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Recently in Phys. Rev. D 88, 027504 (2013), Yoon has suggested that there may be problems for the
nonrelativistic limit of the conformal gravity theory. Here we show that Yoon’s results only hold because of
the assumption that gravitational sources can be treated the same way that they are treated in standard
Newton-Einstein gravity. Since such an assumption violates the theory’s underlying conformal invariance,
Yoon’s conclusions are invalidated.
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I. BACKGROUND

In conformal gravity with gravitational sector action
IW ¼ −αg R d4xð−gÞ1=2CλμνκCλμνκ, one constructs a gravi-
tational rank-two tensor ð−gÞ−1=2δIW=δgμν ¼ −2αgWμν,
and in the presence of a matter source with energy-
momentum tensor Tμν obtains a gravitational equation of
motion of the form −4αgWμν þ Tμν ¼ 0. With the under-
lying theory being conformal invariant, both Wμν and Tμν

are traceless. As such, conformal gravity represents two
departures from standard Einstein gravity—not only is the
second-order derivative Einstein tensor Gμν ¼ Rμν −
gμνRα

α=2 replaced by the fourth-order derivative Wμν,
the energy-momentum tensor is replaced by a traceless
one. The structure of conformal gravity is thus intrinsically
different from that of Einstein gravity, with experience with
Einstein gravity not providing a complete enough guide to
conformal gravity.
On explicitly constructing Wμν, Mannheim and Kazanas

were able to solve the conformal theory exactly in a static,
spherically symmetric geometry, and showed [1] that the
metric coefficient BðrÞ ¼ −g00ðrÞ obeyed the fourth-order
derivative Poisson equation

∇4BðrÞ ¼ 3

4αgBðrÞ
ðT0

0 − Tr
rÞ ¼ fðrÞ: ð1Þ

Exterior to a source of radius R, the solution takes the form
Bðr > RÞ ¼ 1 − 2β=rþ γr, where

2β ¼ 1

6

Z
R

0

dr0fðr0Þr04; γ ¼ − 1

2

Z
R

0

dr0fðr0Þr02: ð2Þ

On finding this solution, Mannheim and Kazanas realized
immediately [1] that β would vanish at the microscopic
level if fðrÞ was a delta function, and would vanish at the
N-particle macroscopic level if fðrÞ was a sum of N delta
functions; while, as reported in Ref. [2], if fðrÞ was

constant, one would then obtain γ ¼ −6β=R2, to give a
macroscopic object such as the Sun an unacceptably large
negative linear potential. However, neither option for fðrÞ
is valid in the conformal theory, since if one applies ∇4 to
1 − 2β=rþ γr, one obtains −8πγδ3ðxÞ þ 8πβ∇2δ3ðxÞ, and
thus as noted in Refs. [1,2], sources must be extended or
singular, with an extended fðrÞ having both a height (cf. the
γ term) and a width (cf. the β term), quantities that are in
principle of independent strength and independent sign,
since they correspond to different moments of fðrÞ.
However, such extendedness only needs to occur at the
microscopic level, since if microscopically one obtains a
potential of the form Vp ¼ −βp=rþ γpr=2 at the level of a
single proton, then for a weak-gravity bulk matter source
composed of N protons, one can then sum over these
individual microscopic sources to obtain a net NVp ¼
−Nβp=rþ Nγpr=2, just as one does in standard second-
order weak gravity.
In a recent paper [3], Yoon has objected to the use of

sources other than standard delta functions to thereby
suggest that the coefficient β be zero. And also, Yoon
has brought arguments to suggest that the coefficient γ
would be negative rather than the positive value it has been
found to possess in a successful fitting of the theory to the
rotation curves of a broad class of 141 different spiral
galaxies [4–7]. Here we refute Yoon’s claims by justifying
the use of extended sources, and by showing that Yoon had
made an error in his analysis of the sign of γ, an error that
invalidates his conclusions.
Our refutation of both of Yoon’s claims is based on

