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We study Bogomol’nyi-Prasad-Sommerfield (BPS) excitations in M5-M2-brane configurations with a
compact transverse direction, which are also relevant for type IIa and IIb little string theories. These
configurations are dual to a class of toric elliptically fibered Calabi-Yau manifolds XN with manifest
SLð2;ZÞ × SLð2;ZÞ modular symmetry. They admit two dual gauge theory descriptions. For both, the
nonperturbative partition function can be written as an expansion of the topological string partition function
of XN with respect to either of the two modular parameters. We analyze the resulting BPS-counting
functions in detail and find that they can be fully constructed as linear combinations of the BPS-counting
functions of M5-M2-brane configurations with noncompact transverse directions. For certain M2-brane
configurations, we also find that the free energies in the two dual theories agree with each other, which
points to a new correspondence between instanton and monopole configurations. These results are also a
manifestation of T-duality between type IIa and IIb little string theories.
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I. INTRODUCTION AND SUMMARY

In recent years, the interplay between M-theory/string
theory, geometry, and superconformal gauge theories has
been rigorously studied, leading to new and deep insights.
At the focus of interest are configurations of N parallel M5-
branes with multiple M2-branes stretched between them
(see e.g. [1–6]). These brane configurations are known to
be U dual to specific toric elliptically fibered Calabi-Yau
threefolds XN over an AN−1 base space. They can also be
associated to six-dimensional non-Abelian supersymmetric
field theories, which upon further compactification to four
dimensions give rise to mass-deformed N ¼ 2� gauge
theories. All these six-dimensional systems exhibit very
rich dynamics and contain extended Bogomol’nyi-Prasad-
Sommerfield (BPS) degrees of freedom that are unfamiliar
from a four-dimensional point of view.
Indeed, as was first pointed out in [1], the configuration

of M2-branes stretched between M5-branes described
above gives rise to one-dimensional dynamical objects
at the brane intersections. When the M5-branes coincide,
these so-called M-strings become tensionless, forming
essential interacting degrees of freedom of the elusive

(2,0) superconformal, local quantum field theory. When
the M5-branes are separated, the M-strings become BPS
string states with tension. Their BPS excitations, which are
expected to elucidate the world sheet dynamics over the
six-dimensional target space, are counted by the topologi-
cal string partition function of the dual toric Calabi-Yau
manifold XN [1–3]. This partition function is efficiently
computed by the refined topological vertex approach [7–9],
and depends on two parameters, ϵ1;2, which are fugacities
for the little group SOð4Þ of massive particles in five
dimensions in M-theory compactification on a Calabi-Yau
threefold. From the viewpoint of the nonperturbative gauge
theory partition function, these parameters correspond
to putting the gauge theory on a curved spacetime, the
so-called generalized Ω background [10].
Another manifestation of string degrees of freedom was

discussed in [4,5]: upon compactification to five dimen-
sions, the M-strings become (electrically charged) BPS
particles which are related via five-dimensional S-duality to
magnetically charged monopole strings. While the precise
details of this duality map are somewhat intricate [11], we
proposed in [5] that the degeneracies of certain M-string
BPS configurations capture the elliptic genus (see [12] for
its general definition) of the moduli space of monopole
strings. This proposal applies to theories of SUðNÞ gauge
theories for any N and for general distributions of the
constituent monopole strings. In [5], we successfully
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checked this proposal for all known cases, namely, the
Taub-NUT and Atiyah-Hitchin spaces. These spaces cor-
respond to the moduli spaces of charge (1,1) monopoles in
SUð3Þ [13] and charge (2) monopoles in SUð2Þ gauge
theory [14], respectively. The elliptic genera of their
respective moduli spaces were previously computed in
[15,16]. In [5], we studied the elliptic genus of the moduli
space of monopole strings for an arbitrary gauge group and
for general distribution of constituent monopole strings.
The purpose of this paper is to expose new phenomena

associated with a richer duality structure that arises when
the above M5-M2 brane setup is extended to a configu-
ration with a larger modular symmetry group. Such an
extension appears in a variety of physical problems. We
focus on a particularly interesting configuration that has
to do with compactifying a direction transverse to the
M5-branes to a circle. Concretely, the brane configuration
studied in [5] consists of N parallel M5-branes which are
separated along a noncompact direction. Here, we com-
pactify this direction to S1. Geometrically, this modified
brane configuration is again dual to a toric elliptically
fibered Calabi-Yau threefold XN . However, in contrast to
the noncompact case, the base is now an affine AN−1 space,
which in turn is a fibration over P1. As a consequence of
this twofold fibration structure, this setup exhibits manifest
SLð2;ZÞ × SLð2;ZÞ symmetry. This twofold SLð2;ZÞ
symmetry permits us to describe this theory by using
two different approaches:

(i) The first approach relates the compact brane con-
figuration to two different gauge theories: theory 1 is
the Coulomb branch of a UðNÞ gauge theory, while
theory 2 is a circular quiver with N nodes of Uð1Þ
gauge theories. At a generic value of the parameters,
both are ½Uð1Þ�N circular quiver gauge theories. The
difference is that, when the M5-branes are all
separated, theory 1 has massive bifundamentals,
while theory 2 has massless bifundamentals. The
two gauge theories arise from the map of the
M-theory brane configuration to type IIB brane
configurations consisting of either one NS5-brane
and N D5-branes or one D5-brane and N NS5-
branes, intersecting in both cases on a torus. The
former gives rise to theory 1, while the latter gives
rise to theory 2. Therefore, the two gauge theories
are related to each other by type IIB S-duality. On
the other hand, in the description in terms of the toric
Calabi-Yau manifold XN , the two gauge theories are
just two facets of topological string theory and are
related to each other by an exchange of the base and
the fiber in XN . As such, the partition functions of
these two gauge theories can be extracted from the
topological string partition function of XN by
expanding in two different parameters. These cor-
respond to the two modular parameters of
SLð2;ZÞ × SLð2;ZÞ mentioned above.

(ii) The second approach relates the compact brane
configuration to maximally supersymmetric little
string theories in six dimensions [17–20].1 These
little strings are fundamental strings bound to NS5-
branes that are decoupled from the ambient ten-
dimensional spacetime. Therefore, descending from
NS5-branes in type IIA and IIB string theories or
asymptotically locally Euclidean (ALE) singularities
in type IIB and IIA string theories, there are type IIb
and IIa little string theories in six dimensions with
(2,0) and (1,1) supersymmetries, respectively.2

These little string theories are nonlocal theories
since excitations contain “little strings” of finite
tension. In the brane configuration description, the
S1 compactification transverse to M5-branes renders
the tension of these little strings. Moreover, one can
see from U-duality of the brane configuration that
gauge theory 1 and gauge theory 2 are related to type
IIa and IIb little string theory, respectively. In the
same way as the two gauge theories are related to
each other by the exchange of the two coupling
parameters, upon compactification on S1, the IIa and
IIb little string theories are T dual to each other by
the exchange of their SLð2;ZÞ × SLð2;ZÞ modular
parameters.3

We analyze the modular properties of the partition func-
tions of the two pairs of dual theories mentioned above
and discover two remarkable properties. First of all, the
functions capturing the degeneracies of single-particle BPS
states of gauge theory 2 can be expressed by the analog
functions of degeneracies of monopole strings in the
noncompact M5-brane configuration as worked out in
[5]. Roughly speaking, the free energy of compact monop-
ole strings can be expressed as a linear combination of the
free energies of noncompact monopole strings. Secondly,
the generating functions of degeneracies for certain instan-
ton configurations of theory 1 are equal to the generating
functions of degeneracies for monopole strings of theory 2.
The equivalence we observe is case specific in the sense
that it maps configurations which are fully covariant under
the respective SLð2;ZÞ symmetries into each other. A more
careful study of the relation of the remaining configurations
(and thus a possible equivalence of the two partition
functions) is currently under way [25].
This paper is organized as follows. In Sec. II, we discuss

in detail the M-brane configuration and the dual Calabi-Yau

1See [21,22] for reviews of little string theories on R5;1 and
[23] for little string theories on AdS5 × S1.

2Our notations adhere to the convention that nonchiral string
theories are labeled as A or a, while chiral string theories are
labeled as B or b. We trust this will cause maximal confusion for
the reader.

3We thank the authors of [24], communicated through Cumrun
Vafa, for suggesting possible relations between these two
approaches.
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threefold XN . We also describe the two distinct gauge
theories associated with XN , and relate them to type IIa and
IIb little string theories. In Sec. III, we present the
topological partition function ZXN

of XN and discuss in
detail the manifest SLð2;ZÞ × SLð2;ZÞ modular sym-
metry, in particular the transformation properties of ZXN

.
Furthermore, we extract the nonperturbative partition
functions of the two gauge theories mentioned above by
expanding them in the parameters associated with the two
different SLð2;ZÞ’s. In Sec. IV, we find that the gauge
theory free energies can be expressed in terms of their
noncompact counterparts that we analyzed in the previous
work [5]. In Sec. V, we exhibit remarkable relations
between the free energies of the two different gauge
theories. These relations are very nontrivial in that they
relate quantities computed in the instanton moduli space
with counting functions of multimonopole string configu-
rations. In Sec. VI, following the conjecture in [5] for the
noncompact case, we propose a concrete expression for the
elliptic genus of the monopole moduli space of the affine
AN−1 theory. From this, we extract the corresponding χy
genus which encodes topological invariants of this moduli
space. We conclude in Sec. VII and point out further
directions for future research. The Appendix contains
explicit series expansions of BPS-counting functions of
various instanton and monopole configurations.

II. BRANE CONFIGURATION ON S1

AND DUAL THEORIES

A. M-brane configuration

Our starting point is a particular BPS configuration of
M-branes in the 11-dimensional M-theory vacuum T 2 ×
R3

∥ × S1 × S1 × R4⊥ (with T 2 ∼ S1 × S1), parametrized by
the Cartesian coordinates ðx0;…; x10Þ. Specifically, we
consider N planar M5-branes, K open M2-branes stretched
betweenM5-branes, andMM-waves on a two-dimensional
intersection of M5-branes and M2-branes. The precise
configuration is summarized in the following table:

ð2:1Þ

This brane configuration is very similar to the one studied
in [5], with the only difference that, in the present setup, in
addition to x1 ≃ x1 þ 2πR1, the direction x6 ≃ x6 þ 2πR6

is compactified to a circle with radius R6. The open M2-
branes are extended along S1

R0
× S1

R1
× S1

R6
. We denote the

geometric parameters of this T 3 as

2πiR1 ≔ τ and 2πiR6 ≔ ρ ð2:2Þ

and their respective fugacities as

Qτ ¼ e2πiτ and Qρ ¼ e2πiρ:

Along the x6 direction, the M5-branes are placed at
positions

0 ≤ a1 ≤ a2 ≤ � � � ≤ aN ≤ 2πR6; ð2:3Þ

thereby partitioning the x6 direction into N intervals of
length

tf1 ¼ a2 − a1;

tf2 ¼ a3 − a2;

..

.

tfN−1
¼ aN − aN−1;

tfN ¼ 2πR6 −
XN−1

i¼1

tfi

¼ 2πR6 − ðaN − a1Þ
¼ −iρ − ðaN − a1Þ: ð2:4Þ

For a fixed R6, the brane configuration is specified
by (N − 1) independent non-negative parameters. The
fugacity associated with these independent parameters
tfi ; ði ¼ 1;…; N − 1Þ are denoted as

Qf1 ¼e−2πtf1 ; Qf2 ¼e−2πtf2 ; � � � ; QfN−1
¼e−2πtfN−1 :

ð2:5Þ

Thus, for meromorphic functions of the Qfi , we can view
the complexified itfi as (N − 1) independent positions on a
torus T 2ðρÞ of complex structure ρ.
The K different M2-branes are stretched4 between

the M5-branes and distributed among these N intervals
with multiplicities ðfkigÞ ¼ ðk1; k2;…; kNÞ such that
K ¼ P

N
i¼1 ki. In addition, there are M M-waves propagat-

ing along the intersections of M5- and M2-branes, i.e. the
directions x0 and x1. Finally, all branes are pointlike and
located at the origin with regards toR4⊥.

5 Schematically, the
whole setup is shown in Fig. 1.
The brane configuration saturates the BPS bound.

Furthermore, the spacetime Poincaré and supersymmetry
content is identical to that of the noncompact setting

4Since the transverse space R4⊥ is topologically trivial, the
M2-branes between any two M5-branes cannot be split but
form a single stack (see [2,3]).

5We can also replace R4⊥ by an affine AN−1 geometry, which is
dual to the M5-branes on a circle [26–28].
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(i.e. with R3
∥ × S1

R6
replaced by R4

∥), which we already
extensively discussed in [5]. In Sec. III, we present the
partition function of this configuration. However, in order
to render the latter well defined, we need to regularize
infrared divergences. To this end, we turn on various
deformations of R3

∥ × S1
R5

×R4⊥, which can be described
as aUð1Þϵ1 ×Uð1Þϵ2 ×Uð1Þm action with respect to the (0)
direction. Specifically, for local coordinates ðz1; z2Þ ¼
ðx2 þ ix3; x4 þ ix5Þ and ðw1; w2Þ ¼ ðx7 þ ix8; x9 þ ix10Þ
of R4

∥, maximum deformations one can introduce with
respect to x0 are

Uð1Þϵ1 ×Uð1Þϵ2 ×Uð1Þm∶
ðz1; z2Þ→ ðe2πiϵ1z1; e2πiϵ2z2Þ
ðw1;w2Þ→ ðe2πim−iπðϵ1þϵ2Þw1; e−2πim−πiðϵ1þϵ2Þw2Þ; ð2:6Þ

with the parameters ϵ1;2 and m. From the perspective of the
four-dimensional N ¼ 2� gauge theory, ϵ1;2 correspond to
the deformation parameters of an Ω background
[10,29,30],6 while m can be associated with a mass
deformation. In the present case, we are counting states
on a partially compactified R3

∥ × S1
R5
. This space is not

compatible with the above deformations. Therefore, in
what follows, we shall take a suitable limit of the
deformation that commutes with the isometries of
R3

∥ × S1
R5
.

The Ω and mass deformations also affect the nature of
the three torus S1

R0
× S1

R1
× S1

R6
. Among the three direc-

tions, the x0 direction is twisted while the x1 and x6

directions remain untwisted. So, we should expect for the
deformed brane configuration that the full U-duality group
of the brane configuration is reduced by the deformations
but that the Z2 exchange symmetry between S1

R1
and S1

R6
,

i.e. τ ↔ ρ in Eq. (2.2), is still intact.

Finally, we can also connect this configuration to a setup
of D-branes in string theory: indeed, by viewing T2 ∼ S1 ×
S1 (and particularly x0 ∼ x0 þ 2πR0), we can interpret the
direction x0 as the M-theory circle and dimensionally
reduce it to type IIA string theory. In this way, the M5-
branes are reduced to D4-branes, whose world volume
dynamics is described by five-dimensional N ¼ 1� gauge
theory with coupling constant g25 ¼ R0, the radius of the
M-theory circle. The M2-branes become F1 strings with
tension T2R1R6, where T2 is the M2-brane tension.

B. Calabi-Yau geometry

We can associate a toric Calabi-Yau threefold XN to the
brane configuration just discussed, whose web diagram is
shown in Fig. 2. In the toric diagram, the compactification of
the vertical direction reflects the fact that the brane configu-
ration is compactified along the x1 direction, while the
compactification of the horizontal direction reflects the fact
that the brane configuration is compactified along the x6

direction. Therefore, the toricwebofXN is defined on a torus.
The new feature of this manifold in comparison to the

noncompact configuration (i.e. R6 → ∞) discussed in [5],
whose toric web is defined on a cylinder, is a twofold
fibration structure: the XN can be seen as an elliptic
fibration over the affine AN−1 space, which itself is an
elliptic fibration over C1. Thus, XN is specified by three
parameters, τ, ρ, m, together with N − 1 parameters
appearing from resolution of affine AN−1 singularities.
The affine extension of AN−1 is a direct consequence of
compactifying x6 ∼ x6 þ 2πR6 in the brane setup. We will
see below that this affine extension will play an important
role in the gauge theory description.
This new structure can bemademore transparent by using

slightly different parameters than in the brane configuration.
The latter is usually parametrized with the help of the

FIG. 1. Brane configuration. The M5-branes are all located at
the origin in R4⊥, wrapped around T 2 and stretched along the
(6) direction.

