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We consider a model of a holographic braneworld universe in which a cosmological fluid occupies a
3þ 1-dimensional brane located at the boundary of the asymptotic anti-de Sitter bulk. We combine the
AdS=CFT correspondence and the second Randall-Sundrum (RSII) model to establish a relationship
between the RSII braneworld cosmology and the boundary metric induced by the time dependent bulk
geometry. In the framework of the Friedmann-Robertson-Walker cosmology, we discuss some physically
interesting scenarios involving the RSII and holographic braneworlds.
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I. INTRODUCTION

The AdS=CFT correspondence establishes an equiva-
lence of a four-dimensional N ¼ 4 supersymmetric
Yang-Mills theory and string theory in a ten-dimensional
AdS5 × S5 bulk [1–3]. In a wider context of gage-gravity
duality, the AdS=CFT correspondence goes beyond pure
string theory and links many other important theoretical
and phenomenological issues. In particular, a simple
physically relevant model related to AdS=CFT is the
Randall-Sundrum (RS) model [4,5] and its cosmological
applications. The model was originally proposed as a
solution to the hierarchy problem in particle physics and
as a possible mechanism for localizing gravity on the
3þ 1-dimensional universe embedded in a 4þ 1 spacetime
without compactification of the extra dimension. Soon after
the papers [4,5] appeared, it was realized that the Randall-
Sundrum model is deeply rooted in a wider framework of
AdS=CFT correspondence [6–12]. In the braneworld
scheme, the RS brane provides a cutoff regularization
for the infrared divergences of the on-shell bulk action.
Our purpose is to study in terms of the AdS=CFT

correspondence a class of 3þ 1 time dependent metrics
induced on slices of the 4þ 1-dimensional asymptotic anti-
de Sitter (AdS5) bulk. We consider two types of braneworld
universes: the holographic braneworld in which a 3þ 1-
dimensional brane is located at the boundary of the AdS5
bulk and the Randall-Sundrum (RSII) braneworld in
which a single brane is located at a nonzero distance
from the boundary. We combine the holographic map of
Apostolopoulos, Siopsis, and Tetradis [13,14] and the
homogeneous cosmology of the RSII model [5] to establish
a mapping between the RSII braneworld cosmology and
the Friedmann-Robertson-Walker (FRW) type cosmology
on the holographic braneworld. We explicitly determine the
functional relations between the two cosmologies in terms
of cosmological scales, Hubble rates, and effective den-
sities on the branes.

Our approach is in a spirit similar to Brax and Peschanski
[15], but we have included some salient features which
were not sufficiently emphasized in the literature. In
particular, in connection with the holographic map, we
carefully analyze two versions of the RSII models: the so
called “one-sided” and “two-sided” version. A general
asymptotically AdS metric in Fefferman-Graham coordi-
nates [16] is of the form

ds2 ¼ Gabdxadxb ¼
l2

z2
ðgμνdxμdxν − dz2Þ; ð1Þ

where we use the Latin alphabet for bulk indices and the
Greek alphabet for 3þ 1 spacetime indices. In the original
RSII model, one assumes the Z2 symmetry z↔z2br=z, so the
region 0 < z ≤ zbr is identified with zbr ≤ z < ∞, with
the observer brane at the fixed point z ¼ zbr. Hence, the
braneworld is sitting between two patches of AdS5, one on
either side, and is therefore dubbed two sided [10,12]. In
contrast, in the one-sided RSII model, the region 0 ≤ z ≤
zbr is simply cut off so the bulk is the section of spacetime
zbr ≤ z < ∞. These two versions are equivalent from the
point of view of an observer at the braneworld. However, in
the one-sided RSII model, as pointed out by Duff and Liu
[10], by shifting the boundary inAdS5 from z ¼ 0 to z ¼ zbr,
the model is conjectured to be dual to a cutoff conformal
field theory (CFT) coupled to gravity,with z ¼ zbr providing
the cutoff. This conjecture then reduces to the standard
AdS=CFT duality as the boundary is pushed off to z ¼ 0.
This connection involves a single CFT at the boundary of a
single patch of AdS5. In the two-sided RSII model, one
would instead require two copies of the CFT, one for each of
the AdS5 patches. We shall demonstrate this explicitly in
Sec. IV. The holographic mapping turns out to be unique for
the two-sided RSII model, whereas in the one-sided model
themapping from the holographic to theRSII cosmology is a
two-valued function.
The remainder of the paper is organized as follows. In

Sec. II, we present a brief derivation of the cosmology on*bilic@irb.hr
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the RSII brane. In Sec. III, we discuss the cosmology on the
holographic brane. The map from RSII to holographic
cosmology is constructed in Sec. IV, where we confront
two cosmological scenarios. We compare the correspond-
ing effective energy densities and equations of state of
the cosmological fluid and discuss a few physically
interesting regimes. In the concluding section, Sec. V,
we summarize our results and give conclusions. A brief
review of the RSII model is presented in Appendix A, and a
connection between RSII and AdS=CFT correspondence is
demonstrated in Appendix B, where we derive the field
equations on the boundary brane with matter and discuss
the conformal anomaly.

II. RANDALL-SUNDRUM COSMOLOGY

Branewarld cosmology is based on the scenario in which
matter is confined on a brane moving in the higher-
dimensional bulk with only gravity allowed to propagate
in the bulk [4,5,17,18]. The RS model was originally
proposed as a possible mechanism for localizing gravity on
the 3þ 1 universe embedded in a 4þ 1-dimensional space-
time without compactification of the extra dimension. The
RSII model is a 4þ 1-dimensional AdS5 universe contain-
ing two 3-branes with opposite tensions separated in the
fifth dimension: observers reside on the positive tension
brane, and the negative tension brane is pushed off to
infinity. The Planck mass scale is determined by the
curvature of the AdS spacetime rather than by the size of
the fifth dimension. Hence, the model provides an alter-
native to compactification [5].
As demonstrated in Appendix A, in this model, the fifth

dimension can be integrated out to obtain a purely four-
dimensional action with a well-defined value for Newton’s
constant in terms of the AdS curvature radius l and the
five-dimensional gravitational constant G5,

GN ¼ 2G5

γl
; ð2Þ

where we have introduced the sidedness constant γ to
facilitate a joint description of the two versions of the RSII
model: one-sided (γ ¼ 1) and two-sided (γ ¼ 2). In the
following analysis, we shall consider GN and l as fixed
basic physical parameters and G5 as a derived quantity.
The classical 3þ 1-dimensional gravity on the RSII

brane is altered due to the extra dimension. It has been
shown [19] that for r ≫ l the weak gravitational potential
created by an isolated matter source on the brane is
given by

ΦðrÞ ¼ GNM
r

�
1þ 2l2

3r2

�
: ð3Þ

Hence, the extra-dimension effects strengthen Newton’s
gravitational field. Table-top tests of Newton’s laws [20]

currently find no deviations of Newton’s potential at
distances greater than 0.1 mm, yielding the limit on the
AdS5 curvature

l < 0.1 mm; or l−1 > 10−12 GeV: ð4Þ

Assuming (2), this yields a lower bound on the bulk scale
parameter [21],

M5 ¼ G−1=3
5 > 108 GeV: ð5Þ

Soon after Randall and Sundrum introduced their model
[4,5], it was realized that the model, as well as any similar
braneworld model, may have interesting cosmological
implications [22–25]. In particular, the usual Friedmann
equations are modified so the model has predictions
different from the standard cosmology.
To study the braneworld cosmology, it is convenient to

represent the bulk metric in Schwarzschild coordinates [26],

ds2ASch ¼ fðrÞdt2 − dr2

fðrÞ − r2dΩ2
κ ; ð6Þ

where

fðrÞ ¼ r2

l2
þ κ − μ

l2

r2
; ð7Þ

and

dΩ2
κ ¼ dχ2 þ sin2ð ffiffiffi

κ
p

χÞ
κ

ðdϑ2 þ sin2ϑdφ2Þ ð8Þ

is the spatial line element for a closed (κ ¼ 1), open
hyperbolic (κ ¼ −1), or open flat (κ ¼ 0) space. The
dimensionless parameter μ is related to the black-hole mass
via [27,28]

μ ¼ 8G5Mbh

3πl2
: ð9Þ

As shown in Appendix A, for a time dependent brane
hypersurface defined by

r − aðtÞ ¼ 0; ð10Þ

where a ¼ aðtÞ is an arbitrary function, the induced line
element on the brane is given by

ds2ind ¼ n2ðtÞdt2 − aðtÞ2dΩ2
κ ; ð11Þ

with the lapse function

n2 ¼ fðaÞ − ð∂taÞ2
fðaÞ : ð12Þ
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The effective Friedmann equation on the RSII brane derived
in Appendix A reads

