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We implement a proper-time UV regularization of the Nambu-Goto string, introducing an independent
metric tensor and the corresponding Lagrange multiplier, and treating them in the mean-field approxi-
mation justified for long strings and/or when the dimension of space-time is large. We compute the
regularized determinant of the 2D Laplacian for the closed string winding around a compact dimension,
obtaining in this way the effective action, whose minimization determines the energy of the string ground
state in the mean-field approximation. We discuss the existence of two scaling limits when the cutoff is
taken to infinity. One scaling limit reproduces the results obtained by the hypercubic regularization of the
Nambu-Goto string as well as by the use of the dynamical triangulation regularization of the Polyakov
string. The other scaling limit reproduces the results obtained by canonical quantization of the Nambu-Goto
string.
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I. INTRODUCTION

Recently there has been an increased interest in the
spectrum of the large-N QCD string. It has been inves-
tigated both by numerical simulations [1–10] and by
analytic studies [11–20]. The two major questions to be
addressed are: what is the effective action of the QCD string
at large distances and what is the spectrum of this string?
Addressing the former question implies that we have to
modify the Nambu-Goto action by adding operators which
are less relevant in the long-string limit, while the latter
question requires a consistent quantization of the string in
D ¼ 4 dimensions.
String theory is generically a nonlinear problem, since

the Nambu-Goto action, representing the area of the string
world sheet, is not a quadratic function of the fields.
However, a gauge fixing makes the action quadratic with
certain constraints imposed on physical states. This is the
essence of the canonical quantization successfully applied
to the relativistic string in the 1970’s, which leads to
consistent results in the critical dimension (D ¼ 26 for the
bosonic string) and on the mass shell.
A subtle feature of the quantized string theory is the

emergence of ultraviolet divergences which have to be
regularized and the theory has to be renormalized in order
to remove these divergences. In quantum field theory the
regularization is customarily done by cutting off momenta
squared above a certain value Λ2. In string theory such a
cutoff has to be done for a certain choice of the world-sheet
coordinates (or the choice of gauge) at Λ2 ffiffiffi

g
p

, where g is the
determinant of the world-sheet metric tensor, to comply

with diffeomorphism invariance. If gab is the induced
metric, this may actually result in a complicated nonlinear
problem.
The importance of such a dependence of the cutoff on the

world-sheet metric is seen already in the very first compu-
tation by Brink and Nielsen [21] of the energy due to zero-
point fluctuations of an open string with fixed ends
separated by the distance L. The classical energy is
Ecl ¼ K0L. The energy of zero-point fluctuations is given
by the sum over the string oscillator modes:

E0 ¼ K0

D − 2

2

Xnmax

n¼1

n
2Ecl

¼ D − 2

2

�
πn2max

2L
−

π

12L

�
: ð1Þ

The universal (i.e. regularization independent) second term
on the right-hand side comes as the difference between the
actual sum of discrete modes and an integral approximation
to the sum. Diffeomorphism invariance requires that the
maximal number of modes, nmax, is L-dependent:
nmax ¼ LΛ=π. We thus obtain

E0 ¼ ðD − 2Þ
�
Λ2L
4π

−
π

24L

�
: ð2Þ

Therefore the divergence contributes only to the string
tension, but not to the lowest mass, which is determined by
the (universal) second term on the right-hand side, whose
negative sign is associated with a tachyon. If we naively
used nmax ¼ const, it would result in a divergent (and
positive) mass squared of the lowest state of the string.
The dependence of the cutoff on the world-sheet metric

is crucial for the path-integral formulation of string theory
[22], where the world-sheet metric gab and the target-space
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position Xμ, μ ¼ 1;…; D, of the string world sheet are
independent (for a careful discussion of this point we refer
to the book by Polykov [23]). Owing to diffeomorphism
invariance, the world-sheet metric can be diagonalized,
gab ¼ eφδab, by choosing the conformal gauge. While the
classical action does not depend on φ, it emerges in the
effective action after the path integration over Xμ (and
ghosts) because of the divergences of these path integrals
and the corresponding dependence of the cutoff on φ.
However, the remaining path integral over φ decouples on
the mass shell in the critical dimension, and then the results
obtained in the 1970’s using the operator formalism are
reproduced. For D ≠ 26 and/or off shell, the path integral
over φ has to be taken into account and plays an important
role for the consistency.
In the Polyakov formulation of string theory the path