FIG. 2. The toric web diagram of the Calabi-Yau threefold XN
dual to the brane configuration. Both the horizontal and vertical
directions are compactified on S1’s, defining the diagram on T 2.

6Several different string theoretic descriptions of the Ω back-
ground have been proposed in the literature (see for example
[31–35].) In particular, a world-sheet approach based on physical
scattering amplitudes has been proposed in [36–39] (see also
[40]). Furthermore, in [41] its relation to topological gravity has
been understood.
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distances between the M5-branes along x6, i.e. by
ðτ; m; tf1 ; tf2 ;…; tfN ; ϵ1; ϵ2Þ [see (2.4)]. We can replace
one of these, i.e. tfN , by the size of the circle transverse to
the M5-branes,

ρ ¼ i
XN
a¼1

tfa ¼ 2πiR6; ð2:7Þ

and therefore use the parameters ðτ; ρ; m; tf1 ; tf2 ;…; tfN−1
;

ϵ1; ϵ2Þ instead.
Recall that, in the toric web diagram, Fig. 2, the presence

of two S1’s is associated with the twofold fibration structure
in XN . The exchange of these two S1’s in the toric web
amounts to an exchange of the elliptic fiber and the elliptic
base in XN . This implies that, in the M5-M2-brane con-
figuration picture, there is another configuration dual to the
one discussed in Sec. II A: it is given by a single M5-brane
wrapped on a circle with transverse space affine AN−1
geometry and N distinct M2-brane configurations. These
two different brane configurations give rise to two dual
gauge theory descriptions, as we shall discuss presently.7

C. Gauge theories with affine gauge group

As explained in [3], we can associate Ω- and mass-
deformed supersymmetric gauge theories to the brane
configuration discussed in Sec. II A. In fact, the brane
setup can be related by a chain of U-dualities to two distinct
(but dual) gauge theories, which will play an important role
throughout this paper:

(a) Gauge theory 1: The first picture is to associate the
Kähler parameter τ of the T2 with the coupling
constant of a UðNÞ gauge theory, while the Kähler
parameters tf1 ;…; tfN are identified with the param-
eters of the Coulomb branch.8 This theory is reduced
to the N ¼ 2� supersymmetric gauge theory in four
dimensions.

(b) Gauge theory 2: The second picture is to associate the
Kähler parameters tfa’s of the base P

1’s of XN with the
coupling constants of a ½Uð1Þ�N quiver gauge theory. It
is important to notice that, because the x6 direction of
the brane configuration is compactified on a circle
(which gives rise to the affine AN−1 structure of XN),
this quiver is circular rather than linear:

For the reader’s convenience, we compiled below the
identification of all Calabi-Yau parameters with gauge
theory parameters from the above two different pictures.

Pm. Brane configuration Calabi-Yau Gauge theory 1 Gauge theory 2

τ size of S1 parallel
to M5-branes

Kähler moduli
of elliptic base

coupling constant compact Coulomb
branch parameter

ρ size of S1 transverse
to M5-branes

Kähler moduli
of affine AN−1 fiber

compact Coulomb
branch parameter

overall coupling constant

tfa separations between
adjacent M5-branes

Kähler moduli
of affine AN−1 fiber

compact Coulomb
branch parameter

coupling constants
a ¼ 1;…; N − 1

When counting the number of parameters, note that ρ ¼ P
N
a¼1 tfa and thus ðtf1 ;…; tfN Þ and ρ are not independent of one

another. In all cases, m and ϵ1;2 describe deformations.

D. IIa and IIb little string theories

The brane configuration discussed in Sec. II A can also be related to little string theories, which are six-dimensional
nonlocal quantum theories with nongravitational string excitations [17–20]. We can associate type IIa and IIb little strings
with type IIB and IIA NS5-branes in the decoupling limit

7In the situation where we have AN−1 geometry rather than affine AN−1 (i.e., ρ ↦ i∞), the two dual gauge theories were discussed
in [5].

8It is known that, if the theory is coupled to g many massless adjoint hypermultiplets, the partition function is equal to the partition
function of a two-dimensional topological field theory on a genus-g Riemann surface [42].
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gst → 0; lst ¼ finite ð2:8Þ

for the string coupling and string length, respectively. At
energies well below the string tension scale, the little string
states are decoupled and the type IIa and IIb little string
theories flow to the (1,1) super Yang-Mills theory and (2,0)
superconformal theory, respectively. Notice that, since the
limit (2.8) commutes with T-duality (which exchanges type
IIA and IIB string theories), the type IIa and IIb little string
theories are also related by T-duality. We discuss the precise
relation in Sec. II D 2.

1. Little string BPS excitations

We first explain how the little string theories are related
to the M-brane configuration discussed in Sec. II A. The
BPS string excitations of little string theories are realized
by the open M2-branes stretched between M5-branes.
Since there are N such intervals on the S1 transverse to
N M5-branes (i.e. along the direction x6), these excitations
carry ½Uð1Þ�N quantum numbers whose chemical potentials
and fugacities are tf1 ;…; tfN and ðQf1…; QfN Þ, respec-
tively, in Eq. (2.5).
The crucial feature of the M-brane configuration that

permits this identification with the little string states is the
compactness of the x6 direction: indeed, compared to the
noncompact counterpart (as discussed in our previous
paper [5]), the parameters (2.4) are modified in two
important ways:
(1) There is one additional finite interval between the

first and the last M5-brane, which we denoted as tfN
in (2.4). Therefore, even in the limit that all the N
M5-branes stack together and make the M-strings
tensionless, there always exists a finite-tension
string coming from the open M2-brane stretched
around the compact S1 of the x6 direction. This
finite-tension string defines the little string. In our
notation, the ground state of a single little string
corresponds to the configuration ðk1;…; kNÞ ¼
ð1;…; 1Þ, i.e. a closed M2-brane which pass through
allN M5-branes on S1. Likewise, the ground state of
k multiple little strings corresponds to the configu-
ration ðk1;…; kNÞ ¼ ðk;…; kÞ, which can be multi-
ply wound.

(2) The intervals tf1 ;…; tfN take values on a compact
domain. More precisely, compared to the noncom-
pact M-brane configuration, we have

0 ≤ tf1 ≤ � � � ≤ tfN < ∞ →

0 ≤ tf1 ≤ tf2 ≤ � � � ≤ tfN ≤ 2πR6:

This implies that the tensions of M-strings and little
strings can only take a finite maximum value. This
property is imperative for the little string theories to

retain stringy features such as T-duality, as we
discuss in the following section.

To better explain the nature of the little string BPS
excitations, we can compare the multiple M5-branes on
a transverse circle with multiple Dp-branes on a transverse
circle. In this comparison, we interpret the M-strings (i.e.
open M2-branes) as noncritical counterparts of open
fundamental strings, while a little string ground state
[defined by the configuration ðk1;…; kNÞ ¼ ð1;…; 1Þ] is
the noncritical counterpart of a closed fundamental string.
This analogy points to two very important facts: first, in the
same way as multiple open fundamental strings on the Dp-
branes can form a closed string and move freely in ambient
ten-dimensional bulk spacetime, multiple open M2-branes
ending on M5-branes can form a closed M2-brane and
move freely in 11-dimensional spacetime. Secondly, while
the open fundamental strings can carry a fractional winding
number around the transverse circle, the M-strings also
carry fractional winding numbers around the transverse
circle. These are measured by the chemical potentials
ðtf1 ;…; tfN Þ and the fugacities ðQf1 ;…; QfN Þ. However,
what makes the little strings very different from funda-
mental strings is that, in the decoupling limit Eq. (2.8), the
little strings are confined inside the five-brane world
volume, viz. the six-dimensional spacetime the little string
theories live in.

2. Relation to gauge theory and T-duality

The above discussion establishes a connection between
the little string theories and the M-brane configuration of
Sec. II A. Therefore, we can also relate the former to the
two gauge theories that we discussed in Sec. II C. To make
this connection precise, we first need to discuss the moduli
spaces of type IIa and IIb little string theories and explain
their connection to gauge theory 1 and gauge theory 2,
respectively.
To this end, we begin in six dimensions by first

considering the direction x1 in the M-brane configura-
tion to be noncompact (i.e. R1 → ∞).9 In this frame-
work, the nonchiral type IIa and the chiral IIb little
string theories are defined on the six-dimensional world
volume of the N five-branes and preserve 16 super-
charges each. Their respective moduli spaces of super-
symmetric vacua are

M6d
IIa ¼ ðR4ÞN=SN and M6d

IIb ¼ ðR4 × S1ÞN=SN:
ð2:9Þ

The S1 inM6d
IIb can be understood from the definition of the

IIb little string theory in terms of the world volume of M5-
branes. In the brane configuration of Sec. II A, it corresponds

9The direction x1 is singled out since it is untwisted
with respect to the deformations (2.6).
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to the S1
R6

of the compact x6 direction. Notice that the two
spaces (2.9) cannot be related to each other by any duality
transformation. Indeed, from the perspective of the type IIA
and IIB string theories, the only compact direction that is not
twisted by (2.6) (and would therefore lend itself to T-duality)
is x6, which, however, is transverse to the five-branes.
Next, we consider five-dimensional little string theories

by taking the direction x1 to be compact (i.e.R1 to be finite).
This compactification has very different impacts on the two
moduli spaces (2.9): on the one hand, the IIb moduli space
remains the same, since the six-dimensional tensormultiplet
does not generate a scalar when reduced to five dimensions.
On the other hand, the moduli space of IIa little string theory
gets enlarged, since the six-dimensional vector multiplet
generates a scalar in five dimensions. This scalar comes
from the Wilson loop around the dual circle ~S1

1=R1
and takes

values over the interval ½0; R1�.10 Therefore, the moduli
spaces of the five-dimensional little string theories are

M5d
IIa ¼

ðR4 × S1
R1
ÞN

SN
; and M5d

IIb ¼
ðR4 × S1

R6
ÞN

SN
:

ð2:10Þ
We see that parameters of circle-compactified IIa and IIb
little string theories are mapped to each other by the
exchange of the radii

R1 ↔ R6; ð2:11Þ
while the parameters originating from R4⊥ are the same.
We stress that Eq. (2.11) is the manifestation of

T-duality on the circle-compactified little string theories.
Phrased differently, while from the perspective of the
fundamental string theory the T-duality corresponds to
the map R1 ↔ 1=R1, from the perspective of the circle-
compactified five-branes the T-duality manifests as
exchanging circle-wrapped IIA and IIB five-branes.
This T-duality commutes with the decoupling limit
Eq. (2.8), so the T-duality on the circle-compactified
IIa and IIb little string theories is realized by Eq. (2.11).
Note also that, in the description in terms of the

elliptically fibered Calabi-Yau manifold XN , the exchange
Eq. (2.11) corresponds to fiber-base duality, i.e. the
exchange of the two Kähler parameters, τ and ρ of XN .
With the moduli spaces identified for the circle-

compactified little string theories, we are now ready
to discuss their relation to the exact marginal couplings
that specify the gauge theory descriptions introduced in
Sec. II C. The U-duality map discussed in Sec. II A
indicates that the IIa little string theory compactified on

S1
R1

is most naturally described by the Coulomb branch
of the five-dimensional UðNÞ gauge theory with the
gauge coupling given by τ. At a generic point of the
Coulomb branch, the theory is described by a ½Uð1Þ�N
quiver gauge theory, and therefore the Coulomb branch
is spanned by tf1 ;…; tfN. Thus, we identify gauge theory
1 with the gauge theory description of the circle-
compactified IIa little string theory.
Performing the T-duality R1 → 1=R1, we obtain circle-

compactified IIb little string theory, which is also
described by a ½Uð1Þ�N quiver gauge theory. Since
S1
R1

spans part of the Coulomb branch [as becomes
apparent from M5d

IIa in (2.10)], the gauge coupling
constants must be encoded by the brane configuration
along the x6 direction. Indeed, they are given by
tf1 ;…; tfN , while τ is the Coulomb branch parameter.
That is, we can identify gauge theory 2 with the circle-
compactified IIb little string theory.11

The T-duality (2.11) between the five-dimensional IIa
and IIb little string theories suggests that their partition
functions ZIIa and ZIIb are related to each other upon
exchange of τ and ρ:

ZIIaðτ; ρÞ ¼ ZIIbðρ; τÞ; ð2:12Þ

where we have only displayed the dependence on τ and ρ to
save writing. Actually, the connection of the little string
theories to the M-brane configuration discussed in Sec. II A
and the dual Calabi-Yau threefold XN suggests

ZIIaðτ; ρÞ ¼ ZXN
ðτ; ρÞ and ZIIbðτ; ρÞ ¼ ZXN

ðρ; τÞ;
ð2:13Þ

where ZXN
ðτ; ρ; m; tf1 ;…; tfN−1

Þ is the topological string
partition function associated with the elliptic Calabi-Yau
threefold XN . This makes (2.12) manifest.
Indeed, in Sec. V, we provide relations between BPS-

counting functions of little string configurations with
integer (i.e. nonfractional) winding and those with integer
momentum, and find that they are in line with this proposal.
A more careful study of (2.13) for general configuration
and its implications is currently under way [25].

III. PARTITION FUNCTIONS

In this section, we obtain the partition function of BPS
states corresponding to the brane configuration introduced
in Sec. II A. The most efficient way to compute the partition
function is to begin from the geometric perspective, i.e.
with the toric Calabi-Yau threefold XN introduced in
Sec. II B. The topological string partition function on10Here, we are invoking that, starting from the compact

M-brane configuration as defining IIb little string theory on
S1
R1
, compactification on the T-dual circle yields IIa little string

theory on ~S1
1=R1

.

11Our identifications agree with the little string world-sheet
description of [43], further discussed in [44].
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XN will be denoted by ZXN
ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ. It can

subsequently be related to the partition function of the
six-dimensional Ω-deformed field theories discussed in
Sec. II C.

A. Topological string partition function

The refined topological vertex formalism [7,9] can be
used to determine the topological string partition ZXN

of a
toric Calabi-Yau threefold XN using its toric web diagram
shown in Fig. 2. Recall the fact that XN can be related to
two dual gauge theories (as discussed in Sec. II C)
corresponds geometrically to fiber-base duality [45]. At
a computational level, it is related to the choice of a
“preferred direction” in the refined topological vertex
formalism [9]. Specifically, we need to choose a set of
parallel edges in the web in Fig. 2 such that every vertex is
one of the end points of one such edge. While the
topological string partition function is independent of this
choice (i.e. it is the same for each such choice), it leads to
different gauge theory interpretations of the partition
function. From Fig. 2, it is clear that there are two distinct
choices for the preferred direction: vertical and horizontal.
Before we discuss the form of the refined topological

string partition function for a specific choice of the
preferred direction, let us recall that the refined topo-
logical string partition function captures the degener-
acies of BPS states coming from M2-branes wrapping
the holomorphic curves in the Calabi-Yau threefold
X on which M-theory is compactified. Denote by

NðjL;jRÞ
C the number of BPS states, with spin content

ðjL; jRÞ under the five-dimensional little group
SUð2ÞL × SUð2ÞR, coming from an M2-brane wrapped
in the holomorphic curve C. Then, the refined topo-
logical string partition function is given by [8,46,47]

ZX ¼ PExpðFXÞ;
FX ¼

X
C∈H2ðX;ZÞ

e−AðCÞFCðϵ1; ϵ2Þ;

where PExp is the plethystic exponential, AðCÞ is the
complexified area of C, and FC captures the degener-
acies of single-particle states coming from M2-branes
wrapping C ⊂ X,

FC¼
X
jL;jR

NðjL;jRÞ
C ð−1Þ2jLþ2jR

�� ffiffiffi
t
q

r �
−jR þ…þ

� ffiffiffi
t
q

r �þjR
�

× ½ð ffiffiffiffiffi
tq

p Þ−jL þ���þð ffiffiffiffiffi
tq

p ÞþjL �;

with ðq; tÞ ¼ ðeiϵ1 ; e−iϵ2Þ. For a generic Calabi-Yau
threefold, NðjL;jRÞ can jump under complex structure

deformations such that
P

jRð−1Þ2jRN
ðjL;jRÞ
C remains con-

stant. Since toric Calabi-Yau threefolds do not admit any

complex structure deformations, therefore NðjL;jRÞ
C are

topological invariants captured by the refined topologi-
cal string partition function. In subsequent sections, we
will consider FC for specific curve classes in the Calabi-
Yau threefold XN and refer to it as the degeneracy
counting function or just the counting function.

