respectively.

(3) 3D track matching.—
The difference in the most upstream layer hit

between any two tracks in the XZ view and YZ view
is used to determine if they originate from the same
vertex. If this difference is greater than two planes,
then the tracks are not matched.

(4) Vertexing.—
The vertex is defined as the most upstream hit of

the track. If there are two or more 3D tracks, a check
is performed to see if they originate from the same
vertex or not.

(5) Timing cut.—
The T2K neutrino beam has eight bunches in each

beam spill, and each bunch has a width of 58 ns. The
selected events are required to lie within 100 ns of
the expected time of each bunch.

(6) Veto cut.—
The event is rejected if the reconstructed track has

a hit in the upstream veto plane. The track is then
extrapolated in the upstream direction until it inter-
sects with the side veto plane. If there is a hit in the

FIG. 6. Event display of a muon-neutrino event candidate.
Circles and solid lines represent the hits at the scintillator planes
and reconstructed tracks, respectively. The neutrino beam enters
from the left side.

FIG. 7. Fiducial volume of the INGRID module viewed from of
the side (top) and front (bottom).
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veto plane within 80 mm of this intersection point,
the event is rejected.

(7) Fiducial volume cut.—
The fiducial volume (FV) is defined as a cube

with a ð�50Þ × ð�50Þ cm2 transverse area, corre-
sponding to the scintillator bars from the 3rd to 22nd
channel in the X and Y direction, and from tracking
planes 1–8 in the Z direction (see Fig. 7). Events
with a vertex inside the FV are selected.

After the event selection above, corrections are applied
to the MC to account for differences in the individual iron
target masses, the observed background rate, and the
number of dead channels. We also apply a correction for
event pileup, which depends on the beam intensity and
results in a loss of efficiency [31]. Table IV summarizes the
number of events predicted by the MC simulation and
observed in the data.
The selected events contain the muon-neutrino signal as

well as background events, such as ν̄μ and νe interactions.
The other backgrounds come from muons, neutrons, and
photons generated by neutrino interactions out of the FVor
in the pit wall upstream of INGRID (hereafter called beam-
related BG). Since the contamination of ν̄e is negligible, it
is not counted in the MC. The angular distribution of the
lepton track for the selected events is shown in Fig. 8. Since

the vertex is defined as the most upstream hit of the track,
the angular acceptance is limited to between 0° and 90°.
The final selected event sample has> 70% efficiency for

CC interactions from neutrinos with energies > 1 GeV, as
shown in Fig. 9. Around 5% of the selection inefficiency in
the higher energy region is due to events where the muon is
produced at a large angle to the Z axis of the detector. This
results in it escaping the module before passing through
two active planes. Figure 10 shows the detection efficiency
for CC events as a function of the true muon track angle,
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FIG. 8. Distribution of the reconstructed track angle with
respect to the beam direction after the event selection. The
number of events shown in the figure is the total integrated over
all modules.
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FIG. 9. Detection efficiency for CCþ NC (solid line) and CC
(dashed line) events. These efficiency curves are estimated from
the number of events integrated over all modules.

TABLE IV. Summary of the neutrino event selection. The POT used in the MC simulation is normalized to correspond to the data set
used in this analysis, i.e., 6.27 × 1020.

Data MC

νμ ν̄μ þ νe Beam-related BG Total

Vertexing 3.993 × 107 1.655 × 107 0.039 × 107 2.294 × 107 3.987 × 107

Timing cut 3.992 × 107 1.655 × 107 0.039 × 107 2.294 × 107 3.987 × 107

Veto cut 1.725 × 107 1.458 × 107 0.036 × 107 0.239 × 107 1.733 × 107

FV cut 1.103 × 107 1.098 × 107 0.027 × 107 0.006 × 107 1.131 × 107
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FIG. 10. Detection efficiencies for CC events at modules 0
(dashed line) and 3 (solid line), which are plotted as a function of
the true muon track angle. These results are obtained from MC.
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plotted for modules 0 and 3. Module 0 has a lower
efficiency than module 3, especially at larger track angles.
Module 0 is more off-axis than module 3 so samples a
lower energy neutrino spectrum. This results in more low
momentum, large angle leptons in module 0 than in module
3. This analysis requires tracks to have at least two active
planes and so is less efficient at selecting lower momentum
and larger angle tracks. The selection efficiency at module
0 is lower accordingly.
The predicted energy spectrum of the reconstructed νμ

events at the INGRID modules is shown in Fig. 11.

C. Event topology

To improve the sensitivity of this analysis to the energy
of the neutrino, the selected events are categorized into the
following two topologies:
(1) downstream (DS-) escaping and
(2) non-downstream (non-DS-) escaping.