integral over the target-space string coordinates (and
ghosts) is Gaussian and results in the determinant of the
2D Laplace-Beltrami operator with proper boundary con-
ditions. For an open string with fixed ends these are the
Dirichlet boundary conditions, for which the computation
of the determinant was performed in [24,25]. For slowly
varying fields φ, the effective action is determined by the
conformal anomaly and given by the so-called Liouville
action. Remarkably, the path integral over φ can be
consistently treated [18] order by order in the inverse
string length and/or in the limit of largeD, where the WKB
expansion about the saddle points applies. The result for the
ground-state energy as a function of L coincides with the
well-known Alvarez-Arvis spectrum [26,27]. It reveals a
tachyonic singularity at distances L ≤ L0 with −K2

0L
2
0

being the tachyon mass squared. For larger distances this
quantity is well behaved.
The Alvarez-Arvis spectrum follows [27,28] from the

canonical quantization of an open string with the Dirichlet
boundary condition. Similarly, no effects of nonlinearities
are seen in the computation [26] of the Nambu-Goto path
integral at large D when one uses the zeta-function
regularization. However, one may wonder whether this
regularization always can be used since a powerlike
divergence is missing by construction. It is thus not obvious
to which extent the dependence of the cutoff on the metric,
which was the origin of the nonlinearity, is correctly
captured using the zeta-function regularization. For this
reason we would like to repeat the computation using a
regularization where the UV cutoff is given by a dimen-
sional parameter, like the Pauli-Villars or proper-time
regularization. Without such a dimensional parameter it
is hard to follow how the regularization affects the
renormalization of the string tension or the masses in the
theory.
There exist two latticelike string theories1 where the UV

cutoff is explicitly a dimensional parameter, the lattice

length a ∼ 1=Λ. In the first lattice approach the starting
point is the Nambu-Goto action, and the path integral over
string configurations is regularized by considering surfaces
embedded on a hypercubic lattice, living on the plaquettes
of the lattice. We denote this theory the hypercubic lattice
string theory (HLS) [30]. The second lattice theory is a
regularization of the Polyakov string theory, often denoted
dynamical triangulation (DT) [31], since summation over
the intrinsic geometries of the world sheet in the path
integral is performed by summing over a suitable class of
equilateral triangulations, each with link length a. The
target space variables Xμ then live on the vertices of the
triangulations and in this way a target space triangulation is
defined. Both theories are naturally defined in any
Euclidean RD target space, where D ≥ 2, and both theories
lead to the following picture: one can define a two-point
function which falls off exponentially at large target space
distances, thus defining a renormalized lowest, positive
mass of the theories. However, once this two-point function
is defined, the string tension of the theory does not scale
[30,32], i.e. it goes to infinity when the cutoff a → 0. Thus,
these regularized theories seemingly had little to do with
ordinary bosonic string theory.
However, so-called noncritical string theory, which can

be viewed as an extension of string theory to D < 2,
showed that the DT regularization indeed captured pre-
cisely what one would view as string theory in this region
(it is not known how to extend HLS to D < 2). Since
bosonic string theory ceases to be tachyonic for D < 2, the
problem for the lattice versions of string theory seems to be
the fact that by construction they have no tachyons. From
their very construction, the logarithm of the two-point
function in these theories is subadditive, leading to a mass
larger than or equal zero (see for instance [29] for a
discussion).
Clearly the continuum bosonic string theory manages to

perform subtractions which result in a negative m2 (and a
finite, positive renormalized string tension), but it has never
been fully understood how to reconcile the continuum
calculations with the lattice calculations where it seems
plain impossible to obtain a negative m2. In order to avoid
this conundrum we will try to put ourselves in a
string theory situation where there is no tachyon in the
continuum formulation, where D > 2 and where there is
thus a chance that the lattice and the continuum formula-
tions might agree, precisely as they agree in the caseD < 2,
as mentioned above.
Remarkably, such a comparison is possible in the largeD

