
Non-Abelian vortices in holographic superconductors

Gianni Tallarita
Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibez,

Santiago 7941169, Chile
(Received 4 February 2016; published 23 March 2016)

We find, by an appropriate extension of the standard holographic superconductor setup, static bulk
solutions which describe holographic duals to non-Abelian vortices. In the core of these vortices, a scalar
field condenses, breaking a non-Abelian global symmetry, which leads to additional zero modes called
orientational moduli. These moduli appear in the bulk as Goldstone bosons associated to the condensation
of a neutral scalar field.
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I. INTRODUCTION

The gauge/gravity duality relates the large N limit of
strongly coupled gauge theories to classical gravitational
theories in anti-de Sitter [1]. Therefore, untreatable strongly
coupled problems can, in some cases, be mapped to
solvable classical gravitational theories. This was applied
in particular to high Tc superconductors of which the
physics is mapped to that of a charged scalar field in the
background of an anti-de Sitter (AdS) black hole [2,3]. In
these systems, gravitational solutions dual to vortices in the
superconductors have been found, both in the probe and
fully backreacted limits [4–8]. These solutions, both for the
superfluid and superconducting cases, are characterized by
a flux tube which extends from an AdS horizon to its
boundary, inside which a charged scalar field vanishes. The
3þ 1-dimensional bulk flux tube solutions represent 2þ 1
vortices in the dual field theory. The correspondence is
easily seen geometrically as the dual vortices in the field
theory are simply the boundary end points of the full bulk
flux tube solutions. The charge density and temperature of
the bulk theory break the conformal symmetry of the
holographic strongly coupled quantum theory, and thus,
within it, vortices are normalizable regular excitations.
Initially, such solutions were studied restricting to the probe
limit. In this limit, the charged matter sector along with the
gauge fields do not backreact on the background geometry
which is a fixed AdS Schwarschild black hole.1 This
approach fails in capturing the full physics at zero temper-
ature in which gravitational effects cannot be ignored. In
Ref. [9], using a less conventional symmetry breaking
mechanism, the full backreaction was included, and
important novel physics was unconvered. In particular,
the zero temperature limit was investigated, and it was
shown that the IR physics of these holographic vortices
can be neatly captured by defect conformal field theory.
Numerous studies have extended the results of a single

vortex to the case of more intricate spatial dependences.
Of particular interest are the solutions corresponding to
holographic vortex lattices [10], the spatial dependence of
which can be obtained analytically close to the critical
magnetic field of the phase transition. A general lattice
solution far from the critical point, valid at all temperatures
including zero and taking into account the backreaction
onto the gravitational sector, is (to the extent of the author’s
knowledge) still an open problem (although see Ref. [11]
for progress in this direction).
This paper studies a further extension of vortex holog-

raphy devoted to non-Abelian vortices. Perhaps confus-
ingly, these vortices are not related to non-Abelian
extensions of the Abelian bulk gauge symmetry responsible
for the superconducting phase transition. They are vortices
(and more generally solitonic solutions; see for example
Ref. [12]) which possess orientational moduli on their
world sheets. These moduli are caused by the condensation
of an additional scalar field in the vortex core which breaks
a non-Abelian global symmetry. Since their discovery
[13,14], these vortices have been deeply studied (see for
example Refs. [15–20]). They are believed to be important
in describing the confinement of electric charges in QCD
via a system analogous (or dual) to the confinement
of magnetic “charges” in conventional superconducting
models [21]. While the idea is certainly appealing and, to
some extent, supported by lattice evidence, the precise
and realistic mechanism by which such flux tubes can form
is still largely unknown and remains unproven. Much
progress was made in Ref. [22] where supersymmetric
Yang-Mills theories were shown to possess vacua in which
magnetic monopoles can condense, but these models are
still far from real world QCD. The underlying common
problem of models which study non-Abelian vortices,
especially the more realistic nonsupersymmetric ones, is
that one is restricted from accessing the phenomenologi-
cally interesting strong coupling regime. In this way, this
work provides a very direct route into the physics of non-
Abelian vortices at strong coupling. This paper will make
no contact with confinement or make any QCD related

1Or an AdS-Reissner-Nordstrom black hole depending on the
setup.
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phenomenological claim; it serves as a toy model for
strongly coupled studies of non-Abelian vortices using
holography.
In Ref. [9], the backreaction of bulk vortices on the

geometry was included, and the dual theory was described
by a defect conformal field theory (DCFT). Upon including
the backreaction in the setup of this paper, we can therefore
speculate that the dual theory will be captured by a DCFT
in which the defect carries additional degrees of freedom.
We will not investigate these interesting issues further in
this paper and leave it as future work.
The paper is setup as follows. Section II introduces the

system we wish to consider, the probe limit and the static
background. Section III presents the static solutions of this
system. Section IV discusses its free energy, paying
attention in particular to how it compares with the standard
vortex solutions found previously. Finally, in Sec. V, we
find the solutions describing the orientational moduli of the
dual vortices, and we provide our conclusions in Sec. VI.

II. SYSTEM

We will consider a system with Uð1Þ ×Uð1Þ × SUð2Þ
gauge symmetry in the background of an anti-de Sitter
Schwarschild black hole. A complex scalar ψ of negative
mass squared is coupled to one of the gauge symmetries
(which we will think of as electromagnetism), thus real-
izing in this sector the standard setup for a holographic
superconductor. A triplet of complex scalars χi, also of
negative mass squared, is coupled to the other Uð1Þ
symmetry. This triplet is also in the adjoint representation
of the SUð2Þ gauge symmetry. The additional SUð2Þ gauge
symmetry is what constitutes our “spin” symmetry since it
corresponds to a global SUð2Þ symmetry in the dual theory.
The presence of the additional Uð1Þ gauge symmetry is
used to provide a chemical potential for the spin field in the
dual theory. As presented, the method used to do so may
not be the simplest; after all, a Uð1Þ gauge symmetry is
already present, and we could simply couple the spin field
to it, or we could use the t component of the SUð2Þ gauge
field. Why we chose not to pursue the latter of these two
alternatives will soon be obvious to the reader: we will be
considering the condensation of a neutral order parameter
with respect to SUð2Þ, and hence we require the gauge
fields of this symmetry to vanish. With regard to the former
case, we found that an additional Uð1Þ sector served to
ensure first that the standard holographic superconductor
setup would remain largely untouched (especially its
holographic vortex solutions) and second that the presence
of an additional tunable parameter would make it easier to
find desired solutions numerically. Throughout the paper,
we work in the probe limit in which, to leading order, the
background is fixed and suffers from no backreaction from
the gauge or matter fields.
It is well known that the holographic superconductor