If one of the tracks from the neutrino interaction penetrates
the most downstream plane, as shown on the left in Fig. 12,
that event is categorized as DS-escaping. All other events,
i.e., both side escaping and fully contained events (see the
right plot in Fig. 12), are categorized as non-DS-escaping.
Events are then further categorized according to the

reconstructed vertex-Z position. Vertex-Z is defined as the
most upstream active plane number and ranges from 1
(most upstream) to 8 (most downstream). Events whose
vertex-Z is in the most downstream plane are greatly
affected by uncertainties in the GEANT4 hadron production
model, so only events with vertex-Z in the range 1–7 are
used in this analysis.
In total, there are 14 event topologies:
(i) DS-escaping: vertex-Z ¼ 1–7 and
(ii) non-DS-escaping: vertex-Z ¼ 1–7.

Figure 13 shows the energy spectra of “DS-escaping and
vertex-Z ¼ 1” events and “non-DS-escaping and vertex-
Z ¼ 7” events for module 0. The former have a more

energetic μ track and are generally produced by higher
energy neutrinos. The latter, on the other hand, tend to have
muons produced at a larger angle to the neutrino beam or
with a lower energy, and so the majority come from lower
energy neutrinos.

D. Module grouping

A shift of the neutrino beam direction changes the peak
of the neutrino energy spectra at the INGRID modules. In
order to reduce this effect, for the horizontal and vertical
directions separately, the two modules at beam-axis sym-
metric positions are grouped together. This results in seven
module groups in total, defined in Table V. Note that the
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FIG. 13. Neutrino energy spectra for non-DS-escaping and
vertex-Z ¼ 7 (solid line) events and DS-escaping and vertex-Z ¼
1 (dashed line) events. The energy spectra for module 0 are
shown, normalized by area.
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FIG. 11. Predicted energy spectrum of the reconstructed events
at the different INGRID modules.

FIG. 12. Different event topologies. If a track penetrates
the most downstream plane, the event is categorized as
DS-escaping (left). The other events are categorized as
non-DS-escaping (right).

TABLE V. Definition of the module groups.

Module
group

Module
ID

Distance from the
beam axis (cm)

Off-axis
angle

Horizontal
or vertical

1 0, 6 450 1.1° Horizontal
2 7, 13 450 1.1° Vertical
3 1, 5 300 0.7° Horizontal
4 8, 12 300 0.8° Vertical
5 2, 4 150 0.4° Horizontal
6 9, 11 150 0.4° Vertical
7 3, 10 0 0° (Center)
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off-axis angle for the vertical modules increases slightly,
because those modules are located in front of the horizontal
modules and are therefore closer to the target.
The number of selected events for each module group

and each topology is then defined as

Njg ¼
Njm þ Njm0

2
; ð3Þ

where the indices j and g denote the jth topology and the
gth module group (g ¼ 1; 2;…; 7), respectively. The m and
m0 indices stand for the module numbers corresponding to
each module group.

E. Detector response uncertainties

This section introduces two different kind of detector
response uncertainty: those producing correlation among
the event topologies and those that do not. They are
summarized as follows:
(1) uncorrelated error sources

(a) mass of iron plate and
(b) pileup correction;

(2) correlated error sources
(a) event selection and reconstruction and
(b) MPPC noise rate.

The treatment of these systematic uncertainties in this
analysis is described in Sec. V.

1. Uncorrelated errors

Iron mass.—The error on the measurement of the mass
of each iron plate and the machining tolerance for the plate
area are taken into account in the systematic error on the
iron mass. Since these errors are independent for each iron
plate, an uncorrelated error of 0.09% is assigned to the
number of selected events. The mass of the iron plates was
measured using a crane scale. The typical measurement
accuracy of the crane scale is better than 1 kg for a 1 ton
load (0.1%). Assuming a fully correlated error resulting
from this accuracy. the effect on this analysis is negligible.
Pileup correction.—The number of selected events is

corrected to account for event pileup. The correction factor
is estimated using data sets at different beam intensities.
The uncertainty on the correction factor comes from the
statistical error on the number of events, so the uncertainty
is uncorrelated between the event topologies. An error of
0.5%–2.0%, depending on the event topology, is assigned
in this analysis.

2. Correlated errors

MPPC noise.—MPPC noise hits sometimes result in
misreconstruction of the event vertex or a miscounting of
the number of active planes, which produces a variation in
the neutrino event selection efficiency. The systematic error
caused by the variation in the measured noise rate over time
is evaluated by altering the noise rate in theMC. As a result,

a 0.1%–1% error is assigned to the number of selected
event in each topology.
Event selection.—In this analysis, uncertainties in the

following event selection steps are taken into account:
(i) 3D track matching,
(ii) vertexing,
(iii) veto cut,
(iv) FV cut.

The systematic error on the number of selected events is
evaluated by varying the selection threshold for each step,
picking the loosest or tightest threshold. The change from
the nominal threshold to the loosest (tightest) is defined
as the þ1σð−1σÞ change. The resultant fractional variation
in the number of selected events (≡ΔN=N) due to the �1σ
change is computed for both the data and MC. Any
difference in ΔN=N between the data and MC is then
taken as a systematic error.
Uncertainties on the hit efficiency of the tracking planes,

the contamination due to beam-related BGs, the hit
inefficiency of the upstream veto plane, and the tracking
efficiency were found to be negligible for this analysis and
are not included in the final result.