limit if we consider a closed string which propagates a
distance L and which is wrapped around one target space
dimension compactified to a circle with circumference
β ≪ L. For β not too small there is no tachyon according
the old calculation by Alvarez [26]. We will repeat the
calculation, using the Nambu-Goto action and a Lagrange
multiplier for the induced world-sheet metric. In the largeD1For an introduction see the book [29].
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limit a saddle point calculation is reliable and we will
perform the calculation using a proper time cutoff a which
serves as the equivalent to the lattice cutoff mentioned
above. We will find a remarkable situation: one can follow
the philosophy of the lattice approach and first renormalize
the two-point function. It leads naturally to a certain
renormalization of the string tension. However, this
renormalization is then incompatible with a finite effective
action for an “extended” string where L ≫ β, and where
β ≫ a. From the perspective of the effective action of the
extended string it implies that the effective string tension
goes to infinity when the cutoff a → 0, i.e. precisely the
situation encountered for the lattice regularizations.
However, due to a scale invariance of the effective action,
it is in the continuum possible to avoid this situation by a
rescaling of the target space coordinates, but the price one
pays is the introduction of the tachyon.
The rest of this article is organized as follows: In Sec. II we

consider theparticle, rather than the string, using the length of
the world line as the action, the particle equivalent of the
Nambu-Goto action for the string. The technique and many
of the results are the same as for the string, just simpler. In
Sec. III we consider a path-integral formulation of the
Nambu-Goto string, introducing an independent metric
tensor and the corresponding Lagrange multiplier. In
Sec. IV we find a saddle-point solution to the path-integral
formulation of the Nambu-Goto string which is justified by
the mean-field approximation and becomes exact at largeD.
The dependence of the ground-state energy onL is computed
in Sec. V. We also evaluate there the value of the area of
typical surfaces which dominate the path integral. Our main
results concerning two possible scaling behaviors are pre-
sented in Secs. Vand VI. In Sec. VII we show how the same
results can be obtained using the Polyakov string formu-
lation. The spectrum of excited states is briefly discussed in
Sec. VIII. Our main results are summarized in Sec. IX. In
Appendix A we remind the reader of some results for path
integral of the relativistic particle. In Appendix B we
compute the induced metric for the string and find its
unexpected coordinate dependence near the boundary.

II. SUM OVER PATHS FOR THE
RELATIVISTIC PARTICLE

Before performing the calculation for the bosonic string
it is instructive to consider a similar calculation for the
relativistic particle, using the length of the world line as the
action, the particle equivalent of the Nambu-Goto action we
will use for the string.
We rewrite the action (the bare mass times the length of

the path) as

S ¼ m0

Z
dω

ffiffiffiffiffi
_x2

p
¼ m0

Z
dω

ffiffiffi
h

p
þm0

2

Z
dωλð_x2 − hÞ;

ð3Þ

where _x ¼ dxðωÞ=dω and where we have introduced an
independent world-line metric h which is a tensor
[hðωÞ ¼ h11ðωÞ�, and a Lagrange multiplier λ ¼ α=

ffiffiffi
h

p
with α being a scalar.
The classical equations of motion are

1ffiffiffi
h

p d
dω

λ_xμ ¼ 0; ð4aÞ

h ¼ _x2; ð4bÞ

λ ¼ 1ffiffiffi
h

p : ð4cÞ

A generic solution is

x1clðωÞ ¼
Z

ω

0

dω0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hclðω0Þ

p
; x2cl ¼ � � � ¼ xDcl ¼ 0: ð5Þ

We can choose the (static) gauge, where

x1cl ¼
ω

ωL
L;

ffiffiffiffiffiffi
hcl

p
¼ 1

λ
¼ L

ωL
; ω ∈ ½0;ωL� ð6Þ

and L is the distance in the target space between the end
points of the path. Of course any change of parametrization
ω → ω0ðωÞ will also provide us with a classical solution
x0ðω0Þ ¼ xðωÞ and h011ðω0Þðdω0Þ2 ¼ h11ðωÞðdωÞ2.
Splitting xμ ¼ xμcl þ xμq where x