H2
RSII ¼

ðσ þ ρÞ2
l2σ20

−
1

l2
þ μl2

a4
; ð13Þ

where

H2
RSII ¼ H2

RSII þ
κ

a2
¼ ð∂taÞ2

n2a2
þ κ

a2
: ð14Þ

From now on, a calligraphic H will always denote the
Hubble rate H plus the corresponding curvature term κ=a2.
The quantity σ is the brane tension, andwe have introduced a
constant,

σ0 ¼
3γ

8πG5l
¼ 3

4πGNl2
; ð15Þ

the value of which is restricted by

σ0 > ð103 GeVÞ4 ð16Þ

on account of the experimental constraint (4). Employing the
RSII fine-tuning condition σ ¼ σ0 and (2), Eq. (13) may be
expressed in the form

H2
RSII ¼

8πGN

3
ρ

�
1þ ρ

2σ0

�
þ μl2

a4
; ð17Þ

which differs from the standard Friedmann equation
and is therefore subject to cosmological tests (see, e.g.,
Refs. [21,29]). The deviation proportional to ρ2 poses no
problem as it decays as a−8 in the radiation epoch and will
rapidly become negligible after the end of the high-energy
regime ρ≃ σ0 [21]. The last term on the right-hand side of
(17), the so called “dark radiation,” for positive μ should not
exceed 10% of the total radiation content in the epoch of big
bang (BB) nucleosynthesis whereas for negative μ could be
as large as the rest of the radiation content [30,31]. As
expected, both the one-sided and two-sided versions of the
RSII model yield identical braneworld cosmologies.
Combining the time derivative of (17) with the

energy conservation, one finds the second Friedmann
equation (A53), which may be expressed as

1

an
d
dt

�
1

n
da
dt

�
þH2

RSII ¼
4πGN

3
ðρ − 3pÞ − ρ

l2σ20
ðρþ 3pÞ:

ð18Þ

Note that the quadratic terms, i.e., the terms proportional
to ρ2 and ρp in (17) and (18), may be neglected in the
low energy limit lHRSII ≪ 1. In that limit, Eqs. (17) and
(18) reduce to the standard Friedmann equations for

a two-component fluid consisting of dark radiation and
the fluid obeying the equation of state p ¼ pðρÞ.
For the purpose of comparison of the RSII and holo-

graphic cosmologies to be discussed in Sec. IV, it will be
convenient to express the Friedman equation in terms of the
metric in Fefferman-Graham coordinates for a brane placed
at an arbitrary fixed z ¼ zbr. To this end, we transform the
static bulk metric in Schwarzschild coordinates ðr; tÞ to the
time dependent metric in Fefferman-Graham coordinates
ðz; τÞ in such a way that the time dependent brane position
given by (10) is fixed at z ¼ zbr. Starting from (6), we make
the coordinate transformation

t ¼ tðτ; zÞ; r ¼ rðτ; zÞ: ð19Þ

Then, the line element in new coordinates will have a
general form,

ds2ð5Þ ¼
l2

z2
ðN 2ðτ; zÞdτ2 −A2ðτ; zÞdΩ2

κ − dz2Þ; ð20Þ

where

A2ðτ; zÞ ¼ z2

l2
r2ðτ; zÞ: ð21Þ

To recover the induced metric (11) on the brane at z ¼ zbr,
the functions A and N should satisfy the conditions

l2

z2br
A2ðτ; zbrÞ ¼ a2ðtðτ; zbrÞÞ; ð22Þ

l2

z2br
N 2ðτ; zbrÞ ¼ _tðτ; zbrÞ2n2ðtðτ; zbrÞÞ; ð23Þ

where the overdot denotes a derivative with respect to τ.
Besides, from (10), it follows that

rðτ; zbrÞ ¼ aðtðτ; zbrÞÞ: ð24Þ

Using (22), the quantityHRSII may be expressed in terms of
AbrðτÞ ¼ Aðτ; zbrÞ and N brðτÞ ¼ N ðτ; zbrÞ:

l2

z2br
H2

RSII ¼ H2
br ¼

_Abr
2

A2
brN

2
br

þ κ

A2
br

: ð25Þ

Then, the effective Friedmann equation (13) on the zbr-
brane takes the form

H2
br ¼

ðσ þ ρÞ2
z2brσ

2
0

−
1

z2br
þ μz2br

A4
br

: ð26Þ

This expression will be exploited in Sec. IV in the mapping
between the RSII and holographic cosmologies.
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III. HOLOGRAPHIC COSMOLOGY

Here, we outline a derivation of the Friedmann equations
on the holographic brane following Apostolopoulos et al.
[13]. Consider the line element (1) for a general asymptoti-
cally AdS5 spacetime in Fefferman-Graham coordinates.
The four-dimensional metric gμν near the boundary at z ¼ 0

can be expanded as [32]

gμν ¼ gð0Þμν þ z2gð2Þμν þ z4gð4Þμν þ z6gð6Þμν þ…: ð27Þ

By plugging this expansion into bulk Einstein’s
equations (A7) and solving thus obtained equations order

by order in z, the tensors gðnÞμν ,n > 0maybe found in terms of

the metric gð0Þμν and its curvature tensor Rμν. The explicit

expressions for gð2Þμν and gð4Þμν are found in the Appendix A of
Ref. [32]. In particular, we will need

gð2Þμν ¼ 1

2

�
Rμν −

1

6
Rgð0Þμν

�
ð28Þ

and the relation

Trgð4Þ ¼ −
1

4
Trðgð2ÞÞ2; ð29Þ

where the trace of a tensor Aμν is defined as

TrA ¼ Aμ
μ ¼ gð0ÞμνAμν: ð30Þ

We assume now that the time dependent bulk metric is of
the form (20) such that

N ðτ; 0Þ ¼ 1; Aðτ; 0Þ ¼ a0ðtÞ: ð31Þ

The boundary geometry is then described by a general
FRW spacetime metric:

ds2ð0Þ ¼ gð0Þμν dxμdxν ¼ dτ2 − a20ðτÞdΩ2
κ : ð32Þ

Using effective Einstein equations (B13) derived in
Appendix A, we obtain the holographic Friedmann
equation

_a0
a0

þ κ

a20
¼ 8πGN

3
ðγhTCFT

00 i þ Tmatt
00 Þ; ð33Þ

where Tmatt
μν is the energy-momentum tensor associated with

matter on the holographic brane and TCFT
μν the energy-

momentum tensor of the CFT on the boundary. According
to the AdS=CFT prescription, the expectation value hTCFT

μν i
is obtained by functionally differentiating the renormalized
on-shell bulk gravitational action with respect to the

boundary metric gð0Þμν . With this procedure, referred to as
holographic renormalization, one finds [32]

hTCFT
μν i ¼ −

l3

4πG5

�
gð4Þμν −

1

8
½ðTrgð2ÞÞ2 − Trðgð2ÞÞ2�gð0Þμν

−
1

2
ðgð2ÞÞ2μν þ

1

4
Trgð2Þgð2Þμν

�
: ð34Þ

This expression is an explicit realization of the AdS=CFT
correspondence: the vacuum expectation value of a boun-
dary CFT operator is obtained solely in terms of the
geometrical quantities of the bulk. The components of

the tensors gð2Þμν and gð4Þμν may be calculated either by
applying the explicit expressions from Ref. [32] to the
metric (27) or by expanding the metric (20) near z ¼ 0 and
comparing the z2 and z4 terms with the corresponding ones
in the expansion (27). Then, from (34), one obtains

hTCFT
μν i ¼ tμν þ

1

4
hTCFTα

αigð0Þμν : ð35Þ

The first term on the right-hand side is a traceless tensor, the
nonvanishing components of which are

t00 ¼ −3tii ¼
3l3

64πG5

�
H4

0 þ
4μ

a40
−
ä0
_a0
H2

0

�
; ð36Þ

where

H2
0 ¼ H2

0 þ
κ

a20
; ð37Þ

and H0 ¼ _a0=a0 is the Hubble expansion rate on the z ¼ 0
boundary. The second term on the right-hand side of (35)
corresponds to the conformal anomaly

hTCFTα
αi ¼

3l3

16πG5

ä0
a0

H2
0: ð38Þ

Hence, the CFT dual to the time dependent asymptotically
AdS5 bulk metric (20) is a conformal fluid with the
equation of state pCFT ¼ ρCFT=3, where ρCFT ¼ t00,
pCFT ¼ −tii. In a static case, i.e., when _a0 ¼ 0, the fluid
is dual to the AdS5 black hole with the energy density
related to the black-hole mass Mbh defined in (9) as

ρCFT ¼ Mbh

V
þ 3κ2

64πG5l
; ð39Þ

where V ¼ 2π2l3 is the volume of the three-dimensional
space for a spherical geometry. If the boundary geometry is
FRW, the dual conformal fluid behaves as radiation, the so
called dark radiation.
So far in our consideration, the cosmological scale a0ðτÞ

at the boundary is assumed to be an arbitrary function of τ.
In order to satisfy the appropriate boundary condition for a
given a0ðτÞ, we place a brane on the boundary with matter
described by the energy-momentum tensor
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Tmatt
00 ¼ ρ0; Tmatt

ij ¼ p0g
ð0Þ
ij ; ð40Þ

where ρ0 and p0 are the total density and pressure,
respectively, including the brane tension σbr,