F. Cross-section extraction

This analysis uses the least χ2 method to fit to the
observed number of events at each module group (gth bin:
1–7) and for each event topology (jth bin: 1–14):

χ2 ¼
X
j

X
g

fNobs
jg − ðNcc

jg þ Nnc
jg þ Nbg

jg Þg2
ðσNjg

Þ2

þ
X
k

Δð~fkÞtðVkÞ−1Δ~fk; ð4Þ

whereNobs is the observed number of events,Ncc,Nnc, and
Nbg are the expected numbers of CC events, NC, and BG

events, respectively, and Δ~fk and Vk are the systematic
parameter and the covariance for the kth error source,
respectively. For the covariance term uncertainties in the
neutrino flux, neutrino interaction model, and the detector
response are taken into account and are described in Sec. V.
The denominator in the χ2 statistical term is composed of
the statistical error on the observed number of events
(Nobs

jg ), the MC statistical error (σNmc
jg
), and the error on

the detector response, which is uncorrelated among event
topologies (σNdet

jg
):

σNjg
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nobs

jg þ ðσNmc
jg
Þ2 þ ðσNdet

jg
Þ2

q
: ð5Þ

The expected number of CC events in the gth module
group and for the jth event topology is expressed as
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Ncc
jg ≃

X
i

½ð1þ Δfdj þ Δfccj þ Δfbig þ ΔfiÞ

× ϕig · σcci · ϵccij · T�; ð6Þ
where

(i) Δfd is the systematic parameter for the detector
response,

(ii) Δfcc is the systematic parameter for the CC inter-
action model,

(iii) Δfb is the systematic parameter for the νμ flux,
(iv) ϕ is the νμ flux,
(v) σcc ccis the νμ CC cross section,
(vi) ϵcc is the detection efficiency for the CC interac-

tion, and
(vii) T is the number of nucleons in the fiducial volume of

the INGRID module.
Here i goes over the neutrino energy bins, described in
Sec. IVG, and Δfi is the parameter being fit, which is used
to represent fractional deviations of the CC inclusive cross
section. The systematic parameters Δfdj , Δfccj , and Δfbig
are also fit to include the effect of these systematics into the
cross-section result. The INGRIDmodules are formed from
both iron and a plastic scintillator (CH). The effect on this
result coming from the different target nucleus for CH
interactions is found to be small, so the event rate per unit
weight on CH is assumed to be equal to that on iron. Δfdj
and Δfccj are systematic parameters representing the un-
certainty on the detector response and the CC cross-section
model, respectively, for the jth topology bin. These
uncertainties change the detection efficiency as a function
of neutrino energy, resulting in a variation in the number
of selected events. The difference in these uncertainties
between the module groups is very small; therefore, the
same parameters are applied to all module groups. Δfbig
parameterizes the flux uncertainty, changing the normali-
zation of the neutrino flux, in the ith energy bin of the gth
module. The Δfdj , Δfccj , and Δfbig parameters describe
fractional deviations from the nominal MC and change the
number of events in each event topology, module group,
and energy bin.
Since the fraction of NC events in the selected sample is

very small, the NC events are summed over the entire
energy region and an averaged flux systematic parameter is
applied to them:

Δf̄bg ¼
X
i

Δfbig ·
ϕigP
i0ϕi0g

: ð7Þ

We express the number of the NC events as follows:

Nnc
jg ≃

X
i

ð1þ Δfdj þ Δf̄bg þ Δfncj Þ · ϕig · σnci · ϵncij · T:

ð8Þ
The other BG events (the beam-related BG and ν̄μ and νe

beam flux components) are summed for each module and

for each topology (Nbg
jg ). The number of BG events in the

sample and their associated errors are both small, so the
errors on these BGs are neglected in this analysis.

G. Energy binning

The cross section is required to be continuous at the bin
boundaries and is linearly interpolated between boundaries,
so Eq. (6) is modified as follows:

Ncc
jg ¼ð1þ Δfdj Þ ·

X
i

ð1þ ΔfbigÞ

×
XLi

l¼0

��
1þ Δfi þ

Δfiþ1 − Δfi
Li

· l

�

× ϕilg · σccil · ϵccilj · T

�
: ð9Þ

To interpolate, each ith energy bin is divided into fine bins
(l ¼ 0; 1;…; Li). The ith energy bin is defined as the
“global bin” and the lth energy bin as the “local bin,”
respectively. The energy range of the global bins and the
binning for the local bins are summarized in Table VI. The
Δfi’s are set at 0.5, 0.8, 1.4, 2.6, and 4.0 GeV.
Finally, the energy-dependent CC inclusive cross sec-

tions are extracted as follows. After deriving the fit
parameters using the least χ2 method, the cross sections
are obtained by multiplying those in the original model by
1þ Δf1þΔf2

2
, 1þ Δf2þΔf3

2
, and 1þ Δf3þΔf4

2
. Taking the

average of neighboring parameters produces a measure-
ment at the central energy between the bin boundaries,
since, as in Eq. (9), a linear interpolation is applied between
the neighboring Δfi parameters. As a result of this
averaging, the cross section is measured at 1.1, 2.0, and
3.3 GeV. The final error on the cross section is smaller than
those on theΔfi parameters due to the negative correlations
between the Δfi’s. This feature is a result of the cross-
section continuity requirement.
As seen in Fig. 9, the INGRID detection efficiency for

CC interactions falls rapidly for neutrinos with energies
less than 0.5 GeV. Since the event samples are not sensitive
to the cross section in this region, Δf0 is not used in the
final result. For Eν > 4.0 GeV there is only a small

TABLE VI. Summary of the energy range of each global bin,
the size of each local bin, and the number of the local bins per
global bin.