1. Vertical description

If the preferred direction is chosen to be vertical, then
the various partitions associated with the horizontal
direction can be summed over completely to obtain
ZXN

ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ (see [3]):

ZXN
ðτ; m; tf1 ;…; tfN ; ϵ1;2Þ ¼ Z1ðm; tf1 ;…; tfN ; ϵ1;2Þ ~Zð1Þ

N ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ; ð3:1Þ

where Z1ðm; tf1 ;…; tfN ; ϵ1;2Þ is the part independent of τ and

~Zð1Þ
N ¼

X
k≥0

Qk
τCN;kðm; tf1 ;…; tfN ; ϵ1;2Þ ð3:2Þ

¼
X
α1���αN

Qjα1jþ���þjαN j
τ

YN
a¼1

ϑαaαaðQmÞ
ϑαaαað

ffiffi
t
q

q
Þ

Y
1≤a<b≤N

ϑαaαbðQabQ−1
m ÞϑαaαbðQabQmÞ

ϑαaαbðQab

ffiffi
t
q

q
ÞϑαaαbðQab

ffiffi
q
t

q
Þ

ð3:3Þ

is the part that depends on τ through the fugacity Qτ. In (3.2), we denote integer partitions as α1;…;αN . We also use the
notation

Qm ¼ e2πim; Qτ ¼ e2πiτ; q ¼ eiϵ1 ; t ¼ e−iϵ2 ; Qab ¼
Yb−1
k¼a

Qfk ; ð3:4Þ
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as well as

ϑμνðxÞ ¼
Y

ði;jÞ∈μ
θ1ðρ; x−1t−ν

t
jþi−1

2q−μiþj−1
2Þ

Y
ði;jÞ∈ν

θ1ðρ; x−1tμ
t
j−iþ1

2qνi−jþ1
2Þ: ð3:5Þ

Furthermore, θ1ðτ; zÞ is one of the Jacobi theta functions (see [48] for further information),

θ1ðρ; xÞ ¼ −iQ
1
8
ρðx1

2 − x−
1
2Þ
Y∞
k¼1

ð1 −Qk
ρÞð1 − xQk

ρÞð1 − x−1Qk
ρÞ: ð3:6Þ

Recall that ρ ¼ 2πiR6 [see Eq. (2.7)] and Qρ ¼ e2πiρ.

Associated with the partition function ~Zð1Þ
N , we also consider the free energy

ΣNðτ; ρ; m; tf1 ;…; tfN−1
; ϵ1; ϵ2Þ ¼ PLog ~Zð1Þ

N ðτ; ρ; m; tf1 ;…; tfN−1
; ϵ1; ϵ2Þ; ð3:7Þ

defined in terms of the plethystic logarithm of a function f:

PLogfðω; ϵ1; ϵ2Þ ≔
X∞
k¼1

μðkÞ
k

ln fðkω; kϵ1; kϵ2Þ; ð3:8Þ

where μðkÞ is the Möbius function. Physically, the function ΣN counts single-particle BPS bound states (see [49,50]). As
in (3.2), we can equally introduce the fugacity expansion

ΣNðτ; ρ; m; tf1 ;…; tfN−1
; ϵ1; ϵ2Þ ¼

X∞
k¼0

Qk
τΣN;kðρ; m; tf1 ;…; tfN−1

; ϵ1; ϵ2Þ: ð3:9Þ

The coefficient functions can be further expanded in terms of the N − 1 relative Kähler parameter fugacities
ðQf1 ; Qf2 ;…; QfN−1

Þ:

ΣN;kðρ; m; tf1 ;…; tfN−1
; ϵ1; ϵ2Þ ¼

X
k1;…;kN−1

Qk1
f1
…QkN−1

fN−1
Σðk1;…;kN−1Þ
N;k ðρ; m; ϵ1; ϵ2Þ: ð3:10Þ

2. Horizontal description

If in Fig. 2 the preferred direction is chosen to be horizontal, then the topological string partition function
ZXN

ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ has the form

ZXN
ðτ; m; tf1 ;…; tfN ; ϵ1;2Þ ¼ Z2ðN; τ; m; ϵ1;2Þ ~Zð2Þ

N ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ; ð3:11Þ

where Z2ðN; τ; m; ϵ1;2Þ is the part independent of tfa . In

order to write ~Zð2Þ
N ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ, we recall [1]

that the topological string partition function can be
obtained by gluing together building blocksWνaνaþ1

labeled
by the partitions of integers νa and νaþ1. The Wνaνaþ1

’s are
open topological string amplitudes but can also be con-
sidered as capturing the BPS degeneracies of M2-branes
ending on a single M5-brane from either side. The web
diagram corresponding to this situation is shown in Fig. 3
below.

FIG. 3. The building block of a partition function of a
configuration of M5-branes wrapping a circle.
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The expression for Wνaνaþ1
was calculated in [1] using the refined topological vertex formalism [8,9] and is given by

Wνtaνaþ1
ðτ; m; t; qÞ ¼ W∅∅ðτ; m; t; qÞDνtaνaþ1

ðτ; m; t; qÞ; ð3:12Þ
where

W∅∅ðτ; m; t; qÞ ¼
Y∞
k¼1

�
ð1 −Qk

τÞ−1
Y∞
i;j¼1

ð1 −Qk
τQ−1

m q−jþ1
2t−iþ1

2Þð1 −Qk−1
τ Qmq−jþ

1
2t−iþ1

2Þ
ð1 −Qk

τq−jþ1t−iÞð1 −Qk
τq−jt−iþ1Þ

�
ð3:13Þ

and

Dνtaνaþ1
ðτ; m; t; qÞ ¼

�
t
‖νt
aþ1

‖2

2 q
‖νa‖2

2 Q
jνa jþjνaþ1 j

2
m

�−1

×
Y∞
k¼1

� Y
ði;jÞ∈νa

ð1 −Qk
τQ−1

m q−νa;iþj−1
2t−ν

t
aþ1;jþi−1

2Þð1 −Qk−1
τ Qmqνa;i−jþ

1
2tν

t
aþ1;j−iþ1

2Þ
ð1 −Qk

τqνa;i−jt
νta;j−iþ1Þð1 −Qk−1

τ q−νa;iþj−1t−ν
t
a;jþiÞ

×
Y

ði;jÞ∈νaþ1

ð1 −Qk
τQ−1

m qνaþ1;i−jþ1
2tν

t
a;j−iþ1

2Þð1 −Qk−1
τ Qmq−νaþ1;iþj−1

2t−ν
t
a;jþi−1

2Þ
ð1 −Qk

τqνaþ1;i−jþ1tν
t
aþ1;j−iÞð1 −Qk−1

τ q−νaþ1;iþjt−ν
t
aþ1;jþi−1Þ

�
: ð3:14Þ

Here, our notation follows (3.4). Furthermore, for a partition ν of length lðνÞ we define

jνj ¼
XlðνÞ
i¼1

νi; ∥ν∥2 ¼
XlðνÞ
i¼1

ν2i ; ð3:15Þ

and νt denotes the transposed partition. From (3.12), the partition function can be calculated by gluing several Dνaνaþ1
’s

together by summing over the partitions νa and νaþ1. For example, the partition functions of X2 which is dual to the brane
configuration consisting of two M5-branes on the circle is given by

ZX2
¼

X
ν1;ν2

ð−Qf1Þjν1jð−Qf2Þjν2jWν1ν
t
2
ðτ; m; t; qÞWν2ν

t
1
ðτ; m; q; tÞ: ð3:16Þ

For general N, the toric web diagram of the Calabi-Yau threefold XN that is dual to N M5-branes distributed
on S1-compactified x6 direction is given in Fig. 2. The latter encodes how various Wνaνaþ1

’s need to be glued together to
compute the partition function. Specifically,

ZXN
ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ ¼ ðW∅∅ÞN

X
ν1;…;νN

�YN
a¼1

ð−QfaÞjνaj
�
Zν1ν2���νN ðτ; m; ϵ1; ϵ2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~Zð2Þ
N ðτ;m;tf1 ;…;tfN ;ϵ1;ϵ2Þ

; ð3:17Þ

where the tfa -independent contribution in (3.11) is given by

Z2ðN; τ; m; ϵ1;2Þ ¼ ðW∅∅ðτ; m; t; qÞÞN ð3:18Þ

and furthermore

Zν1ν2���νN ¼
�Dν1ν

t
2
ðt; qÞDν2ν

t
3
ðq; tÞDν3ν

t
4
ðt; qÞ � � �DνtNν1

ðq; tÞ if N is even;

Dν1ν
t
2
ðt; qÞDν2ν

t
3
ðq; tÞDν3ν

t
4
ðt; qÞ � � �DνtNν1

ðt; qÞ if N is odd:
ð3:19Þ

Using Eq. (3.12), the partition function can be written as

~Zð2Þ
N ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ ¼

X
ν1;…;νN

�YN
a¼1

ð−QfaÞjνaj
�YN

a¼1

Y
ði;jÞ∈νa

θ1ðτ; zaijÞθ1ðτ; vaijÞ
θ1ðτ;wa

ijÞθ1ðτ;uaijÞ
; ð3:20Þ
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where the sum runs over the set of N many integer
partitions fν1; ν2;…; νNg. For their arguments, we intro-
duced the following shorthand notations:

zaij ¼ −mþ ϵ1

�
νa;i − jþ 1

2

�
− ϵ2

�
νtaþ1;j − iþ 1

2

�
;

vaij ¼ −m − ϵ1

�
νa;i − jþ 1

2

�
þ ϵ2

�
νta−1;j − iþ 1

2

�
;

wa
ij ¼ ϵ1ðνa;i − jþ 1Þ − ϵ2ðνta;j − iÞ;

uaij ¼ ϵ1ðνa;i − jÞ − ϵ2ðνta;j − iþ 1Þ: ð3:21Þ

From the viewpoint of the brane configuration of Sec. II A,
the partition function (3.20) captures BPS excitations of the
stretched M2-branes. The fact that M5-branes are distrib-
uted on the S1-compactified x6 direction is reflected in
(3.20) through the identifications

νNþ1 ¼ ν1 and ν0 ¼ νN: ð3:22Þ

Again, associated with the partition function ~Zð2Þ
N , we

may introduce the free energy

ΩNðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ
¼ PLog ~Zð2Þ

N ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ; ð3:23Þ

where PLog is defined in (3.8). The free energy (3.23) in
turn can be expanded in powers of the Kähler moduli
ðtf1 ; tf2 ;…; tfN Þ [equivalently, ðtf1 ; tf2 ;…; tfN−1

Þ and ρ]:

ΩNðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ
¼

X
k1;…;kN≥0

Qk1
f1
� � �QkN

fN
Gðk1;…;kNÞðτ; m; ϵ1; ϵ2Þ; ð3:24Þ

where Gð0;…;0Þ ¼ 0. Written in this form, the functions
Gðk1;…;kNÞ encode the degeneracies of single-particle BPS
bound states in configurations with N M5-branes distrib-
uted on a circle with ki M2-branes stretched between the ith
and the (iþ 1)th M5-brane for i ¼ 1;…; N.

3. Noncompact brane configuration

For completeness, we also present the topological string
partition function for the case of a noncompact x6 direction,
i.e. for the case that the horizontal direction in Fig. 2 is
decompactified to R1. From the brane configuration, this
corresponds to the limit in which one of the distances tfa is
taken to infinity.
In the simplest case, for N ¼ 2, if we take the limit

Qf2 ↦ 0 in (3.16), we get the partition function of the
Calabi-Yau threefold X2 which is an A1 space fibered over

T2 and is dual to the brane configuration inwhichwehave two
M5-branes on a line, i.e. separated from each other by tf1,

Zline
X2

¼
X
ν

ð−Qf1ÞjνjW∅νðτ; m; t; qÞWνt∅ðτ; m; q; tÞ:

ð3:25Þ

More generally, the partition functions of an N ≥ 2

M5-brane separated along a noncompact direction x6 can
be obtainedby restrictingoneof thepartitions, say νN ¼ ν0, to
be trivial:

Zline
XN

ðτ; m; tf1 ;…; tfN−1
; ϵ1; ϵ2Þ

¼ ðW∅∅ÞN
X

ν1;…; νN−1

ν0 ¼ νN ¼ ∅

�YN
a¼1

ð−QfaÞjνaj
�

×
YN
a¼1

Y
ði;jÞ∈νa

θ1ðτ; zaijÞθ1ðτ; vaijÞ
θ1ðτ;wa

ijÞθ1ðτ; uaijÞ
: ð3:26Þ

This is indeed the sole contribution to the partition function
in the limit QfN ¼ 0, corresponding to the infinite volume
limit of tfN , which sends the interval between the first andNth
M5-brane on S1 to infinity. The partition function Zline

XN
has

already been discussed in [1–3,5].

B. Gauge theory partition functions

Given the topological string partition function
ZXN

ðτ; m; tf1 ; ·; tfN ; ϵ1;2Þ, we can extract the instanton par-
tition functions of the two gauge theories associated with XN
as explained in Sec. II. 3. This depends on the identification of
the parameters of the affine AN−1 fibration over T2 discussed
earlier with the parameters of each gauge theory.

1. Gauge theory 1

We first discuss the reduction of the brane configuration
(2.1) over S1ðx1Þ to a five-dimensionalUðNÞ gauge theory.
We identify the Kähler parameter τ of T2 with its gauge
coupling constant, and extract the Nekrasov (instanton)
partition function by dividing out the classical and one-loop
contribution in the following manner:

~Zð1Þ
N ðτ; ρ; m; tf1 ;…; tfN−1

; ϵ1; ϵ2Þ

¼ ZXN
ðτ; ρ; m; tf1 ;…; tfN−1

Þ
limτ↦i∞ZXN

ðτ; ρ; m; tf1 ;…; tfN−1
Þ ð3:27Þ

¼
X
k≥0

Qk
τCN;kðρ; m; tf1 ;…; tfN−1

; ϵ1; ϵ2Þ: ð3:28Þ

Here, we have also identified the Kähler parameters of XN
(which we parametrize by tf1 ;…; tfN−1

and ρ) with the
gauge theory parameters of the configuration space
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ðS1ÞN=SN . The explicit expression for ~Zð1Þ
N ðτ; m; tf1 ;

…; tfN ; ϵ1;2Þ is given in Eq. (3.3).
Thus, the topological string partition function ZXN

is the supersymmetric partition function of gauge
theory 1 introduced in Sec. II C. The quantity
~Zð1Þ
N ðτ; ρ; m; tf1 ;…; tfN−1

; ϵ1; ϵ2Þ is its instanton contribu-
tion, i.e. the coefficient function CN;k in (3.27) encodes the
charge k instanton contribution. Specifically, if MðN; kÞ
denotes the moduli space of SUðNÞ instantons of charge k,
then the coefficient CN;k is the elliptic genus of MðN; kÞ
(see [8,9]):

CN;kðm; tf1 ;…; tfN ; ϵ1; ϵ2Þ
¼ ϕMðN;kÞðρ; m; tf1 ;…; tfN−1

; ϵ1; ϵ2Þ; ð3:29Þ

with ρ being the elliptic parameter of the elliptic genus.
Furthermore, ðtf1 ;…; tfN−1

Þ are the equivariant deformation
parameters associated with the Cartan Uð1ÞN−1 global
symmetry and ðϵ1; ϵ2Þ are the equivariant parameters of
the Uð1Þ × Uð1Þ action on MðN; kÞ coming from the
Cartan of the SOð4Þ action on C2.
Finally, in light of the discussion in Sec. II D, we see that

the coefficients Σðk1;…;kN−1Þ
N;k ðρ; m; ϵ1; ϵ2Þ defined in (3.10)

encode the BPS degeneracies of type IIa little strings with
charge configuration ðk1 � � � ; kN−1Þ.