ρ0 ¼ ρmatt þ σbr; p0 ¼ pmatt − σbr: ð41Þ

The Einstein equations (B13) together with (40), (35),
and (36) yield the holographic Friedmann equation [13,33]

H2
0 ¼

l2

4

�
H4

0 þ
4μ

a40

�
þ 8πGN

3
ρ0: ð42Þ

Note that the coefficient of the quartic term does not depend
on whether one is using a one-sided or a two-sided
regularization. Equation (42) was derived by Kiritsis
[33] and independently by Apostolopoulos et al. [13],
albeit they disagree in the coefficient of the quartic term.1

Solving the quadratic equation (42), one finds H0

expressed as an explicit function of ρ0,

H2
0 ¼

2

l2

0
@1þ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ρ0
σ0

−
μl4

a40

s 1
A; ð43Þ

where ϵ ¼ þ1 or −1 and σ0 is a constant defined in (15).
For ϵ ¼ −1, the physical range of the expansion param-

eter H0 is given by

0 ≤ H2
0l

2 ≤ 2; ð44Þ

corresponding to the energy density interval

−
σ0
2

μl4

a40
≤ ρ0 ≤

σ0
2

�
1 −

μl4

a40

�
: ð45Þ

In this case, Eq. (43) agrees with the RSII Friedmann
equation (17) at quadratic order in ρ and linear order in μ.
For ϵ ¼ þ1, the physical range of H0 is given by

∞ > H2
0l

2 ≥ 2; ð46Þ

corresponding to

−∞ < ρ0 ≤
σ0
2

�
1 −

μl4

a40

�
: ð47Þ

Note that the density ρ0 is negativewhenH2
0 lies outside the

interval

2−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−μl4=a40

q
≤H2

0l
2 ≤ 2þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−μl4=a40

q
: ð48Þ

The second Friedmann equation is obtained by combin-
ing the time derivative of (42) with the energy conservation

_ρ0 þ 3H0ðρ0 þ p0Þ ¼ 0: ð49Þ
One finds

_H0 −
κ

a20
¼ −4πGNðρ0 þ p0Þ þ

l2

2

�
_H0 −

κ

a20

�
H2

0 −
2l2μ

a40
;

ð50Þ
which may also be written in the form

ä0
a0

�
1 −

l2

2
H2

0

�
þH2

0 ¼
4πGN

3
ðρ0 − 3p0Þ: ð51Þ

Given a0ðτÞ, the Friedmann equations (42) and (50) on the
boundary describe the equation of state p0 ¼ p0ðρ0Þ in a
parametric form.
Nota bene (N.B.): As in the RSII cosmology, in the low

energy limit lH0 ≪ 1, Eqs. (42) and (51) reduce to the
standard Friedmann equations for a two-component fluid
consisting of dark radiation and the fluid obeying the
equation of state p0 ¼ p0ðρ0Þ.
Remarkably, Eq. (42) has been also derived in other

contexts. For κ ¼ 1 and constant ρ0 with (B19), Eq. (42)
coincides with the saddle point of the spatially closed
minisuperspace partition function dominated by matter
fields conformally coupled to gravity [34]. A variant of
Eq. (42) has been derived by Lidsey [35] from the gener-
alized uncertainty principle and the first law of thermody-
namics applied to the apparent horizon entropy. The quartic
term with κ ¼ 0 in (42) has been derived quite recently as a
quantum correction to the Friedmann equation using
thermodynamic arguments at the apparent horizon [36].
It is worth addressing the holographic cosmology of de

Sitter type, i.e., for a constant ρ0 ¼ Λ=ð8πGNÞ, with μ ¼ 0.
A static representation of the de Sitter boundary spacetime
has been recently discussed [37] in the context of
AdS=CFT. Using the standard κ ¼ 1, 0, and −1 represen-
tations of the de Sitter geometry

ds2 ¼

8><
>:

dτ2 − h−2cosh2hτðdχ2 þ sin2χdΩ2Þ; κ ¼ 1;

dτ2 − e2hτðdχ2 þ χ2dΩ2Þ; κ ¼ 0;

dτ2 − h−2sinh2hτðdχ2 þ sinh2χdΩ2Þ; κ ¼ −1;

ð52Þ

Eq. (43) yields

h2 ¼ 2

l2

0
@1þ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λ
4πGNσ0

s 1
A: ð53Þ

1The reason for the disagreement is twofold: first, there is a
difference by a factor of 2 because the regularization used in
Ref. [13] was one sided whereas in Ref. [33] was two sided.
Another factor of 2 disagreement is due to an unconventional
definition of the stress tensor in Ref. [33].
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By making use of (2) with γ ¼ 1 and (B19), Eq. (43) may
be expressed as

H2
0 ¼

1

32πbGN

0
@1þ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

64π

3
bGNΛ

r 1
A; ð54Þ

which coincides with the equation forH2
0 of Pelinson et al.

[38] for the anomaly induced inflation. Equation (54) with
ϵ ¼ þ1 and Λ ¼ 0 describes the Starobinski inflation
model [39]. With ϵ ¼ −1 and Λ ≪ 1=GN, one recovers
at linear order the standard de Sitter cosmology with the
expansion rate H2

0 ¼ Λ=3.

IV. HOLOGRAPHIC MAP

The bulk metric that approaches the metric (32) as we
approach the boundary z ¼ 0 is expressed in the form (20)
where the functions A and N are derived in Ref. [13] and
are expressed in terms of a0 as

A2 ¼ a20

��
1 −

H2
0z

2

4

�
2

þ 1

4

μz4

a40

�
; ð55Þ

N ¼
_A
_a0
: ð56Þ

The spacetime (20) may be regarded as a z foliation of the
bulk with an FRW cosmology on each z slice. For a
constant a0, e.g., a0 ¼ l, one recovers the static AdS-
Schwarzschild solution (6), in which case the metric at the
boundary z ¼ 0 (r → ∞) represents the static Einstein
universe.
The Hubble expansion rate corresponding to a

z-cosmology is defined as

H ≡ _A
NA

¼ H0

a0
A

ð57Þ

and similarly

H≡H2 þ κ

A2
H0

a0
A

; ð58Þ

where H0 is defined by (37).
It is of interest to express the cosmological scale

A ¼ Aðτ; zÞ, the lapse function N ¼ N ðτ; zÞ, and the
Hubble rate H ¼ Hðτ; zÞ at an arbitrary z slice in terms
of Abr ¼ Aðτ; zbrÞ, N br ¼ N ðτ; zbrÞ, and Hbr ¼ Hðτ; zbrÞ
on another slice zbr. To make a connection with the RSII
cosmology, we can identify ðl=zbrÞAbr ¼ aðtðτ; zbrÞÞ and
ðl=zbrÞN br ¼ nðtðτ; zbrÞÞ (see Appendix A), where aðtÞ
and nðtÞ are the functions that appear in the line element
(11) induced on the RSII brane.
First, using (57), we can express (55) as an equation for

a20, A
2, and H2 and similarly as another equation for a20,

A2
br, and H2

br. Eliminating a20 from these two equations,
we find

A ¼ Abrffiffiffi
2

p
��

1þ 1

2
H2

brz
2
br

��
1þ z4

z4br

�
−H2

brz
2

þ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

brz
2
br −

μz4br
A4

br

s �
1 −

z4

z4br

��
1=2

; ð59Þ

where

H2
br ¼ H2

br þ
κ

A2
br

ð60Þ

and ϵ ¼ þ1 or −1. Thus, the map is not unique due to the
sign ambiguity in front of the square root. However,
consistency with (55) in the limit zbr → 0 and continuity
of the metric requires ϵ ¼ þ1 in the region z ≥ zbr, whereas
for z < zbr both signs are allowed. This remaining non-
uniqueness is removed for the two-sided braneworld by the
Z2 symmetry z↔z2br=z, in which case ϵ ¼ −1 is fixed for
the branch z < zbr. Then, the metric (20) becomes invariant
under the transformation z → z̄ ¼ z2br=z. For the benefit of
a joint description of one-sided and two-sided versions, the
expression (59) may be written as

A ¼ Abrffiffiffi
2

p
��

1þ 1

2
H2

brz
2
br

��
1þ z4

z4br

�
−H2

brz
2

þ EðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

brz
2
br −

μz4br
A4

br

s �
1 −

z4

z4br

��
1=2

; ð61Þ

where we have introduced a two-valued step function,

EðzÞ ¼
8<
:

þ1; for z ≥ zbr;

−1; for z < zbr; two-sided version;

þ1 or − 1; for z < zbr; one-sided version:

ð62Þ

Furthermore, applying the definition (56) to N and N br
combined with (61), we find