Energy range of
global bin (GeV)

Size of each
local bin (MeV)

Number of local
bins (Li)

0–0.5 500 1
0.5–0.8 100 3
0.8–1.4 100 6
1.4–2.6 100 12
2.6–4.0 100 14
4.0–30.0 26000 1
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FIG. 14. PDF for each energy region defined in Sec. IV G: Eν ¼ 0.5–0.8, 0.8–1.4, 1.4–2.6, 2.6–4.0, and > 4.0 GeV.
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difference in the neutrino energy spectra between the
INGRID modules. Therefore, sensitivity to the cross
section for Eν > 4.0 GeV is expected to be worse com-
pared to the lower energy regions. For these reasons it was
decided, before fitting the data, to use Δf1–Δf4 to measure
the cross section at 1.1, 2.0, and 3.3 GeV.
The PDF of CC events in the global energy binning is

shown in Fig. 14. Here, the ‘fraction” described by the z
axis of the figure is obtained for each energy region by
dividing the number of CC events in each bin by the total
number of CC events in that energy regions. At lower
neutrino energies most of the CC events are selected in the
downstream vertex-Z bin for the DS-escaping topology,
whereas at higher energies the DS-escaping events are
distributed uniformly in vertex-Z. Non-DS-escaping CC
events are selected in all vertex-Z bins for low energy
neutrinos, but higher energy neutrinos tend to be located
in upstream vertex-Z bins. In addition, more high-energy
neutrino events are selected in modules closer to the
beam axis.

V. PROPAGATION OF SYSTEMATIC
UNCERTAINTIES

As described in Sec. IV F, the χ2 has terms with
covariance matrices for systematic parameters. In this
section, we describe how the covariance matrices for the
neutrino flux, the neutrino interaction model, and the
detector response, which were introduced in Secs. III A,
III B and IV E, respectively, are constructed.

A. Neutrino flux uncertainties

The covariance matrix for each source of error on the
neutrino flux prediction, such as the horn current uncer-
tainty, is calculated by taking the variation of the flux due
to that error. The total covariance matrix is obtained by
summing all these matrices, and Fig. 15 shows the
correlation matrix derived from it. The energy binning in
the covariance matrix is the same as that used to define the
“global bin” in Table VI. One can see that it is largely

positively correlated. This correlation comes mainly from
the uncertainty associated with hadron production at the
target, which varies the neutrino flux in the same way at all
INGRID modules.

B. Neutrino interaction model uncertainties

Any systematic error in the CC interaction model would,
by definition, alter the CC inclusive cross section itself.
This is not the case for NC interaction model uncertainties,
and so the systematic errors associated with these two
processes are evaluated separately.

1. Systematics uncertainty on NC interactions

The uncertainty in the number of NC interactions in each
bin is expressed by the normalization parameter:

fncjg ≡
N0nc

jg

Nnc
jg

; ð10Þ

where Nnc
jg is the predicted number of NC events for the jth

topology and the gth module group. N0nc
jg is the predicted

number of events in the same bin but for the case where one
of the NC systematic parameters has been changed by 1σ.
The number of events is altered not only by the change in
the cross section but also by changes in the event detection
efficiency. The same normalization parameter fncjg is used
for all module groups, so the number of predicted events,
Nnc

jg , becomes

Nnc
jg → fncj · Nnc

jg ðfncj ¼ fncjg Þ: ð11Þ

fncj is estimated by combining NC events from all module
groups. The fractional covariance for the topology bins is
then calculated by varying each NC systematic parameter
by �1σ:

Vnc
ij ¼ 1

2

��
Nnc

i − Nnc;þ1σ
i

Nnc
i

·
Nnc

j − Nnc;þ1σ
j

Nnc
j

�

þ
�
Nnc

i − Nnc;−1σ
i

Nnc
i

·
Nnc

j − Nnc;−1σ
j

Nnc
j

��
; ð12Þ

where Nnc
iðjÞ is obtained by summing over all module

groups:

Nnc
i ¼

X
g

Nnc
ig : ð13Þ

We found that the total NC error is fully correlated between
all of the non-DS-escaping bins. Therefore, the seven non-
DS-escaping bins are merged into a single bin. Figure 16
shows the correlation matrix for the NC interaction
uncertainty, demonstrating that the event topology bins
are almost fully correlated with each other. This correlation

FIG. 15. Correlation matrix between module groups for the flux
error. The energy binning used in this matrix is same as the global
bin defined in Table VI.
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comes mainly from the NC normalization error (see
Table III).
The total normalization error on the number of NC

events is 27%–30%, which is dominated by the uncertainty
in the NC other normalization (see Table III), shown in
Fig. 17. This gives a maximum error size of 5% on the total
(CCþ NC) number of events.

