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Hydrodynamics can be formulated as the gradient expansion of conserved currents in terms of the
fundamental fields describing the near-equilibrium fluid flow. In the relativistic case, the Navier-Stokes
equations follow from the conservation of the stress-energy tensor to first order in derivatives. In this paper,
we go beyond the presently understood second-order hydrodynamics and discuss the systematization of
obtaining the hydrodynamic expansion to an arbitrarily high order. As an example of the algorithm that we
present, we fully classify the gradient expansion at third order for neutral fluids in four dimensions, thus
finding the most general next-to-leading-order corrections to the relativistic Navier-Stokes equations in
curved space-time. In doing so, we list 20 new transport coefficient candidates in the conformal case and 68
in the nonconformal case. As we do not consider any constraints that could potentially arise from the local
entropy current analysis, this is the maximal possible set of neutral third-order transport coefficients. To
investigate the physical implications of these new transport coefficients, we obtain the third-order
corrections to the linear dispersion relations that describe the propagation of diffusion and sound waves in
relativistic fluids. We also compute the corrections to the scalar (spin-2) two-point correlation function of
the third-order stress-energy tensor. Furthermore, as an example of a nonlinear hydrodynamic flow, we
calculate the third-order corrections to the energy density of a boost-invariant Bjorken flow. Finally, we
apply our field theoretic results to theN ¼ 4 supersymmetric Yang-Mills fluid at infinite ’t Hooft coupling
and an infinite number of colors to find the values of five new linear combinations of the conformal
transport coefficients.
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I. INTRODUCTION

Despite the fact that the history of research into phe-
nomena involving the behavior of fluids dates back
millennia, hydrodynamics remains a subject of intense
research both in mathematics and physics. This is a result of
its extremely wide applicability across length scales: from
the dynamics of quark-gluon plasma to the evolution of the
Universe as a whole. In modern field theoretic language,
the theory of hydrodynamics can be understood as the long-
range, infrared effective theory that can be expressed in
terms of the gradient expansion of the relevant fields.
Recently, the formulation of hydrodynamics in the lan-
guage of an effective field theory has been explored in
several works, among them Refs. [1–14].
In the nonrelativistic limit, hydrodynamics is described

by the Navier-Stokes equations, i.e. the equations of motion
of energy and momentum transport,

∂0ρþ∇ · ðρvÞ ¼ 0; ð1Þ

ρð∂0þ v ·∇Þv¼−∇Pþη∇2vþðζþη=3Þ∇ð∇ · vÞ: ð2Þ

Here, ρ denotes the sum of the fluid’s energy density ϵ and
pressure P. The two viscosities, the shear η and the bulk ζ,
encode the microscopic properties of the fluid. In view of
the gradient expansion, these famous equations, that is the
continuity equation (1) and the Navier-Stokes equation (2),
can only sufficiently describe fluids at low energies. More
precisely, the Navier-Stokes equations are sufficient to first
order in the small parameter that controls the hydrodynamic
approximation: klmfp, where k is the momentum scale and
lmfp the mean-free path of the underlying microscopic
processes.
To describe fluids at higher energies, like the quark-

gluon plasma being tested at the LHC and Relativistic
Heavy Ion Collider (RHIC), we must work with the
relativistic version of hydrodynamics. Furthermore, it is
important that the theory permits for microscopic processes
at higher momentum scales. Hence, it is natural to expect
that higher-order corrections in klmfp will play an impor-
tant role in the gradient expansion series, relevant for such
high-energy fluid flows. This is the main motivation for
this work.
Second-order terms, which enter as the leading-order

corrections to the Navier-Stokes equations, were first
considered by Burnett [15]. In a more modern language,
they were studied by Müller, Israel, and Stewart [16–19],
whose work was initially motivated by the well-known
problem that first-order hydrodynamic solutions of the
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Navier-Stokes equations suffer from acausal propagation.
They showed that the presence of second-order terms could
cure these issues. In particular, the Müller-Israel-Stewart
theory is of phenomenological nature [20] where the
variables are the energy density ε, velocity uμ, and the
viscous part of themomentum flowΠab, which are governed
by the conservation laws ∇aTab ¼ 0 along with the phe-
nomenological equation τΠDΠab ¼ −Πab − ησab. The
coefficient τΠ is known as the relaxation time;D represents
the longitudinal derivative taken in the direction of the
fluid flow,D ¼ ua∇a; and σab is the relativistic shear tensor,
to be defined later. These equations are hyperbolic and
encode the noninstantaneous relaxation of momentum.
Given that this is a phenomenological equation, one can
naturally extend it beyond just linear order on the right-hand
side. In fact, not only is this extension natural, but it becomes
necessary once conformal fluids are considered, in which
case nonlinear terms likeΠμνð∇ · uÞ are present in the stress-
energy tensor.
While second-order hydrodynamics has been important

for stabilizing hydrodynamic simulations, to our knowl-
edge, no second-order transport coefficient has yet been
measured.
The Müller-Israel-Stewart theory did not include

all possible terms consistent with the symmetries of
hydrodynamics—a systematic procedure that is normally
dictated within the effective field theory approach. Their
work was extended in Refs. [20,21], where the full second-
order conformal hydrodynamic stress-energy tensor was
constructed. In Refs. [20,21], it was shown that such an
extension required five new transport coefficients, τΠ, κ, λ1,
λ2, and λ3. In the nonconformal case, all possible structures
were found by Romatschke in Ref. [22], resulting in 15
transport coefficients.
Construction of hydrodynamics normally asserts the

existence of a local thermal equilibrium and an entropy
current. Consistency with the second law of thermody-
namics then requires global entropy production to be non-
negative. It is well known that this condition imposes
constraints on the values of the hydrodynamic transport
coefficients: In first-order Navier-Stokes hydrodynamics,
one finds that shear and bulk viscosities must be non-
negative, η ≥ 0, ζ ≥ 0. For a pedagogical discussion, see
Ref. [23]. In higher-order hydrodynamics, entropy produc-
tion is more subtle. Many recent works, among them
Refs. [22–29], have investigated this issue. To find con-
straints on second-order transport coefficients, they imposed
a much stricter condition—namely that each linearly inde-
pendent (tensorial) term in the divergence of the local
entropy current must be non-negative, even those formally
subleading in the gradient expansion. It was shown by
Bhattacharyya [27] that under these conditions, the number
of independent, nonconformal second-order transport
coefficients is reduced from 15 to 10. The five conformal
second-order transport coefficients remain unconstrained.

While such a construction certainly suffices in ensuring
non-negative entropy production, it is not completely
clear whether it is necessary in all physical hydrodynamic
systems.
The question of entropy production in higher-order

hydrodynamics becomes even more mysterious if one
takes into account the results of recent numerical holo-
graphic simulations combined with experimental observa-
tions of the dynamics of strongly coupled quark-gluon
plasma. A robust and remarkable property that they display
is that the hydrodynamic description of time evolution
becomes extremely accurate very shortly after the collision
of two heavy ion nuclei.1 Typically, this hydrodynamization
time τH is of the order of 1 fm=c. In many cases, the
hydrodynamization time is shorter than the thermalization
time, which means that hydrodynamic evolution may
become applicable even before local thermal equilibrium
is established in the plasma. What does hydrodynamic
evolution in the absence of a local thermal equilibrium
imply for the existence of an entropy current? Furthermore,
is there a notion of hydrodynamics at zero temperature?
In this work, we will leave these important questions

unanswered. As we will only study the un-constrained
hydrodynamic gradient expansion, the new transport coef-
ficients that we will find will correspond to the maximal
possible set of transport coefficients in conformal and
nonconformal fluids.
While exactly conformal high-energy fluids are not

known in nature, the beta function in asymptotically free
theories, such as QCD, becomes very small at high
temperatures. In such regimes, conformal hydrodynamics
can accurately approximate the behavior of fluidlike states.
Furthermore, conformal hydrodynamics is extremely
important for understanding the AdS=CFT correspon-
dence, within which the connection between gravity duals
and hydrodynamics was established in Refs. [31,32]. As
was clearly demonstrated by the duality, the IR limit of
various large-N quantum field theories behaves in accor-
dance with the hydrodynamical gradient expansion. This is
apparent for example from the dispersion relations of the
extreme IR modes in the spectrum [33,34], which can be
expressed in a series expansion,

ω ¼
XOH

n¼0

αnknþ1; ð3Þ

where αn can depend on any of the mth-order hydro-
dynamic transport coefficients, with m ≤ n. The order of
the hydrodynamic expansion OH to which it is sensible to
expand the series in Eq. (3) is presently unknown. The
reason for this is that adding the terms above some order
OH may cause the sum to rapidly grow and spoil the series

1For a recent review, see Ref. [30].
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approximation to the mode’s physical behavior. Leaving
these issues aside for the moment, it is important to note
that the most powerful feature of the gravitational dual of
some field theory is that it encodes full information about
the entire hydrodynamic series—the structure of the gra-
dient expansion and the values of its microscopically
determined transport coefficients. Beyond our desire to
understand the general structure of relativistic hydrody-
namics suitable for the description of high-energy fluidlike
states of matter, AdS=CFT should therefore be in itself a
very important motivation for studying higher-order
hydrodynamics.2

The problem that we will study in this work is precisely
how hydrodynamics can be systematically generated at all
orders in the gradient expansion, i.e. higher powers in
klmfp. What is clear is that the complexity of such an ex-
pansion makes it rather forbidding for the higher-derivative
terms to be analyzed in the usual way. For this purpose, we
will formulate a computational algorithm that can generate
relativistic hydrodynamic gradient expansion at any order.
To demonstrate its power, we will directly extend the works
of Refs. [20,22] and classify both conformal and non-
conformal uncharged hydrodynamics at third order in four
space-time dimensions. We will show that the third-
order hydrodynamic stress-energy tensor requires us to
introduce 20 new tensorial structures (and transport coef-

ficients λð3Þn with n ¼ 1; 2;…; 20) for conformal fluids and
68 tensors in the nonconformal case. Thus, we will find the
most general next-to-leading-order corrections to the rela-
tivistic uncharged Navier-Stokes equations, with terms up
to and including Oð∂4Þ in Eqs. (1) and (2).
Next, we will use the AdS=CFT correspondence to

compute some of the conformal, third-order transport

coefficients, λð3Þn , in the supersymmetric N ¼ 4 Yang-
Mills theory with an infinite number of colors Nc and at
infinite ’t Hooft coupling λ. Using the linear-response
dispersion relations for shear and sound modes, a two-
point function of the stress-energy tensor, and the nonlinear
boost-invariant Bjorken flow, we will derive the values for
five linear combinations of these coefficients, namely

λð3Þ1 þ λð3Þ2 þ λð3Þ4 ≡ −θ1 ¼ −
N2

cT
32π

; ð4Þ

λð3Þ3 þ λð3Þ5 þλð3Þ6 ≡−θ2 ¼
N2

cT
384π

�
π2

12
þ18 ln2− ln22−22

�
;

ð5Þ

λð3Þ1 − λð3Þ16 ¼ N2
cT

16π

�
π2

12
þ 4 ln 2 − ln22

�
; ð6Þ

λð3Þ17 ¼ N2
cT

16π

�
π2

12
þ 2 ln 2 − ln2 2

�
; ð7Þ

and

λð3Þ1

6
þ 4λð3Þ2

3
þ 4λð3Þ3

3
þ 5λð3Þ4

6
þ 5λð3Þ5

6
þ 4λð3Þ6

3
−
λð3Þ7

2

þ 3λð3Þ8

2
þ λð3Þ9

2
−
2λð3Þ10

3
−
11λð3Þ11

6
−
λð3Þ12

3
þ λð3Þ13

6
− λð3Þ15

¼ N2
cT

648π
ð15 − 2π2 − 45 ln 2þ 24ln22Þ: ð8Þ

From the point of view of phenomenological hydrody-
namics, there is no clear way to define the basis of linearly
independent tensor structures at a given order in the
gradient expansion. As a result, any linear combination
of the transport coefficients can be declared as a set of
independent transport coefficients.
Beyond hydrodynamics to third order, recent works

[41–44] have studied the linearized subsector of the hydro-
dynamic expansion to all orders. In this work, however,
we will be interested in the full nonlinear extension of
the relativistic Navier-Stokes equations in all of the
relevant fields.
There are several other corrections to hydrodynamics

that could in principle invalidate the gradient expansion at
some order. First, it has long been known that the
correlation functions of conserved operators, such as
hTabTcdi, exhibit nonanalytic behavior beyond first-order
hydrodynamics. This effect is known as the long-time tails
and was recently studied and reviewed in Refs. [23,45,46].
However, because these nonanalyticities arise from loop
corrections, they are suppressed by inverse factors of the
number of colors in non-Abelian gauge theories (1=Nc)
[45]. Thus, in large-Nc field theories, such as those most
readily described by the gauge-gravity duality, long-time
tails are subleading compared to the gradient expansion
series. Furthermore, the interplay between the nonanaly-
ticities and the higher-order expansion in k has not yet been
fully analyzed and understood.
Second, as already mentioned above, an important

question regarding the hydrodynamic expansion is the
convergence of the series [cf. Eq. (3)]. It is believed that
the hydrodynamic series is an asymptotic one, analogous to
the perturbative series in Quantum Field Theory (QFT).
Recent works [47,48] have studied the behavior of the
hydrodynamic expansion from this point of view, and
Ref. [47] showed that in the holographic Bjorken flow
[49–52], as expected from a divergent asymptotic series
with a zero radius of convergence, the series indeed breaks
down at some order. However, the order at which the series
may break down in general is unknown, and therefore it is
important to study the expansion at higher orders.
Similarly, in QED, the results of the renormalized

2For works on second-order hydrodynamics in AdS=CFT, see
Refs. [20,21,24,25,35–40] and references therein.
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perturbation theory are expected to be divergent [53].
However, higher-order loop computations in QED have
yielded some of the most successful high-energy theoretical
predictions, consistent with experiments.
This paper is structured in the following way. In Sec. II,

we will proceed with our analysis of the hydrodynamic
gradient expansion by first constructing a systematic
algorithm that can be used for its classification at any
order. We will then use the outlined procedure to write
down the stress-energy tensor for conformal and non-
conformal relativistic fluids at third order in Sec. III. In
Sec. IVA, we will look for the linear dispersion relations
and find corrections to diffusion and the propagation of
sound. Moreover, we will compute the scalar (spin-2)
correlation function of the stress-energy tensor and the
energy density corresponding to the Bjorken flow. These
results will then be used in Sec. V to compute some of the
new transport coefficients in the N ¼ 4 supersymmetric
Yang-Mills theory by using the AdS=CFT correspondence.
The Appendixes are used to prove a statement about the
required tensorial ingredients in the classification of hydro-
dynamics and simplifications that occur in tensors that do
not include any curvature tensors and to list all third-order
scalars, vectors, and two-tensors that enter the gradient
expansion.