setup does not require a symmetry breaking potential for a

superconducting phase transition to occur. The coupling to
the gauge field and the effects of the gravitational sector
(even in the probe limit) are sufficient for a phase transition
to occur in which, below a certain critical temperature, the
black hole acquires scalar hair. We want to keep the effects
of a holographic superconductor in one of theUð1Þ sectors,
and thus we will not add a symmetry breaking potential
there. However, the two scalar fields are coupled by an
interaction potential, inspired by Witten’s superconducting
string setup [23], which serves to ensure that, upon
condensation of the χ field, the gauged SUð2Þ symmetry
breaks to a Uð1Þ subgroup spontaneously. Without further
ado, the action for this setup is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðLψ þ Lχ þ Vðψ ; χÞÞ þ Sb; ð1Þ

where

Lψ ¼ −
1

4
FμνFμν − ðDμ½A�ψÞ�Dμ½A�ψ −m2

ψ jψ j2; ð2Þ

Lχ ¼ −
1

4
GμνGμν −

1

4
TrðHμνHμνÞ

− ðDμ½G;H�χaÞ�Dμ½G;H�χa −m2
χ jχaj2; ð3Þ

Sb are appropriate boundary terms to render the action
finite, and

Vðψ ; χÞ ¼ γjψ j2jχaj2 þ βðjχaj2Þ2: ð4Þ

The important probe limit is justified by considering a
field redefinition of the form

Aμ →
1

e
Aμ; ψ →

1

e
ψ ; Gμ →

1

g
Gμ;

χa →
χa

g
; Ha

μ →
1

g
Ha

μ ð5Þ

and then taking γ → gγ, β → gβ, and the limit e ¼ g → ∞,
whereby the dynamics of gravity decouples from that of
our gauge matter. In the above, we used the notation
jχaj2 ¼ ðχaÞ�χa, and

Fμν ¼ ∂μAν − ∂νAμ; ð6Þ

Dμ½A�ψ ¼ ð∂μ − iAμÞψ ; ð7Þ

Gμν ¼ ∂μGν − ∂νGμ; ð8Þ

Dμ½G;H�χa ¼ ð∂μχ
a − iGμχ

a þ ϵabcHb
μχ

cÞ; ð9Þ

Hμν ¼ ∂μHν − ∂νHμ þ ½Hμ; Hν�; ð10Þ
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which implies that all gauge couplings are set to 1.2 The
dimensionless parameter γ controls the coupling between
the two scalar fields, and a self-interaction term in the χ
sector is added proportional to β, which has mass dimen-
sion zero.
The background is that of an AdS4 Schwarschild black

hole with the line element given by

ds2¼L2

u2
ð−hðuÞdt2þdr2þr2dθ2Þþ L2

u2hðuÞdu
2; ð11Þ

with L the AdS radius and

hðuÞ ¼ 1 − u3; T ¼ 3

4πL2
; ð12Þ

with T the black hole temperature. The dimensionless
coordinate u takes the range (1,0), where u ¼ 1 describes
the position of the black hole horizon and u ¼ 0 is the AdS
boundary. The coordinate rwith range on the positive semi-
infinite interval describes the radial coordinate in the plane
transverse to the AdS coordinate u, with θ the polar angle in
this plane.

A. Equations of motion

Our goal is to be able to describe vortices in the dual
theory supplemented by an additional SUð2Þ neutral
condensate appearing in the core of the vortex. For this
purpose, we will look for solutions setting the SUð2Þ gauge
fields to zero, Ha

μ ¼ 0. We know from previous work on
spatially dependent condensates [4] that both solutions in
which the condensate is maximum at r ¼ 0, the so called
droplet solutions, and the standard vortex solutions exist.
The main idea is therefore to couple both kinds of solutions
in a way in which they can coexist such that the droplet of
one sector sits in the core of the vortex of the other. Hence,
using the ansatz

Au ¼ Gu ¼ 0;

Ar ¼ Gr ¼ 0;

Aθ ¼ r2aθðu; rÞ;
Gθ ¼ gθðu; rÞ;
At ¼ a0ðu; rÞ;
Gt ¼ g0ðu; rÞ;

ψ ¼ einθ
rn

Ln ρðu; rÞ;
χa ¼ eikθχðu; rÞδa3; ð13Þ

where we have explicitly included the r rescalings in the ψ
sector to avoid divergences at the origin, the equations of
motion reduce to (from here on, we set L ¼ 1)3

∂2
uρþ

1

hðuÞ ∂
2
rρ −

2þ u3

uhðuÞ ∂uρþ
1þ 2n
rhðuÞ ∂rρ

þ
�

a20
hðuÞ2 þ

ð−m2
ψ þ u2aθð2n − r2aθÞ þ γχ2Þ

u2hðuÞ
�
ρ ¼ 0

ð14Þ

∂2
ua0 þ

1

hðuÞ ∂
2
ra0 þ

1

rhðuÞ ∂ra0 −
2r2nρ2

u2hðuÞ a0 ¼ 0; ð15Þ

∂2
uaθ þ

1

hðuÞ ∂
2
raθ −

3u2

hðuÞ ∂uaθ þ
3

rhðuÞ ∂raθ

−
2r2nρ2

u2hðuÞ
�
n
r2

− aθ

�
¼ 0; ð16Þ

in the ψ sector and

∂2
uχ þ

1

hðuÞ ∂
2
rχ −

2þ u3

uhðuÞ ∂uχ þ
1þ 2n
rhðuÞ ∂rχ

þ
�

g20
hðuÞ2 þ

ð−m2
χr2 þ k2u2 þ u2gθð−2kþ gθÞ − γr2þ2nρ2Þ

u2r2hðuÞ
�
χ þ 2β

u2hðuÞ χ
3 ¼ 0; ð17Þ

∂2
ug0 þ

1

hðuÞ ∂
2
rg0 þ

1

rhðuÞ ∂rg0 −
2χ2

u2hðuÞ g0 ¼ 0; ð18Þ

3We invite the reader to beware of the apparent dimensional incongruences this choice causes.

2With this choice of gauge couplings, the gauge symmetry of the χ sector is enhanced to Uð2Þ; however, we keep the distinction
apparent since we will be setting the SUð2Þ gauge fields to zero later on.
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∂2
ugθ þ

1

hðuÞ ∂
2
rgθ −

3u2

hðuÞ ∂ugθ −
1

rhðuÞ ∂rgθ

þ 2χ2

u2hðuÞ ðk − gθÞ ¼ 0; ð19Þ

in the χ sector. Note that the ansatz involves switching
on a χ field pointing only in one direction (chosen to be the
3-axis) of the internal space. This is the main reason why
the resulting solution has orientational moduli; they are
related to the residual Uð1Þ invariance of rotations around
this axis. The differences between the equations of motion
of the scalar and gauge sectors, which are a priori similar
from the Lagrangian, can be attributed entirely to the
chosen rescalings in the ansatz.