2. Systematic uncertainty on CC interactions

Varying the CC interaction parameters results in a
change in both the neutrino cross section and the detection
efficiency. In this analysis, for the systematic uncertainty
on CC interactions, only the latter change is taken into
account, since the result of the analysis will be the cross
section itself. A 1σ variation is applied to a CC interaction
parameter, and the new selection efficiency ϵ0ccij is calcu-
lated. The change in the detection efficiency is then given
by the ratio of the new efficiency to the nominal one:

wij ¼
ϵ0ccij

ϵccij
; ð14Þ

where the indices i and j denote the ith energy bin and the
jth topology bin, respectively. The predicted number of CC
events is then modified using wij:

N0cc
jg ¼

X
i

ϕig · σcci · ðwijϵ
cc
ij Þ · T: ð15Þ

A fractional covariance between topology bins is then
calculated for each CC interaction parameter using the
modified (N0cc) and nominal number of CC events. This is
performed in the same way as for the NC interaction
uncertainty, described earlier. The total covariance matrix is
computed by summing up the individual matrix from each
CC interaction parameter. The obtained correlation matrix
and fractional error between the event topology bins are
shown in Figs. 18 and 19.

3. Systematic uncertainty on FSI

For the pion FSI parameters, uncertainties on the
absorption, charged exchange, quasielastic, and inelastic
scattering cross sections of the pion are taken into account.
These systematic errors are treated in a different way than
the previous interaction uncertainties, because there are
correlations between them. The INGRID data is fitted with
N0cc, obtained by changing each FSI parameter by 1σ, and
the difference between the fitted and the nominal result is
taken as the systematic error. The effect of each FSI
parameter on the measured cross section was found to
be negligible, except for the pion absorption uncertainty,
which was then added in quadrature to the final result.

FIG. 18. Correlation matrix for the errors coming from CC
interaction uncertainties. The binning on the y axis is identical to
that on the x axis.

FIG. 19. Fractional error from CC interaction uncertainties.

FIG. 16. Correlation matrix for the errors coming from NC
interaction uncertainties. The binning on the y axis is identical to
that on the x axis.

FIG. 17. Fractional error from NC interaction uncertainties on
the number of NC events.
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C. Detector response uncertainties

As described in Sec. IV E, each error source is catego-
rized according to whether it produces correlation among
topology bins or not. For the uncorrelated error sources, the
iron mass and pileup correction, the individual systematic
errors are summed quadratically and the total inserted into
the denominator of the χ2 statistical term [σNdet

jg
, in Eq. (5)].

For the correlated error sources, the size of the error does
not vary between each module, so a covariance matrix is
constructed from the topology bins using the average
change over all modules. Namely, the errors are assumed
to be fully correlated between module groups. For uncer-
tainties from the event selection, the systematic error is
evaluated by varying each selection threshold by 1σ, and
the resultant fractional variation in the number of selected
events (≡ΔN=N) computed for data and MC. For example,
the systematic error on the track matching is estimated by
changing the tolerance of ΔZ by �1 plane (�1σ change)
from its nominal value (ΔZ ¼ 2), where ΔZ is the differ-
ence between the most upstream layer hit in the X − Z and
Y − Z view. The change by �1 plane covers the 1σ
variation in the position of the upstream edge of the track.
The difference in ΔN=N between data and MC is then
taken as the systematic error, calculated as

Δj ¼
�
ΔNobs

Nobs

�
j
−
�
ΔNexp

Nexp

�
j

; ð16Þ

where the index j denotes the jth topology bin. If both a
þ1σ and −1σ variation are applied to the event selection,
then the following covariance is calculated:

Vij ¼
1

2
fðΔi · ΔjÞþ1σ þ ðΔi · ΔjÞ−1σg: ð17Þ

If only a þ1σ change can be applied, then the covariance
becomes

Vij ¼ Δi · Δj: ð18Þ

The statistical error of Δi is also calculated and added
to Eq. (17) [or Eq. (18)]. Finally, the total covariance
is calculated by summing each individual covariance.
Figures 20 and 21 show the correlation matrix obtained
and the size of the fractional error for each event
topology bin.
Table VII summarizes the size of the detector systematic

error for each error type.