2. Gauge theory 2

Upon T-dualizing along S1ðx6Þ, the M5-branes
are mapped to an affine AN−1 geometry. This gives a
five-dimensional ½Uð1Þ�N affine quiver gauge theory.
We identify the Kähler parameters tf1 ; tf2 ;…; tfN—
equivalently, ðtf1 ; tf2 ;…; tfN−1

Þ and ρ with the gauge
coupling constants—and extract the BPS state partition
function by dividing out the vacuum contribution

~Zð2Þ
N ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ

¼ ZXN
ðτ; m; tf1 ;…; tfN Þ

limQf1
↦0…limQfN

↦0ZXN
ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ

;

¼
X

ν1;…;νN

�YN
a¼1

ð−QfaÞjνaj
�
Zν1ν2���νN ðτ; m; ϵ1; ϵ2Þ:

ð3:30Þ

The explicit form of ~Zð2Þ
N is already given in Eq. (3.20), so

the coefficient functions are

Zν1ν2���νN ðτ; m; ϵ1; ϵ2Þ ¼
YN
a¼1

Y
ði;jÞ∈νa

θ1ðτ; zaijÞθ1ðτ; vaijÞ
θ1ðτ;wa

ijÞθ1ðτ; uaijÞ
:

ð3:31Þ

Thus, the topological string partition function ZXN
is the

supersymmetric partition function of gauge theory 2 of

Sec. II. 3, and the corresponding ~Zð2Þ
N contains the con-

tribution of BPS excitations. Since the gauge theory is
½Uð1Þ�N quiver gauge theory, therefore the pointlike
instantons are labeled by ðk1; k2;…; kNÞ where ka is
the pointlike instanton charge for the ath factor. The
corresponding instanton moduli space is Nk1;…;kN ≔
Hilbk1 ½C2�×Hilbk2 ½C2�× � � �×HilbkN ½C2� where Hilbk½C2�
is the Hilbert scheme of k points on C2. The coefficient
functions Zk1���kN are given by an equivariant integral over
Nk1;…;kN [1,3].
In light of the discussion in Sec. II D, we see that

the coefficients Gðk1;…;kNÞðτ; m; ϵ1; ϵ2Þ encode degeneracies
of type IIb little strings with charge configuration
ðk1;…; kNÞ.

3. Noncompact partition function

For comparison, we also recall the instanton partition
function in the limit R6 → ∞:

~Zline
N ðτ;m;tf1 ;…;tfN−1

;ϵ1;ϵ2Þ

¼ Zline
XN

ðτ;m;tf1 ;…;tfN−1
Þ

limQf1
↦0…limQfN−1↦0Zline

XN
ðτ;m;tf1 ;…;tfN−1

;ϵ1;ϵ2Þ
;

¼
X

ν1;…;νN−1

ν0¼νN¼∅

�YN
a¼1

ð−QfaÞjνaj
�YN

a¼1

Y
ði;jÞ∈νa

θ1ðτ;zaijÞθ1ðτ;vaijÞ
θ1ðτ;wa

ijÞθ1ðτ;uaijÞ
;

where Zline
XN

is introduced in (3.26). We can similarly define
the free energy

Ωline
N ðτ; m; tf1 ;…; tfN−1

; ϵ1; ϵ2Þ
¼ PLog ~Zline

N ðτ; m; tf1 ;…; tfN−1
; ϵ1; ϵ2Þ; ð3:32Þ

which we can expand in counting the functions of single-
particle BPS bound states:

Ωline
N ðτ; m; tf1 ;…; tfN−1

; ϵ1; ϵ2Þ
¼

X
k1;…;kN−1≥0

Qk1
f1
� � �QkN−1

fN−1
Fðk1;…;kN−1Þðτ; m; ϵ1; ϵ2Þ:

ð3:33Þ

We discussed the properties of ~Zline
N and Fðk1;…;kN−1Þ in great

detail in [5]. The latter counts the BPS bound states of
configurations in which N M5-branes are distributed
along a noncompact direction with ki M2-branes stretched
between the ith and the (iþ 1)th M5-brane.
For the reader’s convenience, we provide the

following overview of the notation for the three different
theories
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Quantity Gauge theory 1 Gauge theory 2 Noncompact theory

variables τ; ρ; m; tf1 ;…tfN−1
; ϵ1;2 τ; m; tf1 ;…tfN ; ϵ1;2 τ; m; tf1 ;…tfN−1

; ϵ1;2

partition function ~Zð1Þ
N ðτ; ρ; m; tfa ; ϵ1;2Þ ~Zð2Þ

N ðτ; m; tfa ; ϵ1;2Þ ~Zline
N ðτ; m; tfa ; ϵ1;2Þ

free energy ΣN;kðρ; m; tfa ; ϵ1;2Þ ΩNðτ; m; tfa ; ϵ1;2Þ Ωline
N ðτ; m; tfa ; ϵ1;2Þ

counting functions ΣðfkigÞ
N;k ðρ; m; ϵ1;2Þ GðfkigÞðτ; m; ϵ1;2Þ FðfkigÞðτ; m; ϵ1;2Þ

In [5] it was argued that limϵ2→0Fðk1;…;kN−1Þðτ; m; ϵ1; ϵ2Þ
are related to the equivariant elliptic genus of the moduli
space of monopole strings with charge ðk1; k2;…; kN−1Þ.
More precisely, ifMk1;…;kN−1

is the moduli space of charge
ðk1;…; kN−1Þ monopoles, then its elliptic genus
ϕðMk1;…;kN−1

Þ is given by

ϕðMk1;…;kN−1
Þ ¼ lim

ϵ2↦0

Fðk1;…;kN−1Þðτ; m; ϵ1; ϵ2Þ
Fð1Þðτ; m; ϵ1; ϵ2Þ

: ð3:34Þ

Let us define the analog of the right-hand side of the above
equation for the compact brane configuration case,

Pk1;…;kN ðτ; m; ϵ1Þ ≔ lim
ϵ2↦0

Gðk1;…;kNÞðτ; m; ϵ1; ϵ2Þ
Gð1Þðτ; m; ϵ1; ϵ2Þ

: ð3:35Þ

The function Pk1;…;kN ðτ; m; ϵ1Þ have modular properties
very similar to the right-hand side of Eq. (3.34),

Pk1;…;kN ðτ þ 1; m; ϵ1Þ ¼ Pk1;…;kN ðτ; m; ϵ1Þ

Pk1;…;kN

�
−
1

τ
;
m
τ
;
ϵ1
τ

�
¼ e

2πiðm2−ϵ2
1
Þ

τ ðK−1Þ

× Pk1;…;kN ðτ; m; ϵ1Þ;
Pk1;…;kN ðτ; mþ lτ þ r; ϵ1Þ ¼ e−2πiKl2τþ4πimK

× Pk1;…;kN ðτ; m; ϵ1Þ;
ð3:36Þ

where K ¼ k1 þ � � � þ kN . These modular transformation
properties together with relation between Fðk1;…;kN−1Þ and
Gðk1;…;kN−1Þ lead us to conjecture that Pk1;…;kN ðτ; m; ϵ1Þ
is the equivariant elliptic genus of the moduli space of
monopoles of charge ðk1;…; kNÞ. More specifically, if we
denote the relative moduli space of affine AN−1 monopoles
of charge ðk1;…; kNÞ by MKK

k1;…;kN
, then

ϕðMKK
k1;…;kN

Þ ¼ Pk1;…;kN ðτ; m; ϵ1Þ: ð3:37Þ

C. Modular properties

The topological string partition functionZXN
depends on

two different modular parameters, τ and ρ. These transform

under the SLð2;ZÞ × SLð2;ZÞmodular group action in the
following manner12:

ðτ; ρ; m; tfa ; ϵ1; ϵ2Þ

↦

�
aτ þ b
cτ þ d

; ρ;
m

cτ þ d
; tfa ;

ϵ1
cτ þ d

;
ϵ2

cτ þ d

�
; ð3:38Þ

ðτ; ρ; m; tfa ; ϵ1; ϵ2Þ

↦

�
τ;
aρþ b
cρþ d

;
m

cρþ d
;

tfa
cρþ d

;
ϵ1

cρþ d
;

ϵ2
cρþ d

�
;

ð3:39Þ

where
h a b
c d

i
∈ SLð2;ZÞ. The Calabi-Yau threefold XN

is an affine AN−1 space fibered over T 2. In this geometric
description, τ is the Kähler parameter of the base and
therefore the fiber parameters are neutral under the modular
transformation (3.38) (see [51]). The parameter ρ is the
Kähler parameter of the elliptic fiber in the affine
AN−1 space.
We will see that the topological string partition function

ZXN
ðτ; ρ; m; tf1 ;…; tfN−1

; ϵ1; ϵ2Þ is invariant (modulo a
holomorphic anomaly [1–3,5] and nonperturbative correc-
tions [51]) under the above transformations, i.e. ZXN

is
manifestly invariant under the SLð2;ZÞ × SLð2;ZÞ modu-
lar group action. The full invariance group might actually
be larger, as in the case N ¼ 1 for which the full invariance
group is Spð2;ZÞ [8].

1. Transformation τ ↦ aτþb
cτþd

To show thatZXN
is invariant under Eq. (3.38), we use its

form given by Eq. (3.17),

ZXN
ðτ; m; tf1 ;…; tfN ; ϵ1;2Þ
¼ ðW∅∅ÞN ~Zð2Þ

N ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ: ð3:40Þ

The function ~Zð2Þ
N ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ is a sum of a

product of Jacobi theta functions θ1ðτ; zÞ given by

12Here, we choose a convention in which we treat
ðtf1 ;…; tfN−1

; ρÞ as independent variables.
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~Zð2Þ
N ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ

¼
X
ν1���νN

YN
a¼1

ð−QfaÞjνaj
Y

ði;jÞ∈νa

θ1ðτ; zaijÞθ1ðτ; vaijÞ
θ1ðτ;wa

ijÞθ1ðτ; uaijÞ
; ð3:41Þ

where zaij; v
a
ij; w

a
ij, and uaij are given in Eq. (3.21). The

θ1ðτ; zÞ transform under τ ↦ − 1
τ in the following manner:

θ1ð− 1
τ ;

z1
τ Þ

θ1ð− 1
τ ;

z2
τ Þ

¼ e
iπ
τ ðz21−z22Þ θ1ðτ; z1Þ

θ1ðτ; z2Þ
: ð3:42Þ

To understand the nontrivial phase factor, we recall that
θ1ðτ; zÞ can be expressed as

θ1ðτ; zÞ ¼ η3ðτÞð2πizÞ exp
�X∞
k¼1

B2k

ð2kÞð2kÞ!E2kðτÞð2πizÞ2k
�
;

ð3:43Þ
where ηðτÞ is the Dedekind eta function, B2k are the
Bernoulli numbers, and E2kðτÞ are the Eisenstein series.
Equation (3.43) in particular also contains E2ðτÞ, which is
holomorphic but not a modular form. It is well known that
by adding a term

E2ðτÞ ↦ Ê2ðτ; τ̄Þ ¼ E2ðτÞ −
3

πImτ
; ð3:44Þ

it can be made into a modular form of weight 2. However,
since the added term is not holomorphic in τ, Ê2ðτ; τ̄Þ is
nonholomorphic. If we introduce

θ̂1ðτ; zÞ ¼ η3ðτÞð2πizÞ exp
�ð2πizÞ2

24
Ê2ðτ; τ̄Þ

þ
X∞
k¼2

B2k

ð2kÞð2kÞ!E2kðτÞð2πizÞ2k
�
; ð3:45Þ

then the replacement

YN
a¼1

Y
ði;jÞ∈νa

θ1ðτ; zaijÞθ1ðτ; vaijÞ
θ1ðτ;wa

ijÞθ1ðτ; uaijÞ

↦
YN
a¼1

Y
ði;jÞ∈νa

bθ1ðτ; zaijÞbθ1ðτ; vaijÞbθ1ðτ;wa
ijÞbθ1ðτ; uaijÞ ð3:46Þ

in Eq. (3.41) makes ~Zð2Þ
N ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ modular

invariant under Eq. (3.38). Similarly, sinceW∅∅ is a ratio of
products of θ1ðτ; zÞ, it too becomes modular invariant under
a similar replacement.13 Thus the complete partition

function ZXN
is invariant under modular transformation

modulo the holomorphic anomaly, introduced by θðτ; zÞ ↦
θ̂1ðτ; zÞ, and possible nonperturbative corrections.
This is a good place to contrast the compact situation

we presently consider with the noncompact situation.
Without the replacement θðτ; zÞ ↦ θ̂1ðτ; zÞ, the summand
in Eq. (3.41),

Zν1���νN ðτ; m; ϵ1; ϵ2Þ ¼
YN
a¼1

Y
ði;jÞ∈νa

θ1ðτ; zaijÞθ1ðτ; vaijÞ
θ1ðτ;wa

ijÞθ1ðτ; uaijÞ
;

ð3:47Þ
transforms by a phase factor

Zν1;…;νN

�
−
1

τ
;
m
τ
;
ϵ1
τ
;
ϵ2
τ

�
¼ e

2πir~ν
τ Zν1;…;νN ðτ; m; ϵ1; ϵ2Þ:

ð3:48Þ
Here,

r~νðm; ϵ1; ϵ2Þ

¼ 1

2

XN
a¼1

X
ði;jÞ∈νa

ððzaijÞ2 þ ðvaijÞ2 − ðwa
ijÞ2 − ðuaijÞ2Þ;

ð3:49Þ
which depends explicitly on the shape of the partitions
fν1;…; νNg. This is in contrast to the noncompact case
Zline

N in Eq. (3.26): as discussed in [5], for νN ¼ ∅,
rν1;…;νn−1;∅ðm; ϵ1; ϵ2Þ depends on the size of the partitions
jν1j;…; jνN−1j but not on their shape. Roughly speaking,
this difference between noncompact and compact situations
originates from whether the end point partitions ν0; νN are
trivial or not.
For a nontrivial νN , we can write r~ν in the following

suggestive form:

r~νðm; ϵ1; ϵ2Þ ¼ Km2 þ
�
p~ν −

K
2

�
ϵ2þ

þ
�
−p~ν −

K
2

�
ϵ2− with K ¼

XN
i¼1

jνij;

ð3:50Þ
where only p~ν depends on the form of the partitions. From
the brane configuration point of view, K corresponds to the
total number of M2-branes stretched between the N M5-
branes. It is clear from Eq. (3.50) that the partition function
(3.20) has interesting modular properties in the Nekrasov-
Shatashvili (NS) limit ϵ2 → 0 (see [52,53])14 such that
ϵþ ¼ ϵ− ¼ ϵ1=2. Indeed, in this case, we have

13Since it is a product of an infinite number of theta functions
its modular properties are better understood by writing it in terms
of a double elliptic gamma function. In this way, one can show
that it satisfies a nonperturbative modular transformation, i.e.
that it is modular invariant up to nonperturbative corrections in
Ω-deformation parameters [51].