B. Asymptotic behavior and AdS=CFT dictionary

Analyzing the scalar field equations asymptotically as
u → 0, we find a consistent behavior of the form

ρ → ρ1ðrÞuþ ρ2ðrÞu2 ð20Þ

χ → χ1ðrÞuþ χ2ðrÞu2 ð21Þ
provided the standard choice [2] for the scalar masses is
made,

m2
ψ ¼ m2

χ ¼ −2: ð22Þ

This choice is above the Breitenlohner-Freedman bound for
both scalars. Given that both boundary expansion modes
are normalizable, we can choose what mode to use in order
to describe the condensate in each sector. We choose to
work with ρ1 and set ρ2 ¼ 0, similarly χ2 ¼ 0, and we work
with χ1. This ensures that the phase transition in which both
scalars develop is spontaneous.
Regarding the gauge fields, we have asymptotically

a0 → μðrÞ þ uρaðrÞ þ � � � ; ð23Þ

aθ → aθðrÞ þ uJθðrÞ þ u2Ĵθ þ � � � ; ð24Þ
and

g0 → μχðrÞ þ uρχðrÞ þ � � � ; ð25Þ

gθ → gθðrÞ þ uJχθðrÞ þ � � � ; ð26Þ

with μðrÞ and μχðrÞ the chemical potentials (the authors of
Ref. [24] call μχ the “spin accumulation”), ρaðrÞ and ρχðrÞ
the charge densities [our meaning of charge will be to
associate ρa to the usual electromagnetic charge, while ρχ is
the charge associated to the additionalUð1Þ], and aθðrÞ and
gθðrÞ related to the magnetic fields [again, the notion of
“magnetic” is merely a label for the secondUð1Þ] and JθðrÞ,
JχθðrÞ related to the azimuthal currents of their corresponding

Uð1Þ sectors. In particular, the actual magnetic field expres-
sion is B ¼ 1

r ∂rðr2aθÞ. The SUð2Þ gauge symmetry in the
bulk describes a global SUð2Þ symmetry of the boundary
theory. We engineer the system in the bulk to break this
symmetry down to Uð1Þ. Throughout the paper, we work
with spatially constant μ and μχ . This defines a scale-
invariant temperature ~T as ~T ¼ T=μ so that the effective
temperature changes are obtained at fixed μχ varying μ.

III. SOLUTIONS

The normal phase solution is easily found to be

a0 ¼ μð1 − uÞ; g0 ¼ μχð1 − uÞ; ð27Þ
aθ ¼ gθ ¼ ρ ¼ χ ¼ 0: ð28Þ

In this case, both μ and μχ are not functions of r. However,
we are interested in finding solutions in which both scalar
fields condense and for which the condensates have
particular spatial dependences. In order to do so, we will
set gθ ¼ k everywhere, which is a consistent solution of its
equation of motion, Eq. (19). The important point is that
this is an energetically finite value of gθ since in the χ sector
we do not need to regularize the Dθ covariant derivative at
spatial infinity (as happens for the standard vortex) since it
is the χ field that vanishes there. The choice implies that
there is no magnetic field in this sector.
Before solving the full two-dimensional equations

numerically, we look at the behavior of the scalar fields
near the boundary, which will determine the behavior of the
holographic condensates.
In the branch of solutions which we consider, for which

μχ ≠ 0 and

χ → χ1ðrÞuþ χ2ðrÞu2; ð29Þ
we have asymptotically

∂2
rρ1 þ

1þ 2n
r

∂rρ1 þ ðμ2 þ 2naθ − r2a2θ þ γχ21Þρ1 ¼ 0;

ð30Þ
∂2
rχ1þ

∂rχ1
r

þððμχÞ2þ 2βχ21þ γðrnρ1Þ2Þχ1 ¼ 0; ð31Þ

∂2
raθþ2Ĵθþ3

∂raθ
r

þ 2

r2
ðn− r2aθÞðrnρ1Þ2¼ 0: ð32Þ

We recognize this set of equations as those obtained in
Ref. [15] (upon the appropriate field rescalings), which lead
to the non-Abelian vortex solutions for the condensate
profiles. Here, we see why including a coupling to a Uð1Þ
sector for the spin field is a necessity. If we set μχ ¼ 0
in the second equation, we see that if β ≠ 0 then a constant
core (r ¼ 0) value of χ1 is not allowed and if β ¼ 0
then the solution is χ → Cþ lnðrÞ þ… which diverges
logarithmically as r → 0. Therefore, the chemical potential
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in this sector serves to stabilize the core value of the χ1
condensate.
Equations (14)–(18) are solved numerically using the

COMSOL Multiphysics module. A far-radius cutoff
R ¼ 20 is used. We impose the following boundary
conditions on the relaxation procedure,

a0ð1; rÞ ¼ g0ð1; rÞ ¼ 0; ð33Þ
a0ð0; rÞ ¼ μ; g0ð0; rÞ ¼ μχ ; ð34Þ

ρð0; rÞ ¼ χð0; rÞ ¼ 0; ð35Þ

and vanishing flux conditions at large and small r. This
implies that we focus only on the branch of solutions with
spontaneous symmetry breaking.
The full two-dimensional solutions are shown in Fig. 1.

We present the relevant holographic quantities of interest in
Figs. 2 and 3 which show the n ¼ 1 and n ¼ 2 cases,
respectively (changing k here does not affect the solutions
as it is a trivial shift of the constant gθ field). Note that the
aθ field has a small but nonvanishing dependence on the
AdS coordinate u. We find in both cases that in the ψ sector
the condensate assumes a standard vortex form, while in the
other, the condensate is maximum in the core of the vortex.
These solutions at the boundary resemble the flat space
non-Abelian vortex solutions found in Ref. [15]. The key
point is the coexistence of both the “droplet” (the χ sector)
and “vortex” (ψ sector) solutions in standard holographic
superconductivity.
As the temperature is raised (by lowering μ), we find

that the vortex condensate decreases in magnitude but the
core condensate increases. Eventually, as the temperature is
raised enough at around μ ≈ 4.7, we find solutions in which
the χ condensate does not vanish at large r and destabilizes
the vortex solution in the other sector. In the opposite limit,
where the temperature is made smaller, the ψ condensate
increases in magnitude, and one must be careful in order to
remain in the probe limit. For an accurate analysis of this
phase at small temperatures, one must include the effects of
backreaction.
In Fig. 4, we report on the variation of the χ1 field in

the core as one varies the parameter β in the potential. We
find that increasing this parameter lowers the value of the
condensate, as one generally expects from considerations
in Ref. [15].