D. Uncertainty in pion multiplicities
and secondary interactions

Uncertainties associated with pion multiplicities and
pion secondary interactions (SIs) are treated in a different
way to the systematics described above. These uncertain-
ties are evaluated by comparing the underlying model with

external data. Any observed difference is used to correct the
nominal MC sample, and then the χ2 fit is performed using
this “corrected” MC. The differences in the fitted values
between the nominal and corrected MC are then taken as
the systematic error on the final result.
Pion multiplicity.—In this analysis, the number of events

is determined from the number of reconstructed vertices,
which are sometimes missed due to the pileup of tracks
from multiple neutrino interactions. Events with large
numbers of tracks usually contain pions; therefore, the
uncertainty associated with the pion multiplicity in these
events needs to be considered. This uncertainty is estimated
by following the method described in Ref. [33]. The
probability of an event having a pion multiplicity of n is
expressed as

FIG. 20. Correlation matrix from the uncertainties in the
detector response. The binning on the y axis is identical to that
on the x axis.

FIG. 21. Fractional error for the topology bins coming from
uncertainties in the detector response.

TABLE VII. Systematic error size on topology bins due to
uncertainties in the detector response.

Error type Error size (at maximum)

Correlated error 3%
Uncorrelated error 2%
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Pðz;A; B; cÞ ¼ 1

hni
2e−ccczþ1

Γðczþ 1Þ ; ð19Þ

hni ¼ Aþ B logW2; ð20Þ

where z ¼ n=hni; hni is the mean pion multiplicity and can
be expressed by an approximate formula as in Eq. (20). The
W is the hadronic invariant mass and is expressed as

W2 ¼ ðEν þ EN − EμÞ2 − ð~pν þ ~pN − ~pμÞ2 ð21Þ

with Eνμð~pνμÞ and Eμð~pμÞ denoting the energy (3-
momentum) of the νμ and μ, respectively; ~pN denoting
the Fermi momentum of the nucleon and EN the nucleon
energy. A, B, and c are derived by fitting two external data
sets [34,35] with Eq. (19). These fitted parameters are
compared with those used in NEUT, and the differences
assigned as the systematic uncertainty. The parameters are
used to produce a correctedMC samplewhich is input to the
χ2 fit. The differences in the fitted values coming from the
corrected and the nominal MC are taken as the systematic
error on the final result due to pionmultiplicity uncertainties.
Pion SI.—Hadrons produced in neutrino interactions can

also interact while traveling through the detector, a process
known as “secondary interaction.” In the INGRID simu-
lation the pion SI processes are controlled by GEANT4. In
order to evaluate the uncertainty in the pion SI model, the
following interaction modes are considered:

(i) Quasielastic scattering (QEL)
The final-state pion is the same type as the

incoming pion.
(ii) Absorption (ABS)

The incident pion is absorbed by the nucleus,
resulting in there being no pions in the final state.

(iii) Single charge exchange (SCX)
A charged pion interacts such that there is only

one π0 and no other pions in the final state.
The existing experimental data used to evaluate this

uncertainty are summarized in Table VIII. In the table, the
reactive cross section is defined as σtotal − σelastic, where
σtotal is the total cross section and σelastic is the elastic cross
section. As seen in the table, Ashery et al. provide various
cross sections across a range of pion momenta and target
nuclei, including iron. The other data do not include

measurements on iron. For these data, an A-dependent
scaling is applied in order to extract the cross section on
iron. To evaluate the systematic uncertainty coming from
pion SI, we first tune the pion cross section in the
momentum region covered by the data in Table VIII.
Second, for the lower energy region not covered by data,
the ABS πþðπ−Þ cross section < 20 (30) MeV is kept
constant, motivated by the microscopic calculation from
Ref. [36]. The QEL cross section is linearly extrapolated to
0 at 0 MeV. For the higher energy region, each of the cross
sections above is tuned on the basis that the size of the
reactive cross section is conserved, since the cross sections
predicted by GEANT4 are in agreement with the exper-
imental data in this energy region. This study gives four
corrected MC samples in total, each of which is then used
to fit the T2K data. Finally, the size of the systematic error
on the fk parameters due to the uncertainty on pion FSI is
calculated as follows:

Δfk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

X4
i¼1

ðfnomk − fikÞ2
vuut ; ð22Þ

where the index i denotes the ith corrected MC sample
and fk is the fitted normalization parameter for the kth
energy bin.

VI. RESULT

In this section, we present the result of this νμ inclusive
CC cross-section measurement. Section VI A shows the
data set used in this analysis, while Secs. VI B and VI C
describe the output from the χ2 fit and give a summary of
this result, respectively.

A. Data set

Figure 22 shows the observed and predicted topology
distributions in all module groups for the data set used
in this analysis, corresponding to 6.27 × 1020 POT. The
number of observed events for the non-DS-escaping top-
ology is 3%–10% smaller than expected.

TABLE VIII. Summary of pion-nucleus scattering data used to evaluate the pion SI uncertainty. The reactive cross section is defined as
the sum of all the inelastic cross sections.