μ
cl is given by (5) and then

integrating over xμq, we find the effective action

Seff ¼ m0

Z
dω

ffiffiffi
h

p
þm0

2

Z
dωλð_x2cl − hÞ

− dΛ
Z

dω

ffiffiffi
h4

pffiffiffi
λ

p þ d
2
log

�
Λ
Z

dω

ffiffiffi
h4

pffiffiffi
λ

p
�
: ð7Þ

More specifically the integration over xμq results in the
determinant of the diffeomorphism invariant differential
operator

O ¼ −
1ffiffiffi
h

p d
dω

λ
d
dω

: ð8Þ

We regularize this determinant by using a proper time
cutoff

tr logO ¼ −
Z

∞

a2

dτ
τ
tre−τO; a2 ≡ 1

4πΛ2
: ð9Þ

By an explicit calculation for constant h and λ we obtain
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tr log

�
−

1ffiffiffi
h

p d
dω

λ
d
dω

�

¼ −
Z

∞

a2

dτ
τ

X∞
n¼1

exp

�
−

τffiffiffi
h

p λ

�
πn
ωL

�
2
�

¼ −
ωLffiffiffi
π

p
a

ffiffiffi
h4

pffiffiffi
λ

p þ log
ωL

ffiffiffi
h4

p

a
ffiffiffi
λ

p ; ð10Þ

which finally leads to (7).
In addition to the path integral over xμ which resulted in

the effective action (7), we have path integrals over the
fields h and λ. As is well known,2 the path integral over λ is
saturated by a constant value of α owing to localization,
after which the dependence on h enters only via the length
τ ¼ R dω ffiffiffi

h
p

of the path. The path integral over h [factor-
ized over reparametrizations fðωÞ, f0ðωÞ ≥ 0, of the path]
can then be substituted by an ordinary integral over τ:

Z
Dh
Df

� � � ¼
Z

dτffiffiffi
τ

p det1=2
�
−

1ffiffiffi
h

p d
dω

1ffiffiffi
h

p d
dω

�
� � � : ð11Þ

This will changeD → D − 1 in the linear divergence of the
effective action in accordance with the fact that there are
only D − 1 independent degrees of freedom for the
relativistic path.
In the rest of this section we shall ignore such a shift ofD

assuming that D is large. For the string the shift will be
from D to D − 2. We will use the notation d for the shifted
value of D with the understanding that it makes no
difference in the large D limit. For m0 ∼ d all the terms
in the action (7) would be of order d, so the Jacobian
displayed in Eq. (11) will be not essential. We can then
compute the integral over τ by the saddle-point method.
Equivalently, we can simply compute the path integrals
over h and λ at large d by the saddle-point method,
minimizing the effective action (7), without introducing
the variable τ. This is exactly how we shall proceed in the
next sections when we deal with the relativistic string.
Minimizing (7) with respect to h, we obtain the equation

for α:

1 − α −
dΛ

2m0

ffiffiffi
α

p þ d

4m0

ffiffiffi
α

p R
dω

ffiffiffiffiffiffiffiffi
h=α

p ¼ 0: ð12Þ

The solution is an ω-independent constant. Since we can
always choose h to be constant in one dimension by change
of parametrization, this shows that it is not inconsistent to
choose both h and λ constant, as was done in the
calculation (10).
Minimizing (7) with respect to λ, we obtain the equation

for h:

_x2cl − hþ dΛ

m0α
3=2 h −

dh

2m0α
3=2
R
dω

ffiffiffiffiffiffiffiffi
h=α

p ¼ 0; ð13Þ

relating h and xcl. Using Eq. (12), we write

h ¼ α

ð3α − 2Þ _x
2
cl ¼

α

ð3α − 2Þ
L2

ω2
L
: ð14Þ

From (12) it follows that the “bare” mass m0 has to diverge
as Λ for Λ → ∞.
At the minimum, we have the following leading large L

behavior;

Seff ¼ m0ð3α − 2Þ
Z

dω
ffiffiffi
h

p
¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð3α − 2Þ

p
L: ð15Þ

Since our effective action is just the logarithm of the free
particle propagator, we know that the leading L behavior is