IV. FREE ENERGY

In order to determine if this kind of condensed vortex
phase is preferred over the normal uncondensed phase,
we compute the difference of free energy densities (per
surface area of the boundary) between the condensed and
normal phases by finding the on-shell Euclidean action.
The standard prescription relates the free energy F to the
Euclidean on-shell action SosE as

F ¼ TSosE : ð36Þ

Since we are working with the operators dual to ψ1 and
χ1, we must add an appropriate boundary counterterm to
render the action finite; hence, we set

Sb ¼ −
1

πR2

Z
d2x

hðuÞ
u2

ðψ∂zψ þ χi∂zχ
iÞju¼0: ð37Þ

The result of integrating by parts the scalar fields and
using the equations of motion for the condensed phase is

Fcond

πR2
¼ Fbulk þ Fsurf

πR2
; ð38Þ

where

Fbulk

πR2
¼ 2

R2

Z
R

0

Z
0

1

ffiffiffi
g

p �
−
1

4
ðFμνFμν þ GμνGμνÞ

− ðγjψ j2jχij2 þ βðjχij2Þ2Þ
�
drdu; ð39Þ

and

Fsurf

πR2
¼ 1

πR

Z
0

1

1

u2
½r2nρ∂rρþ nr2n−1ρ2 þ χ∂rχ�jr¼Rdu:

ð40Þ

The divergent contribution from the surface integral on
the boundary of AdS space is cancelled by the counterterm.
In the normal phase, where the solution is described by
Eqs. (14)–(18), the free energy density is simply

Fnorm

πR2
¼ −

1

2
ðμ2 þ ðμχÞ2Þ: ð41Þ

Therefore, the difference in free energy densities is

ΔF
πR2

¼ Fbulk þ Fsurf − Fnorm

πR2
; ð42Þ

so that, if the condensed phase is preferred, this quantity
should be negative indicating that the condensed phase has
lower energy (per unit area) than the normal phase. Note
that for this comparison to make sense we must compare
the phases at the same temperatures; i.e. both results should
be compared at the same μ and μχ . The results of this
comparison are shown in the table presented in Fig. 5.
Numerically, the free energy difference is negative

indicating that the condensed phase is preferred. As the
temperature is raised, this difference decreases, as one
expects, tending to zero at the critical temperature. We
tested the finiteness of these values for larger R numerically
and found stability of the reported values up to R ¼ 25
above which the numerical solver loses convergence.
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It is important to compare the free energy density
of the solution with the extra spin field χ to the normal
vortex solution without χ. It was shown above that
the condensed phase described by solutions with

nonvanishing χ field is preferred over the normal phase,
but it still might not be preferred over the normal vortex
solution with no extra field. Hence, the appropriate
quantity to compute is

(a) (b)

(c)
(d)

(e)

FIG. 1. Field prophiles showing the solution obtained by setting n ¼ 1, μ ¼ 4.8, β ¼ −0.05, γ ¼ −0.23 and μχ ¼ 3.5. In plot b) we set
~ρ ¼ r2nρ=L2n.
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ΔF
πR2

¼ Fχ − Fρ

πR2
; ð43Þ

where Fχ denotes the solution with a nonvanishing χ field
and Fρ the standard vortex solution with no χ. Since the χ
field in the solution is small compared to the ρ sector, the
normal vortex solution is only slightly altered by its
presence for these values of μ and μχ (clearly, if the
temperature is lowered, this is no longer true as the
nonvanishing of the χ field at large r has a significant
effect on the vortex profile in the ρ sector). Then, we can
safely approximate the contribution to the free energy
of the ρ sector to be equal in both the normal and non-
Abelian vortex phases (the validity of this approximation
has been verified numerically). In this limit, we have
simply that

Fχ − Fρ

πR2
¼ 2

R2

Z
R

0

Z
0

1

ffiffiffi
g

p �
−
1

4
GμνGμν

− ðγjψ j2jχij2 þ βðjχij2Þ2Þ
�
drdu ð44Þ

−
1

πR

Z
0

1

1

u2
½χ∂rχ�jr¼Rdu: ð45Þ

The numerical results of this computation are shown in
Fig. 6. The difference is once again negative, indicating
that the solution supporting a nonvanishing condensate in
the core is preferred to the normal vortex phase. In fact,
this implies that the normal vortex solution in this system
is at the most metastable. However, it does not imply
complete stability of the solution with a χ field; only a
stability analysis of the perturbation modes of this
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FIG. 2. Field profiles at the boundary for n ¼ 1 for μ ¼ 4.8, 5.0, 5.1, 5.2; the red tiny dash is 4.8, and the blue large dash is 5.2. All at
β ¼ −0.05 and γ ¼ −0.23, μχ ¼ 3.5.
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FIG. 4. Changes in χ1 for varying β. Plots are for −β ¼ 0.05,
0.2, 0.5, 0.8, with the lowest jβj corresponding to highest core
value of χ1.
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FIG. 3. Field profiles at the boundary for n ¼ 2 for μ ¼ 4.8, 5.0, 5.1, 5.2; the red tiny dash is 4.8, and the blue large dash is 5.2. All at
β ¼ −0.05 and γ ¼ −0.23, μχ ¼ 3.5.

FIG. 5. Free energy density difference between the condensed
phase and the normal phase.
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solution could determine this. We will not perform this
analysis in this paper and content ourselves with the
metastability of this solution implied by the energy
arguments. A similar result was derived in Ref. [25] when
considering vortices in the presence of an additional Uð1Þ
gauge sector.