N
N br

¼ A
Abr

þ
�
z2brA

2
brHbr

_Hbr

4A _Abr

þ μz4br
2AA3

br

�

×
EðzÞð1 − z4=z4brÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þH2
brz

2
br − μz4br=A

4
br

p
þ z2brA

2
brHbr

_Hbr

4A _Abr

�
1 −

z2

z2br

�
2

: ð63Þ

The map between the holographic and RSII cosmologies
is schematically illustrated in Fig. 1.
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Note that the quantityHbr in (61) and (63) is identical to
that defined in (25) for the RSII cosmology. Besides, it is
clear by construction that the functions A and N in (61)
and (63) are, up to a sign, equal to those in the line element
(20). The general expression (61) agrees with that of Brax
and Peschanski [15] obtained for the two-sided model with
zbr ¼ l and κ ¼ 0.
Next, we derive a relation between the Hubble rate H on

an arbitrary z slice and the Hubble rate H0 on the z ¼ 0
boundary. Using (57) and (58), we find

H2 ¼ 2H2
br

��
1þH2

brz
2
br

2

��
1þ z4

z4br

�
−H2

brz
2

þ EðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

brz
2
br −

μz4br
A4

br

s �
1 −

z4

z4br

��
−1
: ð64Þ

Evaluating this expression at z ¼ 0, we find the relationship
between z ¼ 0 cosmology and the cosmology on the brane
at z ¼ zbr,

H2
0¼2H2

br

�
1þH2

brz
2
br

2
þE0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

brz
2
br−

μz4br
A4

br

s �−1

; ð65Þ

where E0 ≡ Eð0Þ ¼ −1 for the two-sided and E0 ¼ þ1 or
−1 for the one-sided version of the RSII model. The inverse
relation can be obtained either from (64) by taking the limit

zbr → 0 and replacing z → zbr or by making use of (57)
and (55). Either way, we find

H2
br ¼ H2

0

�
1 −

H2
0z

2
br

2
þ 1

16

�
H4

0 þ
4μ

a40

�
z4br

�−1
: ð66Þ

The functional dependence of H2
br vs H2

0 is depicted in
Fig. 2 for two values of the black-hole mass parameter:
μ ¼ 0 (left panel) and μl4=a40 ¼ 1=2with z2br=l

4 ¼ 2 (right
panel). The shaded areas in both panels denote the region
defined by (48), i.e., the region in which ρ0 > 0. The
function assumes a maximal value

H2
brjmax ¼

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ μz4br=a

4
0

p
z2brð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ μz4br=a

4
0

p
− 2Þ2 ð67Þ

at

H2
0jmax ¼

2

z2br

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ μz4br

a40

s
: ð68Þ

For μ ¼ 0, the maximum becomes a singularity at
H2

0jmax ¼ 4=z2br. The part of the domain where

H2
0 < H2

0jmax ð69Þ
corresponds to the branch EðzÞ ¼ þ1 for z < zbr of
Eq. (61), and hence the condition (69) is met for the
one-sided version only. The remaining part,

H2
0 ≥ H2

0jmax; ð70Þ
corresponds to the branch EðzÞ ¼ −1 for z < zbr and is
relevant for both the one-sided and two-sided versions.
From (66), in the limit H0 → ∞, we find

Hbr ¼
4

z2brH0

: ð71Þ

However, it is important to note that the regime in whichH0

does not satisfy Eq. (48) violates the weak energy condition

FIG. 1. Mapping of the holographic cosmology on the z ¼ 0
boundary into the braneworld cosmology on an arbitrary z slice.
The times τ and ~τ are the holographic and RSII synchronous
times, respectively.

FIG. 2. H2
br as a function of H2

0 (both in units of z−2br ) defined by (66) for μ ¼ 0 (left panel) and μl4=a40 ¼ 2 with z2br=l
2 ¼ 2 (right

panel). The region left of the vertical dashed red line is relevant for the one-sided version only. The shaded area corresponds to the
physical region ρ0 > 0.
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and a large H0 implies a large negative energy density.
Thus, the large (negative) density limit on the holographic
brane maps into the low-density limit on the RSII brane.
The relationship (66) simplifies at a particular point

zbr ¼
ffiffiffi
2

p
l. Applying (42) at zbr ¼

ffiffiffi
2

p
l, we obtain

H2 ffiffi
2

p
l
¼ H2

0

�
1 −

8πGNl2

3
ρ0

�−1
; ð72Þ

where ρ0 is the effective energy density of matter on the
holographic brane, as defined in (41).
N.B.: Due to the Z2 symmetry, the brane at z ¼ 0

(y ¼ −∞) must be identical to the brane at z ¼ ∞. In
the RSII model, the second brane is pushed off to z ¼ ∞,
and hence the holographic brane at z ¼ 0 is identical to the
second brane of the RSII model.
Next, we analyze a few special cases in two scenarios:

the holographic and the RSII cosmological scenario with
the primary braneworld located at z ¼ 0 and z ¼ zbr,
respectively. In each of the two scenarios, we assume
the presence of matter on the primary brane only and no
matter in the bulk.

A. Holographic scenario

In the holographic scenario, the primary braneworld is at
the AdS boundary at z ¼ 0 evolving according to the
Friedmann equations (42) and (50). The cosmology on the
RSII brane at an arbitrary z slice emerges as a reflection of
the boundary cosmology. We would like to express the
cosmological parameters on the RSII brane at z ¼ zbr in
terms of the parameters on the holographic brane at z ¼ 0.
If the density ρ0 and pressure p0 on the holographic brane
are known, the cosmological scale a0 may be derived by
integrating (42) and (51). On the other hand, given a0ðτÞ on
the boundary, Eqs. (42) and (50) define the equation of state
p0 ¼ p0ðρ0Þ in a parametric form. Using (55) and (A62),
the scale a on the RSII brane can be expressed as

a2 ¼ l2

z2br
a20Q

2ðzbrÞ; ð73Þ

where

Q2ðzbrÞ ¼
�
1 −

H2
0z

2
br

4

�
2

þ 1

4

μz4br
a40

; ð74Þ

Thus, given the RSII-brane position zbr, the mapping from
the holographic to RSII cosmology is unique.
Knowing a0, we may calculate the effective density of

matter on the RSII brane assuming the Friedmann equa-
tion (13) holds. Solving (26) for ρ, one finds

ρ ¼ σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

brz
2
br −

μz4br
A4

br

s
− σ: ð75Þ

Then, by making use of (66) and (73), we obtain the
effective density ρ on the RSII brane expressed in terms of
a0 and H0 on the holographic brane,

ρ ¼ σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H2

0z
2
br

Q2ðzbrÞ
−

μz4br
a40Q

4ðzbrÞ

s
− σ; ð76Þ

where the function QðxÞ is defined by (74). Using (43)
and (66), we can also express ρ as an explicit function
of a0 and ρ0,

ρ

σ0
¼

2
41þ 2

z2br
l2

0
@1þ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ρ0
σ0

−
μl4

a40

s 1
AQ−2

−
μz4br
a40

Q−4

3
51=2

−
σ

σ0
; ð77Þ

where

Q2 ¼
2
41 − z2br

2l2

0
@1þ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ρ0
σ0

−
μl4

a40

s 1
A
3
52

þ
�
z2br
2l2

�
2 μl4

a40
: ð78Þ

Equation (77) simplifies considerably when the brane is
placed at zbr ¼ l. In this case, we find

ρ

σ0
¼
				1þρ0=σ0− ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2ρ0=σ0−μl4=a40

p
1−ρ0=σ0−ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2ρ0=σ0−μl4=a40

p 				− σ

σ0
: ð79Þ

Note that the function ρ ¼ ρðρ0; a0Þ is not uniquely
defined, although the mapping a0 → a is unique.
With no black hole in the bulk, i.e., for μ ¼ 0, the density

ρ is a function of ρ0 only. For μ ≠ 0, the density ρ depends
on both ρ0 and a0. If the function a0 ¼ a0ðτÞ is known or
the equation of state p ¼ pðρ0Þ is specified, the scale a0
will be an implicit function of ρ0 through the Friedmann
equations (42) and (51). However, as we have specified
neither the equation of state nor the function a0 ¼ a0ðτÞ,
we treat a0 as a parameter and show the functional
dependence ρ ¼ ρðρ0Þ for various values of μl4=a40 and
various z2br=l

2 in Figs. 3 and 4 for ϵ ¼ −1 and þ1,
respectively.
It is of interest to analyze the expression (77) in the three

limiting regimes: jρ0=σ0j ≪ 1, ρ0=σ0 → −∞, and zbr ≪ l.
Consider first the regime of large negative ρ0. Taking the
limit ρ0=σ0 → −∞ of (77), we find

ρ

σ0
¼ ϵ

4l2

z2br

ffiffiffiffiffiffiffiffiffiffiffi
−

σ0
2ρ0

r
: ð80Þ

NEVEN BILIĆ PHYSICAL REVIEW D 93, 066010 (2016)

066010-8



This equation is equivalent to Eq. (71) and can be obtained
directly from (71) by making use of the low-density limit of
the RSII Friedmann equation (17) and the largeH0 limit of
the holographic Friedmann equation (42).
Next, consider the limit zbr=l ≪ 1. This case is impor-

tant because, as discussed in Appendix B, in the limit
zbr → 0, the RSII brane provides an infrared cutoff regu-
larization of the on-shell bulk action. According to (68), in
this limit,H0jmax → ∞, so the necessary condition (70) for
the Eð0Þ ¼ −1 cannot be met. Hence, the limit zbr=l ≪ 1 is
relevant only for the Eð0Þ ¼ þ1 branch of the one-sided
version. In this limit, QðzbrÞ → 1, and the expression (77)
reduces to

ρ ¼ σ0 − σ; ð81Þ
so, with the fine-tuning condition σ ¼ σ0, the effective
density on the RSII brane vanishes as the brane position
approaches the boundary at z ¼ 0.