II. SYSTEMATICS OF THE CONSTRUCTION

A. Hydrodynamic variables and the generalized
Navier-Stokes equations

Let us begin our exploration of hydrodynamics by
identifying the relevant hydrodynamic variables and the
equations of motion that govern the behavior of fluids. In
this work, we will focus on the uncharged relativistic fluids,
although the systematics we outline here can easily be
applied to the classification of the gradient expanded
Noether currents that would correspond to additional
conserved charges in the system. The steps of the con-
struction that we employ will closely follow those
presented in Ref. [23].
An uncharged fluid on a manifold with an arbitrary

metric gab can be described by two near-equilibrium
functions: the velocity field uaðxÞ and the temperature
field TðxÞ. In the presence of a Noether current Ja, one also
needs to promote the chemical potential to a space-time-
dependent, near-equilibrium field, μðxÞ. For the present
purposes, we only assume the existence of a conserved
stress-energy tensor, which we write in the gradient
expansion of the velocity and temperature fields,

Tab ¼ Tab
ð0Þðu; TÞ þ Tab

ð1Þð∂u; ∂TÞ þ � � �
þ Tab

ðnÞð∂nu;…; ∂nTÞ þ � � �≡ Tab
ð0Þ þ Πab: ð9Þ

The conservation equation,

∇aTab ¼ 0; ð10Þ

then provides dynamical equations (of motion) for ua and
T. It is worth noting that Eq. (10) gives us d equations in d
space-time dimensions, which can be solved by the d − 1
independent components of ua together with a single scalar
field T (ua is normalized to uaua ¼ −1). However, for
conciseness, we will only work in d ¼ 4 dimensions in this
paper, although our construction could be easily general-
ized to an arbitrary number of dimensions.
Following Ref. [23], it is convenient to decompose

Tab into

Tab ¼ Euaub þ PΔab þ ðqaub þ uaqbÞ þ tab; ð11Þ

where E and P are scalars; qa is a transverse vector; and tab

is a transverse, symmetric, and traceless (TST) tensor. Here,
we have introduced the projector,

Δab ≡ uaub þ gab: ð12Þ

Each one of the operators E, P, qa, and tab is then gradient
expanded in ua, T, and gab, to facilitate the expansion
in Eq. (9).3

In order to construct a physically sensible theory of
hydrodynamics, it is not sufficient to only find all possible
tensor structures for E, P, qa, and tab. The first issue arises
from the fact that we have not microscopically specified the
meaning of the velocity and temperature fields. Because we
are working with the gradient expansion, it should therefore
be possible to transform the fields by adding to them terms
subleading in the gradient expansion while keeping the
physical predictions of hydrodynamics invariant,

ua → ua þ fað1Þ;uð∂T; ∂uÞ þ fað2Þ;uð∂2T; ∂T∂u; ∂2uÞ þ � � � ;
ð13Þ

T → T þ fð1Þ;Tð∂T; ∂uÞ þ fð2Þ;Tð∂2T; ∂T∂u; ∂2uÞ þ � � � :
ð14Þ

The hydrodynamical description of a system should thus
remain invariant under such frame redefinitions. To study
uncharged fluids, it is most convenient to work in the
Landau frame with

uaΠab ¼ 0; ð15Þ

which requires us to set all EðnÞ ¼ 0 and qaðnÞ ¼ 0, for n ≥ 1.

The zeroth-order qað0Þ ¼ 0 because there are no transverse

vectors without derivatives among our hydrodynamics

3Throughout this work, we will be using the ð−;þ;þ;þÞ
Lorentzian signature for the metric tensor.
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variables. The remaining term in the expansion of E, i.e.
E ¼ Eð0Þ, is then identified as the energy density of the fluid,
E ¼ Eð0Þ ≡ ε. After such an adjustment of the arbitrary
functions in Eqs. (13) and (14), we are left with

Tab ¼ εuaub þ PΔab þ tab; ð16Þ

where Pð0Þ ≡ P is the pressure of the fluid. Hence, what
remains to be gradient expanded in the classification of
uncharged fluids are the scalar P and the transverse,
symmetric, and traceless tab.
There is an additional source of restrictions that we must

impose on the structure of the hydrodynamic tensors in
order to obtain the set of all “physically” independent
structures: When working at the nth order of the gradient
expansion, we can always use the equations of motion [the
conservation equation (10)] to eliminate some terms at the
expense of introducing corrections at all subleading orders
in the gradient expansion. More precisely, Eq. (10) gives

ub∇aTab ¼ −Dε − ðεþ PÞ∇ · uþ higher derivatives ¼ 0;

ð17Þ

Δa
b∇cTcb ¼ðεþPÞDuaþ∇⊥aPþhigherderivatives¼ 0;

ð18Þ
where we have defined the longitudinal and the transverse
derivatives as

D ¼ ua∇a; ∇⊥a ¼ Δab∇b; ð19Þ

so that ∇a ¼ ∇⊥a − uaD. The most important property
of the transverse derivatives is that, when acting on an
arbitrary tensor,

uc∇⊥cVb1b2… ¼ 0: ð20Þ

Equations (17) and (18) are the generalizations of the
relativistic Navier-Stokes equations for fluids with a
gradient expanded stress-energy tensor to an arbitrary
order. Following Ref. [22], it is convenient to use the
thermodynamic relation εþ P ¼ sT, where s is the entropy
density, to rewrite Eqs. (17) and (18) as

D ln s ¼ −∇ · uþ higher derivatives; ð21Þ

Dua ¼ −c2s∇⊥a ln sþ higher derivatives: ð22Þ

The constant cs is the speed of sound in the fluid. Note also
that∇ · u ¼ ∇⊥ · u. As a result of the form of Eqs. (21) and
(22), we will use the scalar function ln s instead of the
temperature field T to construct the gradient expansion.
The key observation that follows from Eqs. (21) and (22)

is that it is most convenient to only work with the transverse

derivatives of ua and ln s and with the Riemann tensor
Rabcd. This is because all longitudinal derivatives of ua and
ln s can always be written as purely transverse derivatives
and commutators of the covariant derivatives, which can
then be expressed in terms of various combinations of the
Riemann tensor, its covariant derivatives, and transverse
derivatives of ua and ln s. The proof of this statement is
presented in Appendix A.

B. Constructing the gradient expansion

We are now ready to begin classifying the hydrodynamic
expansion. By choosing the frame for T, or the entropy
density field s, and defining Pð0Þ, we have already fixed
zeroth-order hydrodynamics, which describes the behavior
of ideal, nondissipative fluids. There exist no transverse
vectors nor TST tensors that could be constructed out of
only ua or gab.
We can thus turn our attention to the hydrodynamic

tensors with nontrivial derivative structures. To construct
the hydrodynamic expansion at higher orders, it is most
efficient to carefully select the relevant ingredients that will
build the irreducible tensor structures, i.e. those that cannot
be eliminated by the equations of motion (21) and (22). As
discussed at the end of Sec. II A and Appendix A, all the
longitudinal components of ∇aub and ∇a ln s can be
eliminated. Therefore, it suffices to use transverse deriv-
atives of ua and ln s, as well as the Riemann tensor Rabcd
and its covariant derivatives.
Let us begin the classification of hydrodynamics by

considering first-order tensors. The only possible one-
derivative ingredients that can be used to build E, P, qμ,
and tμν are ∇⊥aub and ∇⊥a ln s, as there are no one-
derivative tensorial structures that would include the metric
tensor gab. We can therefore write the first-order set of
tensorial ingredients as

I ð1Þ ¼ f∇⊥aub;∇⊥a ln sg: ð23Þ

Similarly, we define I ðnÞ to be the set of all n-derivative
objects relevant at the nth order of the gradient expansion.
The two- and one-index tensors in Eq. (23) must then be
contracted in all possible ways with the zeroth-order
structures, i.e. ua and gab,

I ð0Þ ¼ fua; gabg: ð24Þ

Imagine that we wish to form all two-tensors with single
entries from I ð1Þ and an arbitrary number of the I ð0Þ
structures. It is easiest to count such combinations by using
covariant and contravariant indices on the two different
sets, as it would be redundant to add additional strings of
I ð0Þ and then contract them among themselves. The total
number of free indices from the I ð0Þ tensors is a1 þ 2a2,
which should be directly contracted with either a two- or a
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one-index object from I ð1Þ. Hence, a1 þ 2a2 − 2 or a1 þ
2a2 − 1 can equal either þ2 or −2.
To generalize the preceding discussion to tensors of any

rank, let us now denote by ½I ðnÞ
m � the number of uncon-

tracted indices in the mth entry of I ðnÞ. All possible
contractions of I ð0Þ with I ð1Þ can thus be found by solving

X2
n¼1

an½I ð0Þ
n � − ½I ð1Þ

m � ¼ �N; ð25Þ

for each m, such that an ∈ Zþ∪f0g. The three different
values of N ¼ f0; 1; 2g correspond to scalars (terms in E
and P), vectors (terms in qa), and tensors (terms in tab),
respectively. Throughout this work, we will use the symbol

J ðnÞ
N to denote the set of all possible tensors with n

derivatives that can be used to form the tensors of rank N.
Using Eq. (25), we find that in first-order hydro-

dynamics,

m ¼ 1∶ a1 þ 2a2 − 2 ¼ �N; ð26Þ

m ¼ 2∶ a1 þ 2a2 − 1 ¼ �N: ð27Þ

For scalars with N ¼ 0, the possible combinations are

m ¼ 1∶ fða1; a2Þg ¼ fð2; 0Þ; ð0; 1Þg; ð28Þ

m ¼ 2∶ fða1; a2Þg ¼ fð1; 0Þg; ð29Þ

which give us the possible tensors,

J ð1Þ
0 ¼ fuaub∇⊥cud; gab∇⊥cud; ua∇⊥b ln sg: ð30Þ

For a vector with N ¼ 1, we need to solve for the right-
hand side of (25) with �N ¼ �1, giving us a set of
equations,

m ¼ 1∶ a1 þ 2a2 ¼ 3 ∨ a1 þ 2a2 ¼ 1; ð31Þ

m ¼ 2∶ a1 þ 2a2 ¼ 2 ∨ a1 þ 2a2 ¼ 0; ð32Þ

which have solutions

m ¼ 1∶ fða1; a2Þg ¼ fð3; 0Þ; ð1; 1Þ; ð1; 0Þg; ð33Þ

m ¼ 2∶ fða1; a2Þg ¼ fð2; 0Þ; ð0; 1Þ; ð0; 0Þg: ð34Þ

The possible tensors from which the one-derivative vectors
can be constructed are thus

J ð1Þ
1 ¼ fuaubuc∇⊥due; uagbc∇⊥due; ua∇⊥buc;

uaub∇⊥c ln s; gab∇⊥c ln s;∇⊥a ln sg: ð35Þ

Similarly, the two-tensors in tab can be constructed by
solving

m ¼ 1∶ a1 þ 2a2 ¼ 4 ∨ a1 þ 2a2 ¼ 0; ð36Þ

m ¼ 2∶ a1 þ 2a2 ¼ 3 ∨ a1 þ 2a2 ¼ −1; ð37Þ

which gives

m ¼ 1∶ fða1; a2Þg ¼ fð4; 0Þ; ð2; 1Þ; ð0; 2Þ; ð0; 0Þg; ð38Þ

m ¼ 2∶ fða1; a2Þg ¼ fð3; 0Þ; ð1; 1Þg: ð39Þ

Hence,

J ð1Þ
2 ¼ fuaubucud∇⊥euf; uaubgcd∇⊥euf; gabgcd∇⊥euf;