14For a recent application of the NS limit to monopoles and
vortices in the Higgs phase, see [54].
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lim
ϵ2→0

r~νðm; ϵ1; ϵ2Þ ¼ Km2 −
K
4
ϵ21; ð3:51Þ

which depends only on fν1;…; νNg through K and hence
can be absorbed in Qfa , making the partition function
modular invariant without the holomorphic anomaly at the
expense of making tfa transform as

tfa ↦ tfa −
�
m2 −

ϵ21
4

�
: ð3:52Þ

In our previous work [5], we gave a physical interpretation
for the necessity of the NS limit when comparing BPS-
counting functions of M- and monopole-string excitations
(see also [4]).

2. Transformation ρ ↦ aρþb
cρþd

Now let us consider the transformation with respect to ρ
given by (3.39). To study it, we use the form of the
topological string partition function of XN given by
Eq. (3.1),

ZXN
ðτ; m; tf1 ;…; tfN ; ϵ1;2Þ
¼ Z1ðm; tf1 ;…; tfN ; ϵ1;2Þ ~Zð1Þ

N ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ:
ð3:53Þ

We recall from (3.2) that the function
~Zð1Þ
N ðτ; m; tf1 ;…; tfN ; ϵ1; ϵ2Þ is given by

~Zð1Þ
N ¼

X
α1���αN

Qjα1jþ���þjαN j
τ

YN
a¼1

ϑαaαaðQmÞ
ϑαaαað

ffiffi
t
q

q
Þ

×
Y

1≤a<b≤N

ϑαaαbðQabQ−1
m ÞϑαaαbðQabQmÞ

ϑαaαbðQab

ffiffi
t
q

q
ÞϑαaαbðQab

ffiffi
q
t

q
Þ
; ð3:54Þ

whose building blocks are the product of θ1ðτ; zÞ functions:

ϑμνðxÞ ¼
Y

ði;jÞ∈μ
θ1ðρ; x−1t−ν

t
jþi−1

2q−μiþj−1
2Þ

×
Y

ði;jÞ∈ν
θ1ðρ; x−1tμ

t
j−iþ1

2qνi−jþ1
2Þ: ð3:55Þ

Since it is a sum over products of θ1ðτ; zÞ, as discussed in
Sec. (III C 1), it too can be made modular invariant at the
expense of introducing a holomorphic anomaly. The
function Z1 in Eq. (3.53) has many properties similar to
W∅∅. (In a recent study [55], it was shown that Z1 is
modular invariant up to nonperturbative corrections in
Ω-deformation parameters in the refined topological
string setup.) Thus the complete partition function

ZXN
ðτ; m; tf1 ;…; tfN ; ϵ1;2Þ is invariant under the modular

transformation equation (3.39).
So far, we showed that the topological string partition

function ZXN
can be made fully modular invariant with

respect to ρ or τ. These two Kähler parameters are
independent, so it is expected that ZXN

can be made
simultaneously modular invariant with respect to both ρ
and τ. We will not discuss technical details of the
construction here except for remarking that a closely
parallel question was answered affirmatively positive in
the context of topological string amplitudes of type II string
theory compactified on a two-parameter model of ellipti-
cally fibered Calabi-Yau threefolds [56,57].

IV. COMPACT VERSUS NONCOMPACT
FREE ENERGIES

We start by searching for relations between the BPS-
counting functions FðfkigÞðτ; m; ϵ1; ϵ2Þ of the noncompact
theory and GðfkigÞðτ; m; ϵ1; ϵ2Þ of gauge theory 2. We first
consider the special class of configurations fkig ¼
f1;…; 1g and conjecture the relation for the generic case
based on an emergent pattern. We also comment on
implications of this pattern on the little string theories.

A. Examples of compact free energies Gðk1;…;kNÞ

The simplest configuration in the compact case corre-
sponds to a single M2-brane starting and ending on the
same M5-brane. In our notation, this corresponds to N ¼ 1
and fkig ¼ ð1Þ. The BPS bound states of this configuration
are counted by

Gð1Þðτ; m; ϵ1; ϵ2Þ ¼
θ1ðτ;mþ ϵ−Þθ1ðτ;m − ϵ−Þ

θ1ðτ; ϵ1Þθ1ðτ; ϵ2Þ
: ð4:1Þ

On the other hand, the simplest configuration in the
noncompact case corresponds to a single M2-brane
stretched between two M5-branes, for which the corre-
sponding BPS-counting function is given by

Fð1Þðτ; m; ϵ1; ϵ2Þ ¼
θ1ðτ;mþ ϵþÞθ1ðτ;m − ϵþÞ

θ1ðτ; ϵ1Þθ1ðτ; ϵ2Þ
: ð4:2Þ

Comparing (4.1) with (4.2), we notice the following
relation:

Gð1Þðτ; m; ϵ1; ϵ2Þ ¼ −Fð1Þðτ; m; ϵ1;−ϵ2Þ
¼ −Fð1Þðτ; m;−ϵ1; ϵ2Þ: ð4:3Þ

Most importantly, while both Fð1Þ and Gð1Þ have a first
order pole for ϵ2 ¼ 0, we find in the NS limit the relation
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lim
ϵ2→0

ϵ2Gð1Þðτ; m; ϵ1; ϵ2Þ ¼ lim
ϵ2→0

ϵ2Fð1Þðτ; m; ϵ1; ϵ2Þ; ð4:4Þ

which we will use later on.
The next, more complicated configuration is Gð1;1Þ,

which corresponds to two M5-branes with two M2-branes
stretched between them. Their BPS-counting function is
given by

Gð1;1Þ ¼
�
θ1ðτ;mþ ϵ−Þθ1ðτ;m − ϵ−Þ

θ1ðτ; ϵ1Þθ1ðτ; ϵ2Þ
�

2

−
�
θ1ðτ;mþ ϵþÞθ1ðτ;m − ϵþÞ

θ1ðτ; ϵ1Þθ1ðτ; ϵ2Þ
�

2

: ð4:5Þ

Further configurations can be worked out in the same
manner. However, their free energies are generically very
complicated and we will not display them here in full
generality.
Following the reasoning in our previous paper [5] for the

noncompact free energies FðfkigÞ, we will consider the NS
limit together with a series expansion in the remaining
deformation parameter ϵ1:

lim
ϵ2→0

GðfkigÞðτ; m; ϵ1; ϵ2Þ
Gð1Þðτ; m; ϵ1; ϵ2Þ

¼
X∞
n¼0

ϵ2n1 gn;ðfkigÞðτ; mÞ; ð4:6Þ

lim
ϵ2→0

FðfkigÞðτ; m; ϵ1; ϵ2Þ
Fð1Þðτ; m; ϵ1; ϵ2Þ

¼
X∞
n¼0

ϵ2n1 fn;ðfkigÞðτ; mÞ: ð4:7Þ

Dividing by Fð1Þ and Gð1Þ, respectively, removes the ϵ−12
pole and yields a finite NS limit. Furthermore, the coef-
ficient functions gn;ðfkigÞ and fn;ðfkigÞ are quasimodular
Jacobi forms of weight 2n and index K ¼ P

aka, i.e. they
can be written in the following form:

gn;ðfkigÞðτ; mÞ

¼
XK
a¼0

sðn;fkigÞ2aþ2n ðτÞðφ0;1ðτ; mÞÞK−aðφ−2;1ðτ; mÞÞa; ð4:8Þ

fn;ðfkigÞðτ; mÞ

¼
XK
a¼0

tðn;fkigÞ2aþ2n ðτÞðφ0;1ðτ; mÞÞK−aðφ−2;1ðτ; mÞÞa: ð4:9Þ

Here, sðn;fkigÞm and tðn;fkigÞm are quasimodular forms of weight
m, which can be written as polynomials in the Eisenstein
series [including E2ðτÞ]. The explicit expressions for a few
fn;ðfkigÞ’s and gn;ðfkigÞ’s for simple configurations ðfkigÞ are
given in Appendix A 1.
Equation (4.4) shows that the free energies of the simplest

compact and noncompact configurations of M5-branes
agree in the NS limit. In the following, we address the
question of whether there are further relations between
GðfkigÞ andFðfkigÞ formore complicated configurations fkig.

B. Configurations ð1;…;1Þ
In [5], we have seen that the free energies for configu-

rations ðfkigÞ ¼ ð1;…; 1|fflfflffl{zfflfflffl}
N−1 times

Þ, i.e. for N parallel M5-branes

with a single M2-brane between each of them in the
noncompact case are proportional to Fð1Þ. Specifically,
they can be written in the form

Fð1;…;1Þðτ; m; ϵ1; ϵ2Þ ¼ Fð1Þðτ; m; ϵ1; ϵ2ÞWðτ; m; ϵ1; ϵ2ÞN−2;

ð4:10Þ

with

Wðτ; m; ϵ1; ϵ2Þ ¼
θ1ðτ;mþ ϵ−Þθ1ðτ;m − ϵ−Þ − θ1ðτ;mþ ϵþÞθ1ðτ;m − ϵþÞ

θ1ðτ; ϵ1Þθ1ðτ; ϵ2Þ
: ð4:11Þ

We therefore expect that the counting function for configurations with N M5-branes on a circle with a single M2-brane
between each of them should also simplify in the NS limit. The first nontrivial such configuration is Gð1;1Þ introduced in
(4.5). It can be written in the following manner:

Gð1;1Þðτ; m; ϵ1; ϵ2Þ ¼ ðGð1Þðτ; m; ϵ1; ϵ2ÞÞ2 − ðGð1;0Þðτ; m; ϵ1; ϵ2ÞÞ2
¼ Wðτ; m; ϵ1; ϵ2Þ½Gð1Þðτ; m; ϵ1; ϵ2Þ þGð1;0Þðτ; m; ϵ1; ϵ2Þ�
¼ Wðτ; m; ϵ1; ϵ2Þ½Gð1Þðτ; m; ϵ1; ϵ2Þ þ Fð1Þðτ; m; ϵ1; ϵ2Þ�; ð4:12Þ

where in the last line we have used (3.26). Using furthermore (4.4), this relation simplifies in the NS limit,

lim
ϵ2→0

Gð1;1Þðτ; m; ϵ1; ϵ2Þ
Gð1Þðτ; m; ϵ1; ϵ2Þ

¼ 2Wðτ; m; ϵ1; ϵ2 ¼ 0Þ: ð4:13Þ
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The next, more complicated, configuration is (1,1,1) for which we find

Gð1;1;1Þðτ; m; ϵ1; ϵ2Þ ¼ ðGð1Þðτ; m; ϵ1; ϵ2ÞÞ3 − 3Gð1Þðτ; m; ϵ1; ϵ2ÞðGð1;0Þðτ; m; ϵ1; ϵ2ÞÞ2
þ 2ðGð1;0Þðτ; m; ϵ1; ϵ2ÞÞ3

¼ Wðτ; m; ϵ1; ϵ2Þ2½Gð1Þðτ; m; ϵ1; ϵ2Þ þ 2Gð1;0Þðτ; m; ϵ1; ϵ2Þ�
¼ Wðτ; m; ϵ1; ϵ2Þ2½Gð1Þðτ; m; ϵ1; ϵ2Þ þ 2Fð1Þðτ; m; ϵ1; ϵ2Þ�: ð4:14Þ

Generalizing the two examples (4.12) and (4.14) we conjecture the general pattern,

Gð1;…;1Þðτ; m; ϵ1; ϵ2Þ ¼ Wðτ; m; ϵ1; ϵ2ÞN−1½Gð1Þðτ; m; ϵ1; ϵ2Þ þ ðN − 1ÞGð1;0Þðτ; m; ϵ1; ϵ2Þ�
¼ Wðτ; m; ϵ1; ϵ2ÞN−1½Gð1Þðτ; m; ϵ1; ϵ2Þ þ ðN − 1ÞFð1Þðτ; m; ϵ1; ϵ2Þ�: ð4:15Þ

Thus, the counting of a circular M2-brane over N intervals can be generated from the counting of a circular M2-brane over
(N − 1) intervals via the two-term recursion relation:

Gð1;…1Þ
z}|{N times

ðτ; m; ϵ1; ϵ2Þ ¼ Wðτ; m; ϵ1; ϵ2ÞG ð1;…1Þ
z}|{ðN−1Þ times

ðτ; m; ϵ1; ϵ2Þ ðN > 1Þ
þWðτ; m; ϵ1; ϵ2ÞðN−1ÞFð1Þðτ; m; ϵ1; ϵ2Þ: ð4:16Þ

We checked (4.16) explicitly up to N ¼ 5. A different way to express the recursion relation in Eq. (4.16) is the following:

Gð1;…1Þ
z}|{N times

ðτ; m; ϵ1; ϵ2Þ ¼ Wðτ; m; ϵ1; ϵ2ÞðG ð1;…1Þ
z}|{ðN−1Þ times

ðτ; m; ϵ1; ϵ2Þ þ F ð1;…1Þ
z}|{ðN−1Þ times

ðτ; m; ϵ1; ϵ2ÞÞ:

C. General configurations

While the counting functions Gð1;…;1Þ reduce to a
universal structure in the NS limit, more general configu-
rations show more involved relations to the noncompact
FðfkigÞ’s. To study these configurations, we may work
perturbatively in ϵ1. Indeed, in the NS limit, we have
worked out several GðfkigÞ’s and FðfkigÞ’s in Appendix A 2
to various orders in ϵ1. Built upon these examples, we
conjecture a general pattern for these relations.
For a general BPS configuration GðfkigÞ, labeled by the

sequence of positive integers ðfkigÞ ¼ ðk1;…; klÞ withPl
i¼1 ki ¼ K and ka¼1;…;l ≠ 0, we find that

GðfkigÞðτ; m; ϵ1; 0Þ
¼ dðfkigÞ

X
P

mi¼K

aðfmigÞF
ðfmigÞðτ; m; ϵ1; 0Þ ð4:17Þ

is compatible with all cases worked out in Appendix A 2.
Here, the summation is over all sequences of positive
integers ðfmigÞ ¼ ðm1;…; mpÞ such that

Pp
a¼1ma ¼ K

and aðfmigÞ and dðfkigÞ are integer-valued coefficients that
depend on the combinatorics of ðfkigÞ and ðfmigÞ,
respectively.