Seff ¼ mphLþOðlogLÞ; ð16Þ
where mph is the physical mass of the particle. This is
obtained by choosing

α ¼ 2

3
þ m2

ph

2m2
0

: ð17Þ

Equation (12) then says

m0 ¼
ffiffiffiffiffi
27

8

r
dΛþ

ffiffiffi
3

2

r
m2

ph

dΛ
; ð18Þ

the scaling relation well known from treating the relativistic
particle as a limit of a random walk process with average
step length a ∼ 1=Λ ([29]). The value α ¼ 2=3 is far away
from the classical value α ¼ 1. However, Eqs. (12) and (13)
have semiclassical power expansions in dΛ=m0

(1=m0 ∝ ℏ), starting out with α ¼ 1 and decreasing
towards α ¼ 2=3 with decreasing m0. The radius of
convergence of this expansion corresponds precisely to
α ¼ 2=3, as is shown in Appendix A, and the value m0 ¼
dΛ

ffiffiffiffiffiffiffiffiffiffi
27=8

p
associated with α ¼ 2=3 is thus the natural

quantum point of the free particle. As we will see the
situation will be similar for the string.
Classically the length of the particle path isR
dω

ffiffiffiffiffiffi
hcl

p ¼ L. However, the average path in the path
integral is much longer, as is clear from (14), which shows
that the average length of such a path is

l ¼
�Z

dω
ffiffiffiffiffi
_x2

p �
¼
Z

dω
ffiffiffi
h

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α

3α − 2

r
L: ð19Þ

The reason for the divergence of lwhen the cutoff a → 0 is
of course the quantum fluctuations of xq. One can explicitly
calculate (see Appendix A) that in the limit where a → 0
we have2See, e.g. the book [33], Section 9.1.
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h_x2qi ¼
dΛ

ffiffiffi
h4

p

m0λ
3=2 ¼ h: ð20Þ

Equation (19) shows that the Hausdorff dimension of
such a path is two in the scaling limit and that the proper
time cutoff a, even if introduced as a diffeomorphism
invariant cutoff in parameter space ω ∈ ½0;ωL�, has a
consistent interpretation as a length a in target space.
Let us assume that a can be interpreted as a typical smallest
length scale probed in target space. Then we can view the
path of length l as made of nl ¼ l=a pieces or “building
blocks.” Similarly the classical path xcl consists of nL ¼
L=a building blocks and (19) reads in the scaling limit:

nl ¼
ffiffiffiffiffiffi
3

8π

r
d

mphL
n2L; ð21Þ

which tells us that the path of length l with end points
separated by a distance L in target space has Hausdorff
dimension dH ¼ 2.
We remind the reader that there is nothing wrong with

the result that the average length of a path appearing in the
path integral diverges when the cutoff is removed. As is
well known, even in ordinary quantum mechanics, such a
path is not an observable. In the Heisenberg picture the
operators x̂μðtÞ do not commute at different times and
attempts to measure x̂μðtÞ at successive small time intervals
Δt will precisely result in an average fractal path with
dH ¼ 2 in the limit Δt → 0.
The fact that the Hausdorff dimension of the paths is

equal 2 is consistent with the interpretation of the proper
time cutoff as a length scale also in target space. From the
explicit expressions (8) and (9) it is clear that in the
classical limit where λ=

ffiffiffi
h

p ¼ ðωL=LÞ2 oscillating modes
with mode number n > L=πa will be suppressed, telling us
that we can probe distances down to a in target space by the
fluctuating field xμ. However, from (19) the corresponding
mode cutoff in the quantum case is n > l=πa ∝ L=mpha2.
The fact that the path has length l ≫ L implies that we
have to use a much larger frequency ω when expanding xμ

in modes in order to obtain the same resolution in
target space.
It is possible to perform a different scaling. Suppose we

insist that l is finite. This is what one would do if we
considered one-dimensional gravity and xμðωÞ were fields
living in this one-dimensional world.3 In such a world we

expect the leading term in the effective action (15) to be
proportional to the one-dimensional volume l ¼ R dω ffiffiffi