∇⊥aub; uaubuc∇⊥d ln s; uagbc∇⊥d ln sg: ð40Þ

All the tensors in the sets J ð1Þ
0 , J ð1Þ

1 , and J ð1Þ
2 must now

be contracted in all possible ways with gab to form scalars,
vectors, and two-tensors, respectively. The next step in the
construction is the elimination of duplicates and simplifi-
cations that use the properties of the participating tensors.
In particular, we can use the fact that

uaua ¼ −1; ð41Þ

and hence ua∇⊥bua ¼ 0, and so on. Furthermore, the
property of the transverse derivatives that was stated in
Eq. (20) can also be used to vastly simplify the resulting
expressions. In fact, it should be clear that the combination
of Eqs. (20) and (41) makes any contraction between ua in
I ð0Þ and the entries of I ð1Þ vanish. However, this will not be
the case for the curvature tensors in I ðnÞ.
All scalars that are made from J ð1Þ

0 can immediately be
used in E andP. On the other hand, the vector qa and tensor
tab require additional treatment. Sinceqamust be transverse,
we may only keep the vectors that vanish after they are
contracted with ua. To construct all TST tensors relevant for
tab, it is easiest to form manifestly TST structures out of all
two-tensors by applying the operation

Ahabi ≡ 1

2
ΔacΔbdðAcd þ AdcÞ −

1

d − 1
ΔabΔcdAcd: ð42Þ

All linearly independent tensors that survive this operation
can then be considered as terms in tab.
Although the above procedure yields the correct results,

it is computationally more efficient to construct the tensors
that do not include any Riemann tensors separately. As
already noted below Eq. (41), this is because our choice of
the tensorial ingredients (Appendix A) vastly simplifies the
possible contractions between I ð0Þ and the tensors exclud-
ing various curvature tensors in I ðnÞ with n ≥ 1 (curvature
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tensors can have covariant derivatives acting on them). In
Appendix B, we prove the claim that, when constructing
scalars, transverse vectors, and TST two-tensors with only
ua and ln s at any order of the gradient expansion, we can
only use the gab component of I ð0Þ, i.e. set a1 ¼ 0 in
Eq. (25). For tensors containing Rabcd, we have to allow
for any a1.
Once all the linearly independent tensor structures are

found, we associate hydrodynamic transport coefficients
with each one of the tensors and write them as a sum in the
stress-energy tensor. The transport coefficients cannot be
determined phenomenologically but must be calculated
from the underlying microscopic theory.4 To denote the
transport coefficients at all orders, we will use the lower-
case Greek letter upsilon with three indices,

υðn;NÞ
i ; ð43Þ

where n is the order in the gradient expansion and N
determines whether a particular transport coefficients
comes from the scalar (P), vector (qa), or two-tensor
(tab) sector of Tab, denoted by N ¼ 0, N ¼ 1, and
N ¼ 2, respectively. In case one wanted to work in a frame
with E ≠ Eð0Þ, some additional notation should be intro-

duced to distinguish between the two υðn;0Þi cases. Finally, i
will count the number of transport coefficients in each of
the sectors, at each order of the gradient expansion.
Since we are working in the Landau frame and in the

frame with E ¼ Eð0Þ ¼ ε, we only need to find Pð1Þ and tabð1Þ
at first order. What we find from the above considerations is

Pð1Þ ¼ −ζ∇⊥ · u; ð44Þ

tabð1Þ ¼ −ησab; ð45Þ

where υð1;0Þ1 ¼ ζ and υð1;2Þ1 ¼ η are the two first-order
transport coefficients: the bulk and shear viscosity, respec-
tively. The only first-order TST tensor is defined as

σab ¼ 2h∇⊥aubi: ð46Þ

For future use, we also introduce the most general decom-
position,

∇⊥aub ¼
1

2
σab þ Ωab þ

1

3
Δab∇⊥cuc; ð47Þ

where the vorticity is

Ωab ¼
1

2
ð∇⊥aub −∇⊥buaÞ: ð48Þ

At second order in the gradient expansion, the nonlinear
tensorial ingredients are

I ð2Þ ¼f∇⊥a∇⊥buc;∇⊥aub∇⊥cud;∇⊥aub∇⊥c ln s;

∇⊥a∇⊥b ln s;∇⊥a ln s∇⊥b ln s; Rabcdg; ð49Þ

where I ð2Þ includes the Riemann tensor that involves two-
derivative metric structures. The full structure of second-
order hydrodynamics was first found by Romatschke in
Ref. [22] and is given by a sum of 15 linearly independent
tensors with 15 transport coefficients,

Pð2Þ ¼ ζτπDð∇ · uÞ þ ξ1σ
abσab þ ξ2ð∇ · uÞ2 þ ξ3ΩabΩab

þ ξ4∇⊥a ln s∇⊥a ln sþ ξ5Rþ ξ6uaubRab; ð50Þ

tabð2Þ ¼ ητΠ½hDσabi þ 1

3
σabð∇ · uÞ�

þ κ½Rhabi − 2ucudRchabid� þ 1

3
ητ�Πσ

abð∇ · uÞ

þ 2κ�ucRchabidud þ λ1σ
ha
c σbic þ λ2σ

ha
c Ωbic

þ λ3Ω
ha
c Ωbic þ λ4∇⊥ha ln s∇⊥bi ln s: ð51Þ

For historical reasons, in the Müller-Israel-Stewart theory
[16–19], the transport coefficient ητΠ is written as a product
of the shear viscosity η and the relaxation time τΠ.
Furthermore, the physically motivated combinations of
the tensors (shear tensor, vorticity) that appear in
Eqs. (50) and (51) are not necessarily those that would
directly follow from our systematics but can easily be
written in terms of our tensors by simple linear combina-
tions. What is invariant, regardless of the choice of the
linearly independent tensors, is their number.
For calculations that do not employ the Landau frame, it

is useful to also write down the transverse vector qa. At first
order, the only term that enters into the expansion is

qað1Þ ¼ υð1;1Þ1 ∇⊥a ln s; ð52Þ

while at second order, the five independent transverse
vectors give

qað2Þ ¼ υð2;1Þ1 ∇⊥bσ
ba þ υð2;1Þ2 ∇⊥bΩba þ υð2;1Þ3 σba∇⊥b ln s

þ υð2;1Þ4 ∇⊥bub∇⊥a ln sþ υð2;1Þ5 ΔabucRbc: ð53Þ

Beyond the possibility to work in a different frame, the
knowledge of the vectors is also required for building the
gradient expansion of the entropy current Sa [22,23,26,27].
However, in that case, we would not impose that Sa be
transverse. In this paper, we do not consider the entropy

4Such calculations can be rather involved and use a combi-
nation of linear-response theory and kinetic theory techniques or
lattice gauge computations. See for example Refs. [24,54].
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current analysis; nor do we study potential constraints that
may arise from demanding positive local entropy produc-
tion [22–29]. As discussed in the Introduction, it is well
known that in first-order hydrodynamics, this analysis
results in the condition that shear and bulk viscosities
must be non-negative [23]. In second-order hydrodynam-
ics, Ref. [27] argued that the entropy current considerations
give five constraints, resulting in the reduction of the
15 second-order transport coefficients to 10 independent
ones.
In a different frame for the temperature field T, which

would result in Eð1Þ ≠ � � � ≠ EðnÞ ≠ 0, the structure of the
gradient expansion for EðnÞ would be exactly the same as
for PðnÞ. In such cases, we would therefore only need to
associate a new transport coefficient with each term in EðnÞ,
independent from those in PðnÞ.
Finally, we note that by following the above procedure,

we could also include the fluctuating chemical potential
μðxÞ, which would then allow us to construct the gradient
expansion of the conserved Noether current, such as for
example the baryon number current. We will not explore
this option in this paper.

C. Conformal hydrodynamics

A very important subclass of fluids are the conformal
fluids, which have played a central role in applications of
the gauge-gravity duality to hydrodynamics [31,32]. Fluids
with conformal symmetry are characterized by a vanishing
trace of their stress-energy tensor,

Ta
a ¼ 0; ð54Þ

and the Weyl-covariance of Tab; i.e. each term in the stress-
energy tensor needs to transform homogeneously under the
nonlinear Weyl transformations [20].
In quantum field theory, the perturbations of the metric

tensor, gab → gab þ hab, can be used to source the stress-
energy tensor correlation functions. To first order in the
source hab, the generating functional includes the coupling

Z
d4x

ffiffiffiffiffiffi
−g

p
Tabhab: ð55Þ

Under the Weyl transformation, the metric tensor trans-
forms with the conformal weight of Δgab ¼ −2,

gab → e−2ωgab: ð56Þ

Equations (55) and (56) then imply that in order for the
stress-energy tensor to scale homogeneously, it must have
the conformal weight ΔTab ¼ 6 in four dimensions,

Tab → e6ωTab: ð57Þ

In general, a tensor Aa1…am
b1…bn

with the conformal weight
ΔA ¼ ½A� þm − n that transforms homogeneously under
the Weyl transformation transforms as

Aa1…am
b1…bn

¼ eΔAωAa1…am
b1…bn

: ð58Þ

In the expression for the conformal weight, ½A� denotes the
mass dimension of the tensor operator, and m and n count
the number of contravariant and covariant indices, respec-
tively. Hence, ua, ln s, and the transport coefficients trans-
form as

ua → eωua; ð59Þ

ln s → ln ðe3ωsÞ; ð60Þ

υðn;NÞ
i → eð4−nÞωυðn;NÞ

i : ð61Þ

For a detailed discussion of the Weyl transformations in
hydrodynamics, we refer the reader to Ref. [20].
The procedure for finding the most general conformal

hydrodynamic stress-energy tensor is then the following:
Since we are working in the Landau frame with only
Eð0Þ ≠ 0, the traceless condition (54) implies that ε ¼ 3P.
Furthermore, it implies that all PðnÞ with n ≥ 1 must
vanish. We must then use the full series of tensors inside
the nonconformal expression for the traceless tab, discussed
in Sec. II B, and find how each one of them transforms
under the Weyl transformation (58). Since (57) must be
ensured, those tensors that transform homogeneously can
be immediately used in the conformal Tab. Those that do
not must be combined by linear relations into the maximal
possible set of homogeneously transforming tensors. Each
of the remaining linearly independent homogeneously
transforming TST two-tensors can then be assigned an
independent transport coefficient, and the full series con-
stitutes the stress-energy tensor Tab of a conformal fluid.
Up to second order and in the Landau frame, the above

procedure gives us the conformal stress-energy tensor
[20,21],

Πab ¼ tabð1Þ þ tabð2Þ

¼ −ησab þ ητΠ

�
hDσabi þ 1

3
σabð∇ · uÞ

�

þ κ½Rhabi − 2ucRchabidud�
þ λ1σ

ha
cσ

bic þ λ2σ
ha
cΩbic þ λ3Ωha

cΩbic; ð62Þ

where Πab was defined in Eq. (9). What remains from the
list of all nonconformal transport coefficients is one first-
order transport coefficient η (shear viscosity) and five
second-order transport coefficients τΠ, κ, λ1, λ2, and λ3.
Finally, we should note that we can completely ignore

the effects of the conformal (Weyl) anomaly on the
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hydrodynamic transport in this work, as we are only
considering third-order hydrodynamics in d ¼ 4 dimen-
sions. It is well known that the Weyl anomaly in four
dimensions is given by

hTa
ai ¼ −

a
16π2

ðRabcdRabcd − 4RabRab þ R2Þ

þ c
16π2

�
RabcdRabcd − 2RabRab þ 1

3
R2

�
ð63Þ

∼ ð∂gabÞ4: ð64Þ
Hence, this Weyl trace anomaly could only affect fourth-
order hydrodynamics [20]. In that case, the use of only tabð4Þ
in the expansion of Tab

ð4Þ would be insufficient, as tabð4Þ is

manifestly traceless. In fact, Eq. (63) could simply be
incorporated into Tab, in the Landau frame, by writing

Pð4Þ ¼
c − a
48π2

RabcdRabcd þ 2a − c
24π2

RabRab

þ c − 3a
144π2

R2 þ � � � : ð65Þ
The three new transport coefficients,

υð4;0Þ1 ¼ c − a
48π2

; ð66Þ

υð4;0Þ2 ¼ 2a − c
24π2

; ð67Þ

υð4;0Þ3 ¼ c − 3a
144π2

; ð68Þ

are thus completely determined by the central chargesa and c
of the underlying conformal field theory. We defer a more
detailed study of fourth-order hydrodynamics to futurework.