1. Low-density regime

The regime in which jρ0=σ0j ≪ 1 is relevant for the one-
sided version only since in this case H0 ≪ 1 and the
necessary condition (70) for the two-sided version is not
met unless zbr ≫ l. For ϵ ¼ −1, ρ0 ≪ σ0, and

μl4=a40 ≪ 1, we find at linear order in μ and quadratic
order in ρ0

ρ

σ0
¼ 1 −

σ

σ0
þ z2br

l2

ρ0
σ0

þ 1

2

z2br
l2

�
z2br
l2

þ 1

�
ρ20
σ20

−
1

2

z2br
l2

�
z2br
l2

− 1

�
μl4

a40
þ…: ð82Þ

Hence, at linear order, the effective energy density on the
RSII brane equals the energy density on the holographic
brane multiplied by a constant plus the cosmological
constant term which can be eliminated by adopting the
RSII fine-tuning condition σ ¼ σ0.
The effective pressure on the RSII brane can be easily

derived by making use of the energy conservation
equations (A51) on the RSII brane and (49) on the
holographic brane. At linear order, one finds

p ¼ −ðσ0 − σÞ þ z2br
l2

p0 þ…: ð83Þ

Hence, at linear order, the effective fluid on the RSII brane
satisfies the same equation of state as the fluid on the
holographic brane. The cosmological constant term will

FIG. 3. The effective density on the RSII brane ρ as a function of the density on the holographic brane ρ0 (both in units of σ0) for
ϵ ¼ −1, σ ¼ σ0, and μl4=a40 ¼ 0 (top left), 0.2 (top right), 0.5 (bottom left), and −0.2 (bottom right). The full red, dash-dotted black,
and dashed blue lines represent z2br=l

2 ¼ 0.5, 1, and 2, respectively.
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vanish on both branes if the RSII fine-tuning condition is
imposed, whereas the dark radiation contribution will be
the same on the two branes only if zbr ¼ l. We recover the
standard cosmology on both branes by choosing l such that
σ0 is sufficiently large to suppress the quadratic and higher
terms in (82).
For ϵ ¼ þ1 and z2br=l

2 ¼ 1, ρ diverges in the limit
ρ0 → 0. For an arbitrary z2br=l

2, we find at linear order

ρ

σ0
¼ z2br=l

2 þ 1

z2br=l
2 − 1

−
σ

σ0
þ z2br=l

2

ðz2br=l2 − 1Þ2
ρ0
σ0

−
z2br=l

2

2ðz2br=l2 − 1Þ3
μl4

a40
þ…: ð84Þ

In this case, the effective energy density on the RSII brane
at linear order differs from the energy density on the
holographic brane by a multiplicative constant. Besides, for
σ ¼ σ0, the effective cosmological constant does not vanish
and is equal to

Λbr ¼
6

l2

z2br=l
2 þ 1

z2br=l
2 − 1

−
6

l2
: ð85Þ

This scenario offers a few interesting possibilities. Suppose
the energy density ρ0 on the holographic brane describes
matter with the equation of state satisfying 3p0 þ ρ0 > 0,

as for, e.g., cold dark matter. According to (84) and (85), we
have an asymptotically de Sitter universe on the RSII brane.
The location of the brane is crucial. For zbr of the order of l
(excluding zbr ¼ l), we could have the standard ΛCDM
cosmology on the RSII brane if we included a cosmological
constant term in ρ0 and fine tuned it to cancel Λbr up to a
small phenomenologically acceptable contribution. In prin-
ciple, this could work even without the RSII fine-tuning
condition σ ¼ σ0. For small l=zbr, if we impose the RSII
fine-tuning condition, both the constant and linear terms
will be suppressed by a factor l2=z2br. So we can choose the
ratio l=zbr such that the effective cosmological constantΛbr
fits the observed value today,

Λ ¼ 3ΩΛH2
0; ð86Þ

where H0 is today’s Hubble constant of the order of
2.5 × 10−40 GeV. Expanding (85) for small l=zbr and
equating Λbr with Λ, we find

l2

z2br
¼

ffiffiffiffiffiffiffi
ΩΛ

p
2

H0l≲ 10−28; ð87Þ

where the numerical estimate of the right-hand side is
obtained for ΩΛ ≃ 0.7 and the Newtonian potential con-
straint (4) at small distances with l≲ 1012 GeV−1.

FIG. 4. Same as in Fig. 3 for ϵ ¼ þ1.

NEVEN BILIĆ PHYSICAL REVIEW D 93, 066010 (2016)

066010-10



B. RSII cosmological scenario

In the RSII scenario, the primary braneworld is the RSII
brane at z ¼ zbr with cosmology determined by Eqs. (17)
and (18). Observers at the boundary brane at z ¼ 0
experience the emergent cosmology which is a reflection
of the RSII cosmology. We would like to express the
cosmological scale and effective energy density on the
holographic brane at z ¼ 0 in terms of cosmological scale
and energy density on the RSII brane. For simplicity, in the
following, we assume the RSII fine-tuning condition
σ ¼ σ0. If the density ρ and pressure p on the RSII brane
are known, the cosmological scale a may be derived by
integrating (17) and (18). On the other hand, given aðτÞ on
the RSII brane, Eqs. (17) and (18) define the equation of
state p ¼ pðρÞ in a parametric form. From (59), we find the
scale a0 on the holographic brane expressed in terms of a,

a20 ¼
a2

2

z2br
l2

0
@1þH2

RSIIl
2

2
þ E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

RSIIl
2 −

μl4

a4

s 1
A;

ð88Þ

where, as before, E0 ≡ Eð0Þ ¼ −1 for the two-sided and
E0 ¼ þ1 or −1 for the one-sided version of the RSII model.
Thus, the mapping a → a0 is unique only for the two-
sided model.
Knowing a, we may calculate the effective density of

matter on the holographic brane assuming the Friedmann
equation (42) holds. As before, this can be done for an
arbitrary zbr.
Using (13), (65), and (88), we can express the Hubble

rate H0 and the scale a0 in terms of ρ and a:

H2
0 ¼

4

z2br

ðρ=σ0 þ 1Þ2 − 1þ μl4=a4

ðρ=σ0 þ 1þ E0Þ2 þ μl4=a4
; ð89Þ

a20 ¼
a2

4

l2

z2br

��
ρ

σ0
þ 1þ E0

�
2

þ μl4

a4

�
: ð90Þ

Next, using (43) to replace H2
0 in (89), substituting the

expression (90) for a0, and solving for ρ0, we find

ρ0
σ0

¼ 4
l2

z2br

ðρ=σ0 þ 1Þ2 − 1þ ðl=zbrÞ2ðρ=σ0 þ 1ÞðE0 − ρ=σ0 − 1Þ þ ð1 − l2=z2brÞμl4=a4

ðρ=σ0 þ 1þ E0Þ2 þ μl4=a4
: ð91Þ

To simplify the analysis, consider zbr ¼ l. For the two-
sided RSII model along with the E0 ¼ −1 branch of the
one-sided model, we have

ρ0
σ0

¼ −4
ρ=σ0 þ 2

ðρ=σ20Þ2 þ μl4=a4
: ð92Þ

Thus, the two-sided model with positive energy density
ρ and positive μ maps into a holographic cosmology
with negative effective energy density ρ0. For μ ¼ 0, the
density ρ0 diverges for small ρ as 1=ρ. The one-sided model
maps into two branches: the E0 ¼ −1 branch identical with
the two-sided map and the E0 ¼ þ1 branch, in which case
we find

ρ0
σ0

¼ 4ρ=σ0
ðρ=σ20 þ 2Þ2 þ μl4=a4

; ð93Þ

yielding smooth positive ρ0. Note that the inverse function
ρ ¼ ρðρ0Þ of (91) for μ ¼ 0 and zbr ¼ l coincides with the
function defined by (79) for μ ¼ 0 if we set E0 ¼ þ1 for
ρ0 > 0 and E0 ¼ −1 for ρ0 < 0.