Hadrons Targets plab (MeV=c) Interaction type

Nakai et al. [37] πþ=π− Al, Ti, Cu, Sn, Au 83–395 ABS
Ashery et al. [38] πþ=π− Li, C, O, Al, Fe, Nb, Bi 175–432 Reactive, elastic, QEL, ABS, SCX
Jones et al. [39] πþ C, Ni, Zr, Sn, Pb 363–624 QEL, ABS, SCX
Gelderloos et al. [40] π− Li, C, Al, S, Ca, Cu, Zr, Sn, Pb 479–616 Reactive
Allardyce et al. [41] πþ=π− C, Al, Ca, Ni, Sn, Ho, Pb 710–2000 Reactive
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FIG. 22. Topology distribution for non-DS-escaping (top) and DS-escaping (bottom) for all module groups. The predicted events,
before the fit, are categorized as CC events, NC events, and either intrinsic beam ν̄μ þ νe backgrounds or backgrounds from the wall and
shown as a stacked histogram. The CC events are subdivided into six true neutrino energy regions.
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FIG. 23. Topology distribution for non-DS-escaping (top) and DS-escaping (bottom) events for all module groups after the data fit.
The predicted events are categorized as CC events, NC events, and either intrinsic beam ν̄μ þ νe backgrounds or backgrounds from the
wall and shown as a stacked histogram. The CC events are subdivided into six true neutrino energy regions.

MEASUREMENT OF THE MUON NEUTRINO INCLUSIVE … PHYSICAL REVIEW D 93, 072002 (2016)

072002-19



B. Cross-section fit

The topology distributions after the data fit are shown
in Fig. 23. As seen in the figure, the predicted topology
distributions with the fitted cross-section normalization
parameters applied agreewellwith the observed distributions.
Table IX shows the cross-section normalization param-

eters fi ¼ 1þ Δfi (i ¼ 0–4), obtained by fitting the
INGRID data, where the Δfi’s are those from Eq. (6).
The fitted values for the flux, detector, CC interaction,

and NC interaction uncertainty parameters are shown
in Fig. 24. A large deviation from 0 is seen for all the
NC interaction uncertainty parameters. As described in
Sec. VI A, the prediction overestimates the number of non-
DS-escaping events by 3%–10%.
The fitter preferentially reduces the number of NC events

to match the predicted topology distribution to the observed
one. Since the NC interaction uncertainty parameters are
almost fully correlated among topologies, as shown in
Fig. 16, all the parameters move toward negative values.
There are jumps seen in the CC interaction and detector
uncertainty parameters. Both of the jumps appear at the
boundary between parameters for non-DS-escaping and
DS-escaping events.
In order to derive the normalization factor for the

cross section, we take the average of the neighboring

fitted fi parameters. The obtained cross-section normal-
izations are

fð1.1 GeVÞ ¼ f1 þ f2
2

¼ 0.980� 0.115;

fð2.0 GeVÞ ¼ f2 þ f3
2

¼ 1.062� 0.123;

fð3.3 GeVÞ ¼ f3 þ f4
2

¼ 0.756� 0.136:

Table X summarizes the uncertainty on the fitted cross-
section normalization parameters, broken down by error
source. The errors on the combined normalization param-
eters are summarized in Table XI. The largest systematic
error source is the flux uncertainty, which gives a 8%–9%
error on the cross-section normalization. The cross-section
normalization at 2.0 GeV is less affected by most of the
systematic uncertainties than the other normalizations, as
shown in Table XI. The reason for this is as follows. In
Fig. 14, one can see that the PDF is well differentiated
for both module group and event topology at Eν ¼
1.4–2.6 GeV (f2–f3) and Eν ¼ 2.6–4.0 GeV (f3–f4),
while poor differentiation is seen for Eν ≥ 4.0 GeV (f4),

FIG. 24. Fitted values of the cross-section normalization (top)
and systematic (bottom) parameters.

TABLE IX. Fitted values of the cross-section normalization
parameters, fi ¼ 1þ Δfi.

Fit parameter Fit result

f0 (0.5 GeV) 3.560� 0.508
f1 (0.8 GeV) 0.637� 0.180
f2 (1.4 GeV) 1.324� 0.181
f3 (2.6 GeV) 0.800� 0.211
f4 (4.0 GeV) 0.712� 0.120
χ2 155.4

TABLE XI. Contribution to the uncertainty on the cross-section
normalization at 1.1, 2.0, and 3.0 GeV from each error source.

Error source 1.1 GeV 2.0 GeV 3.3 GeV

Statistical error 2.0% 0.6% 2.3%
Fluxþ stat 7.6% 9.0% 8.4%
Detector þ stat 4.3% 0.9% 3.9%
Interaction ðccÞ þ stat 3.7% 0.8% 4.8%
Interaction ðncÞ þ stat 2.4% 0.9% 3.2%
Pion FSI þ1.0%

−1.9% 0.5% þ3.7%
−2.9%

Pion multiplicity 3.3% 5.1% 2.1%
Pion SI 5.6% 2.0% 6.9%

TABLE X. Contribution to the uncertainty on the fitted param-
eters (f0–f4) from each error source.