V. BULK LOCALIZED GOLDSTONE BOSONS
AS DUAL ORIENTATIONAL MODULI

We begin the discussion regarding orientational moduli
by reminding the reader of the well-known case of non-
Abelian vortices in flat space (see Ref. [20] for an in depth
explanation). In this case, the field χi is a global triplet of
SUð2Þ, and the pattern of symmetry breaking in the core of
the vortex, where χ3 condenses, is given by SUð2Þ → Uð1Þ.
The effective theory of the orientational moduli can be
deduced topologically. It is given simply by

SUð2Þ
Uð1Þ → CPð1Þ; ð46Þ

which means that two orientational moduli, or Goldstone
bosons of the global symmetry breaking, form a CPð1Þ
nonlinear sigma model. These moduli live on the string
world sheet and therefore depend on the two coordinates z
and t, assuming the infinite string is aligned with the z
direction. The effective action governing these moduli
can be easily obtained using the parametrization χi ¼
χ0ðrÞSiðt; zÞ with the condition that SiSi ¼ 1 and integrat-
ing over the background field χ0ðrÞ numerically.
The case considered here is more subtle. Recall that we

are considering condensation of a scalar field which is
originally charged under a gauged SUð2Þ [we ignore the
Uð1Þ charge in this discussion as it plays no role] and is
made neutral by considering a specific solution in which
the non-Abelian gauge bosons are set manually to zero. The
condensation of this neutral scalar then causes the global
symmetry breaking pattern SUð2Þ → Uð1Þ, the remaining
symmetry related to rotations about the axis of the

background field, and hence we expect topologically the
same number of zero modes on the string and a similar
CPð1Þ nonlinear sigma model. However, to prove that these
moduli exist, we must show that we can find them as
normalizable solutions in the bulk geometry which exist for
ω → 0 in Fourier space, i.e. that they are gapless excita-
tions. If these solutions exist, then they will be dual to
Goldstone modes in the field theory which, if localized on
the vortex core, we will interpret as the orientational moduli
of our vortex solution. In Ref. [26], a very similar analysis
was carried out in holographic models of antiferromagnet-
ism to prove the existence of linearly dispersing spin
waves. Even though the analysis here is similar, our
interpretation will be different. We wish to find non-
dispersing localized gapless modes corresponding to low
frequency rotations of the order parameter in the core of the
vortex.
A priori, we would expect the moduli to live on the world

line of our codimension-3 solitonic solution and hence be
fields which depend only on time t. To obtain the effective
action, a natural ansatz to consider is therefore, to a first
approximation,

χi ¼ χðr; uÞSiðtÞ; ð47Þ
where χðr; uÞ is the numerical solution obtained in the
previous section and SiðtÞ is a time-dependent moduli field
which satisfies SiSi ¼ 1. Inserting this into the action, we
obtain

S0 ¼
Z ffiffiffiffiffiffi

−g
p

gμν∂μχ
i∂νχ

i → I1

Z
dt _Si2; ð48Þ

where

I1 ¼ 2π

Z
drdu

r
u2hðuÞ χ

2: ð49Þ

However, this integral is divergent at the horizon u ¼ 1
where χ condenses. This divergence indicates that the
orientational moduli are not normalizable. Physically, we
could have anticipated it as being just a consequence of the
finiteness of the string in the u direction. In the original
variables related to u by z=zh ¼ 1=u, the string is a semi-
infinite object extending from the horizon z ¼ zh to the
boundary at infinity z ¼ ∞. It indicates that we must
consider also excitations of the moduli in the u direction
when calculating the effective action (see Ref. [27] for an
explanation). A natural choice would then be

χi ¼ χðr; uÞSiðt; uÞ ð50Þ

which leads to the effective action

S ¼ 2π

Z
dtdu

ffiffiffiffiffiffi
−~g

p
~gμν

�Z
drrχðr; uÞ2

�
∂μSi∂νSi; ð51Þ

FIG. 6. Free energy density differences between the vortex with
an additional χ condensate and the “normal” vortex phase with
χ ¼ 0.
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with μ ¼ ðt; uÞ and ~gμν ¼ ðgtt; guuÞ from (11). Once again,
the moduli fields are constrained by SiSi ¼ 1. Clearly, it
becomes complicated to observe the CPð1Þ theory on the
vortex world sheet; in particular, it is not straightforward
to isolate the correct degrees of freedom corresponding to
the moduli fields by integrating only in the r direction. In
particular, as noted in Ref. [26], we must be careful in
interpreting correctly rotations of the form (50).
Expressions of this kind are space-time-dependent rotations
of the χ background field which in the context of the
symmetries involved are simply gauge transformations of
our adjoint vector. These gauge rotations must switch on
vector field components as perturbations of our zero
background solution which, with the parametrization
chosen in Eq. (50), enter as higher order corrections to
the action. The complete action then becomes

Z
d4x

ffiffiffiffiffiffi
−g

p �
χ20DμSiDμSi −

1

4
Ha

μνH
μν
a

�
; ð52Þ

where

DμSa ¼ ∂μSa þ ϵabcHb
μSc; ð53Þ

with Ha
μ a small perturbation over the vanishing back-

ground gauge field and χ0ðu; rÞ our background solution.
Determining the existence of the moduli fields then
becomes a problem of solving the coupled linearized
scalar-Yang-Mills equations in the gravitational back-
ground. The parametrization chosen here is not particularly
suited for this problem as it involves solving the full non-
Abelian equations. For this purpose, a better suited para-
metrization for the moduli fields exists; however, this
does not exclude that an appropriate solution can be found
without switching parametrizations. In particular, inspired
by Ref. [26], we set

χ ¼ 1ffiffiffi
2

p expðiπiðt; uÞτiÞχ0ðr; uÞ; ð54Þ

where τi are the broken symmetry generators and
χ0ðr; uÞ ¼ χ0ðr; uÞτ3 is the background solution. The back-
ground solution is a function of the spatial variable as well
as the AdS coordinate u. Hence, the moduli fields are in this
way automatically constrained to live in the vortex core
[since χ0ðu; rÞ vanishes outside of the vortex core]. This
parametrization is appropriate in the sense that it allows us
to find an explicit solution for the bulk Goldstone fields
which survive as ω → 0 (as we will shortly show);
however, it is not well suited to discuss the nonlinear
sigma model these moduli belong to. The moduli fields
here do not depend on the spatial variable r and are in this
way different from those proposed in Ref. [26]. The reason
is that the gapless modes here are localized, while those
in Ref. [26] defined a linearly dispersing spin wave.