Specifically, the prefactor dðfkigÞ is nontrivial (i.e. it
differs from 1) if the corresponding ðfkigÞ can be written as
an iteration of a smaller (elementary) building block
fkjgm ¼ ðk1;…; kmÞ with m < l and n ¼ l

m ∈ N:

dðfkigÞ ¼
8<
:

n ¼ l
m if ðfkigÞ ¼ ðfkjgm;…; fkjgm|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

n times

Þ

1 else

:

ð4:18Þ

For example, the configuration (2,1,2,1) is the double
repetition of the elementary block (2,1) and (1,1,1) is
the threefold repetition of the elementary block (1), while
(2,2,1) cannot be written as the iteration of a more
elementary block:

dð2;1;2;1Þ ¼ 2; dð1;1;1Þ ¼ 3; dð2;2;1Þ ¼ 1: ð4:19Þ

The relative coefficients aðfmigÞ single out specific con-
figurations ðfmigÞ,

aðfmigÞ ¼
�
1 if ki ¼

P∞
r¼0miþrl ði ¼ 1;…;lÞ

0 else
:

ð4:20Þ
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We can describe this prescription in a more intuitive way:
the idea is to construct the compact sequence ðfkigÞ ¼
ðk1;…; klÞ by “tape wrapping” the noncompact sequence
ðfmigÞ ¼ ðm1;…; mpÞ multiple times around a circle of
circumference l:

The coefficient aðfmigÞ is nonzero only if the overlapping
BPS excitations of the noncompact ðfmigÞ add up to the ki
of the compact BPS excitations

k1 ¼ m1 þmlþ1 þ…;

k2 ¼ m2 þmlþ2 þ…; etc:;

kl ¼ ml þm2l þ…: ð4:21Þ

In the figure above, this corresponds to summing up all
multiplicities along the radial directions.
We note that this “wrapping” prescription also repro-

duces the correct relation between GðfkigÞ and FðfmigÞ if one
of the ki vanishes. Due to the cyclic symmetry of the
partition ki, we can without loss of generality choose
kl ¼ 0. In this case, the conditions we obtain from the
wrapping procedure are

k1 ¼ m1 þmlþ1 þ…;

k2 ¼ m2 þmlþ2 þ…; etc:;

0 ¼ ml þm2l þ…: ð4:22Þ

This in particular indicates that ml ¼ 0, which means
that the noncompact configuration fmig has only l − 1
entries (i.e. it does not fully wrap around the compact
configuration). Therefore, the only configuration contrib-
uting is

mi ¼ ki; ∀i ¼ 1;…;l − 1: ð4:23Þ

The coefficient in this case, however, is always 1:

Gðfk1;…;kl−1;0gÞ ¼ Fðfk1;…;kl−1gÞ: ð4:24Þ

Finally, let us illustrate the procedure with an example:
consider Gð3;1Þ (with l ¼ 2). According to (4.18), we have
dð3;1Þ ¼ 1. Furthermore, there are eight compact FðfmigÞ’s
with

P
imi ¼ 4:

Fð4Þ; Fð3;1Þ ¼ Fð1;3Þ;

Fð2;2Þ; Fð2;1;1Þ ¼ Fð1;1;2Þ;

Fð1;2;1Þ; Fð1;1;1;1Þ: ð4:25Þ

For each of these fmig’s, we can compute the sumP
rmiþ2r, which we can tabulate as follows:

fmig fPrmiþ2rg aðfmigÞ

(4) (4) 0
(3,1) (3,1) 1
(2,2) (2,2) 0
(2,1,1) (3,1) 1

fmig fPrmiþ2rg aðfmigÞ

(1,3) (1,3) 1
(1,1,2) (3,1) 1
(1,2,1) (2,2) 0
(1,1,1,1) (2,2) 0

These are indeed the coefficients we find in the genus
expansion in (A12).

As another example consider the configuration
(2,1,2,1). From (4.18) and (4.20) it follows that m ¼ 2
and

Gð2;1;2;1Þ ¼ 2ðFð2;1;2;1Þ þ Fð1;2;1;2Þ þ Fð1;1;2;1;1ÞÞ;
¼ 2ð2Fð2;1;2;1Þ þ Fð1;1;2;1;1ÞÞ; ð4:26Þ

where the second equation follows from the fact
that Fð1;2;1;2Þ ¼ Fð2;1;2;1Þ.

V. MONOPOLE VERSUS INSTANTON
FREE ENERGIES

In this section, we discover remarkable relations between
the counting function of gauge theory 1 and the counting
function of gauge theory 2.

A. Connection between monopole
and instanton free energies

The moduli ðtf1 ;…; tfN−1
Þ transform in a nontrivial

fashion with respect to (3.39). Therefore, the coefficients

Σðk1;…;kN−1Þ
N;k ðρ; m; ϵ1; ϵ2Þ [see (3.10)] generically do not

transform nicely under (3.39). In the NS limit ϵ2 → 0,
the function ΣN;kðρ; m; tf1 ;…; tfN−1

; ϵ1;2Þ in (3.10)
transforms with index k for each tfa under (3.39) and
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hence can be reexpressed as an expansion in terms of a
basis15of theta functions of index k. Thus,

lim
ϵ2→0

ϵ2ΣN;kðρ; m; tf1 ;…; tfN−1
; ϵ1; ϵ2Þ

¼
X2k−1
m1¼0

…
X2k−1

mN−1¼0

ϑk;m1
ðρ; tf1Þ…ϑk;mN−1

× ðρ; tfN−1
Þhm1;…;mN−1

ðρ; m; ϵ1Þ; ð5:1Þ
and the coefficients hm1;…;mN−1

will transform as vector-
valued modular forms under the SLð2;ZÞ transformation
generated by

ðρ; m; ϵ1Þ ↦
�
aρþ b
cρþ d

;
m

cρþ d
;

ϵ1
cρþ d

�
: ð5:2Þ

However, they may transform covariantly under certain
congruence subgroups. Therefore, the coefficients
hm1;…;mN−1

have the properties that allow them to be
compared with the free energies of certain monopole-string
configurations. To check this, we extract the simplest
coefficient, h0;…;0ðρ; m; ϵ1Þ ¼ limϵ2→0ϵ2σN;kðρ; m; ϵ1; ϵ2Þ.
through

σN;kðρ; m; ϵ1; ϵ2Þ
≔ Σð0;…;0Þ

N;k ðρ; m; ϵ1; ϵ2Þ

¼
I
0

dQf1

Qf1

…

I
0

dQfN−1

QfN−1

ΣN;kðρ; m; tf1 ;…; tfN−1
; ϵ1; ϵ2Þ;

ð5:3Þ
where the contour integrals16 are just to extract the constant
term of ΣN;kðρ; m; tf1 ;…; tfN−1

; ϵ1;2Þ in an expansion of the
fugacities Qf1 ;…; QfN−1

, as defined in Eq. (3.10).
Remarkably, in the NS limit, we find evidence that the

quotients ðσN;k=σ1;1Þ are related to the free energies of
specific configurations ðfkigÞ of the monopole strings with
k1 ¼ k2 ¼ … ¼ kN ¼ k. Indeed, based on the examples
discussed below, we conjecture

lim
ϵ2→0

σN;kðt; m; ϵ1; ϵ2Þ
σ1;1ðt; m; ϵ1; ϵ2Þ

¼ lim
ϵ2→0

Gðk;…;kÞ
z}|{Ntimes

ðt; m; ϵ1; ϵ2Þ
Gð1Þðt; m; ϵ1; ϵ2Þ

: ð5:4Þ

Interpreting this conjecture from the point of view of IIa and
IIb little strings (see Sec. II D) we notice that σN;k and
Gðk;…;kÞ are the free energies of configurations of little

strings with momentum and winding number k in types IIa
and IIb, respectively. Thus, we believe our conjecture is in
linewith theT-duality property between type IIa and IIb little
strings. Indeed, under T-duality, the momentum quantum
number k, weighed with the fugacity Qk

τ, is mapped to the
winding quantum number k, weighed with the fugacity Qk

ρ.

B. Checks and series expansions

In this subsection, we provide support for the conjecture
(5.4): we give an analytic proof for the case k ¼ 1 (and N
generic) and provide additional checks for k > 1 by
comparing the power series expansion of the left- and
right-hand sides of (5.4).

1. The case CN;1

To simplify the notation, we introduce the shorthand for
the individual building blocks in the partition function
(3.3):

Eðρ; t; m; ϵÞ ≔ θ1ðρ; tþmÞθ1ðρ; t −mÞ
θ1ðρ; tþ ϵÞθ1ðρ; t − ϵÞ : ð5:5Þ

Using these building blocks, we can write

lim
ϵ2→0

CN;1ðρ; m; tf1 ;…; tfN−1
; ϵ1; ϵ2Þ

C1;1ðρ; m; ϵ1; ϵ2Þ

¼
XN
k¼1

Yk−1
a¼1

Eðρ; tak − ϵþ; m; ϵþÞ

×
YN

b¼kþ1

Eðρ; tkb þ ϵþ; m; ϵþÞ

¼
XN
k¼1

Yk−1
a¼1

Eðρ; t̂ak; m; ϵþÞ

×
YN

b¼kþ1

Eðρ; t̂kb; m; ϵþÞ; ð5:6Þ

where we introduced the shorthand

t̂ak ¼ tak − ϵþ; for a ¼ 1;…; k − 1;

t̂kb ¼ tkb þ ϵþ; for b ¼ kþ 1;…; N: ð5:7Þ
Following (5.3) and (5.4), we are interested in the terms that
are independent in Qfa , which are extracted by contour
integration:I

dQf1 � � � dQfN−1

Qf1 � � �QfN−1

×

�
lim
ϵ2→0

CN;1ðρ; m; tf1 ;…; tfN−1
; ϵ1; ϵ2Þ

C1;1ðρ; m; ϵ1; ϵ2Þ
�
: ð5:8Þ

Using the definition Qfa ¼ e−2πtfa , we can perform the
following change of variables:

15For a definition of ϑs;mðρ; tfiÞ, we refer readers to our
previous paper [5].

16The ith contour is defined as a small circle around the point
Qfi ¼ 0, as was previously prescribed in a noncompact situation
in [5] (see also similar considerations in [58]).
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I
dQf1 � � � dQfN−1

Qf1 � � �QfN−1

¼ ð−1ÞN−1
Z

dt12dt23 � � � dtN−1N ¼ ð−1ÞN−1
Z Yk−1

a¼1

dtak
YN

b¼kþ1

dtkb;∀k: ð5:9Þ

Shifting the individual tak and tkb, we then find

I
dQf1 � � � dQfN−1

Qf1 � � �QfN−1

�
lim
ϵ2→0

CN;1ðρ; m; tf1 ;…; tfN−1
; ϵ1; ϵ2Þ

C1;1ðρ; m; ϵ1; ϵ2Þ
�

¼ ð−1ÞN−1N

�Z
dtEðρ; t; m; ϵ1Þ

�
N−1

¼ Nð lim
ϵ2↦0

Wðρ; m; ϵ1; ϵ2ÞÞN−1; ð5:10Þ

where we have used the relation (x ¼ e2πit),I
dx
2πix

θ1ðρ; tþmÞθ1ðρ; t−mÞ
θ1ðρ; tþ ϵ1Þθ1ðρ; t− ϵ1Þ

¼ lim
ϵ2↦0

Wðρ;m; ϵ1;ϵ2Þ

¼ θ1ðρ;m− ϵ1
2
Þθ01ðρ;mþ ϵ1

2
Þ− θ1ðρ;mþ ϵ1

2
Þθ01ðρ;m− ϵ1

2
Þ

θ1ðρ; ϵ1Þθ01ðρ; 0Þ
: ð5:11Þ

We have additionally checked (5.10) up to N ¼ 4 through an explicit computation of CN;1.

2. Case CN;k>1

For k > 1, the quantities ΣN;kðρ; m; tf1 ;…; tfN−1
; ϵ1; ϵ2Þ become complicated quotients of θ1 functions and we therefore

only study their series expansions. Concretely, to compare with (4.6), we introduce

lim
ϵ2→0

σN;kðρ; m; ϵ1; ϵ2Þ
σ1;1ðρ; m; ϵ1; ϵ2Þ

¼
X∞
n¼0

ϵ2n1 σnN;kðρ; mÞ: ð5:12Þ

Starting with ðN; kÞ ¼ ð2; 2Þ, we have for the cases n ¼ 1, 2

σ02;2ðρ; mÞ ¼ 2þQρ

�
−4Q3

m −
4

Q3
m
þ 38Q2

m þ 38

Q2
m
− 124Qm −

124

Qm
þ 180

�

þQ2
ρ

�
38Q4

m þ 38

Q4
m
− 448Q3

m −
448

Q3
m
þ 2012Q2

m þ 2012

Q2
m

− 4640Qm −
4640

Qm
þ 6076

�

þQ3
ρ

�
2Q6

m þ 2

Q6
m
− 124Q5

m −
124

Q5
m
þ 2012Q4

m þ 2012

Q4
m

− 12892Q3
m −

12892

Q3
m

þ 43350Q2
m þ 43350

Q2
m

− 86568Qm −
86568

Qm
þ 108440

�
þOðQ4

ρÞ; ð5:13Þ

σ12;2ðρ; mÞ ¼ Qρ

�
2Q3

m þ 2

Q3
m
− 32Q2

m −
32

Q2
m
þ 158Qm þ 158

Qm
− 264

�

þQ2
ρ

�
−32Q4

m −
32

Q4
m
þ 800Q3

m þ 800

Q3
m
− 4824Q2

m −
4824

Q2
m

þ 12944Qm þ 12944

Qm
− 17792

�

þQ3
ρ

�
158Q5

m þ 158

Q5
m
− 4824Q4

m −
4824

Q4
m

þ 42366Q3
m þ 42366

Q3
m

− 169920Q2
m

−
169920

Q2
m

þ 372708Qm þ 372708

Qm
− 481008

�
þOðQ4

ρÞ; ð5:14Þ

which indeed agree with the expansion of (A4).
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For ðN; kÞ ¼ ð2; 3Þ, we find

σ02;3ðρ; mÞ ¼ 2þQρ

�
2Q4

m þ 2

Q4
m
− 60Q3

m −
60

Q3
m
þ 360Q2

m þ 360

Q2
m
− 944Qm −

944

Qm
þ 1284

�

þQ2
ρ

�
2Q6

m þ 2

Q6
m
− 200Q5

m −
200

Q5
m
þ 3010Q4

m þ 3010

Q4
m

− 18396Q3
m −

18396

Q3
m

þ 60284Q2
m þ 60284

Q2
m

− 118840Qm −
118840

Qm
þ 148280

�
þOðQ3

ρÞ; ð5:15Þ

σ12;3ðρ; mÞ ¼ Qρ
3ð3Q6

m − 28Q5
m þ 103Q4

m − 158Q3
m þ 103Q2

m − 28Qm þ 3Þ
2Q3

m
þOðQ2

ρÞ; ð5:16Þ

which indeed agrees with the corresponding expansions of g0;ð3;3Þ and g1;ð3;3Þ, respectively.
Finally, for ðN; kÞ ¼ ð3; 2Þ, we have

σ03;2ðρ; mÞ ¼ 3þQρ

�
3Q4

m þ 3

Q4
m
− 36Q3

m −
36

Q3
m
þ 195Q2

m þ 195

Q2
m
− 516Qm −

516

Qm
þ 708

�

þQ2
ρ

�
3Q6

m þ 3

Q6
m
− 144Q5

m −
144

Q5
m
þ 1572Q4

m þ 1572

Q4
m

− 8304Q3
m −

8304

Q3
m

þ 25479Q2
m

þ 25479

Q2
m

− 48864Qm −
48864

Qm
þ 60516

�
þOðQ3

ρÞ; ð5:17Þ

which matches with a corresponding expansion of g0;ð2;2;2Þ.
These very nontrivial checks lend strong support to our

conjecture (5.4).