III. THIRD-ORDER HYDRODYNAMICS

We are now ready to construct the hydrodynamic stress-
energy tensor at third order in the gradient expansion. To

use the systematics described in Sec. II, we first need the set
of third-order tensorial ingredients,

I ð3Þ ¼ f∇⊥a∇⊥b∇⊥cud;∇⊥a∇⊥buc∇⊥due;

∇⊥aub∇⊥cud∇⊥euf;∇⊥a∇⊥buc∇⊥d ln s;

∇⊥aub∇⊥c∇⊥d ln s;∇⊥a∇⊥b∇⊥c ln s;

∇⊥a∇⊥b ln s∇⊥c ln s;

∇⊥a ln s∇⊥b ln s∇⊥c ln s;∇⊥aubRcdef;

∇⊥a ln sRbcde;∇aRbcdeg: ð69Þ

We can then show that the third-order nonconformal stress-
energy tensor, in the Landau frame, takes the form

Tab
ð3Þ ¼ Pð3ÞΔab þ tabð3Þ; ð70Þ

where Pð3Þ is a sum of 23 terms and tabð3Þ a sum of 45 TST
two-tensors, each with a new transport coefficient,

Pð3Þ ¼
X23
i¼1

υð3;0Þi Si; tabð3Þ ¼
X45
i¼1

υð3;2Þi T ab
i : ð71Þ

The scalars and the two-tensors are listed in Appendixes D
and C, respectively. In total, these give 68 new transport
coefficients. If we were to work in a different frame, it is
also useful to list all possible hydrodynamic vectors that
may enter the expansion of qað3Þ. The 28 transverse third-

order vectors are listed in Appendix E.
Out of the two-tensors, we can now construct conformal

third-order hydrodynamics, as described in Sec. II C. The
expansion of the Weyl-covariant conformal stress-energy
tensor takes the form

Tab
ð3Þ ¼

X20
i¼1

λð3Þi Oab
i ; ð72Þ

in which there are 20 new Weyl-covariant tensors that
require us to introduce 20 new transport coefficients. In
terms of T ab

i , the conformal tensors are

O1 ¼ T 1 þ
2T 11

3
−
T 12

3
þ 2T 13

3
−
2T 14

3
−
2T 16

3
þ 2T 17

9
−
T 18

3
−
T 19

3
−
T 20

6
− 2T 27 þ

T 28

2
−
T 40

2
þ 3T 41

2

þ T 42 þ
3T 43

2
þ 3T 44

2
þ T 45

2
; ð73Þ

O2 ¼ T 2 þ
2T 11

3
þ T 13

3
−
T 15

3
− T 16 þ

2T 17

9
−
2T 18

9
−
4T 19

9
−
T 20

6
þ T 27 −

T 28

2
−
3T 29

2
−
3T 30

2
þ T 33

2

−
T 35

2
þ T 41

2
þ T 42 −

T 43

2
þ 5T 44

2
þ T 45

2
; ð74Þ

O3 ¼ T 3 þ
2T 11

3
þ T 13

3
− T 14 −

T 15

3
þ 2T 17

9
−
2T 18

9
−
4T 19

9
−
T 20

6
−
T 28

2
þ T 29

2
−
5T 30

2
þ T 33

2
−
T 35

2

þ T 41

2
þ T 42 þ

T 43

2
þ 3T 44

2
þ T 45

2
; ð75Þ
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O4 ¼ T 4 þ
2T 11

3
þ T 13

3
−
T 15

3
− T 16 þ

2T 17

9
−
2T 18

9
−
4T 19

9
−
T 20

6
−
T 28

2
− T 30 þ

T 33

2
−
T 35

2
þ T 40 −

5T 41

2

−
3T 43

2
þ T 44

2
þ T 45

2
; ð76Þ

O5 ¼ T 5 þ
2T 11

3
þ T 13

3
− T 14 −

T 15

3
þ 2T 17

9
−
2T 18

9
−
4T 19

9
−
T 20

6
−
T 28

2
− T 30 þ

T 33

2
−
T 35

2
þ T 40 −

5T 41

2

−
3T 43

2
þ T 44

2
þ T 45

2
; ð77Þ

O6 ¼ T 6 þ T 11 −
4T 15

3
þ 2T 17

9
−
2T 19

3
−
T 20

6
þ T 28

2
þ T 29

2
−
3T 30

2
þ 3T 33

2
−
3T 35

2
þ 2T 40 −

9T 41

2
−
9T 43

2

þ 3T 44

2
þ T 45

2
; ð78Þ

O7 ¼ T 7 − 3T 9 −
T 17

3
þ T 19 −

T 20

2
þ 3T 28

2
− 3T 29 þ

3T 40

2
−
9T 41

2
−
9T 43

2
þ 9T 44

2
þ 3T 45

2
; ð79Þ

O8 ¼ T 8 − T 9 −
T 18

3
þ T 19

3
þ 3T 27 −

3T 29

2
−
3T 30

2
− 3T 43 þ 3T 44; ð80Þ

O9 ¼ T 10 þ
T 20

6
þ 3T 28

2
−
3T 40

2
þ 9T 41

2
þ 3T 42 þ

9T 43

2
þ 9T 44

2
þ 3T 45

2
; ð81Þ

O10 ¼ T 21 − 3T 28; ð82Þ

O11 ¼ T 22 − 3T 27 − T 28 þ
T 29

2
þ 3T 30

2
; ð83Þ

O12 ¼ T 23 − T 28 − T 29; ð84Þ

O13 ¼ T 24 − T 28 þ
T 29

2
−
3T 30

2
; ð85Þ

O14 ¼ T 25 − T 28; ð86Þ

O15 ¼ T 26 − 2T 27 þ T 30; ð87Þ

O16¼ T 31þ
T 33

2
þT 34−

T 35

6
−
T 36

3
þT 40

2
þT 45; ð88Þ

O17¼ T 32þ2T 34−
2T 35

3
−
4T 36

3
þ2T 40

3
þ4T 45

3
; ð89Þ

O18¼ T 37−2T 40þ6T 41þ6T 42þ6T 43þ6T 44þ2T 45;

ð90Þ

O19 ¼ T 38 − T 40 þ 2T 41 þ T 42 þ 2T 44; ð91Þ

O20 ¼ T 39 − T 40 þ 2T 41 þ T 42 þ 2T 43: ð92Þ

It should be understood that all O and T tensors carry two
indices, a and b. Clearly, the choice ofO is not unique, and

we could have chosen a different linear combination. What
is important is the number of linearly independent combi-
nations that gives us the number of corresponding transport
coefficients.
Furthermore, it is interesting to note that in flat space,

only the first 15 Weyl-covariant tensors, Oab
1 �Oab

15 , remain
nonzero. This is consistent with the results from kinetic
theory, within the context of which Refs. [55–57] found 14
transport coefficients in third-order hydrodynamics.
Similarly, in second-order hydrodynamics, kinetic theory
gave only three instead of four conformal transport coef-
ficients in flat space. There, λ3 ¼ 0, which is the transport
coefficient corresponding to the term consisting only of

vorticity in the gradient expansion, i.e. Ωha
c Ωbic. It is

therefore plausible that the tensor missing from the kinetic
theory analysis is the one consisting solely of vorticity
tensors, i.e. ∼Ω3.5

Finally, we stress that the number of new independent
transport coefficients should be understood as an upper
bound on their actual physical number (a maximal possible
set), since there could be further constraints coming from
imposing non-negativity of the entropy current divergence
[22–29]. As we have not yet performed the local entropy
current analysis in third-order hydrodynamics, we cannot
establish whether the non-negativity of entropy production
imposes any constraints on the 68 and 20 unconstrained

5We thank Amaresh Jaiswal for bringing the results of kinetic
theory to our attention.
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transport coefficients in nonconformal and conformal
hydrodynamics, respectively. It is interesting to note
that, while such an analysis restricts the number of non-
conformal coefficients, at least in second-order hydro-
dynamics, the number of conformal coefficients remains
the same [27].

IV. PROPERTIES OF LINEAR AND NONLINEAR
THIRD-ORDER HYDRODYNAMIC TRANSPORT

In this section, we analyze the effects of third-order
hydrodynamics on linear transport as well as an example of
nonlinear hydrodynamics. First, we compute the dispersion
relations for shear and sound modes to third order in the
hydrodynamic expansion. Then, we compute the scalar
channel stress-energy tensor two-point function. Since the
dispersion relations and two-point functions follow from
linear perturbations of Tab in the hydrodynamic variables,
only the stress-energy tensor terms linear in ua, ln s, and gab
are relevant. Lastly, for an example of a hydrodynamic
process that is sensitive to nonlinear terms, we compute the
energy density of the boost-invariant Bjorken flow to
third order.

A. Shear and sound dispersion relations

To compute the shear and sound dispersion relations in
flat space, we need the linear part of the nonconformal
third-order stress-energy tensor in Eq. (70) that includes
derivatives of the velocity and entropy density fields. This
is given by the following series of terms:

Tab
ð3Þ;lin ¼

X3
i¼1

υð3;0Þi SiΔab þ
X6
i¼1

υð3;2Þi T ab
i : ð93Þ

It is then easy to find the relevant dispersion relations by
following e.g. Ref. [22,38]. What we need to do is perturb
ua and ln s around the equilibrium values ua ¼ ð1; 0; 0; 0Þ
and ln s ¼ const. and solve the generalized relativistic
Navier-Stokes equations (21) and (22), that result from
∇aTab ¼ 0, for ωðkÞ in the small k expansion.
In flat space, ∇⊥a ¼ uaub∂b þ ∂a, which evaluated on

the background, ua ¼ ð1; 0; 0; 0Þ, gives ∇⊥a ¼ ua∂0 þ ∂a.
Hence, to zeroth order in linear perturbations,∇⊥0 ¼ 0 and
∇⊥i ¼ ∂i. For the purposes of linearized hydrodynamics,
therefore

∂⊥a ¼ ð0; ∂iÞ þ nonlinear; ð94Þ

which makes it clear that the linearized Navier-Stokes
equations have no additional time derivatives acting on
the hydrodynamic variables that come from higher-
order hydrodynamics. Using the notation of Eq. (94), the
linearized stress-energy tensor (93) in flat space becomes

Tab
ð3Þ;lin ¼ ðυð3;0Þ1 þ υð3;0Þ2 þ υð3;0Þ3 Þηab∂⊥d∂⊥d∂⊥cuc

þ ðυð3;2Þ1 þ υð3;2Þ2 þ υð3;2Þ4 Þ∂⊥c∂⊥c∂⊥haubi

þ ðυð3;2Þ3 þ υð3;2Þ5 þ υð3;2Þ6 Þ∂⊥ha∂⊥bi∂⊥cuc: ð95Þ

In the two different channels, i.e. the transverse (shear)
and the longitudinal (sound), we need to turn on the
following fluctuations:

shear∶ δuy ¼ e−iωtþikxftω;k δ lns¼ e−iωtþikxgω;k; ð96Þ

sound∶ δux ¼ e−iωtþikxflω;k δ lns¼ e−iωtþikxgω;k: ð97Þ

The two dispersion relations in third-order hydrodynamics
then follow from solving the equations of motion (21) and
(22) with the linearized stress-energy tensor (95). We find
that the dispersion relations, which are expressed in the
form of Eq. (3), involve nine new third-order transport
coefficients,

shear∶ ω ¼ −i
η

εþ P
k2

− i

�
η2τΠ

ðεþ PÞ2 þ
1

2

υð3;2Þ1 þ υð3;2Þ2 þ υð3;2Þ4

εþ P

�
k4

þOðk5Þ; ð98Þ

sound∶ ω ¼ �csk − iΓk2

∓ 1

2cs

�
Γ2 − 2c2s

�
2

3

ητΠ
εþ P

þ 1

2

ζτπ
εþ P

��
k3

− i

�
2Γ

�
2

3

ητΠ
εþ P

þ 1

2

ζτπ
εþ P

�

þ 3
P

3
i¼1 υ

ð3;0Þ
i þ 2

P
6
i¼1 υ

ð3;2Þ
i

6ðεþ PÞ
�
k4 þOðk5Þ;

ð99Þ

where

Γ ¼
�
2

3

η

εþ P
þ 1

2

ζ

εþ P

�
: ð100Þ

These relations should be understood as generalizations
of diffusion and the sound propagation in relativistic
fluids.
In conformal hydrodynamics, we find that six of the λð3Þi

coefficients give nonvanishing contributions to the linear-

ized stress-energy tensor: from λð3Þ1 to λð3Þ6 . These transport
coefficients precisely correspond to the first six noncon-

formal υð3;2Þi . The relevant part of the linearized conformal
third-order stress-energy tensor (72) is then
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Tab
ð3Þ;con;lin ¼ ðλð3Þ1 þ λð3Þ2 þ λð3Þ4 Þ∂⊥c∂⊥c∂⊥haubi

þ ðλð3Þ3 þ λð3Þ5 þ λð3Þ6 Þ∂⊥ha∂⊥bi∂⊥cuc: ð101Þ

As only two combinations of the six λð3Þi enter the linearized
stress-energy tensor in flat space, it is convenient to define
the following two combinations of the six conformal
transport coefficients:

θ1 ≡ −ðλð3Þ1 þ λð3Þ2 þ λð3Þ4 Þ; ð102Þ
θ2 ≡ −ðλð3Þ3 þ λð3Þ5 þ λð3Þ6 Þ: ð103Þ

Hence, the conformal shear and sound dispersion relations
become

shear∶ω¼−i
η

εþP
k2− i

�
η2τΠ

ðεþPÞ2−
1

2

θ1
εþP

�
k4þOðk5Þ;

ð104Þ

sound∶ ω ¼ �csk − iΓck2 ∓ Γc

2cs
ðΓc − 2c2sτΠÞk3

− i

�
8

9

η2τΠ
ðεþ PÞ2 −

1

3

θ1 þ θ2
εþ P

�
k4 þOðk5Þ;

ð105Þ
where the conformal Γ ¼ Γc, in the absence of bulk
viscosity ζ, is

Γc ¼
2

3

η

εþ P
; ð106Þ

and the speed of sound cs is fixed to cs ¼ 1=
ffiffiffi
3

p
for

conformal fluids in four dimensions.