V. SUMMARY AND CONCLUSIONS

We have explicitly constructed the holographic mapping
between two cosmological braneworld scenarios: holo-
graphic and RSII braneworld. In the holographic scenario,

the primary braneworld is at the boundary of AdS5 with
emergent cosmology at the RSII braneworld. In the
RSII scenario, the primary braneworld is located at an
arbitrary nonzero z ¼ zbr, and the cosmology at the z ¼ 0
boundary is emergent. In both scenarios, we have estab-
lished a holographic map between these two braneworld
cosmologies.
We have assumed the presence of matter on the primary

braneworld only. The emergent cosmology is governed by
the Friedman equations with effective energy density and
pressure. We have obtained functional relations between
cosmological scales a0 and a, Hubble rates H0 and H, and
effective energy densities ρ0 and ρ in the two scenarios. We
have analyzed two versions of the RSII models: the so
called one-sided and two-sided versions. We have demon-
strated that the map between the cosmological scales is
unique for the two-sided RSII model, whereas in the one-
sided model, the mapping from the holographic to the RSII
cosmology is a two-valued function.
In particular, we have studied the low-density regime,

i.e., the regime in which ρ≃ ρ0 ≪ 1=ðGNl2Þ. The low-
density regime can be made simultaneous only in the one-
sided RSII model since the necessary condition (69) for the
two-sided version is not met if both ρ0 and ρ are small. The
low-density regime on the two-sided RSII brane corre-
sponds to the high negative energy density limit on the
holographic brane.
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The analysis presented here is open to speculations. For
example, it is conceivable that our Universe is a one-sided
RSII braneworld, the cosmology of which is emergent from
the primary holographic cosmology. If ρ0 on the holo-
graphic brane describes matter with the equation of state
satisfying 3p0 þ ρ0 > 0, as for, e.g., cold dark matter, in
the one-sided model, we will, according to (84) and (85),
have an asymptotically de Sitter universe on the RSII brane.
With the AdS curvature l satisfying the Newtonian
potential constraint, if we choose an appropriate brane
location so that Λbr fits the observed value today, we could
produce the standard ΛCDM cosmology on the RSII brane.
Unfortunately, in this scenario, we have to push the brane as
far as 1028l away from the boundary which seems rather
unnatural. Another way to recover the standard cosmology
is to involve a negative holographic brane tension in
addition to ρ0 and fine tune it to cancel Λbr up to a small
phenomenologically acceptable contribution.
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APPENDIX A: SECOND
RANDALL-SUNDRUM MODEL

Our curvature conventions are as follows: Ra
bcd ¼∂cΓa

db − ∂dΓa
cb þ Γe

dbΓa
ce − Γe

cbΓa
de and Rab ¼ Rs

asb, so that
Einstein’s equations are Rab − 1

2
RGab ¼ þ8πGTab. The

dynamics of a 3-brane in a 4þ 1-dimensional bulk is
described by the total action as the sum of the bulk and
brane actions

S ¼ Sbulk þ Sbr: ðA1Þ
The bulk action is given by

Sbulk ¼
1

8πG5

Z
d5x

ffiffiffiffi
G

p �
−
Rð5Þ

2
− Λ5

�
þ SGH½h�; ðA2Þ

where Λ5 is the bulk cosmological constant related to the
AdS curvature radius as Λ5 ¼ −6=l2. The Gibbons-
Hawking boundary term is given by an integral over the
brane hypersurface Σ:

SGH½h� ¼
1

8πG5

Z
Σ
d4x

ffiffiffiffiffiffi
−h

p
K½h�: ðA3Þ

The quantity K is the trace of the extrinsic curvature tensor
Kab defined as

Kab ¼ hcahdbnd;c; ðA4Þ

where na is a unit vector normal to the brane pointing
toward increasing z, hab is the induced metric

hab ¼ Gab þ nanb; ðA5Þ

and h≡ det hab is its determinant. Observers reside on the
positive tension brane with action

Sbr½h� ¼
Z

d4x
ffiffiffiffiffiffi
−h

p
ð−σ þ Lmatt½h�Þ; ðA6Þ

where they see the metric hμν.
The basic equations are the bulk field equations outside

the brane,

Rð5Þ
ab −

1

2
Rð5ÞGab ¼ Λ5Gab; ðA7Þ

and junction conditions [40]

½½Kμ
ν − δμνKα

α�� ¼ 8πG5ðσδμν þ Tμ
νÞ; ðA8Þ

where the energy-momentum tensor Tμ
ν¼diagðρ;−p;−p;

−pÞ describes matter on the brane and ½½f�� denotes the
discontinuity of a function fðzÞ across the brane, i.e.,

½½fðzÞ�� ¼ lim
ϵ→0

ðfðzbr þ ϵÞ − fðzbr − ϵÞÞ: ðA9Þ

To derive the RSII model solution, it is convenient to use
Gaussian normal coordinates xa ¼ ðxμ; yÞ with the fifth
coordinate y related to the Fefferman-Graham coordinate z
by z ¼ ley=l. Then, in the two-sided version with the Z2

symmetry y − ybr↔ybr − y, one identifies the region −∞ <
y ≤ ybr with ybr ≤ y < ∞. We start with a simple ansatz for
the line element

ds2ð5Þ ¼ ψ2ðyÞgμνðxÞdxμdxν − dy2; ðA10Þ

where the warp factor ψ2 is a function of y. We assume that
ψ2 → 0 as y → ∞ and

ψ2ðybrÞ ¼ 1: ðA11Þ

Then, the total action (A2) may be brought to the
form [41,42]

S½g� ¼ 1

8πG5

Z
d4x

ffiffiffiffiffiffi
−g

p Z
dy

�
−
R
2
ψ2 − 4ðψ3ψ 0Þ0

þ 6ψ2ðψ 0Þ2 − Λð5Þψ4

�
þ SGH½g� þ Sbr½g�; ðA12Þ

where R is the four-dimensional Ricci scalar associated
with the metric gμν and the prime 0 denotes a derivative with
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respect to y. The extrinsic curvature is easily calculated
using the definition (A4) and the unit normal vector nμ ¼
ð0; 0; 0; 0; 1Þ. We find the nonvanishing components

Kμν ¼ nμ;ν ¼ −Γa
μνna ¼ ψψ 0gμν: ðA13Þ

The fifth coordinate in (A12)) may be integrated out if
ψ → 0 sufficiently fast as we approach y ¼ ∞.
The functional form of ψ is found by solving the Einstein

equations (A7) outside the brane. Using the components of
the Ricci tensor

Rð5Þ
55 ¼ −4

ψ 00

ψ
; Rð5Þ

5μ ¼ 0; ðA14Þ

Rð5Þ
μν ¼ Rμν þ ð3ψ 02 þ ψψ 00Þgμν; ðA15Þ

and the Ricci scalar

Rð5Þ ¼ R
ψ2

þ 12
ψ 02

ψ2
þ 8

ψ 00

ψ
; ðA16Þ

we find the 55 and μν components of the Einstein
equations, respectively, as

6
ψ 02

ψ2
þ Λð5Þ þ R

2ψ2
¼ 0 ðA17Þ

and

Rμν −
1

2
Rgμν ¼ ð3ψ 02 þ 3ψψ 00 þ Λð5Þψ2Þgμν: ðA18Þ

The unique solution to (A17) and (A18) which satisfies the
condition (A11) and vanishes at y ¼ ∞ is

ψ ¼ e−ðy−ybrÞ=l; ðA19Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6=Λð5Þp

. With this solution, the metric
(A10) is AdS5 in normal coordinates because the constant
factor eybr=l may be removed by a coordinate translation
y → ~y ¼ y − ybr. Equation (A18) reduces to the four-
dimensional Einstein equation in empty space,

Rμν −
1

2
Rgμν ¼ 0: ðA20Þ

This equation should follow from the variation of the action
(A12) with Lmatt ¼ 0 after integrating out the fifth coor-
dinate. For this to happen it is necessary that the last three
terms in square brackets are canceled by the boundary term
and the brane action without matter. Using (A13), one finds
that the integral of the second term in square brackets is
precisely canceled by the Gibbons-Hawking term. Then,
the cancellations of the remaining terms will take place if

γ

8πG5

Z
∞

ybr

dy½6ψ2ðψ 0Þ2 − Λð5Þψ4� ¼ σ; ðA21Þ

where

γ ¼
�
1; one-sided RSII;

2; two-sided RSII:
ðA22Þ

This equation yields the RSII fine-tuning condition

σ ¼ σ0 ≡ 3γ

8πG5l
: ðA23Þ

In this way, after integrating out the fifth dimension, the
total effective four-dimensional action assumes the form of
the standard Einstein-Hilbert action without cosmological
constant,