Importantly, this also means that we can ignore the
perturbations in the spatial component of the gauge field,
i.e. Hr ¼ 0. Let us proceed to find these solutions; we
follow the discussion of Ref. [26] closely. The quadratic
action of the moduli fields is

Sπ ¼ −2π
Z

dtdu
ffiffiffiffiffiffi
−~g

p
~gμν

~χ20
2
ð∂μπ

i −Hi
μÞ

× ð∂νπ
i −Hi

νÞ þ � � � ; ð55Þ
where … denotes higher order corrections involving non-
Abelian terms of the form ½π; Hμ� and

~χ0ðuÞ2 ¼
Z

drrχ0ðr; uÞ2: ð56Þ

The equations of motion which result from this action are
(we drop the index i on the moduli fields as they decouple,
and the tilde on the metric components)

∂μð~χ20
ffiffiffiffiffiffi
−g

p
gμνð∂νπ −HνÞÞ ¼ 0; ð57Þ

∂mð
ffiffiffiffiffiffi
−g

p
gμmgνnHμνÞþ

ffiffiffiffiffiffi
−g

p
gnν ~χ20ð∂νπ−HνÞ¼0: ð58Þ

Note that a solution to these equations is simply the
global rotation corresponding to π ¼ π0 a constant and
Hμ ¼ 0. Let us begin by analyzing the boundary behavior
of the scalar equation in the ω → 0 limit. We will work in
Fourier space so that

πðt; uÞ ¼ πðuÞeiωt; Htðt; uÞ ¼ HtðuÞeiωt ð59Þ
and choose the gauge Hu ¼ 0. We know from Eq. (21) that
~χ0 → Auþ � � � where A is a constant. Then, if we ensure
normalizability of the gauge sector by settingHμ → 0 at the
boundary, we have that

π → Bþ Cuþ � � � ð60Þ
with B, C integration constants. From the expansion
equation (54) and the analysis of the χ boundary behavior,
we see that both modes in the π expansion are normal-
izable, and we may interpret one as the source of the other.
It is then a choice which source and vacuum expectation
value (vev) to use. To work out the frequency-dependent
solution, we expand about the constant global solution such
that

π ¼ π0 þ π1ðuÞ;…π1 ∼Oðπ0ω2Þ; ð61Þ
HtðuÞ ∼Oðπ0ωÞ: ð62Þ

The infalling normalizable solution for Ht is then

Ht ¼ iωπ0ð1 − htðuÞÞ; ð63Þ

with ht the infalling solution of
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∂uð
ffiffiffiffiffiffi
−g

p
guugtt∂uhtÞ −

ffiffiffiffiffiffi
−g

p
gtt ~χ20ht ¼ 0: ð64Þ

The normalizable condition on the gauge field requires
htð0Þ ¼ 1. Then, the solution for the moduli field reads

π1 ¼ ω2π0fðuÞ; ð65Þ
where fðuÞ satisfies (from the n ¼ u component of the
Yang-Mills equation)

~χ20∂uf ¼ gtt∂uht: ð66Þ

The scalar equation is then trivially satisfied.4 Therefore, a
solution of Eq. (64) with htð0Þ ¼ 1 and ∂uhð1Þ ¼ 0
describes a regular normalizable solution for the moduli
fields. This solution, which exists in the ω → 0 limit,
describes gapless modes related to low frequency rotations
of our spin field, localized on the bulk flux tube, which we
interpret as the orientational moduli of the dual theory
vortex.
A final comment on the gapless modes of our vortex

needs to be made. We have so far considered the gapless
modes corresponding to low frequency rotations of our spin
field in the vortex core and identified them as the orienta-
tional moduli of the dual non-Abelian vortex. However, the
solution possesses one more gapless mode which we have
so far ignored. This is just the mode corresponding to the
uneaten phase of the χ field in the standard holographic
superfluid phase transition associated to the broken addi-
tional Uð1Þ gauge symmetry in the bulk. If we gave gθ
nontrivial dynamics on the boundary (as outlined in
Ref. [28]) and effectively gauged this symmetry, the
gapless mode would be eaten, and our solution would
have only the two orientational modes remaining. As it
stands, the dual vortex core describes a superfluid droplet,
the superfluidity (or, once gauged, the superconductivity)
being related to the additional Uð1Þ and not that of the
original one which we called “electromagnetism.”

A. Dual theory of the moduli

Let us study the dynamics of the world sheet theory a bit
more and attempt to extract some precise information of the
dual theory. While the second moduli parametrization has
revealed, in the vanishing ω limit, the existence of two
gapless modes constrained in the vortex core, it is the first
of these parametrizations which is more suited to reveal
some of the links to the dual theory. The full dynamics of
the scalar moduli world sheet degrees of freedom, to linear
order in the gauge field perturbations, is governed by the
following equations,

∂νð
ffiffiffiffiffiffi
−g

p
~χ20g

μνDμScÞ−
ffiffiffiffiffiffi
−g

p
~χ20g

μνϵabc∂μSaHb
ν ¼ 0; ð67Þ

1

4
∂μð

ffiffiffiffiffiffi
−g

p
gμνgτσHd

νσÞ þ ~χ20
ffiffiffiffiffiffi
−g

p
gμτϵabc∂μSaSc ¼ 0; ð68Þ

where Hμ is, as explained earlier, a small perturbation over
the Hμ ¼ 0 background solution. In order to make some
progress, let us take the zeroth order approximation in
which we can ignore the gauge field perturbations resulting
in Eq. (52) and work directly with Eq. (51). As we will see,
even this simplified system is not trivially resolved. The
dynamics of the moduli degrees of freedom of the world
sheet theory is determined by the equation of motion of the
fields

∂μð
ffiffiffiffiffiffi
−~g

p
~gμν ~χ20∂νSiÞ ¼ 0; ð69Þ

subject to the additional constraint that SiSi ¼ 1. Once
expanded out, the equation reduces to

∂u

�
hðuÞ
u2

~χ20∂uSi
�
−

1

u2hðuÞ ~χ
2
0∂2

t Si ¼ 0: ð70Þ

This equation admits the separable solution Siðt; uÞ ¼
fiðuÞgiðtÞ (no summation intended), which gives the
equations

u2hðuÞ
~χ20

∂u

�
hðuÞ
u2

~χ20∂ufi
�

¼ Aifi; ð71Þ

g̈i ¼ Aigi; ð72Þ

where Ai is a constant vector. A full solution, to zeroth
order approximation, is then to solve these two equations
with ingoing boundary conditions simultaneously and
imposing the constraint that ðgifiÞ2 ¼ 1 coming from
the identical constraint on Si. This is a hard numerical
problem as the function ~χ0 comes from the numerical
solution of the background field equations for the vortex. In
order to solve the above system, we would therefore have to
numerically integrate the solution in the r direction and
feed it as a seed to the f equation which is then solved
numerically with the additional constraint that ðgifiÞ2 ¼ 1
must be satisfied everywhere. For now, let us assume that a
solution of this form exists (which after all was proven to
exist at least in the low frequency limit by the other
parametrization) and analyze the equation at the boundary,
which is where we can make contact with the dual theory.
Furthermore, analyzing the solution at the boundary is
representative of the full solution including the contribution
from the gauge fields since they vanish there. In the u → 0
limit, where ~χ0 → Buþ � � � [see Eq. (21)] where
B ¼ R

drrχ1ðrÞ, the equations reduce to the simple har-
monic equations

ðfiÞ00 ¼ Aifi; g̈i ¼ Aigi; ð73Þ
4By “trivially satisfied,” we mean, in the notation of Ref. [26],

that αt ¼ 0.
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with the general solution