recognizing that if one wants to discuss mass in a conformal
theory, one needs to introduce a Higgs field to generate
such mass via symmetry breaking at the microscopic level.
This Higgs field then carries energy density and momentum
itself, and thus it is not just the energy density and
momentum of the massive particles but also those of
the Higgs field itself that contribute to the full energy-
momentum tensor that serves as the source of gravity.
Moreover, it is the interplay of the massive particles with
this selfsame Higgs field that then gives the massive*philip.mannheim@uconn.edu
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particles their extended structure. In his paper, Yoon did not
include the contribution of the Higgs field to the energy-
momentum tensor (to thus invalidate his second claim).
And as to his first claim, Yoon did not actually provide any
analysis that might exclude the use of extended sources.
Rather, his refutation consists of nothing more than his
declaration that having such extended sources would be
“undesirable,” and in his paper Yoon never indicated in
what specific way any such extended sources might
actually be undesirable.
Independent of the desirability or lack thereof of such

extended structures, such a possible structure for sources is
not familiar from standard gravity. However, it is is also not
excluded by it either, with the −MG=r potential being the
exact exterior solution to the second-order Poisson equation
∇2ϕ ¼ 4πGρ no matter how the source might behave in the
interior region. In fact, standard second-order gravity is
insensitive to the issue, since measuring the definite integral
M ¼ 4π

R
R
0 dr2r2ρðrÞ alone does not enable one to deter-

mine the structure or even the sign of the integrand ρðrÞ at
points within the integration range. Since second-order
gravity is not required to obey the constraints of conformal
invariance, experience with second-order gravity is not a
good guide as to the structure of sources in the fourth-order
derivative conformal gravity case. While conformal sym-
metry obliges us to consider physics at the microscopic
level where both masses and extended structures are
generated, second-order gravity does not. Hence, central
to our discussion will be the distinction between macro-
scopic sources and microscopic ones, and it is to this issue
that we now turn.

II. MACROSCOPIC CONSIDERATIONS

In Newtonian gravity, the prescription for determining
the macroscopic, nonrelativistic potential ϕðrÞ at any point
r due to a set of N static, microscopic sources of massmi at
points ri, is to sum over them according to

ϕðrÞ ¼ −Xi¼N

i¼1

miG
jr − ri;j

; ð3Þ

whereG is Newton’s constant, with the motions of material
test particles then being determined via

d2r
dt2

¼ −∇ϕ: ð4Þ

As such, (3) and (4) contain the full content of Newtonian
gravity. If the microscopic sources (taken to be protons for
specificity) all have the same mass mp, and if they are
distributed spherically symmetrically within some local-
ized region of radius R, then outside of this region the
potential is given by ϕðr > RÞ ¼ −NmpG=r, to thus be an
extensive function of the number of microscopic sources.
As such, the exterior region ϕðr > RÞ only counts the

number of microscopic sources and is insensitive to their
distribution within the r < R region. To facilitate doing the
summation over this region, one can introduce a second-
order Poisson equation. To do so, one applies ∇2 to (3) to
obtain

∇2ϕðrÞ ¼ 4πGmp

Xi¼N

i¼1

δ3ðr − riÞ

¼ 4πGmp

Xi¼N

i¼1

nðr − riÞ: ð5Þ

In (5) we have introduced a number density nðr − riÞ ¼
δ3ðr − riÞ that counts the number of microscopic sources.
For sources at rest we can identify mpnðr − riÞ as the
energy density ρðr − riÞ. In consequence of this, the
Einstein theory uses perfect fluid sources built out
of such an energy density according to TμνðfluidÞ ¼
ðρþ pÞUμUν þ pgμν, so that its nonrelativistic limit where
ρ ≫ p recovers (5). However, this is not a general rule of
nature, and in the conformal case we will find a very
different structure for the total TμνðTÞ, since the very
requirement that TμνðTÞ be traceless means that it cannot
be comprised of the nontraceless TμνðfluidÞ alone
[Tμ

μðfluidÞ ¼ 3p − ρ ∼ −ρ ≠ 0]. The extra contribution
that is needed to maintain Tμ

μðTÞ ¼ 0 is precisely that
due to the Higgs field that gives mass to the microscopic
particles in the source in the first place. Nonetheless, the
counting of microscopic sources is done with the number
density, not the energy density, and it is such counting that
conformal gravity still recovers.
For the fourth-order theory, each microscopic proton

source is to put out a potential VpðrÞ ¼ −βp=rþ γpr=2,
with the analog of (3) then being given by