S ¼ 1

8πGN

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
R
2

�
; ðA24Þ

where GN is the Newton constant defined by

1

GN
¼ γ

G5

Z
∞

ybr

dyψ2 ¼ γl
2G5

: ðA25Þ

Then, the constant σ0 in (A23) is given by

σ0 ¼
3

4πGNl2
; ðA26Þ

so the RSII fine-tuning condition does not depend on the
sidedness γ if σ0 is expressed in terms of the four-dimen-
sional Newton constant.
It is worth noting that the fine-tuning condition (A23)

and (A25) follows directly from the junction conditions
(A8) and the metric (A10) with (A19). For a static brane at
y ¼ ybr, we find

Kμνjy¼ybrþϵ ¼ −
1

l
gμν: ðA27Þ

For the one-sided version, we can set

Kμνjy¼ybr−ϵ ¼ 0; ðA28Þ

whereas the two-sided version or the Z2 symmetry implies

Kμνjy¼ybr−ϵ ¼ −Kμνjy¼ybrþϵ: ðA29Þ

Then, from (A8), we find

3γ

l
δμν ¼ 8πG5σδ

μ
ν ; ðA30Þ

yielding (A23).
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Equation (A20) admits any Ricci flat metric as its
solution. The trivial solution gμν ¼ ημν gives the original
RSII model [5] with an empty Minkowski brane located at
an arbitrary y ¼ ybr in the AdS=Z2 bulk. More general
solutions with a black hole on the brane are first considered
in Ref. [43] and discussed in more detail in Ref. [44].
The RSII model can be extended to include a brane

with spherical or hyperbolic geometry embedded in the
AdS-Schwarzschild geometry [45,46]. In this case, it is
convenient to represent the bulk metric in Schwarzschild
coordinates (6). It is worth mentioning that the solution
(6) is closely related to the D3-brane solution of ten-
dimensional supergravity corresponding to a stack of ND
coincident D3-branes. If we identify the AdS curvature
radius with l ¼ lsð4πgsNDÞ1=4, where gs is the string
coupling constant, and ls ¼

ffiffiffiffi
α0

p
is the fundamental string

length, a near-horizon nonextremal D3-brane metric is
given by [47]

ds2ð10Þ ¼ ds2ASch − l2dΩ2
5: ðA31Þ

The coordinates r and z are related by

r2

l2
¼ l2

z2
−
κ

2
þ κ2 þ 4μ

16

z2

l2
: ðA32Þ

The brane is placed at zbr < zh corresponding to the
rbr > rh. The location of the horizon rh is the positive
solution to the equation fðrÞ ¼ 0 yielding

r2h ¼
l2

2


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 4μ

q
− κ

�
; z2h ¼

4l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 4μ

p : ðA33Þ

The fifth coordinate is cut at the horizon [45], so the bulk in
the one-sided version is the section of spacetime defined by
zbr ≤ z < zh. In the two-sided version, one identifies the
region zbr ≤ z < zh with z2br=zh < z ≤ zbr with a fixed point
at z ¼ zbr. Note that the RSII braneworld may be arbitrarily
close to the AdS boundary since zbr can be chosen
arbitrarily small but not zero.
The junction conditions for the brane placed at rbr yield

two independent equations:

f1=2ðrbrÞ
rbr

¼ 1

l

�
1þ κ

l2

r2br
−μ

l4

r4br

�
1=2

¼ 8πG5

3γ
σ; ðA34Þ

1

2f1=2ðrbrÞ
df
dr

				
r¼rbr

¼ 1

f1=2ðrbrÞ
�
rbr
l2

þ μ
l2

r3br

�

¼ 8πG5

3γ
σ: ðA35Þ

Solving these equations for r2br and σ, we obtain

r2br ¼
2μl2

κ
; ðA36Þ

σ ¼ σ0

�
1þ κ2

4μ

�
1=2

: ðA37Þ

Clearly, for κ ¼ 0, we must have μ ¼ 0, in which case we
recover the standard RSII with a flat brane at an arbitrary
rbr ¼ l2=zbr, and Eq. (A37) reduces to the fine-tuning
condition (A23). In contrast, in the case of κ2 ¼ 1, the
brane location is fixed by (A36) with the requirement
that μ is positive or negative for positive or negative κ,
respectively.
Next, we give a simple derivation of the RSII braneworld

cosmology following Soda [48]. We start from the bulk line
element in Schwarzschild coordinates (6) and allow the
brane to move in the bulk along the fifth dimension r. In
other words, the brane hypersurface Σ is time dependent
and may be defined by

r − aðtÞ ¼ 0; ðA38Þ

where a ¼ aðtÞ is an arbitrary function. The normal to Σ is
then given by

nμ ∝ ∂μðr − aðtÞÞ ¼ ð−∂ta; 0; 0; 0; 1Þ; ðA39Þ

and using the normalization gμνnμnν ¼ −1, one finds the
nonvanishing components

nt ¼ −
f1=2∂ta

ðf2 − ð∂taÞ2Þ1=2
; ðA40Þ

nr ¼
f1=2

ðf2 − ð∂taÞ2Þ1=2
; ðA41Þ

where the function f is given by (7) with r replaced
by a, i.e.,

fðaÞ ¼ a2

l2
þ κ − μ

l2

a2
: ðA42Þ

Using this, from (A40), (A41), and (A5), we find the
induced line element on the brane,

ds2ind ¼ n2ðtÞdt2 − aðtÞ2dΩ2
κ ; ðA43Þ

where

n2 ¼ f −
ð∂taÞ2
f

: ðA44Þ

Assuming that either the relation (A28) or (A29) holds for
the dynamical brane, the junction conditions (A8) may be
written in the form
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Kμνjr¼a−ϵ ¼
8πG5

3γ
½3Tμν − ðσ þ TÞgμν�: ðA45Þ

Then, the χχ component gives

f3=2

ðf2 − ð∂taÞ2Þ1=2
¼ 8πG5

3γ
ðσ þ ρÞa: ðA46Þ

It turns out that the tt component gives the time derivative
of the above equation and hence imposes no additional
constraint. Using (A44), Eq. (A46) may be cast into
the form

ð∂taÞ2
n2a2

þ f
a2

¼ 1

l2σ20
ðσ þ ρÞ2: ðA47Þ

The first term on the left-hand side of (A47) is the square
of the Hubble expansion rate for the metric (A43) on
the brane,

H2
RSII ¼

ð∂taÞ2
n2a2

: ðA48Þ

Substituting for f the expression (A42) into (A47), we
obtain the effective Friedmann equation:

H2
RSII þ

κ

a2
¼ ðσ þ ρÞ2

l2σ20
−

1

l2
þ μl2

a4
: ðA49Þ

Employing the RSII fine-tuning condition σ ¼ σ0 and (2),
Eq. (A49) may be expressed in the form

H2
RSII þ

κ

a2
¼ 8πGN

3
ρþ ρ2

l2σ20
þ μl2

a4
; ðA50Þ

which differs from the standard Friedmann equation by the
last two terms on the right-hand side. Clearly, both versions
of the RSII model yield identical brane cosmologies.
The second Friedmann equation is obtained by combin-

ing the time derivative of (A50) with respect to the
synchronous time ~t ¼ R

ndt with the energy conservation

dρ
d~t

þ 3HRSIIðρþ pÞ ¼ 0: ðA51Þ

One finds

dHRSII

d~t
−

κ

a2
¼ −4πGNðρþ pÞ − 3ρ

l2σ20
ðρþ pÞ − 2

μl2

a4
;

ðA52Þ

which may also be written in the form

1

a
d2a
d~t2

þH2
RSII þ

κ

a2
¼ 4πGN

3
ðρ − 3pÞ − ρ

l2σ20
ðρþ 3pÞ:

ðA53Þ

Next, we derive explicit expressions for the coordinate
transformation (19) for the brane position at z ¼ zbr. Using
the total differentials

dt ¼ _tdτ þ t0dz; dr ¼ _rdτ þ r0dz; ðA54Þ

where the prime 0 denotes the derivative with respect to z,
the line element (6) transforms into

ds2 ¼
�
f_t2 −

1

f
_r2
�
dτ2 −

�
1

f
r02 − ft02

�
dz2

þ 2

�
f_tt0 −

1

f
_rr0

�
dtdz − r2dΩ2

κ : ðA55Þ

The function f defined in (A42) has the argument
r ¼ rðτ; zÞ. Comparing (A55) with (20), we find

l2

z2
N 2 ¼ f_t2 −

l2

z2
_A2

f
; ðA56Þ

and requiring that the off-diagonal component of the metric
vanishes and that the zz component equals −l2=z2, we
obtain

t0 ¼ _a
_t
r0

f2
ðA57Þ

and

N ðτ; zÞ ¼ � f_t
r0

¼ � l
z

_A
ft0

: ðA58Þ

Next, we specify z ¼ zbr. With the help of (22), (23),
(A57), and (A58), we find the explicit expressions for r0, t0,

r0ðτ; zbrÞ ¼ −
l
zbr

f
n
¼ −

l
zbr

f3=2

ðf2 − ð∂taÞ2Þ1=2
; ðA59Þ

t0ðτ; zbrÞ ¼
r0

f2
_a
_t
¼ −

l
zbr

f−1=2

ðf2 − ð∂taÞ2Þ1=2
∂ta; ðA60Þ

where the argument of f is aðtðτ; zbrÞÞ, whereas

_rðτ; zbrÞ ¼ _t∂ta; ðA61Þ

and _tðτ; zbrÞ remains an arbitrary function of τ. However,
the induced metric at z ¼ zbr will have the form (A43) with
t replaced by τ, if we identify