Si ¼ ðci1 cosðaiuÞ þ ci2 sinðaiuÞÞ
× ðci3 cosðaitÞ þ ci4 sinðaitÞÞ ð74Þ

¼ ðci1 þ ci2a
iuþ � � �Þðci3 cosðaitÞ þ ci4 sinðaitÞÞ; ð75Þ

where ai ¼
ffiffiffiffi
A

p
i, the cji ’s are some integration constants,

and in the second line we have made manifest the u → 0
limit. This solution is in some sense reassuring because we
see that the moduli constraint can indeed be satisfied at
least on the border. Take for example the case in which
c3a ¼ 0; then,

SiSi ≈ ðc11c13Þ2ðcosða1tÞÞ2 þ ðc21c24Þ2ðsinða2tÞÞ2; ð76Þ

where we set c14 ¼ c23 ¼ 0. Clearly, it is sufficient for the
conditions ðc11c13Þ2 ¼ ðc21c24Þ2 ¼ 1 and a1 ¼ a2 ¼ ω for
SiSi ¼ 1 to hold in this limit; many other branches of
solutions would equally satisfy the constraint, depending
on the choices of the cji ’s. The classical energy of the
solution, at least on the border, can be inferred from the
original action in the u → 0 limit. In general, the energy
density expression is simply

E ¼ 2π

u4
~χ20

�
u2hðuÞðgi∂ufiÞ2 þ

u2

hðuÞ ð_g
ifiÞ2

�
ð77Þ

u → 0 ¼ 2πB2ððgi∂ufiju¼0Þ2 þ ð_gifiju¼0Þ2Þ: ð78Þ

By an appropriate choice of boundary conditions, we can
always pick ∂ufiju¼0 ¼ 0. Shortly, we will discuss the
holographic consequences of this choice. Then, the
energy density on the world sheet theory in the u → 0
limit reduces to

E ¼ 2πB2ð_gifiju¼0Þ2 ¼ 2πB2ðci1 _giÞ2: ð79Þ

We recognize this as simply the kinetic energy of the
moduli fields, which is simply the rotational energy around
the symmetry axis. There is a general moment of inertia
vector which depends on the ci1, I

i ¼ 4πðR drrχ1Þ2ðci1Þ2.
This energy spectrum is continuous and labelled by the
rotational frequencies in the moduli components. For the
case above in which we considered a1 ¼ a2, it can be
further reduced to the single frequency ω. Note that, in
general, this energy needs to remain small in order for the
probe approximation to remain valid. This translates to
considering small frequency rotations, i.e. ω ≪ 1=L, the
only scale of the system. Luckily, this is the right regime of
validity of our previous solution and allows us to compare
the two. Indeed, the solutions obtained in both paramet-
rizations should coincide at the border, and they do by a
simple analysis of Eqs. (59) and (60) translated to Fourier

space.5 The general energy expression derived in the other
parametrization, evaluated on the solutions, leads to

E¼ π

2u2
~χ20π

2
0ω

2

�
1

hðuÞðh
2
t þω4f2ÞþhðuÞω2f02

�
: ð80Þ

At the border, to leading order in ω, we see that this
expression reduces to

E ¼ π

2
B2π20ω

2 þ � � � ð81Þ

which confirms our analysis leading to Eq. (79) stating that
the energy at the border is just the contribution from the
rotational degrees of freedom. In the bulk, we must also
consider the contribution coming from the ∂uf terms,
which is simply the momentum carried in the longitudinal
modes along the string. This becomes important when
discussion dissipation below. Indeed, picking ∂uf ¼ 0 at
the border is a simple restatement that the longitudinal
momentum is purely infalling.
Now, let us try to learnwhatwe can of the dual theory. The

moduli fields Siðt; uÞ are holographically dual to operators
OiðtÞ responsible for gapless excitations on the dual vortex
world line. Through the boundary analysis carried out above,
we can see that both the boundary expansionmodes of the Si

field are normalizable (in much the sameway as those of the
πi field), and hencewemay choosewhich one to interpret as
the source and which as the vev. Let us say we pick the c11
term as the vev and set c2 ¼ 0, which is the choice
corresponding to the above energy consideration. Then,
we can immediately read off from Eq. (74) that hOiðtÞi ¼
c11ðci3 cosðaitÞ þ ci4 sinðaitÞÞ. We can interpret this as the
operator O creating (gapless) excitations with energy ω.
Note in particular that, using the same constraints on the cji ’s
as derived above, we also have that hOiðtÞihOiðtÞi ¼ 1, and
so these operators obey a similar constraint to the bulk field
Si to which they are dual. This should be unsurprising since
the presence of a CPð1Þ nonlinear sigma model on the dual
vortex world line is a necessary result of the symmetry
breaking pattern. It is just the result of the SUð2Þ → Uð1Þ
global symmetry breaking of the dual theory. It is, however, a
nice result that we may see it directly from boundary
considerations of our bulk world sheet action.6

5Working in Fourier space in the original Si parametrization is
not simple since it would translate the constraint to a general
convolution.

6In fact, it is tempting to go one step further: since there is only
one viable Lagrangian description of the one 0þ 1-dimensional
CPð1Þ effective theory in flat space, we can speculate that the
dual action should be simply Sdual ∝

R
dt _hOii _hOii, with the

previous constraint imposed. Even though the original system is
not directly derived from any string framework for which a dual
Lagrangian description is known, there seems to be sufficient
symmetry to constrain the effective theory of the vortex enough
for its Lagrangian to be inferred.
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According to this picture, the dual theory of the moduli
degrees of freedom corresponds to a quantum rigid rotor
system in a plane. As is well known, the system has
quantized energy levels