VðrÞ ¼
Xi¼N

i¼1

�
− βp
jr − rij

þ γpjr − rij
2

�
ð6Þ

in the nonrelativistic, weak-gravity regime in which each
jr − rij obeys βp=jr − rij ≪ 1, γpjr − rij=2 ≪ 1. Thus,
again the exterior potential counts the number of micro-
scopic sources, as per Vðr ≫ RÞ ¼ −Nβp=rþ Nγpr=2.
On applying ∇4 to (6), we obtain

∇4VðrÞ ¼
Xi¼N

i¼1

½4πβ∇2δ3ðr − riÞ − 4πγδ3ðr − riÞ�: ð7Þ

As such, (7) gives the fðrÞ needed for macroscopic bulk
matter in the conformal theory, as expressed in terms of
microscopic potentials whose βp and γp coefficients are
not as yet constrained. Now, while (7) depends on the
number density, just as (5) does in the second-order case,
the γp term is not given by the energy density, since γp is
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not mp. All that one can say from macroscopic consid-
erations is that for bulk matter both of the two summa-
tions in (6) are extensive functions of the number of
microscopic sources. When one uses ρðr − riÞ as the
source of Einstein gravity in weak-gravity bulk matter
cases (the only cases where Einstein gravity has been
tested), one can do so because the energy density is
related to the number density of fundamental sources. For
bulk applications of conformal gravity, one uses (6), with
βp and γp being fundamental parameters that are to be
fixed from data. This has expressly been done in
Refs. [4–7], where one finds that with the use of one
universal value for the γ� of each solar mass of stars
(specifically γ� ¼ 5.42 × 10−41 cm−1) and one universal
value for the β� of each solar mass of stars (viz.
β� ¼ 1.48 × 105 cm, the standard Newtonian value),
one can fit 141 galactic rotation curves without the need
for any dark matter or the 282 free parameters needed for
the 141 dark matter halos. With the data fitting showing
that γ� is consistently positive, for each one of the 1057

protons in the Sun one has γp ¼ 5.42 × 10−98 cm−1 (and
analogously one has β�p ¼ 1.48 × 10−52 cm for each
proton). We thus need to see whether this positive sign
for γp is compatible with (2) when it is applied at the
microscopic level.

III. MICROSCOPIC CONSIDERATIONS

In a theory with an underlying conformal symmetry,
at the level of the Lagrangian, all particles will be
massless and thus propagate as unlocalized massless
plane waves that fill all space. In order to give particles
mass, one breaks the symmetry spontaneously by giving
a Higgs-type scalar field SðxÞ a constant vacuum
expectation value S0. However, in and of itself, this
will just produce unlocalized massive plane waves that
still fill all space. To get the particles to localize into
some finite region of space, one needs SðxÞ to acquire a
spatial dependence in order to produce a potential well
that can serve to trap and bind the particles into
localized configurations. While such an extended-
structure description of elementary particles was not
originally developed for conformal gravity per se, it
nonetheless can apply to it.
The idea of trapping a particle, typically taken to be a

fermion, in a spatially dependent field originated in
studies in the 1950s of the polaron problem associated
with the trapping of an electron in a polar crystal, with
some of the early relativistic models being developed in
Refs. [8–10]. For the illustrative double-well potential
Lagrangian L ¼ iψ̄γμ∂μψ þ ∂μS∂μS=2 − hSψ̄ψ − λS4 þ
μ2S2=2 studied in Ref. [9], the ground state is described
by a configuration in which SðxÞ ¼ S0 ¼ μ=2λ1=2. Here
the constant S0 corresponds to the vacuum expectation
value hΩjSðxÞjΩi of a quantum field SðxÞ, and since the

vacuum is translation invariant, hΩjSðxÞjΩi is indepen-
dent of the space and time coordinates.
Given this vacuum, it is very tempting to assume that