RANDALL-SUNDRUM VERSUS HOLOGRAPHIC COSMOLOGY PHYSICAL REVIEW D 93, 066010 (2016)

066010-15



l2

zbr
A2ðτ;zbrÞ¼ a2ðτÞ; l2

zbr
N 2ðτ;zbrÞ¼ n2ðτÞ: ðA62Þ

Then, from (23) and (A62), it follows j_tðτ; zbrÞj ¼ 1,
yielding

tðτ; zbrÞ ¼ �τ þ const: ðA63Þ
Imposing that t and τ increase simultaneously [14], we have

_tðτ; zbrÞ ¼ 1 _r ¼ ∂ta: ðA64Þ
The sign in (A59) is fixed from the relation between r0

and the fifth component of the unit normal to the brane in
ðt; rÞ coordinates, i.e.,

r0ðτ; zbrÞ ¼
l
zbr

nr: ðA65Þ

This equation follows from the transformation of na ¼
ð0; 0; 0; 0;−l=zbrÞ in ðτ; zÞ to na ¼ ðnt; 0; 0; 0; nrÞ in ðt; rÞ
coordinates. Thus, with the minus sign in (A59), we
maintain consistency with Eqs. (A40) and (A41)
and the convention that na points toward increasing
z (decreasing r).

APPENDIX B: RSII/CFT CONNECTION

Here, we demonstrate a connection between The RSII
model and AdS=CFT correspondence. Our derivation
follows Hawking et al. [49] (see also Ref. [50]). We start
from the bulk action (A2) and regularize the action by
placing the RSII brane near the AdS boundary, i.e., at
z ¼ ϵl, ϵ ≪ 1 so that the induced metric is hμν ¼
1=ϵ2ðgð0Þμν þ ϵ2l2gð2Þμν þ…Þ. The bulk splits in two regions,
0 ≤ z ≤ ϵl and ϵl ≤ z < ∞, so the bulk action will consist
of two pieces. We can either discard the region 0 ≤ z ≤ ϵl
(one-sided regularization) or invoke the Z2 symmetry and
identify two regions (two-sided regularization). Then, the
regularized bulk action may be written as

Sregbulk ¼ γS0; ðB1Þ

where

S0 ¼
1

8πG5

Z
z≥ϵl

d5x
ffiffiffiffi
G

p �
−
Rð5Þ

2
−Λð5Þ

�
þSGH½h� ðB2Þ

and, as before, γ ¼ 1 for the one-sided and γ ¼ 2 for the
two-sided regularization. Next, we renormalize the action
by adding counterterms to S0 [32,49],

Sren0 ½G� ¼ S0½G� þ S1½h� þ S2½h� þ S3½h�; ðB3Þ

such that the renormalized on-shell action is finite in the
limit ϵ → 0,

Sren0 ½gð0Þ� ¼ lim
ϵ→0

Sren0 ½h�: ðB4Þ

The counterterms are [32]

S1½h� ¼ −
6

16πG5l

Z
d4x

ffiffiffiffiffiffi
−h

p
; ðB5Þ

S2½h� ¼ −
l

16πG5

Z
d4x

ffiffiffiffiffiffi
−h

p �
−
R½h�
2

�
; ðB6Þ

S3½h� ¼ −
l3

16πG5

Z
d4x

ffiffiffiffiffiffi
−h

p log ϵ
4

×

�
Rμν½h�Rμν½h�−

1

3
R2½h�

�
: ðB7Þ

The last term is scheme dependent, and its integrand is
proportional to the holographic conformal anomaly [51].
Now, we demand that the variation with respect to hμν of
the total RSII action (A10), which is the sum of the
regularized bulk action (B1) and the brane action (A6),
vanishes; i.e., we require

δðSregbulk½h� þ Sbr½h�Þ ¼ 0: ðB8Þ

By making use of (B5), this may be written as

δ

�
γSren0 − γS3 −

�
σ −

3γl
8πG5

�Z
d4x

ffiffiffiffiffiffi
−h

p

þ
Z

d4x
ffiffiffiffiffiffi
−h

p
Lmatt − γl

16πG5

Z
d4x

ffiffiffiffiffiffi
−h

p R½h�
2

�
¼ 0:

ðB9Þ
The third term gives the contribution to the cosmological
constant and may be eliminated by imposing the RSII fine-
tuning condition (A23). The variation of the scheme
dependent S3 may be combined with the first term so that

δðSren0 − S3Þ ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−h

p
hTCFT

μν iδhμν; ðB10Þ

where

hTCFT
μν i ¼ 2ffiffiffiffiffiffi

−h
p ∂SðrenÞbulk

∂hμν −
2ffiffiffiffiffiffi
−h

p ∂S3
∂hμν : ðB11Þ

The net effect of δS3 is that it cancels the □R term in the
conformal anomaly [33] so the trace of the CFT stress
tensor simply reads

hTCFTμ
μi ¼ −

l3

64πG5

�
RμνRμν −

1

3
R2

�
: ðB12Þ

The variation equation (B9) yields four-dimensional
Einstein’s equations on the boundary,
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Rμν −
1

2
Rgμν ¼ 8πGNðγhTCFT

μν i þ Tmatt
μν Þ; ðB13Þ

where we have employed the relation (A25) to express G5

in terms of Newton’s constant GN. The quantity Tmatt
μν is the

energy-momentum tensor associated with the matter
Lagrangian Lmatt. Thus, the dynamics of the boundary
universe is governed by the energy-momentum tensor TCFT

μν

of the CFT on the boundary in addition to the matter
energy-momentum tensor Tmatt

μν . Obviously, the sidedness
factor γ in front of TCFT

μν shows that the required number of
copies of CFT is either one or two depending on whether
the braneworld is sitting at the cutoff boundary of a single
patch of AdS5 or in between two patches of AdS5.
Equation (B13) with (34) and γ ¼ 1 coincides with
Einstein’s equations in Ref. [12] derived in a different way.
From (34), with the help of (29), we obtain the

vacuum expectation value of the trace of the CFT
energy-momentum tensor:

hTCFTμ
μi ¼ gð0ÞμνhTCFT

μν i

¼ l3

16πG5

½ðTrgð2ÞÞ2 − Trðgð2ÞÞ2�: ðB14Þ

Furthermore, using (28), we can express the trace in the
form (B12) which may be conveniently rearranged as

hTCFTμ
μi ¼ l3

128πG5

ðGGB − C2Þ; ðB15Þ

where

GGB ¼ RμνρσRμνρσ − 4RμνRμν þ R2 ðB16Þ

is the Gauss-Bonnet invariant and

C2 ≡ CμνρσCμνρσ ¼ RμνρσRμνρσ − 2RμνRμν þ
1

3
R2 ðB17Þ

is the square of the Weyl tensor Cμνρσ.
The trace of the CFT energy-momentum tensor

obtained in this way may be compared with the standard

conformal anomaly calculated in field theory. The general
result is [52]

hTCFTμ
μi ¼ bGGB − cC2 þ b0□R: ðB18Þ

This expression will match (B15) if we ignore the□R term,
assume b ¼ c, and identify

l3

G5

¼ 128πc: ðB19Þ

For a theory with ns scalar bosons, nf Weyl fermions, and
nv vector bosons, the standard calculations give [52,53]

b ¼ ns þ ð11=2Þnf þ 62nv
360ð4πÞ2 ; ðB20Þ

c ¼ ns þ 3nf þ 12nv
120ð4πÞ2 : ðB21Þ

Hence, in general, we have b ≠ c. However, in the N ¼ 4

U(N) super-Yang-Mills theory, ns ¼ 6N2, nf ¼ 4N2, and
nv ¼ N2, in which case the equality b ¼ c holds and the
conformal anomaly is correctly reproduced by the holo-
graphic expression (B15). In this case, Eq. (B19) reads [51]

l3

G5

¼ 2N2

π
: ðB22Þ

It is worth mentioning that the coefficient c appears in
the lowest order quantum correction to the Newtonian
potential. The calculations based on one-loop corrections to
the graviton propagator [10] yield the result

ΦðrÞ ¼ GNM
r

�
1þ γ

128πcGN

3r2

�
; ðB23Þ

which can be compared with (3). Here, γ is the number of
copies of CFT coupled to gravity. Applying Eq. (B19), one
finds the coefficient of the 1=r2 term equal to γl3GN=3G5

which agrees with (3) if one uses the RSII relation (2).
Hence, as mentioned in Sec. I, the two-sided RSII model
requires two copies of CFT coupled to gravity.
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