Error source f0 f1 f2 f3 f4
(0.5 GeV) (0.8 GeV) (1.4 GeV) (2.6 GeV) (4.0 GeV)

Statistical error 18.7% 6.0% 4.5% 4.8% 1.4%
Fluxþstat 26.0% 7.9% 12.8% 14.5% 9.3%
Detectorþstat 33.8% 10.0% 7.2% 7.0% 3.0%
Interaction
ðccÞþstat

30.6% 9.3% 6.8% 7.2% 3.8%

Interaction
ðncÞ þ stat

22.6% 6.6% 6.4% 5.8% 2.0%

Pion FSI þ0.4%
−0.2%

þ0.3%
−0.8%

þ2.0%
−3.3%

þ4.0%
−3.6%

þ3.5%
−5.2%

Pion multiplicity 2.6% 8.8% 0.7% 12.4% 9.4%
Pion SI 7.3% 9.5% 9.4% 11.4% 2.9%
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which results in weak correlation with the other cross-
section normalizations. Thus, sensitivity to the cross-
section normalization is good for Eν ¼ 2.0 GeV
(¼ f2þf3

2
) but limited for Eν ¼ 3.3 GeV (¼ f3þf4

2
).

Figures 25 and 26 show the error and correlation
matrices for the five fitted parameters (Δf0–Δf4) and
the cross-section normalizations at 1.1, 2.0, and
3.3 GeV, respectively.

C. Summary

In the previous section, five individual fitting parameters
were extracted with the least χ2 method and used to
calculate the following measured cross sections at energies
of 1.1, 2.0, and 3.3 GeV:

σccð1.1 GeVÞ ¼ 1.10� 0.15ð10−38 cm2=nucleonÞ;
σccð2.0 GeVÞ ¼ 2.07� 0.27ð10−38 cm2=nucleonÞ;
σccð3.3 GeVÞ ¼ 2.29� 0.45ð10−38 cm2=nucleonÞ:

Figure 27 shows these results compared to other measure-
ments [1,2] and the neutrino event generators, NEUT (version
5.1.4.2) and GENIE (version 2.8.0). These measurements are
consistent with the energy-dependent cross section mea-
sured by the MINOS near detector and the previous, flux-
averaged, cross section measured by INGRID, which used a
subset of the data included in this analysis.
This analysis utilizes the different off-axis angle

technique together with the final-state kinematics of the
outgoing lepton to enhance sensitivity to the neutrino

energy. Using final-state lepton kinematics in this analysis
makes the result sensitive to uncertainties in the neutrino
interaction model, which increases the uncertainty on the
final measurement. In order to see how the result depends
on the simulation, fits were performed to subsamples (DS-
escaping only or non-DS-escaping only) of the data. If the
final-state lepton kinematics are very different between the
data and the simulation, then the fit result should change
depending on the choice of subsample. The results were
found to be in agreement with each other, showing that the
kinematic differences in the regions INGRID is sensitive to
are small enough that the analysis is unaffected by them.
The errors achieved in this analysis are not small enough to

distinguish between the neutrinomodels used in the different
event generators. Nevertheless, the result seems to prefer
NEUT for Eν ≤ 2 GeV and agrees with the MINOS data
point and GENIE at Eν ¼ 3.3 GeV. Further reduction of the
systematic error size would help in differentiating the
neutrino models at the higher energy transition. This reduc-
tion could be made by utilizing neutrino beams covering a
wider rangeof off-axis angles,whichwouldprovide amodel-
independent way to infer the neutrino energy. This analysis
demonstrates the feasibility of using different off-axis
samples from the same neutrino beam to measure the energy
dependence of neutrino interactions, which will provide
useful information for future neutrino oscillation analyses.

VII. CONCLUSION

In this paper, we have reported the measurement of
the energy-dependent inclusive νμ charged-current cross
section on iron using the T2K INGRID detector and the
T2K neutrino beam. The unique variation in the neutrino
flux across the INGRID modules, along with event
kinematic information, was used to produce event samples

FIG. 25. Error (left) and correlation (right) matrices for the five
fitted parameters. In both of the matrices, the binning on the y
axis is identical to that on the x axis.

FIG. 26. Error (left) and correlation (right) matrices for the
cross-section normalization at 1.1, 2.0, and 3.3 GeV. In both of
the matrices, the binning on the y axis is identical to that on the
x axis.
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FIG. 27. Results of the νμ CC inclusive cross section on Fe. The
energy-dependent cross section measured by the MINOS near
detector [1] and the flux-averaged cross section from INGRID [2]
are shown with the NEUT (v.5.1.4.2) and GENIE (v.2.8.0) pre-
dictions. The T2K on-axis νμ flux is shown in gray. The T2K
INGRID flux-averaged cross-section measurement and this result
are consistent with one another.
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sensitive to neutrinos with energies from 1 to 3 GeV. These
were used to extract the inclusive CC muon-neutrino
interaction cross section on iron at 1.1, 2.0, and
3.3 GeV, using data corresponding to 6.27 × 1020 POT.
This result is consistent with the predictions of the NEUT

and GENIE neutrino interaction generators. This is the first
measurement to use the off-axis effect to measure neutrino
cross sections as a function of energy and demonstrates the
potential of this technique to provide useful information for
future neutrino experiments.
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