VI. ELLIPTIC GENERA AND
TOPOLOGICAL INVARIANTS

In the previous sections, we studied the properties of the
NS limit of the free energy of M-strings with a compact
transverse direction. We found evidence that these func-
tions are related to the affine AN−1 relative monopole-string
moduli space Mk1;…;kN with charges ðk1;…; kNÞ. Here,
following [4,5], we conjecture a concrete relation between
the NS limit of the free energy and the elliptic genus
χellðMk1;…;kN Þ of Mk1;…;kN as

χellðMk1���kN Þ

¼
8<
:

1
N lim
ϵ2↦0

Gðk1 ;…;kN Þðτ;m;ϵ1;ϵ2Þ
Gð1Þðτ;m;ϵ1;ϵ2Þ for k1 ¼ k2 ¼ … ¼ kN

lim
ϵ2↦0

Gðk1 ;…;kN Þðτ;m;ϵ1;ϵ2Þ
Gð1Þðτ;m;ϵ1;ϵ2Þ else

:

ð6:1Þ

A. The case of charges ðk1;…;kNÞ ¼ ð1;…;1Þ
For the charge configuration ð1; 1;…; 1Þ, we see from

Eq. (4.15) that

Gð1;…;1Þðτ; m; ϵ1; ϵ2Þ
¼ Wðτ; m; ϵ1; ϵ2ÞN−1½Gð1Þðτ; m; ϵ1; ϵ2Þ
þ ðN − 1ÞFð1Þðτ; m; ϵ1; ϵ2Þ�: ð6:2Þ

In the NS limit, the above expression simplifies due to
Eq. (4.3):

lim
ϵ2→0

Gð1;…;1Þðτ; m; ϵ1; ϵ2Þ
Gð1Þðτ; m; ϵ1; ϵ2Þ

¼ NWðτ; m; ϵ1; ϵ2 ¼ 0ÞN−1:

ð6:3Þ

Therefore, the elliptic genus is given by

χellðM1;…;1Þ ¼ Wðτ; m; ϵ1; ϵ2 ¼ 0ÞN−1: ð6:4Þ

B. χ y genus for Mk1;…;kN

In the limit τ ↦ i∞, the elliptic genus reduces to the χy
genus

χyðMk1;…;kN Þ ≔ lim
τ↦i∞

χellðMk1;…;kN Þ

¼ lim
τ↦i∞

lim
ϵ2↦0

Gðk1;…;kNÞðτ; m; ϵ1; ϵ2Þ
Gð1Þðτ; m; ϵ1; ϵ2Þ

: ð6:5Þ

This τ ↦ i∞ limit can easily be computed for the partition
function using the results of [3]. It is given by
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lim
τ↦i∞

PLog ~Zð2Þðτ; m; tf1 ;…; tfN ; ϵ1;2Þ

¼
NðQm þQρQ−1

m Þ −Qρð
ffiffiffiffiffi
qt

p þ 1ffiffiffi
qt

p þ ðN − 1Þð
ffiffi
t
q

q
þ

ffiffi
q
t

q
ÞÞ

ð1 −QρÞðq1
2 − q−

1
2Þðt12 − t−

1
2Þ

þ
X

1≤a<b≤N

ðQab þQρQ−1
abÞðQm þQ−1

m Þ − ðQab þQρQ−1
abÞð

ffiffi
t
q

q
þ

ffiffi
q
t

q
Þ

ð1 −QρÞðq1
2 − q−

1
2Þðt12 − t−

1
2Þ ; ð6:6Þ

where we recall the definitions Qab ¼ QfaQfaþ1
…Qfb−1 and Qρ ¼ e2πiρ. Following (6.5), we further need to divide by

limτ→i∞Gð1Þðτ; m; ϵ1; ϵ2Þ and obtain

lim
ϵ2↦0

lim
τ↦i∞

PLog ~Zð2Þðτ; m; tf1 ;…; tfN ; ϵ1;2Þ
Gð1Þðτ; m; ϵ1;2Þ

¼ N
Q2

m

ð1 −Qmq
1
2Þð1 −Qmq−

1
2Þ þ N

X
k≥1

Qk
ρ þ

X
1≤a<b≤N

ðQab þQρQ−1
abÞ

ð1 −QρÞ
: ð6:7Þ

From this, it follows that

χyðMk1���kN Þ ¼

8>><
>>:

1; ðk1;…; kNÞ ¼ ðk;…; kÞ; k ≥ 1

1; ðk1;…; kNÞ ¼ ðk;…; k; kþ 1; � � � kþ 1; k � � � kÞ; k ≥ 0

0; otherwise:

ð6:8Þ

This implies that

Xd
q¼0

ð−1ÞqdimCHp;qðMk1���kN Þ ¼

8>><
>>:

δp;0; ðk1;…; kNÞ ¼ ðk;…; kÞ; k ≥ 1

δp;0; ðk1;…; kNÞ ¼ ðk;…; k; kþ 1; � � � kþ 1; k � � � kÞ; k ≥ 0

0; otherwise;

ð6:9Þ

where d ¼ dimCMk1;…;kN . The cases where some of the ki’s
are zero capture the χy genus of noncompact configurations
that we studied in [5]. For nonzero ki’s, to the best
knowledge of the authors, the above results for the χy
genus are new. It would be interesting to confirm them by a
direct computation of the multimonopole moduli space.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have studied aspects of BPS excitations
in M5-M2-brane configurations where a transverse direc-
tion is compactified. Following our previous work [5],
these configurations allow two dual descriptions, namely,
in terms of M-strings and monopole strings. A key feature
of this compact setup is a manifest SLð2;ZÞ × SLð2;ZÞ
symmetry (which reduces to a single SLð2;ZÞ in the
decompactification limit). These two modular symmetries
are associated with two dual gauge theories whose partition
functions we have presented explicitly. The BPS excitations
in these two five-dimensional theories can physically be

interpreted as instanton particles and monopole strings,
respectively. Comparing the compact partition functions to
their noncompact counterparts studied in [5] we found an
interesting relationship. Indeed, the counting function of
compact BPS configurations can fully be constructed as a
linear superposition of the noncompact ones. The result, as
summarized by Eq. (4.16), points to interesting implica-
tions for the little string theories: For IIA and IIB string
theories, open and closed fundamental strings are distinct
states. In particular, the closed string is not treated as a
composite of open strings. However, for IIa and IIb little
string theories, our wrapping prescription equation (4.16)
implies that the little strings can be viewed as bound states
of M-strings. Stated differently, for the purpose of BPS
counting of IIb little strings, one only needs to know BPS
excitations of the (2,0) superconformal field theory, which
is just the low-energy limit of the IIb little string theory.
Furthermore, by carefully studying specific expansions

of the two gauge theory partition functions mentioned
above, we also discovered remarkable relations between
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their BPS state counting. Physically, this implies new
relations between specific instanton and monopole con-
figurations, respectively, which have not been observed in
the literature so far. It will be interesting, both from physics
and mathematics aspects, to further explore this observa-
tion: phrased more concretely, the question is how instan-
tons on R4 are related to monopoles on R3 and what its
physical reason is. Another concrete question is to under-
stand whether the relations discussed here can be gener-
alized to instanton configurations whose contribution to the
partition function depends explicitly on tfa .
Generalizing our previouswork [5], we have proposed that

the compact gauge theory partition function allows us to
extract the elliptic genus of the relative moduli space of affine
AN−1 monopole strings. Based on this conjecture, by com-
puting the corresponding χy genus we have extracted topo-
logical data of this moduli space. The latter are not yet known
in the mathematics literature. It would be very interesting to
confirm our conjectures by independent methods.
Finally, consequences and implications of our results on

the BPS excitations in type IIa and IIb little string theories
in six dimensions is a very interesting topic, which we will
relegate to a forthcoming paper [25].

We believe that a further exploration of M5-M2-brane
configurations along the lines we have advocated in this
work will shed further light on the role of tensionless
strings in the elusive six-dimensional superconformal field
theories.
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APPENDIX: COMPACT AND NONCOMPACT FREE ENERGIES

1. Series expansion

We begin with the compact free energies:

g0;ð2Þ ¼ 1

12
½ð2E2ð2τÞ − E2ðτÞÞφ−2;1 þ φ0;1�;

g1;ð2Þ ¼ 1

288
½4ðE2ðτÞ − E2ð2τÞÞφ0;1 − ðE2ðτÞ2 − 4E2ð2τÞ2 þ 15E4ðτÞ − 12E4ð2τÞÞφ−2;1�; ðA1Þ

g0;ð3Þ ¼ 1

1440
½10φ2

0;1 þ 10ð3E2ð3τÞ − E2ðτÞÞφ−2;1φ0;1 þ ð37E4ðτÞ − 27E4ð3τÞÞφ2
−2;1�;

g1;ð3Þ ¼ 1

60480
½105ðE2ðτÞ − E2ð3τÞÞφ2

0;1 − 7ð5E2ðτÞ2 − 45E2ð3τÞ2 þ 157E4ðτÞ − 117E4ð3τÞÞφ0;1φ−2;1

þ ½2592E6ð3τÞ þ 1496E6ðτÞ þ 7E2ðτÞð37E4ðτÞ þ 270E4ð3τÞÞ − 6237E2ð3τÞE4ð3τÞ�φ2
−2;1�; ðA2Þ

g0;ð2;1Þ ¼ 1

144
½φ2

0;1 þ 2E2ðτÞφ0;1φ−2;1 þ ð3E4ðτÞ − 2E2ðτÞÞφ2
−2;1�;

g1;ð2;1Þ ¼ φ−2;1

432
½2ðE2ðτÞ2 − E4ðτÞÞφ0;1 − ðE2ðτÞ3 þ 5E2ðτÞE4ðτÞ − 6E6ðτÞÞφ−2;1�; ðA3Þ
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g0;ð2;2Þ ¼ 1

90720
½ð546E2ðτÞE4ðτÞ − 672E2ð2τÞE4ð2τÞ − 601E6ðτÞ þ 832E6ð2τÞÞφ3

−2;1

− 21ð10E2ðτÞ2 − 40E2ð2τÞ2 − 9E4ðτÞ þ 24E4ð2τÞÞϕ0;1ϕ
2
−2;1 þ 105ðE2ðτÞ þ 2E2ð2τÞÞϕ2

0;1ϕ−2;1 þ 105ϕ3
0;1�;

g1;ð2;2Þ ¼ 2

3628800
½ð2730E4ðτÞE2ðτÞ2 þ 5875E6ðτÞE2ðτÞ − 9893E4ðτÞ2

þ 64E4ð2τÞð242E4ð2τÞ − 105E2ð2τÞ2Þ − 40E2ð2τÞð3E6ðτÞ þ 184E6ð2τÞÞÞϕ3
−2;1

− 50ð28E2ðτÞ3 þ 287E4ðτÞE2ðτÞ − 224E2ð2τÞðE2ð2τÞ2 þ E4ð2τÞÞ − 219E6ðτÞ þ 352E6ð2τÞÞϕ0;1ϕ
2
−2;1

þ 35ð85E2ðτÞ2 − 100E2ð2τÞ2 − 133E4ðτÞ þ 148E4ð2τÞÞϕ2
0;1ϕ−2;1 þ 700ðE2ðτÞ − E2ð2τÞÞϕ3

0;1�: ðA4Þ

Here, E2kðτÞ is the Eisenstein series defined as

E2kðτÞ ≔ 1þ ð2πiÞ2k
ð2k − 1Þ!ζð2kÞ

X∞
n¼1

σ2k−1ðnÞQn
τ ; ðA5Þ

and φ−2;1ðτ; zÞ and φ0;1ðτ; zÞ are the standard Jacobi forms of index 1 and weight −2 and 0, respectively,

φ0;1ðτ; mÞ ¼ 4
X4
i¼2

θiðτ;mÞ2
θiðτ; 0Þ

and φ−2;1ðτ; mÞ ¼ −
θ21ðτ;mÞ
ηðτÞ6 ; ðA6Þ

where θiðτ; zÞ are the Jacobi theta functions and ηðτÞ the Dedekind eta function (see [48] for further information).
Similarly, we can write for the noncompact coefficient functions

f0;ð2Þ ¼ E2ð2τÞ − E2ðτÞ
6

φ−2;1;

f1;ð2Þ ¼ 12E4ð2τÞ − 13E4ðτÞ − 3E2ðτÞ2 þ 4E2ð2τÞ2
288

φ−2;1 −
E2ð2τÞ − E2ðτÞ

72
φ0;1; ðA7Þ

f0;ð3Þ ¼
�
20E2ðτÞ2 þ 7E4ðτÞ − 27E4ð3τÞ

1440
φ−2;1 þ

E2ð3τÞ − E2ðτÞ
48

φ0;1

�
φ−2;1;

f1;ð3Þ ¼ 1

60480
½105½E2ðτÞ − E2ð3τÞ�φ2

0;1 − 63½5ðE2ðτÞ2 − E2ð3τÞ2Þ þ 13ðE4ðτÞ − E4ð3τÞÞ�φ0;1φ−2;1

þ ½140E2ðτÞ3 − 6237E2ð3τÞE4ð3τÞ þ 7E2ðτÞð137E4ðτÞ þ 270E4ð3τÞÞ þ 656E6ðτÞ
þ 2592E6ð3τÞ�φ2

−2;1�; ðA8Þ

f0;ð2;1Þ ¼ E4ðτÞ − E2ðτÞ2
96

φ2
−2;1;

f1;ð2;1Þ ¼ −
φ−2;1

576
½½E4ðτÞ − E2ðτÞ2�φ0;1 þ ½E2ðτÞ3 þ 3E4ðτÞE2ðτÞ − 4E6ðτÞ�φ−2;1�: ðA9Þ

2. Relations between compact and noncompact coefficient functions

With the expressions above (and several others which we do not display to save space) the compact and noncompact
coefficients are as follows.
(a) Case K ¼ 2:

gn;ð2Þ ¼ fn;ð2Þ þ fn;ð1;1Þ; gn;ð1;1Þ ¼ 2fn;ð1;1Þ; ∀n ¼ 0; 1; 2; 3: ðA10Þ
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(b) Case K ¼ 3:

gn;ð3Þ ¼ fn;ð3Þ þ 2fn;ð2;1Þ þ fn;ð1;1;1Þ;

gn;ð2;1Þ ¼ 2fn;ð2;1Þ þ fn;ð1;1;1Þ;

gn;ð1;1;1Þ ¼ 3½fn;ð1;1;1Þ�; ∀n ¼ 0; 1; 2: ðA11Þ

(c) Case K ¼ 4:

gn;ð4Þ ¼ fn;ð4Þ þ 2fn;ð3;1Þ þ fn;ð2;2Þ þ 2f;ð2;1;1Þ þ fn;ð1;2;1Þ þ fn;ð1;1;1;1Þ;

gn;ð3;1Þ ¼ 2fn;ð2;1;1Þ þ 2fn;ð3;1Þ;

gn;ð2;2Þ ¼ 2½fn;ð1;1;1;1Þ þ fn;ð1;2;1Þ þ fn;ð2;2Þ�;
gn;ð2;1;1Þ ¼ fn;ð1;1;1;1Þ þ 2fn;ð2;1;1Þ þ fn;ð1;2;1Þ;

gn;ð1;1;1;1Þ ¼ 4½fn;ð1;1;1;1Þ�; ∀n ¼ 0; 1: ðA12Þ

(d) Case K ¼ 5:

g0;ð5Þ ¼ f0;ð5Þ þ 2f0;ð4;1Þ þ 2f0;ð3;2Þ þ f0;ð2;1;2Þ þ 2f0;ð2;2;1Þ þ f0;ð1;3;1Þ

þ 2f0;ð3;1;1Þ þ 2f0;ð1;2;1;1Þ þ 2f0;ð2;1;1;1Þ þ f0;ð1;1;1;1;1Þ;

g0;ð2;1;1;1Þ ¼ f0;ð1;1;1;1;1Þ þ 2f0;ð1;2;1;1Þ þ 2f0;ð2;1;1;1Þ;

g0;ð3;1;1Þ ¼ f0;ð1;3;1Þ þ 2f0;ð2;1;1;1Þ þ 2f0;ð3;1;1Þ;

g0;ð2;2;1Þ ¼ f0;ð1;1;1;1;1Þ þ 2f0;ð1;2;1;1Þ þ 2f0;ð2;2;1Þ þ f0;ð2;1;2Þ;

g0;ð3;2Þ ¼ f0;ð1;1;1;1;1Þ þ 2f0;ð1;2;1;1Þ þ f0;ð1;3;1Þ þ 2f0;ð2;1;1;1Þ þ 2f0;ð2;2;1Þ þ 2f0;ð3;2Þ;

g0;ð4;1Þ ¼ f0;ð2;1;2Þ þ 2f0;ð3;1;1Þ þ 2f0;ð4;1Þ;

g0;ð1;1;1;1;1Þ ¼ 5½f0;ð1;1;1;1;1Þ�: ðA13Þ

(e) Case K ¼ 6:

g0;ð3;3Þ ¼ 2½f0;ð1;1;1;1;1;1Þ þ 2f0;ð1;2;1;1;1Þ þ f0;ð1;2;2;1Þ þ f0;ð2;1;1;2Þ þ 2f0;ð2;2;1;1Þ� þ 4f0;ð2;3;1Þ þ 2f0;ð3;3Þ;

g0;ð2;1;2;1Þ ¼ 2½2f0;ð2;1;2;1Þ þ f0;ð1;1;2;1;1Þ�: ðA14Þ

As we can see, to each order, we can express the compact free energies as particular linear combinations of the noncompact
ones. However, these relations are not invertible, due to the fact that the compact gn;ðfkigÞ’s are invariant under cyclic
rotations of the ki, while the noncompact ones fn;ðfkigÞ are only invariant under mirror reflection.