the first excited state above this vacuum would be given
by b†ωjΩi, where bω annihilates jΩi and b†ω is a standard
fermion plane wave creation operator for a state with
energy E ¼ ℏω and mass m ¼ hS0. However, it turns
out that there is a composite state that lies lower than
this one-particle state. In it, the scalar field acquires a
spatially dependent expectation value associated not
with the vacuum but with a coherent state jCi. (The
state jCi is constructed via a spatially dependent
Bogoliubov transform on the vacuum jΩi.) Now in
and of itself, the state jCi is not an eigenstate of the
theory, and is not even stable. It is stabilized by
the presence of the fermion, so that it is b̂†ωjCi that
is the stable one-particle eigenstate where b̂ω annihilates
jCi, and where the spatial part of the fermion wave
function is now localized and is no longer a momentum
eigenstate. In this configuration SðxÞ is given by
hCjb̂ωSðrÞb̂†ωjCi, and the fermion localizes in this
spatially dependent potential when it is inserted into
the fermionic Dirac equation. The fermion and the
coherent state thus mutually stabilize each other into
a localized, so-called bag-model, extended-structure
configuration, with it being the bag pressure due to
the spatially dependent scalar field that both stabilizes
and localizes the fermion. In Refs. [10–12], these ideas
have been extended to the case where the symmetry
breaking is done by the fermion composite operator ψ̄ψ.
And in Ref. [13], these ideas have been extended to a
conformal invariant formulation of quantum electrody-
namics (in flat spacetime), where it was shown that the
bag pressure could serve as the Poincaré stresses
associated with a completely electrodynamical electron
mass. In all of these extended-structure pictures there is
a bag pressure, and thus when the theory is coupled to
gravity the bag pressure will become part of the
gravitational source.
To discuss the gravitational situation, rather than

considering the full bag model developed in Ref. [13]
and recently revisited in Ref. [14], it is simpler to
consider a model consisting of a fermion conformally
coupled to a fundamental scalar field [15], as the
model is rich enough to illustrate the issues that are
involved. For this model the Lagrangian is given by
L ¼ iψ̄γμðxÞ½∂μ þ ΓμðxÞ�ψ þ ∂μS∂μS=2 − S2Rμ

μ=12þ
λS4 − hSψ̄ψ . [Here γμðxÞ is a spacetime-dependent
Dirac gamma matrix, and ΓμðxÞ is the fermion spin
connection.] The scalar field and fermion wave equa-
tions are given by

∇μ∇μSþ SRμ
μ=6 − 4λS3 þ hψ̄ψ ¼ 0;

iγμðxÞ½∂μ þ ΓμðxÞÞ�ψ − hSψ ¼ 0: ð8Þ
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The total TμνðTÞ is given by TμνðTÞ ¼ TμνðFÞ þ TμνðSÞ,
where

TμνðSÞ ¼ 2∇μS∇νS=3 − gμν∇αS∇αS=6 − S∇μ∇νS=3

þ gμνS∇α∇αS=3 − S2ð2Rμν − gμνRα
αÞ=12

− gμνλS4;

TμνðFÞ ¼ iψ̄γμðxÞ½∂ν þ ΓνðxÞ�ψ : ð9Þ

In the presence of a radially dependent Higgs scalar field
SðrÞ and a fermion that is bound to it, the radial and angular
sectors of the theory have very different r dependencies.
Hence, neither TμνðFÞ nor TμνðSÞ can take the form of a
perfect fluid, since for a perfect fluid one must have
Tr

r ¼ Tθ
θ. However, in a static spherically symmetric

geometry both tensors are diagonal. Thus, for TμνðFÞ we
shall set T0

0ðFÞ ¼ −RðrÞ, Tr
rðFÞ ¼ PðrÞ, Tθ

θðFÞ ¼
Tϕ

ϕðFÞ ¼ PðrÞ þQðrÞ [16]. In terms of these quantities,
we thus obtain (see e.g., Ref. [17])

fFðrÞ ¼
1

4αgB
½−3ðRþ PÞ þ BSS00 − 2BS02�;

Tμ
μðTÞ ¼

S2

6r2
½r2B00 þ 4rB0 þ 2B − 2� þ 3Pþ 2Q − R

þ S
r
½rBS00 þ 2BS0 þ rB0S0� − 4λS4 ¼ 0; ð10Þ

where fFðrÞ denotes the fðrÞ of a single fermion. In terms
of this fFðrÞ, the macroscopic fðrÞ needed for (7) is given
by fðrÞ ¼ P

ifFðriÞδ3ðr − riÞ, with the number operator
doing the counting just as in the Newtonian case.
Now in his paper, Yoon tries to fix the sign of γp by

taking fðrÞ to be dominated by RðrÞ alone. However, from
the vanishing trace condition for TμνðTÞ, we see that the
other terms in Tμ

μðTÞ are necessarily just as big. Since
Yoon does dominate fðrÞ by RðrÞ, and since he does not
take into account the contribution of the Higgs field to
TμνðTÞ, his conclusions regarding the sign of γ are not
valid [18].
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