B. Stress-energy tensor two-point function

A particularly simple and useful two-point function
of the stress-energy tensor Tab can be obtained by per-
turbing the flat Minkowski metric tensor in the gxy
component, with the momentum flowing in the z-direction.
Perturbing Txy to first order in δgxy and taking a derivative
with respect to the metric perturbation gives the scalar two-
point function hTxy; Txyi.6 In this channel, the velocity and
entropy density fields can be kept constant as they decouple
from δgxy. For a detailed description of such a calculation,
see e.g. Refs. [20,36].
Using the nonconformal third-order stress-energy tensor

that includes Eq. (70), we can compute the two-point
function. We find

hTxy; Txyi≡Gxy;xyðω; kÞ

¼ P − iηωþ
�
ητΠ −

κ

2
þ κ�

�
ω2 −

κ

2
k2

þ i
2
ðυð3;2Þ31 þ υð3;2Þ32 − υð3;2Þ34 Þω3

þ i
2
ðυð3;2Þ1 − υð3;2Þ31 − υð3;2Þ32 Þωk2: ð107Þ

In order to use our results for a calculation of transport
coefficients in a theory with a gravitational dual, we need
the correlator for the conformal subclass of third-order
fluids, which follows from using the stress-energy tensor
(72). The result is

Gxy;xyðω; kÞ ¼ P − iηωþ
�
ητΠ −

κ

2

�
ω2 −

κ

2
k2

−
i
2
λð3Þ17 ω

3 þ i
2
ðλð3Þ1 − λð3Þ16 − λð3Þ17 Þωk2:

ð108Þ

C. Bjorken flow

We now turn to an example of a nonlinear hydrodynamic
calculation in a conformally invariant theory: We will
analyze the effects of third-order hydrodynamics on the
boost-invariant Bjorken flow [49], which is relevant to the
study of relativistic heavy ion collisions. The configuration
describes hydrodynamic propagation of a four-dimensional
boost-invariant plasma along the z-axis with velocity z=t.
The solution can be conveniently written down in terms
of proper time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
, the rapidity parameter

ξ ¼ arctanhðz=tÞ, and a two-dimensional Euclidean plane,
perpendicular to the direction of the flow. In these (flat
metric) coordinates, the fluid is at rest. Hence, the solution
for the velocity field and the metric can be written as

ua ¼ ðuτ; uξ; u⊥Þ ¼ ð1; 0; 0; 0Þ; ð109Þ

gab ¼ −dτ2 þ τ2dξ2 þ dx2⊥: ð110Þ

We then need to solve the hydrodynamic equations of
motion for the remaining scalar field. Following Ref. [20],
it is convenient to work with the energy density εðτÞ instead
of the entropy density field. The function εðτÞ must solve
Eq. (17), i.e.

Dεþ ðεþ PÞ∇aua þ Πab∇aub ¼ 0; ð111Þ

where εðτÞ is only a function of τ. In the equation of
motion, we used Πab as defined in Eq. (9). Given that the
Ta

a ¼ 0 condition for a Conformal Field Theory (CFT)
gives P ¼ ε=3 and that the only nonzero component of
∇aub is ∇ξuξ ¼ ∇⊥ξuξ ¼ τ [49], in four space-time
dimensions, Eq. (111) reduces to

6The name scalar is inspired by the AdS=CFT correspondence
where the δgxy ∼ exp f−itωþ ikzg fluctuation in the bulk be-
haves as a minimally coupled massless scalar. Alternatively, this
channel is also referred to as the tensor channel because the
fluctuation δgxy transforms as the spin-2 tensor fluctuation.
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∂τεþ
4

3

ε

τ
þ τΠξξ ¼ 0: ð112Þ

In conformal hydrodynamics, we have Πab ¼ tab. Using the stress-energy tensor to third order in the hydrodynamic
expansion then gives

Πξξ ¼ tξξ ¼ −
4η

3

1

τ3
−
�
8ητΠ
9

−
8λ1
9

�
1

τ4
−
�
λð3Þ1

6
þ 4λð3Þ2

3
þ 4λð3Þ3

3
þ 5λð3Þ4

6
þ 5λð3Þ5

6
þ 4λð3Þ6

3
−
λð3Þ7

2
þ 3λð3Þ8

2
þ λð3Þ9

2
−
2λð3Þ10

3

−
11λð3Þ11

6
−
λð3Þ12

3
þ λð3Þ13

6
− λð3Þ15

�
1

τ5
þOðτ−6Þ: ð113Þ

We can see that λð3Þ14 does not contribute to the energy
density. Furthermore, as discussed in Sec. III, the coef-

ficients λð3Þ16 �λð3Þ20 correspond to tensors consisting solely of
derivatives of the metric tensor that vanish in flat space. As
a result, the Bjorken flow solution does not depend on any
of those transport coefficients.
Equation (112) can now be solved by first noting that the

transport coefficients are functions of thermodynamical
variables and thus ε. Because we are working with a CFT,
they scale as [20]

η ¼ Cη̄

�
ε

C

�
3=4

; ητΠ ¼ Cη̄ τ̄Π

�
ε

C

�
1=2

;

λ1 ¼ Cλ̄1

�
ε

C

�
1=2

; λð3Þn ¼ Cλ̄ð3Þn

�
ε

C

�
1=4

; ð114Þ

where C, η̄, τ̄Π, and λ̄ð3Þn are constants. The energy density
function for the Bjorken flow in third-order hydrodynamics
is then

εðτÞ
C

¼ 1

τ2−ν
− 2η̄

1

τ2
þ
�
3η̄2

2
−
2η̄ τ̄Π
3

þ 2λ̄1
3

�
1

τ2þν −
�
η̄3

2
−
7η̄2τ̄Π
9

þ 7η̄λ̄1
9

þ λ̄ð3Þ1

12
þ 2λ̄ð3Þ2

3
þ 2λ̄ð3Þ3

3
þ 5λ̄ð3Þ4

12
þ 5λ̄ð3Þ5

12
þ 2λ̄ð3Þ6

3

−
λ̄ð3Þ7

4
þ 3λ̄ð3Þ8

4
þ λ̄ð3Þ9

4
−
λ̄ð3Þ10

3
−
11λ̄ð3Þ11

12
−
λ̄ð3Þ12

6
þ λ̄ð3Þ13

12
−
λ̄ð3Þ15

2

�
1

τ2þ2ν þOðτ−2−3νÞ; ð115Þ

where ν ¼ 2=3.

V. CONFORMAL TRANSPORT IN THE N ¼ 4
SUPERSYMMETRIC YANG-MILLS THEORY

A. Shear and sound dispersion relations

Using our classification of third-order hydrodynamics,
we now turn to the AdS=CFT correspondence in order
to compute the new transport coefficients θ1 and θ2 that
entered into the linear dispersion relations (104) and (105) in
Sec. IVA. We will rely on the analytic results for the shear
and the sound dispersion relations in the N ¼ 4 super-
symmetric Yang-Mills theory at infinite ’t Hooft coupling
and an infinite number of colors, Nc. The shear dispersion,
computed by using well-known AdS=CFT techniques
[31–33], was obtained in Ref. [20]. To find the dispersion
of the sound mode, we extend the calculation of Ref. [20] to
one order higher and look for the small-ω and small-k
behavior of the lowest (hydrodynamic) quasinormal mode
of the background geometry dual to the N ¼ 4 theory at
finite temperature. The geometry is the five-dimensional,
nonextremal asymptotically AdS black brane solution of
Einstein gravity with a negative cosmological constant,

ds2 ¼ ðπTÞ2
u

ð−fðuÞdt2 þ dx2Þ þ du2

4u2fðuÞ ; ð116Þ

where the emblackening factor is fðuÞ ¼ 1 − u2, and we
have set the AdS radius to 1. The quasinormal mode results
that we find are consistent with Ref. [44]. To quartic order in
momentum k, the two dispersion relations are given by

shear∶ ω ¼ −
i

4πT
k2 −

ið1 − ln 2Þ
32π3T3

k4; ð117Þ

sound∶ ω ¼ � 1ffiffiffi
3

p k −
i

12πT
k2 � 3 − 2 ln 2

96
ffiffiffi
3

p
π2T2

k3

−
iðπ2 − 24þ 24 ln 2 − 12ln22Þ

6912π3T3
k4: ð118Þ

The k4 term of the shear dispersion relation only depends
on the third-order hydrodynamic transport coefficient θ1, as
found in Eq. (104), while the sound dispersion relation
depends on both θ1 and θ2, as can be seen from Eq. (105).
Hence, we can immediately determine their values in the
N ¼ 4 theory, by using the already known transport
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coefficients at first and second order [20,21]. To date, these
coefficients are known up to leading-order corrections in
the ’t Hooft coupling, γ ¼ λ−3=2ζð3Þ=8, where λ ¼ g2YMNc
[40,58–64]. The complete list was presented in Ref. [40] by
including the value of λ2:

η ¼ π

8
N2

cT3½1þ 135γ þOðγ2Þ�; ð119Þ

τΠ ¼ ð2 − ln 2Þ
2πT

þ 375γ

4πT
þOðγ2Þ; ð120Þ

κ ¼ N2
cT2

8
½1 − 10γ þOðγ2Þ�; ð121Þ

λ1 ¼
N2

cT2

16
½1þ 350γ þOðγ2Þ�; ð122Þ

λ2 ¼ −
N2

cT2

16
½2 ln 2þ 5ð97þ 54 ln 2Þγ þOðγ2Þ�; ð123Þ

λ3 ¼
25N2

cT2

2
γ þOðγ2Þ: ð124Þ

Using these results, along with η=s ¼ 1=ð4πÞ þOðγÞ
[65,66], and s ¼ π2N2

cT3=2, we find the new third-order
coefficients to be

θ1 ¼
N2

cT
32π

þOðγÞ; ð125Þ

θ2 ¼
N2

cT
384π

�
22 −

π2

12
− 18 ln 2þ ln22

�
þOðγÞ: ð126Þ

B. Stress-energy tensor two-point function

In this section, we present the scalar channel, retarded
two-point function of the stress-energy tensor GR

xy;xyðω; kÞ
to third order in the gradient expansion by following
Refs. [31,67]. The correlation function can be computed
by perturbing the gxy component of the background metric
tensor (116). The fluctuation of gxy, i.e. the gxy → gxy þ hxy,
must be propagating along the z direction. We can then
define ϕ ¼ uhxy=ðπTÞ2 so that ϕ ¼ hxy, giving us the
momentum space equation of motion

ϕ00
k þ

1þ u2

uf
ϕ0
k þ

w2 − q2f
uf2

ϕk ¼ 0; ð127Þ

where w≡ ω=ð2πTÞ and q≡ k=ð2πTÞ are the dimension-
less energy-momentum variables. In order to recover the
retarded two-point function, the solutionmust be infalling at
the horizon,

ϕkðuÞ ¼ ð1 − uÞ−iw=2FkðuÞ; ð128Þ

and FkðuÞ must be regular at the horizon (u ¼ 1). The
expression for FkðuÞ to second order in the hydrodynamic
expansion, i.e. Oðw2;wq; q2Þ, and the prescription for
computing the retarded two-point function can be found
in Refs. [31,67]. For our purposes, we again need to extend
this calculation to one order higher. Because the expression
forFkðuÞ is rather lengthy, it will not be stated here.We only
present the two-point function with the third-order hydro-
dynamic corrections:

Gxy;xy
R ðw; qÞ ¼ −

N2
cπ

2T4

4

�
−
1

2
þ iw − ð1 − ln 2Þw2 þ q2

þ
�
π2

12
þ 2 ln 2 − ln22

�
iw3 − 2 ln 2iwq2

�
:

ð129Þ

Using the field theoretic result from Eq. (108), we can find
two new (linear combinations of the) transport coefficients:

λð3Þ1 − λð3Þ16 ¼ N2
cT

16π

�
π2

12
þ 4 ln 2 − ln22

�
þOðγÞ; ð130Þ

λð3Þ17 ¼ N2
cT

16π

�
π2

12
þ 2 ln 2 − ln2 2

�
þOðγÞ: ð131Þ

C. Holographic Bjorken flow

For our final calculation, we consider the holographic
dual of the boost-invariant Bjorken flow in the super-
symmetric N ¼ 4 Yang-Mills theory, which was devel-
oped in Refs. [50–52,68,69]. The analytic result for the
energy density written as a function of proper time, εðτÞ, to
third order in the gradient expansion was found in
Ref. [70]. It is given by