[1] B. Haghighat, A. Iqbal, C. Kozcaz, G. Lockhart, and C.
Vafa, M-strings, Commun. Math. Phys. 334, 779 (2015).

[2] B. Haghighat, C. Kozcaz, G. Lockhart, and C. Vafa,
Orbifolds of M-strings, Phys. Rev. D 89, 046003 (2014).

[3] S. Hohenegger and A. Iqbal, M-strings, elliptic genera and
N ¼ 4 string amplitudes, Fortschr. Phys. 62, 155 (2014).

[4] B. Haghighat, From strings in 6d to strings in 5d, J. High
Energy Phys. 01 (2016) 062.

INSTANTON-MONOPOLE CORRESPONDENCE FROM … PHYSICAL REVIEW D 93, 066016 (2016)

066016-25

http://dx.doi.org/10.1007/s00220-014-2139-1
http://dx.doi.org/10.1103/PhysRevD.89.046003
http://dx.doi.org/10.1002/prop.201300035
http://dx.doi.org/10.1007/JHEP01(2016)062
http://dx.doi.org/10.1007/JHEP01(2016)062


[5] S. Hohenegger, A. Iqbal, and S. J. Rey, M-strings, monopole
strings, and modular forms, Phys. Rev. D 92, 066005 (2015).

[6] B. Haghighat, S. Murthy, C. Vafa, and S. Vandoren,
F-theory, spinning black holes and multi-string branches,
J. High Energy Phys. 01 (2016) 09.

[7] M. Aganagic, A. Klemm, M. Marino, and C. Vafa, The
topological vertex, Commun. Math. Phys. 254, 425 (2005).

[8] T. J. Hollowood, A. Iqbal, and C. Vafa, Matrix models,
geometric engineering and elliptic genera, J. High Energy
Phys. 03 (2008) 069.

[9] A. Iqbal, C. Kozcaz, and C. Vafa, The refined topological
vertex, J. High Energy Phys. 10 (2009) 069.

[10] N. A. Nekrasov, Seiberg-Witten prepotential from instanton
counting, Adv. Theor. Math. Phys. 7, 831 (2003).

[11] M. R. Douglas, On D ¼ 5 super Yang-Mills theory and
(2,0) theory, J. High Energy Phys. 02 (2011) 011.

[12] E. Witten, Elliptic genera and quantum field theory,
Commun. Math. Phys. 109, 525 (1987); A. N. Schellekens
and N. P. Warner, Anomalies, characters and strings, Nucl.
Phys. B287, 317 (1987); W. Lerche, B. E. W. Nilsson, A. N.
Schellekens, and N. P. Warner, Anomaly cancelling terms
from the elliptic genus, Nucl. Phys. B299, 91 (1988).

[13] S. A. Connell, The dynamics of the SU(3) charge (1,1)
magnetic monopole (unpublished); see also J. P. Gauntlett
and D. A. Lowe, Dyons and S duality in N ¼ 4 super-
symmetric gauge theory, Nucl. Phys. B472, 194 (1996);
K. M. Lee, E. J. Weinberg, and P. Yi, The moduli space of
many BPS monopoles for arbitrary gauge groups, Phys.
Rev. D 54, 1633 (1996).

[14] M. Atiyah and N. Hitchin, Low energy scattering of non-
Abelian monopoles, Phys. Lett. 107A, 21 (1985); Low-
energy scattering of non-Abelian magnetic monopoles [and
discussion], Phil. Trans. R. Soc. A 315, 459 (1985); The
Geometry and Dynamics of Magnetic Monopoles (Princeton
University Press, Princeton, NJ, 1988).

[15] J. A. Harvey, S. Lee, and S. Murthy, Elliptic genera of ALE
and ALF manifolds from gauged linear sigma models,
J. High Energy Phys. 02 (2015) 110.

[16] D. Bak and A. Gustavsson, Elliptic genera of monopole
strings, J. High Energy Phys. 01 (2015) 097.

[17] M. Berkooz, M. Rozali, and N. Seiberg, Matrix description
of M theory on T4 and T5, Phys. Lett. B 408, 105 (1997).

[18] N. Seiberg, New theories in six-dimensions and matrix
description of M theory on T5 and T5=Z2, Phys. Lett. B 408,
98 (1997).

[19] A. Losev, G. W. Moore, and S. L. Shatashvili, M & m’s,
Nucl. Phys. B522, 105 (1998).

[20] O. Aharony, M. Berkooz, D. Kutasov, and N. Seiberg,
Linear dilatons, NS five-branes and holography, J. High
Energy Phys. 10 (1998) 004.

[21] O. Aharony, A brief review of “little string theories”,
Classical Quantum Gravity 17, 929 (2000).

[22] D. Kutasov, in Proceedings of Superstrings and Related
Matters, Spring School, Trieste, 2001, edited by C. Bachas,
J. M. Maldacena, K. S. Narain, and S. Randjbar-Daemi
(International Centre for Theoretical Physics, Trieste,
2002), p. 165.

[23] O. Aharony, M. Berkooz, and S. J. Rey, Rigid holography
and six-dimensional N ¼ ð2; 0Þ theories on AdS5 S1,
J. High Energy Phys. 03 (2015) 121.

[24] L. Bhardwaj, M. Del Zotto, J. J. Heckman, D. R. Morrison,
T. Rudelius, and C. Vafa, F-theory and the classification of
little strings, arXiv:1511.05565.

[25] S. Hohenegger, A. Iqbal, and S.-J. Rey (to be published).
[26] D. Anselmi, M. Billo, P. Fre, L. Girardello, and A.

Zaffaroni, ALE manifolds and conformal field theories,
Int. J. Mod. Phys. A 09, 3007 (1994).

[27] H. Ooguri and C. Vafa, Two-dimensional black hole
and singularities of CY manifolds, Nucl. Phys. B463, 55
(1996).

[28] D. Kutasov, Orbifolds and solitons, Phys. Lett. B 383, 48
(1996).

[29] G.W. Moore, N. Nekrasov, and S. Shatashvili, Integrating
over Higgs branches, Commun. Math. Phys. 209, 97 (2000).

[30] A. Losev, N. Nekrasov, and S. L. Shatashvili, in Strings,
Branes and Dualities, edited by L. Baulieu, P. Di Francesco,
M. Douglas, V. Kazakov, M. Picco, and P. Windey, NATO
Advanced Study Institutes, Ser. C, Vol. 520 (Springer,
New York, 1998), p. 359.

[31] M. Billó, M. Frau, F. Fucito, and A. Lerda, Instanton
calculus in R-R background and the topological string,
J. High Energy Phys. 11 (2006) 012.

[32] K. Ito, H. Nakajima, T. Saka, and S. Sasaki,N ¼ 2 instanton
effective action in Ω-background and D3/D(-1)-brane sys-
tem in R-R background, J. High Energy Phys. 11 (2010)
093.

[33] M. X. Huang and A. Klemm, Direct integration for general
Ω backgrounds, Adv. Theor. Math. Phys. 16, 805 (2012).

[34] M. X. Huang, A. K. Kashani-Poor, and A. Klemm, The Ω
deformed B-model for rigid N ¼ 2 theories, Ann. Inst.
Henri Poincaré 14, 425 (2013).

[35] S. Hellerman, D. Orlando, and S. Reffert, String theory of
the omega deformation, J. High Energy Phys. 01 (2012)
148.

[36] I. Antoniadis, S. Hohenegger, K. S. Narain, and T. R. Taylor,
Deformed topological partition function and Nekrasov
backgrounds, Nucl. Phys. B838, 253 (2010).

[37] I. Antoniadis, I. Florakis, S. Hohenegger, K. S. Narain, and
A. Zein Assi, Worldsheet realization of the refined topo-
logical string, Nucl. Phys. B875, 101 (2013).

[38] I. Antoniadis, I. Florakis, S. Hohenegger, K. S. Narain, and
A. Zein Assi, Non-perturbative Nekrasov partition function
from string theory, Nucl. Phys. B880, 87 (2014).

[39] I. Antoniadis, I. Florakis, S. Hohenegger, K. S. Narain, and
A. Z. Assi, Probing the moduli dependence of refined
topological amplitudes, Nucl. Phys. B901, 252 (2015).

[40] Y. Nakayama and H. Ooguri, Comments on worldsheet
description of the omega background, Nucl. Phys. B856,
342 (2012).

[41] J. Bae, C. Imbimbo, S.-J. Rey, and D. Rosa, New super-
symmetric localizations from topological gravity, arXiv:
1510.00006.

[42] A. Iqbal, A. Z. Khan, B. A. Qureshi, K. Shabbir, and M. A.
Shehper, Topological field theory amplitudes for AN−1
fibration, J. High Energy Phys. 12 (2015) 017.

[43] O. Aharony and M. Berkooz, IR dynamics of D ¼ 2;
N ¼ ð4; 4Þ gauge theories and DLCQ of “little string
theories”, J. High Energy Phys. 10 (1999) 030.

[44] J. Kim, S. Kim, and K. Lee, Little strings and T-duality,
arXiv:1503.07277.

HOHENEGGER, IQBAL, and REY PHYSICAL REVIEW D 93, 066016 (2016)

066016-26

http://dx.doi.org/10.1103/PhysRevD.92.066005
http://dx.doi.org/10.1007/JHEP01(2016)009
http://dx.doi.org/10.1007/s00220-004-1162-z
http://dx.doi.org/10.1088/1126-6708/2008/03/069
http://dx.doi.org/10.1088/1126-6708/2008/03/069
http://dx.doi.org/10.1088/1126-6708/2009/10/069
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://dx.doi.org/10.1007/BF01208956
http://dx.doi.org/10.1016/0550-3213(87)90108-8
http://dx.doi.org/10.1016/0550-3213(87)90108-8
http://dx.doi.org/10.1016/0550-3213(88)90468-3
http://dx.doi.org/10.1016/0550-3213(96)00218-0
http://dx.doi.org/10.1103/PhysRevD.54.1633
http://dx.doi.org/10.1103/PhysRevD.54.1633
http://dx.doi.org/10.1016/0375-9601(85)90238-5
http://dx.doi.org/10.1098/rsta.1985.0052
http://dx.doi.org/10.1007/JHEP02(2015)110
http://dx.doi.org/10.1007/JHEP01(2015)097
http://dx.doi.org/10.1016/S0370-2693(97)00800-9
http://dx.doi.org/10.1016/S0370-2693(97)00805-8
http://dx.doi.org/10.1016/S0370-2693(97)00805-8
http://dx.doi.org/10.1016/S0550-3213(98)00262-4
http://dx.doi.org/10.1088/1126-6708/1998/10/004
http://dx.doi.org/10.1088/1126-6708/1998/10/004
http://dx.doi.org/10.1088/0264-9381/17/5/302
http://dx.doi.org/10.1007/JHEP03(2015)121
http://arXiv.org/abs/1511.05565
http://dx.doi.org/10.1142/S0217751X94001199
http://dx.doi.org/10.1016/0550-3213(96)00008-9
http://dx.doi.org/10.1016/0550-3213(96)00008-9
http://dx.doi.org/10.1016/0370-2693(96)00708-3
http://dx.doi.org/10.1016/0370-2693(96)00708-3
http://dx.doi.org/10.1007/PL00005525
http://dx.doi.org/10.1088/1126-6708/2006/11/012
http://dx.doi.org/10.1007/JHEP11(2010)093
http://dx.doi.org/10.1007/JHEP11(2010)093
http://dx.doi.org/10.4310/ATMP.2012.v16.n3.a2
http://dx.doi.org/10.1007/s00023-012-0192-x
http://dx.doi.org/10.1007/s00023-012-0192-x
http://dx.doi.org/10.1007/JHEP01(2012)148
http://dx.doi.org/10.1007/JHEP01(2012)148
http://dx.doi.org/10.1016/j.nuclphysb.2010.04.021
http://dx.doi.org/10.1016/j.nuclphysb.2013.07.004
http://dx.doi.org/10.1016/j.nuclphysb.2014.01.006
http://dx.doi.org/10.1016/j.nuclphysb.2015.10.016
http://dx.doi.org/10.1016/j.nuclphysb.2011.11.010
http://dx.doi.org/10.1016/j.nuclphysb.2011.11.010
http://arXiv.org/abs/1510.00006
http://arXiv.org/abs/1510.00006
http://dx.doi.org/10.1007/JHEP12(2015)017
http://dx.doi.org/10.1088/1126-6708/1999/10/030
http://arXiv.org/abs/1503.07277


[45] S. Katz, P. Mayr, and C. Vafa, Mirror symmetry and exact
solution of 4D N ¼ 2 gauge theories. I, Adv. Theor. Math.
Phys. 1, 53 (1998).

[46] R. Gopakumar and C. Vafa, M theory and topological
strings. I, arXiv:hep-th/9809187.

[47] R. Gopakumar and C. Vafa, M theory and topological
strings. II, arXiv:hep-th/9812127.

[48] M. Eichler and D. Zagier, The Theory of Jacobi Forms
(Birkhäuser, Basel, Switzerland, 1985).

[49] B. Sundborg, The Hagedorn transition, deconfinement and
N ¼ 4 SYM theory, Nucl. Phys. B573, 349 (2000).

[50] A. M. Polyakov, Gauge fields and space-time, Int. J. Mod.
Phys. A 17, 119 (2002).

[51] G. Lockhart and C. Vafa, Superconformal partition functions
and non-perturbative topological strings, arXiv:1210.5909.

[52] N. A. Nekrasov and S. L. Shatashvili, in Proceedings of
the 16th International Congress on Mathematical Physics
(ICMP09), Prague, 2009, edited by P. Exner (World
Scientific, Singapore, 2010), p. 265.

[53] A. Mironov and A. Morozov, Nekrasov functions and exact
Bohr-Zommerfeld integrals, J. High Energy Phys. 04 (2010)
040.

[54] D. Tong and C. Turner, Vortices and monopoles in a
harmonic trap, J. High Energy Phys. 12 (2015) 098.

[55] K. Shabbir, On non-perturbative modular transformation,
arXiv:1510.03332.

[56] B. de Wit, G. Lopes Cardoso, D. Lust, T. Mohaupt, and S. J.
Rey, Higher order gravitational couplings and modular
forms in N ¼ 2, D ¼ 4 heterotic string compactifications,
Nucl. Phys. B481, 353 (1996).

[57] B. de Wit, G. Lopes Cardoso, D. Lust, T. Mohaupt, and
S. J. Rey, Higher derivative couplings and duality in N ¼ 2,
D ¼ 4 string theories, Nucl. Phys. B, Proc. Suppl. 56B, 108
(1997).

[58] H. C. Kim, S. Kim, E. Koh, K. Lee, and S. Lee, On
instantons as Kaluza-Klein modes of M5-branes, J. High
Energy Phys. 12 (2011) 031.

INSTANTON-MONOPOLE CORRESPONDENCE FROM … PHYSICAL REVIEW D 93, 066016 (2016)

066016-27

http://arXiv.org/abs/hep-th/9809187
http://arXiv.org/abs/hep-th/9812127
http://dx.doi.org/10.1016/S0550-3213(00)00044-4
http://dx.doi.org/10.1142/S0217751X02013071
http://dx.doi.org/10.1142/S0217751X02013071
http://arXiv.org/abs/1210.5909
http://dx.doi.org/10.1007/JHEP04(2010)040
http://dx.doi.org/10.1007/JHEP04(2010)040
http://dx.doi.org/10.1007/JHEP12(2015)098
http://arXiv.org/abs/1510.03332
http://dx.doi.org/10.1016/S0550-3213(96)90141-8
http://dx.doi.org/10.1016/S0920-5632(97)00316-2
http://dx.doi.org/10.1016/S0920-5632(97)00316-2
http://dx.doi.org/10.1007/JHEP12(2011)031
http://dx.doi.org/10.1007/JHEP12(2011)031