Es ¼
1

2Id
ðsðsþ 1ÞÞ; ð82Þ

with s an integer and Id the moment of inertia of the dual
rotor (in the isospace). To make sense of this picture, recall
that the probe limit forces us to consider only the small ω
limit. In this limit, the excitations have small energies
compared to the gapped spectrum and are therefore
insufficient to probe the discrete energy levels. We can
interpret these gapless excitations as small energetic per-
turbations from the ground state. Upon including the
backreaction in the system, where we are allowed to probe
all scales of ω, we can in principle consider excitations
which are energetic enough to excite the system to its first
energy level. This happens at ω ≈ 1=Id. We do not have a
direct way of obtaining Id from the bulk data. It is tempting
to conjecture that Id should be equal to jIij, the classical
bulk moment of inertia evaluated on the boundary. This
allows us to get a numerical estimate by picking values of
ci1. Our solution at L ¼ 1 has B ≈ 1, where B was defined
above. This is of course a quantity that depends on
temperature and the various parameters of our system,
but for the temperature ranges investigated in the paper,
it is always a quantity of order 1. Then, already for
c11 ¼ c21 ¼ 0.5, 1=Id ≈ 1=π ≈ 0.32 which is comparable
to L. Since the probe limit imposes ω ≪ 1=L ¼ 1, we
are far below the excitation energy.
The last ingredient for this picture to make sense is to

consider the dissipation of these excitations. There should
be some mechanism by which energy is lost; otherwise, the
system would have a continuous spectrum of excitations. In
the bulk, the dissipation picture is easily understood. As
argumented before, the finiteness of the string implies that
we cannot ignore the momentum modes along the string
direction. Then, the moduli rotations can dissipate energy
by exciting these low energetic longitudinal modes. These
momentum modes are characterized by the u dependence
of Si and show up in the energy functional Eq. (77) when
not considered on the border. The infalling boundary
conditions then state that the momentum carried by these
modes is invariably absorbed at the black hole horizon. At
the horizon, in the core of the vortex, we have the
condensate of the scalar χ field. If the energy reaching
there were sufficiently large to destroy the condensate, then
it would have to be absorbed directly by the black hole and
would perturb the geometry. These are the standard thermal
channels of dissipation in which the metric perturbations δg
source temperature variations δT of the boundary theory.
Clearly, in this case, the whole vortex structure would be
destroyed, and the vortex would most likely revert to the

standard case without additional core moduli. Since there is
no gravitational backreaction in our system, there cannot be
any leading order thermal dissipation. The longitudinal
modes have low energy and are absorbed by the con-
densates at the horizon. This picture is represented in Fig. 7.
Therefore, there should be infinitesimal changes in the
vortex structure (its core shape for example) which should
be visible in the dual theory. The conclusion is therefore
that the dual picture of dissipation via longitudinal modes

FIG. 7. Schematic diagram of vortex configuration with core
excitations. Those proportional to ω involve the rotor degrees of
freedom while the in-going ∂uSi excitations are longitudinal
momentum modes. These are infalling and meet the χ condensate
at the black hole horizon.

FIG. 8. Changes in shape of the vortex core, as a result of
momentum transfer from the longitudinal modes of the vortex to
the condensate at the horizon.
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in the core is represented by small deformations in the
shape of the vortex core (see Fig. 8). These deformations
must relax carrying energy along the plane of the vortex
toward infinity. Since the system interacts very weakly with
the background, these excitations have long lifetimes,
decaying only via thermal dissipation at a higher order.
Note that no dissipation is allowed through theUð1Þ gauge-
symmetry channel on the boundary since the system,
breaking the dual global Uð1Þ symmetry, is in a superfluid
state and hence flows without dissipation.

VI. CONCLUSIONS

This paper investigated gravitational solutions dual to
non-Abelian vortices at strong coupling and finite temper-
ature. As usually occurs in holography, the pattern of global
symmetry breaking in the dual theory is represented by
gauge symmetries in the bulk. Solutions in which a neutral
scalar field condenses in the core of bulk flux tubes were
found, and the investigation of low energy rotations of this
field in internal space revealed two gapless modes. We
interpreted these localized modes as the orientational
moduli of the dual non-Abelian vortex. Energetic consid-
erations revealed that these kinds of solutions are preferred
over the usual holographic vortices without additional
moduli, proving the solution is at least metastable.
Furthermore, we made important connections between
the bulk rotor degrees of freedom and those of the dual
theory and studied some important aspects of their physics,
albeit restricted by the probe limit.
There are many interesting and important directions in

which this work can be extended. We list below the ones
which we find particularly interesting:

(i) Zero temperature T → 0 limit and backreaction.—It
would be ideal to be able to reach the T ¼ 0 limit;
this necessarily involves considering the full back-
reaction on the system as per Ref. [9]. Having
control over the full temperature range could reveal
the presence of quantum phase transitions or addi-
tional finite temperature phase transitions not con-
sidered here.

(ii) Finding the bulk vortex lattice.—Vortex lattice
solutions in holographic superconductor models
are known to exist [10]. Solutions such as those
in this setup are important to study the coupling
of the rotor degrees of freedom between vortices.
Since we proved in this paper that a single vortex
can confine a single rotor condensate to a spatial
region, it is reasonable to assume that a bulk
lattice of these vortices should represent a dual

lattice of rotor degrees of freedom. Then, depend-
ing on lattice spacings, these degrees of freedom
will interact revealing novel strong coupling
physics.

(iii) Revealing the non-Abelian sigma model of the dual
moduli.—The topological considerations of the
global symmetry breaking pattern reveal that the
gapless orientational moduli form a nonlinearCPð1Þ
sigma model. The infinitesimal parametrization for
the moduli used in this paper fails to reveal how this
sigma model appears in the dual theory (assuming of
course that this is not spoilt in the holographic
process). It would be interesting to extend this work
to include the χ ¼ χ0Si parametrization and work
out the low energy bulk solutions for the Si with the
constraint that SiSi ¼ 1. If a solution of this form
can be found (only an analytic approach at the
boundary was investigated in this paper), then this
constraint should also be valid at the boundary,
meaning the dual moduli should also obey it. If at
least at the level of vev considerations the dual fields
obey this relation then, it seems natural to speculate
that a CPð1Þ theory appears on the dual vortex
world line.

(iii) Higher-dimensional extensions.—This problem is
related to holographic vortices in general and not
simply to non-Abelian ones. It would be desirable
for the study of confinement properties of these kind
of solutions at strong coupling to have bulk solutions
which are dual to full 3þ 1-dimensional flux tubes
rather than 2þ 1-dimensional vortices. This in-
volves adding a bulk dimension and finding a
new kind of extended solitonic solution in the bulk.

(iv) Restricting to a single Uð1Þ gauge sector.—The
presence of an additional Uð1Þ gauge theory is
possibly an overcomplication of the system. This
was recently interpreted as a dark sector in holo-
graphic vortex applications [25]. However, it seems
plausible that the coupling of both scalars to the
original Uð1Þ gauge field might be sufficient to find
non-Abelian vortex solutions. Clearly, if similar
solutions to the ones found here existed with only
the original Uð1Þ symmetry, then the core of the
vortex would also be superconducting and not
correspond to a non-Abelian vortex as originally
intended.
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