εðτÞ ¼ N2
c

2π2

�
1

τ4=3
−

ffiffiffi
2

p

33=4
1

τ2
þ
�
1þ 2 ln 2

12
ffiffiffi
3

p
�

1

τ8=3

−
�
3 − 2π2 − 24 ln 2þ 24ln22

324
ffiffiffi
2

p
· 31=4

�
1

τ10=3

�
: ð132Þ

Using the field theoretic result from Eq. (115) together with
the knowledge of the standard N ¼ 4 results from second-
order hydrodynamics,

ε ¼ 3

8
π2N2

cT4; η ¼ π

8
N2

cT3;

τΠ ¼ 2 − ln 2
2πT

; λ1 ¼
η

2πT
; ð133Þ

we can first find
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C ¼ N2
c

2π2
; η̄ ¼ 1ffiffiffi

2
p

· 33=4
;

τ̄Π ¼ 31=4ð2 − ln 2Þ
2

ffiffiffi
2

p ; λ̄1 ¼
1

4
ffiffiffi
3

p : ð134Þ

These constants then allow us to solve for the third-order
ones, giving us

λ̄ð3Þ1

6
þ 4λ̄ð3Þ2

3
þ 4λ̄ð3Þ3

3
þ 5λ̄ð3Þ4

6
þ 5λ̄ð3Þ5

6
þ 4λ̄ð3Þ6

3
−
λ̄ð3Þ7

2

þ 3λ̄ð3Þ8

2
þ λ̄ð3Þ9

2
−
2λ̄ð3Þ10

3
−
11λ̄ð3Þ11

6
−
λ̄ð3Þ12

3
þ λ̄ð3Þ13

6
− λ̄ð3Þ15

¼ 15 − 2π2 − 45 ln 2þ 24ln22

162
ffiffiffi
2

p
· 31=4

: ð135Þ

Using the scaling relations (114) finally gives us a linear
combination of 14 third-order transport coefficients in the
N ¼ 4 theory at infinite ’t Hooft coupling:

λð3Þ1

6
þ 4λð3Þ2

3
þ 4λð3Þ3

3
þ 5λð3Þ4

6
þ 5λð3Þ5

6
þ 4λð3Þ6

3
−
λð3Þ7

2

þ 3λð3Þ8

2
þ λð3Þ9

2
−
2λð3Þ10

3
−
11λð3Þ11

6
−
λð3Þ12

3
þ λð3Þ13

6
− λð3Þ15

¼ N2
cT

648π
ð15 − 2π2 − 45 ln 2þ 24ln22Þ þOðγÞ: ð136Þ

The ’t Hooft coupling corrections to all five linear combi-
nations of the conformal third-order transport coefficients
found in this section remain to be computed.

VI. DISCUSSION

In this paper, we presented a systematic algorithm for
constructing the tensors that can be used to build the
hydrodynamic gradient expansion at any order. We then
used it to classify third-order hydrodynamics of uncharged
fluids, i.e. the stress-energy tensor in the absence of
Noether currents. The conservation equation for this
stress-energy tensor therefore represents the most general,
nonlinear extension of the relativistic Navier-Stokes equa-
tions to the next-to-leading-order in the small energy-
momentum gradient expansion.
In the nonconformal case, we found that 23 scalars and

45 independent tensors could be included in the gradient
expansion, thus giving us in total 68 new transport
coefficients. In terms of the first-order Navier-Stokes fluids,
the transport coefficients from the scalar and the tensor
channels can be thought of as higher-order corrections to
the bulk and the shear viscosity terms, respectively.
Together with the 2 and the 15 transport coefficients in
first- and second-order expansions, this implies that there
are 85 coefficients that are required to completely describe
uncharged fluids to third order.

For the conformal subclass of fluids, which have a
traceless homogeneously transforming stress-energy tensor
under the nonlinear Weyl transformations, we further
showed that 20 linearly independent tensors could be
included at third order in the gradient expansion, resulting
in 20 new conformal transport coefficients. Hence, by
including the 1 and 5 conformal transport coefficients in
first- and second-order hydrodynamics, we conclude that
conformal fluids are described by 26 transport coefficients
(and independent tensor structures) to third order.
Using our results, we computed the linear dispersion

relations, ωðkÞ, for the shear and sound mode, to fourth
order in k. These corrections to diffusion and the sound
propagation turned out to depend on 9 and 6 transport
coefficients in the nonconformal and the conformal cases,
respectively. By employing the AdS=CFT calculations of
the dispersion relations for the N ¼ 4 supersymmetric
Yang-Mills theory at the infinite ’t Hooft coupling and
number of colors, we were then able to determine the values
of two new third-order transport coefficients in this theory,
which we named θ1 and θ2. Each of the two θi depend on

three of the conformal transport coefficients, λð3Þi . In flat
space, these are the only two independent transport
coefficients (or their combinations) that enter the linearized
stress-energy tensor. Within linear response, we further
used the third-order stress-energy tensor to compute the
scalar (spin-2) two-point function, which gave us another
two linear combinations of the transport coefficients that
could be computed from holography. Lastly, by computing
the third-order correction to the energy density of the
nonlinear boost-invariant Bjorken flow, we were able to
find an additional linear combination of the new transport
coefficients in the N ¼ 4 theory. Altogether, these calcu-
lations provided five linear combinations of the third-
order transport coefficients in the N ¼ 4 theory at infinite
’t Hooft coupling. Another 15 remain to be computed in the
future, a calculation that can be done either by finding and
using the Kubo formulas for four-point Green’s functions
[36,40,64,71–73] or employing the tensorial structure
found in this paper for a calculation within the fluid/gravity
correspondence [21,74].
Having classified third-order hydrodynamics, numerous

questions regarding its details remain to be answered in the
future. By following the work of Ref. [36] in second-order
hydrodynamics, one important task is to determine the
relevant Kubo formulas with four-point correlation func-
tions of the stress-energy tensor that would allow for a
computation of all the transport coefficients, beyond the
ones that enter into the linearized dispersion relations.
These relations could then be used to compute the transport
coefficients in perturbative and lattice QFT, as well as in
strongly coupled field theories by using the gauge-gravity
techniques. A particularly interesting task would be to
study the fluid/gravity duality [21] to third order in the
gradient expansion, which could not only give us the

CONSTRUCTING HIGHER-ORDER HYDRODYNAMICS: THE … PHYSICAL REVIEW D 93, 066012 (2016)

066012-15



microscopic values of the transport coefficients in a field
theory dual to a particular gravitational setup but also
confirm the counting of the linearly independent tensors
identified in this work.
Perhaps the most important remaining task is the under-

standing of the entropy current in higher-order hydro-
dynamics [22,23,26,27,29,75,76]. First, the precise form at
second order remains to be found, i.e. fully expressed in
terms of the second-order transport coefficients in the
stress-energy tensor. As argued in Ref. [22], third-order
hydrodynamics may be required to resolve this issue even
at second order. The construction of the entropy current at
third order also remains to be performed so that potential
constraints on the new maximal set of the transport
coefficients can be uncovered following from the non-
negativity of local entropy production [22–29]. As a check
of these relations, it would also be interesting to use the
gauge-gravity duality and compute all nonconformal sec-
ond-order transport coefficients in a field theory with a
holographic dual.
In gauge-gravity duality, it has been known that certain

combinations of transport coefficients give universal values
in large classes of gravitational setups. In first- and second-
order hydrodynamics, universality has been found for the
values of η=s ¼ 1=ð4πÞ and 2ητΠ − 4λ1 − λ2 ¼ 0
[37,40,66,77–79]. It is therefore natural to ask whether
there exists a similar universal relation between conformal
(and nonconformal) third-order transport coefficients.
Furthermore, as discussed in Refs. [40,80], these universal
relations may play an important role in the minimization of
entropy production in strongly coupled fluids, appearing as
the coefficients of different tensor structures in the entropy
current.
Finally, it would be extremely interesting if some of the

second- and the new third-order transport coefficients could
be measured in real fluids, either through more precise
measurements of various dispersion relations or by other
means. In particular, the microscopic information about
the fluid’s constituents contained in these higher-order
transport coefficients may play an important role in the
modelling and studying of high-energy fluids, such as the
quark-gluon plasma.
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APPENDIX A: THE BASIS OF TENSORS FOR
THE GRADIENT EXPANSION

In this Appendix, we present the proof of the claim in
Sec. II A that it is sufficient to use only transverse
derivatives of ua and ln s and also use the covariant
derivatives of the Riemann tensor to write down the entire
hydrodynamic gradient expansion at all orders.
Let us begin by considering the action of covariant

derivatives on the hydrodynamic variables,

∇bua ¼ ∇⊥bua − ubDua; ðA1Þ

∇b ln s ¼ ∇⊥b ln s − ubD ln s: ðA2Þ

Using the equations of motion (21) and (22), we can write

∇bua ¼∇⊥buaþc2sub∇⊥a lnsþhigherderivatives; ðA3Þ

∇b lns¼∇⊥b lnsþub∇⊥ ·uþhigherderivatives; ðA4Þ

which shows that all one-derivative combinations can
easily be expressed in terms of transverse derivatives
∇⊥a, at the expense of introducing higher-derivative
corrections.
Consider now a two-derivative tensor ∇c∇⊥bua, which

can be manipulated to give

∇c∇⊥bua ¼ ∇⊥c∇⊥bua − ucD∇⊥bua

¼ ∇⊥c∇⊥bua − uc½D;∇⊥b�ua þ uc∇⊥bDua

¼ ∇⊥c∇⊥bua − c2suc∇⊥b∇⊥a ln s

− uc½D;∇⊥b�ua þ higher derivatives: ðA5Þ

The commutator appearing above can be expressed as

½D;∇⊥b�ua ¼ ½ud∇d;Δbe∇e�ua
¼ DΔbe∇eua −∇⊥bud∇dua

þ udΔbe½∇d;∇e�ua: ðA6Þ

The first two terms in (A6) contain only single derivatives
of ua, so as before, the equations of motion allow us to
eliminate the longitudinal derivatives. The commutator
term can be written as a Riemann tensor, since for an
arbitrary vector field Va,

½∇d;∇c�Vb ¼ Ra
bcdVa: ðA7Þ

We find that
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∇c∇⊥bua ¼ −ucΔb
eRfaeduduf

þ termswithð∇⊥c∇⊥bua;∇⊥c∇⊥b ln sÞ
þ higher derivatives: ðA8Þ

Therefore, as claimed, the most general second derivative
of ua can be expressed in terms of only transverse
derivatives, the Riemann tensor, and subleading higher-
derivative corrections, which are irrelevant at the order of
the gradient expansion to which we are working.
It is easy to see that with the help of the identity

½∇d;∇c�Vb1b2…bn ¼ Rs
b1cdVsb2…bn þ Rs

b2cdVb1s…bn

þ � � � þ Rs
bncdVb1b2…s; ðA9Þ

this discussion can be iteratively generalized to tensors of
an arbitrary order, such as

∇c∇⊥b1∇⊥b2…ua: ðA10Þ

Schematically, the proof proceeds as follows: We begin by
writing

∇c∇⊥b1∇⊥b2…ua ¼ ∇⊥c∇⊥b1∇⊥b2…ua

− ucD∇⊥b1∇⊥b2…ua: ðA11Þ

We then commute the outer two derivatives (D and∇⊥b1) in
the second term, which gives us

∇c∇⊥b1∇⊥b2…ua ¼ … − uc∇⊥b1D∇⊥b2…ua: ðA12Þ

The ellipsis (…) in Eq. (A12) stands for various terms
composed of purely transverse derivatives, the Riemann
tensors coming from Eq. (A9), and higher-derivative terms.
We must then proceed by commutingD all the way through
the expression (to the right), until it acts only on ua and the
equations of motion can be used for the last time to
eliminate the remaining longitudinal derivative.
Hence, we have shown that all of the tensorial ingre-

dients that need to be considered in the construction of the
hydrodynamic gradient expansion are the transverse deriv-
atives of ua and ln s,

∇⊥b1∇⊥b2…∇⊥bnua; ∇⊥b1∇⊥b2…∇⊥bn ln s; ðA13Þ

their products at all possible orders, and the Riemann tensor
with various metric contractions and arbitrary covariant
derivatives acting on it,

∇e1∇e2…∇enRabcd: ðA14Þ

Because transverse derivatives have the property stated
in Eq. (20), the tensorial ingredients can be grouped into
two sets, those with transverse derivatives and those with

covariant derivatives, which always involve the Riemann
tensor and its contractions.

APPENDIX B: CONSTRUCTION OF THE
HYDRODYNAMICS TENSORS THAT
CONTAIN NO RIEMANN TENSOR

Here, we prove the claim that when constructing scalars,
transverse vectors, and TST two-tensors, we can omit ua

from I ð0Þ altogether and consider only the metric con-
tractions of ∇⊥aub and ∇⊥a ln s inside the hydrodynamic
tensors, at all orders in the gradient expansion.
Let us consider what happens to tensors built solely out

of∇⊥aub and∇⊥a ln s that get contracted with ua. It is clear
from Eq. (20) that for any tensor ∇⊥aVb1b2…,

ua∇⊥aVb1b2… ¼ 0; ðB1Þ
where Vb1b2… can contain more transverse derivatives as
well as combinations of ua and ln s. Now, consider a term
of the form ua∇⊥b1∇⊥aVb2b3…. With the help of Eq. (20),
we can commute ua through the outer derivative to find

ua∇⊥b1∇⊥aVb2b3… ¼ −gac∇⊥b1ua∇⊥cVb2b3…: ðB2Þ

The point is that the right-hand side of Eq. (B2) could have
been constructed out of ∇⊥b1ua∇⊥cVb2b3… in some set I ðnÞ

and gab from I ð0Þ, without any use of ua from I ð0Þ. By
employing the same logic, it is easy to see that any
contraction of the form

ua∇⊥b1∇⊥b2…∇⊥aucVd1d2… ðB3Þ
can also be expressed as a sum of metric contractions acting
on various components of I ðnÞ. No tensor with an undiffer-
entiated ua can ever be linearly independent from tensors
that use only transverse derivatives acting on ua.
By going through the same process of commuting ua

through the expression (cf. Appendix A), we can also see
that the same conclusion can be drawn regarding tensors of
the form

ua∇⊥b1∇⊥b2…uaVc1c2…; ðB4Þ

where now we use Eq. (41) and its derivatives, instead
of (20).
The only other possibilities that remain to be discussed

are potentially uncontracted factors of ua with no deriv-
atives acting on them. Such cases can appear in the
construction of the transverse vectors and the TST tensors.
A possible vector could have the form

Va ¼ uaV; ðB5Þ

where all indices inside V are contracted. However, such a
vector can never be transverse, i.e. uaVa ≠ 0. On the other

CONSTRUCTING HIGHER-ORDER HYDRODYNAMICS: THE … PHYSICAL REVIEW D 93, 066012 (2016)

066012-17



hand, a TST two-tensor with undifferentiated ua could have
the form

T ab ¼ uhaVbi: ðB6Þ

However, considering such tensors is redundant, as T ab of
this form could only be identically zero, i.e. T ab ¼ 0, due
to various contractions of ua with Δab in (42).
We have therefore shown that as claimed, only gab can be

used from I ð0Þ when constructing tensors that contain only
transverse derivatives. As a result, finding tensors with

Rabcd, or covariant derivatives ∇a of its various contrac-
tions, still requires us to use the full procedure outlined in
Sec. II B.

APPENDIX C: TENSORS IN NONCONFORMAL
THIRD-ORDER HYDRODYNAMICS

In this Appendix, we list the transverse, symmetric, and
traceless two-tensors that participate in the third-order
gradient expansion of the nonconformal stress-energy
tensor:

T ab
1 ¼ ∇⊥c∇⊥c∇⊥haubi T ab

2 ¼ ∇⊥c∇⊥ha∇⊥cubi T ab
3 ¼ ∇⊥c∇⊥ha∇⊥biuc

T ab
4 ¼ ∇⊥ha∇⊥c∇⊥cubi T ab

5 ¼ ∇⊥ha∇⊥c∇⊥biuc T ab
6 ¼ ∇⊥ha∇⊥bi∇⊥cuc

T ab
7 ¼ ∇⊥cuc∇⊥ha∇⊥bi ln s T ab

8 ¼ ∇⊥cuha∇⊥c∇bi
⊥ ln s T ab

9 ¼ ∇⊥hauc∇⊥c∇⊥bi ln s

T ab
10 ¼ ∇⊥c∇⊥c ln s∇⊥haubi T ab

11 ¼ ∇⊥c ln s∇⊥ha∇⊥biuc T ab
12 ¼ ∇⊥c ln s∇⊥c∇⊥haubi

T ab
13 ¼ ∇⊥c ln s∇⊥ha∇⊥cubi T ab

14 ¼ ∇⊥ha ln s∇⊥c∇⊥biuc T ab
15 ¼ ∇⊥ha ln s∇⊥bi∇⊥cuc

T ab
16 ¼ ∇⊥ha ln s∇⊥c∇⊥cubi T ab

17 ¼ ∇⊥ha ln s∇⊥bi ln s∇⊥cuc T ab
18 ¼ ∇⊥ha ln s∇⊥c ln s∇⊥cubi

T ab
19 ¼ ∇⊥ha ln s∇⊥c ln s∇⊥biuc T ab

20 ¼ ∇⊥c ln s∇⊥c ln s∇⊥haubi T ab
21 ¼ ∇⊥cuc∇⊥dud∇⊥haubi

T ab
22 ¼ ∇⊥dud∇⊥cuha∇⊥cubi T ab

23 ¼ ∇⊥dud∇⊥cuha∇⊥biuc T ab
24 ¼ ∇⊥dud∇⊥hauc∇⊥biuc

T ab
25 ¼ ∇⊥haubi∇⊥duc∇⊥d∇d⊥uc T ab

26 ¼ ∇⊥cuha∇⊥dubi∇⊥cud T ab
27 ¼ ∇⊥cuha∇⊥biud∇⊥cud

T ab
28 ¼ ∇⊥haubi∇⊥cud∇⊥duc T ab

29 ¼ ∇⊥haud∇⊥cubi∇⊥duc T ab
30 ¼ ∇⊥hauc∇⊥biud∇⊥cud

T ab
31 ¼ uc∇dRha

c
bid T ab

32 ¼ uc∇cRhabi T ab
33 ¼ uc∇haRbi

c

T ab
34 ¼ ucudue∇eRha

c
bi
d T ab

35 ¼ ucRha
c ∇⊥bi ln s T ab

36 ¼ uc∇⊥d ln sRha
c
bi
d

T ab
37 ¼ R∇⊥haubi T ab

38 ¼ Rha
c∇⊥cubi T ab

39 ¼ Rha
c∇⊥biuc

T ab
40 ¼ Rhabi∇⊥cuc T ab

41 ¼ ∇⊥ducRha
d
bi
c T ab

42 ¼ ucudRcd∇⊥haubi

T ab
43 ¼ ucud∇⊥euhaRbi

cde T ab
44 ¼ ucud∇⊥haueRbi

cde T ab
45 ¼ ucud∇⊥eueRha

c
bi
d:

APPENDIX D: SCALARS IN NONCONFORMAL THIRD-ORDER HYDRODYNAMICS

The following is the list of scalars that participate in the third-order gradient expansion of the nonconformal stress-energy
tensor:

S1 ¼ ∇⊥b∇⊥b∇⊥aua S2 ¼ ∇⊥b∇⊥a∇⊥bua S3 ¼ ∇⊥a∇⊥b∇⊥bua S4 ¼ ∇⊥aua∇⊥b∇⊥b ln s

S5 ¼ ∇⊥b∇⊥a ln s∇⊥bua S6 ¼ ∇⊥a ln s∇⊥b∇⊥bua S7 ¼ ∇⊥a ln s∇⊥a∇⊥bub S8 ¼ ∇⊥a ln s∇⊥b∇⊥aub

S9 ¼ ∇⊥a ln s∇⊥a ln s∇⊥bub S10 ¼ ∇⊥a ln s∇⊥b ln s∇⊥bua S11 ¼ ∇⊥aua∇⊥bub∇⊥cuc

S12 ¼ ∇⊥aua∇⊥cub∇⊥cub S13 ¼ ∇⊥aua∇⊥buc∇⊥cub S14 ¼ ∇⊥bua∇⊥cua∇⊥cub

S15 ¼ ∇⊥bua∇⊥auc∇⊥cub S16 ¼ ua∇bRa
b S17 ¼ ua∇aR S18 ¼ uaubuc∇cRab

S19 ¼ uaRab∇⊥b ln s S20 ¼ R∇⊥aua S21 ¼ Rab∇⊥bua S22 ¼ uaubRab∇⊥cuc

S23 ¼ uaub∇d⊥ucRacbd:
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APPENDIX E: VECTORS IN NONCONFORMAL THIRD-ORDER HYDRODYNAMICS

Here, we write down the list of vectors that participate in the third-order gradient expansion of the nonconformal stress-
energy tensor:

Va
1 ¼∇⊥a∇⊥b∇⊥b lns Va

2 ¼∇⊥a lns∇⊥b∇⊥b lns Va
3 ¼∇⊥bub∇⊥a∇⊥cuc Va

4 ¼∇⊥bua∇⊥b∇⊥cuc

Va
5 ¼∇⊥cub∇⊥a∇⊥cub Va

6 ¼∇⊥bua∇⊥c∇⊥buc Va
7 ¼∇⊥cub∇⊥a∇⊥buc Va

8 ¼∇⊥bua∇⊥c∇⊥cub

Va
9 ¼∇⊥aub∇⊥b∇⊥cuc Va

10¼∇⊥aub∇⊥c∇⊥buc Va
11¼∇⊥aub∇⊥c∇⊥cub Va

12¼∇⊥a lns∇⊥b lns∇⊥b lns

Va
13¼∇⊥a lns∇⊥bub∇⊥cuc Va

14¼∇⊥b lns∇⊥cuc∇⊥bua Va
15¼∇⊥b lns∇⊥cuc∇⊥aub Va

16¼∇⊥a lns∇⊥cub∇⊥cub

Va
17¼∇⊥b lns∇⊥cua∇⊥cub Va

18¼∇⊥a lns∇⊥buc∇⊥cub Va
19¼∇⊥b lns∇⊥auc∇⊥cub Va

20¼∇⊥b lns∇⊥cua∇⊥buc

Va
21¼∇⊥b lns∇⊥auc∇⊥buc Va

22¼ ubuc∇dRa
bc

d Va
23¼R∇⊥a lns Va

24¼ ubucRbc∇⊥a lns

Va
25¼ ubuc∇d⊥ lnsRa

bcd Va
26¼ ubRbc∇⊥cua Va

27¼ ubRbc∇⊥auc Va
28¼ ub∇d⊥ucRa

bcd:

[1] S. Dubovsky, T. Gregoire, A. Nicolis, and R. Rattazzi, J.
High Energy Phys. 03 (2006) 025.

[2] S. Dubovsky, L. Hui, A. Nicolis, and D. T. Son, Phys. Rev.
D 85, 085029 (2012).

[3] A. Nicolis, R. Penco, and R. A. Rosen, Phys. Rev. D 89,
045002 (2014).

[4] S. Endlich, A. Nicolis, R. A. Porto, and J. Wang, Phys. Rev.
D 88, 105001 (2013).

[5] S. Grozdanov and J. Polonyi, Phys. Rev. D 91, 105031
(2015).

[6] J. Bhattacharya, S. Bhattacharyya, and M. Rangamani, J.
High Energy Phys. 02 (2013) 153.

[7] P. Kovtun, G. D. Moore, and P. Romatschke, J. High Energy
Phys. 07 (2014) 123.

[8] M. Harder, P. Kovtun, and A. Ritz, J. High Energy Phys. 07
(2015) 025.

[9] F. M. Haehl, R. Loganayagam, and M. Rangamani, J. High
Energy Phys. 05 (2015) 060.

[10] S. Grozdanov and J. Polonyi, Phys. Rev. D 92, 065009
(2015).

[11] F. M. Haehl, R. Loganayagam, and M. Rangamani, J. High
Energy Phys. 03 (2014) 034.

[12] T. Burch and G. Torrieri, Phys. Rev. D 92, 016009 (2015).
[13] M. Crossley, P. Glorioso, H. Liu, and Y. Wang, J. High

Energy Phys. 02 (2016) 124.
[14] J. de Boer, M. P. Heller, and N. Pinzani-Fokeeva, J. High

Energy Phys. 08 (2015) 086.
[15] D. Burnett, Proc. London Math. Soc. s2–40, 382 (1936).
[16] I. Muller, Z. Phys. 198, 329 (1967).
[17] W. Israel, Ann. Phys. (N.Y.) 100, 310 (1976).
[18] W. Israel and J. Stewart, Phys. Lett. 58A, 213 (1976).
[19] W. Israel and J. Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).
[20] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and

M. A. Stephanov, J. High Energy Phys. 04 (2008) 100.
[21] S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M.

Rangamani, J. High Energy Phys. 02 (2008) 045.

[22] P. Romatschke, Classical Quantum Gravity 27, 025006
(2010).

[23] P. Kovtun, J. Phys. A 45, 473001 (2012).
[24] G. D. Moore and K. A. Sohrabi, J. High Energy Phys. 11

(2012) 148.
[25] M. Haack and A. Yarom, Nucl. Phys. B813, 140 (2009).
[26] R. Loganayagam, J. High Energy Phys. 05 (2008) 087.
[27] S. Bhattacharyya, J. High Energy Phys. 07 (2012) 104.
[28] K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz, and

A. Yarom, Phys. Rev. Lett. 109, 101601 (2012).
[29] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain,

S. Minwalla, and T. Sharma, J. High Energy Phys. 09
(2012) 046.

[30] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal,
and U. A. Wiedemann, Gauge/String Duality, Hot QCD
and Heavy Ion Collisions (Cambridge University Press,
Cambridge, England, 2014).

[31] G. Policastro, D. T. Son, and A. O. Starinets, J. High Energy
Phys. 09 (2002) 043.

[32] G. Policastro, D. T. Son, and A. O. Starinets, J. High Energy
Phys. 12 (2002) 054.

[33] P. K. Kovtun and A. O. Starinets, Phys. Rev. D 72, 086009
(2005).

[34] P. Kovtun and A. Starinets, Phys. Rev. Lett. 96, 131601
(2006).

[35] N. Banerjee and S. Dutta, J. High Energy Phys. 08 (2010)
041.

[36] G. D. Moore and K. A. Sohrabi, Phys. Rev. Lett. 106,
122302 (2011).

[37] E. Shaverin and A. Yarom, J. High Energy Phys. 04 (2013)
013.

[38] P. Romatschke, Int. J. Mod. Phys. E 19, 1 (2010).
[39] S. Grozdanov and A. Starinets, Theor. Math. Phys. 182, 61

(2015).
[40] S. Grozdanov and A. O. Starinets, J. High Energy Phys. 03

(2015) 007.

CONSTRUCTING HIGHER-ORDER HYDRODYNAMICS: THE … PHYSICAL REVIEW D 93, 066012 (2016)

066012-19

http://dx.doi.org/10.1088/1126-6708/2006/03/025
http://dx.doi.org/10.1088/1126-6708/2006/03/025
http://dx.doi.org/10.1103/PhysRevD.85.085029
http://dx.doi.org/10.1103/PhysRevD.85.085029
http://dx.doi.org/10.1103/PhysRevD.89.045002
http://dx.doi.org/10.1103/PhysRevD.89.045002
http://dx.doi.org/10.1103/PhysRevD.88.105001
http://dx.doi.org/10.1103/PhysRevD.88.105001
http://dx.doi.org/10.1103/PhysRevD.91.105031
http://dx.doi.org/10.1103/PhysRevD.91.105031
http://dx.doi.org/10.1007/JHEP02(2013)153
http://dx.doi.org/10.1007/JHEP02(2013)153
http://dx.doi.org/10.1007/JHEP07(2014)123
http://dx.doi.org/10.1007/JHEP07(2014)123
http://dx.doi.org/10.1007/JHEP07(2015)025
http://dx.doi.org/10.1007/JHEP07(2015)025
http://dx.doi.org/10.1007/JHEP05(2015)060
http://dx.doi.org/10.1007/JHEP05(2015)060
http://dx.doi.org/10.1103/PhysRevD.92.065009
http://dx.doi.org/10.1103/PhysRevD.92.065009
http://dx.doi.org/10.1007/JHEP03(2014)034
http://dx.doi.org/10.1007/JHEP03(2014)034
http://dx.doi.org/10.1103/PhysRevD.92.016009
http://dx.doi.org/10.1007/JHEP02(2016)124
http://dx.doi.org/10.1007/JHEP02(2016)124
http://dx.doi.org/10.1007/JHEP08(2015)086
http://dx.doi.org/10.1007/JHEP08(2015)086
http://dx.doi.org/10.1112/plms/s2-40.1.382
http://dx.doi.org/10.1007/BF01326412
http://dx.doi.org/10.1016/0003-4916(76)90064-6
http://dx.doi.org/10.1016/0375-9601(76)90075-X
http://dx.doi.org/10.1016/0003-4916(79)90130-1
http://dx.doi.org/10.1088/1126-6708/2008/04/100
http://dx.doi.org/10.1088/1126-6708/2008/02/045
http://dx.doi.org/10.1088/0264-9381/27/2/025006
http://dx.doi.org/10.1088/0264-9381/27/2/025006
http://dx.doi.org/10.1088/1751-8113/45/47/473001
http://dx.doi.org/10.1007/JHEP11(2012)148
http://dx.doi.org/10.1007/JHEP11(2012)148
http://dx.doi.org/10.1016/j.nuclphysb.2008.12.028
http://dx.doi.org/10.1088/1126-6708/2008/05/087
http://dx.doi.org/10.1007/JHEP07(2012)104
http://dx.doi.org/10.1103/PhysRevLett.109.101601
http://dx.doi.org/10.1007/JHEP09(2012)046
http://dx.doi.org/10.1007/JHEP09(2012)046
http://dx.doi.org/10.1088/1126-6708/2002/09/043
http://dx.doi.org/10.1088/1126-6708/2002/09/043
http://dx.doi.org/10.1088/1126-6708/2002/12/054
http://dx.doi.org/10.1088/1126-6708/2002/12/054
http://dx.doi.org/10.1103/PhysRevD.72.086009
http://dx.doi.org/10.1103/PhysRevD.72.086009
http://dx.doi.org/10.1103/PhysRevLett.96.131601
http://dx.doi.org/10.1103/PhysRevLett.96.131601
http://dx.doi.org/10.1007/JHEP08(2010)041
http://dx.doi.org/10.1007/JHEP08(2010)041
http://dx.doi.org/10.1103/PhysRevLett.106.122302
http://dx.doi.org/10.1103/PhysRevLett.106.122302
http://dx.doi.org/10.1007/JHEP04(2013)013
http://dx.doi.org/10.1007/JHEP04(2013)013
http://dx.doi.org/10.1142/S0218301310014613
http://dx.doi.org/10.1007/s11232-015-0245-7
http://dx.doi.org/10.1007/s11232-015-0245-7
http://dx.doi.org/10.1007/JHEP03(2015)007
http://dx.doi.org/10.1007/JHEP03(2015)007


[41] Y. Bu and M. Lublinsky, Phys. Rev. D 90, 086003 (2014).
[42] Y. Bu and M. Lublinsky, J. High Energy Phys. 11 (2014)

064.
[43] Y. Bu and M. Lublinsky, J. High Energy Phys. 04 (2015)

136.
[44] Y. Bu, M. Lublinsky, and A. Sharon, J. High Energy Phys.

06 (2015) 162.
[45] P. Kovtun and L. G. Yaffe, Phys. Rev. D 68, 025007 (2003).
[46] S. Caron-Huot and O. Saremi, J. High Energy Phys. 11

(2010) 013.
[47] M. P. Heller, R. A. Janik, and P. Witaszczyk, Phys. Rev.

Lett. 110, 211602 (2013).
[48] M. P. Heller and M. Spalinski, Phys. Rev. Lett. 115, 072501

(2015).
[49] J. Bjorken, Phys. Rev. D 27, 140 (1983).
[50] R. A. Janik and R. B. Peschanski, Phys. Rev. D 73, 045013

(2006).
[51] R. A. Janik, Phys. Rev. Lett. 98, 022302 (2007).
[52] M. P. Heller and R. A. Janik, Phys. Rev. D 76, 025027

(2007).
[53] F. J. Dyson, Phys. Rev. 85, 631 (1952).
[54] M. A. York and G. D. Moore, Phys. Rev. D 79, 054011

(2009).
[55] A. Jaiswal, Phys. Rev. C 88, 021903 (2013).
[56] A. Jaiswal, Nucl. Phys. A931, 1205 (2014).
[57] C. Chattopadhyay, A. Jaiswal, S. Pal, and R. Ryblewski,

Phys. Rev. C 91, 024917 (2015).
[58] A. Buchel, J. T. Liu, and A. O. Starinets, Nucl. Phys. B707,

56 (2005).
[59] P. Benincasa and A. Buchel, J. High Energy Phys. 01 (2006)

103.
[60] A. Buchel, Nucl. Phys. B803, 166 (2008).
[61] A. Buchel, Nucl. Phys. B802, 281 (2008).
[62] A. Buchel and M. Paulos, Nucl. Phys. B805, 59 (2008).

[63] A. Buchel and M. Paulos, Nucl. Phys. B810, 40 (2009).
[64] O. Saremi and K. A. Sohrabi, J. High Energy Phys. 11

(2011) 147.
[65] P. Kovtun, D. T. Son, and A. O. Starinets, J. High Energy

Phys. 10 (2003) 064.
[66] P. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.

94, 111601 (2005).
[67] D. T. Son and A. O. Starinets, J. High Energy Phys. 09

(2002) 042.
[68] M. P. Heller, R. A. Janik, and R. Peschanski, Acta Phys. Pol.

B 39, 3183 (2008).
[69] M. P. Heller, R. A. Janik, and P. Witaszczyk, Phys. Rev.

Lett. 108, 201602 (2012).
[70] I. Booth, M. P. Heller, and M. Spalinski, Phys. Rev. D 80,

126013 (2009).
[71] E. Barnes, D. Vaman, C. Wu, and P. Arnold, Phys. Rev. D

82, 025019 (2010).
[72] P. Arnold, D. Vaman, C. Wu, and W. Xiao, J. High Energy

Phys. 10 (2011) 033.
[73] P. Arnold and D. Vaman, J. High Energy Phys. 11 (2011)

033.
[74] M. Rangamani, Classical Quantum Gravity 26, 224003

(2009).
[75] S. De Groot, W. Van Leeuwen, and C. Van Weert,

Relativistic Kinetic Theory. Principles and Applications
(1980).

[76] S. Bhattacharyya, V. E. Hubeny, R. Loganayagam, G.
Mandal, S. Minwalla, T. Morita, M. Rangamani, and
H. S. Reall, J. High Energy Phys. 06 (2008) 055.

[77] A. Buchel and J. T. Liu, Phys. Rev. Lett. 93, 090602 (2004).
[78] N. Iqbal and H. Liu, Phys. Rev. D 79, 025023 (2009).
[79] A. O. Starinets, Phys. Lett. B 670, 442 (2009).
[80] F. M. Haehl, R. Loganayagam, and M. Rangamani, Phys.

Rev. Lett. 114, 201601 (2015).

SAŠO GROZDANOV and NIKOLAOS KAPLIS PHYSICAL REVIEW D 93, 066012 (2016)

066012-20

http://dx.doi.org/10.1103/PhysRevD.90.086003
http://dx.doi.org/10.1007/JHEP11(2014)064
http://dx.doi.org/10.1007/JHEP11(2014)064
http://dx.doi.org/10.1007/JHEP04(2015)136
http://dx.doi.org/10.1007/JHEP04(2015)136
http://dx.doi.org/10.1007/JHEP06(2015)162
http://dx.doi.org/10.1007/JHEP06(2015)162
http://dx.doi.org/10.1103/PhysRevD.68.025007
http://dx.doi.org/10.1007/JHEP11(2010)013
http://dx.doi.org/10.1007/JHEP11(2010)013
http://dx.doi.org/10.1103/PhysRevLett.110.211602
http://dx.doi.org/10.1103/PhysRevLett.110.211602
http://dx.doi.org/10.1103/PhysRevLett.115.072501
http://dx.doi.org/10.1103/PhysRevLett.115.072501
http://dx.doi.org/10.1103/PhysRevD.27.140
http://dx.doi.org/10.1103/PhysRevD.73.045013
http://dx.doi.org/10.1103/PhysRevD.73.045013
http://dx.doi.org/10.1103/PhysRevLett.98.022302
http://dx.doi.org/10.1103/PhysRevD.76.025027
http://dx.doi.org/10.1103/PhysRevD.76.025027
http://dx.doi.org/10.1103/PhysRev.85.631
http://dx.doi.org/10.1103/PhysRevD.79.054011
http://dx.doi.org/10.1103/PhysRevD.79.054011
http://dx.doi.org/10.1103/PhysRevC.88.021903
http://dx.doi.org/10.1016/j.nuclphysa.2014.08.035
http://dx.doi.org/10.1103/PhysRevC.91.024917
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.055
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.055
http://dx.doi.org/10.1088/1126-6708/2006/01/103
http://dx.doi.org/10.1088/1126-6708/2006/01/103
http://dx.doi.org/10.1016/j.nuclphysb.2008.05.024
http://dx.doi.org/10.1016/j.nuclphysb.2008.03.009
http://dx.doi.org/10.1016/j.nuclphysb.2008.07.002
http://dx.doi.org/10.1016/j.nuclphysb.2008.10.012
http://dx.doi.org/10.1007/JHEP11(2011)147
http://dx.doi.org/10.1007/JHEP11(2011)147
http://dx.doi.org/10.1088/1126-6708/2003/10/064
http://dx.doi.org/10.1088/1126-6708/2003/10/064
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1088/1126-6708/2002/09/042
http://dx.doi.org/10.1088/1126-6708/2002/09/042
http://dx.doi.org/10.1103/PhysRevLett.108.201602
http://dx.doi.org/10.1103/PhysRevLett.108.201602
http://dx.doi.org/10.1103/PhysRevD.80.126013
http://dx.doi.org/10.1103/PhysRevD.80.126013
http://dx.doi.org/10.1103/PhysRevD.82.025019
http://dx.doi.org/10.1103/PhysRevD.82.025019
http://dx.doi.org/10.1007/JHEP10(2011)033
http://dx.doi.org/10.1007/JHEP10(2011)033
http://dx.doi.org/10.1007/JHEP11(2011)033
http://dx.doi.org/10.1007/JHEP11(2011)033
http://dx.doi.org/10.1088/0264-9381/26/22/224003
http://dx.doi.org/10.1088/0264-9381/26/22/224003
http://dx.doi.org/10.1088/1126-6708/2008/06/055
http://dx.doi.org/10.1103/PhysRevLett.93.090602
http://dx.doi.org/10.1103/PhysRevD.79.025023
http://dx.doi.org/10.1016/j.physletb.2008.11.028
http://dx.doi.org/10.1103/PhysRevLett.114.201601
http://dx.doi.org/10.1103/PhysRevLett.114.201601