h
p

,
i.e. one would write

Seff ¼ ~mphl; ~mph ¼ m0ð3α − 2Þ; ð22Þ

or

α ¼ 2

3
þ ~mph

3m0

ð23Þ

and

m0 ¼
ffiffiffiffiffi
27

8

r
dΛþ

ffiffiffi
2

3

r
~mph ð24Þ

instead of the scaling (17) and (18). From the perspective of
such a one-dimensional world a finite l implies that our
former target space L is as small as the cutoff a ∼ 1=Λ.
However, from the viewpoint of our one-dimensional world
xμ is just a field and in the split x ¼ xcl þ xq, where
integration over quantum xq produces the different scaling
of L and l, we are free to perform a renormalization of the
background field,

xcl ¼ Z1=2xR; Z ¼ ð3α − 2Þ=α: ð25Þ

The field renormalization Z has a standard perturbative
expansion,

Z ¼ 1 −m−1
0 dΛþOðm−2

0 Þ; ð26Þ

in terms of the coupling constant m−1
0 , which in perturba-

tion theory is always assumed to be small even compared to
the cutoff. By such a renormalization we obtain a new LR in
target space, L ¼ Z1=2LR, which scales the same way as l
and the effective action is simply changed from mphL
to ~mphLR (and a complete calculation of effective
action which also includes power corrections will lead to
identical expressions, except for an allover, cutoff depen-
dent normalization factor).
We will see that similar relations are valid for the

Nambu-Goto string, but they will have more radical
consequences in the string universe.

III. THE NAMBU-GOTO STRING

We now use the Nambu-Goto action and perform a
calculation similar to the one for the particle. This was first
done by Alvarez [26] at large D and extended by Pisarski
and Alvarez [34] to the topology of a cylinder. As described
in the Introduction the setup is the following: we have a
closed string propagating a distance L and wrapped around
a compactified dimension of circumference β. The action is

3Of course the gravity formulation would be even clearer if we
had used to Brink-Howe-DiVecchia formulation, where we have
an independent metric h11ðωÞ and a free Gaussian field xμðωÞ
coupled covariantly to h11ðωÞ, i.e. the particle equivalent of the
Polyakov string formulation. However, the results will be the
same as the ones we have already derived, so we will refrain from
giving any details in the case of the particle. For the string we will
consider the Polyakov formulation in addition to the Nambu-
Goto formulation.
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diffeomorphism invariant and the results should not depend
on the chosen parametrization.
Introducing an auxiliary field λab and independent metric

field ρab, we rewrite the Nambu-Goto action in the standard
way as

K0

Z
d2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ∂aX · ∂bX

p
¼ K0

Z
d2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det ρab

p
þ K0

2

Z
d2ωλabð∂aX · ∂bX − ρabÞ: ð27Þ

Here λab transforms under coordinate transformations as a
tensor times the volume element and ρab is a tensor. The
path integration is performed independently over real
values of Xμ and ρab and over imaginary values of λab.
The Euler-Lagrange equations, minimizing the right-

hand side of Eq. (27) with respect to Xμ, λab and ρab are

1ffiffiffiffiffiffiffiffiffiffi
det ρ

p ∂aλ
ab∂bXμ ¼ 0; ð28aÞ

ρab ¼ ∂aX · ∂bX; ð28bÞ

λab ¼ ρab
ffiffiffiffiffiffiffiffiffiffi
det ρ

p
; det ρ≡ det ρab: ð28cÞ

Choosing the world-sheet parametrization with ω1 and ω2

inside a ωβ × ωL rectangle in the parameter space, we find
from Eq. (28)

X1
cl ¼

L
ωL

ω1; X2
cl ¼

β

ωβ
ω2; X⊥

cl ¼ 0; ð29aÞ

½ρab�cl ¼ diag

�
L2

ω2
L
;
β2

ω2
β

�
; ð29bÞ

λabcl ¼ diag

�
βωL

Lωβ
;
Lωβ

βωL

�
: ð29cÞ

To analyze quantum fluctuations in the path-integral
approach, it is convenient to split Xμ ¼ Xμ

cl þ Xμ
q, where

Xμ
cl is given by Eq. (29a), and perform the Gaussian path

integral over Xμ
q. We may fix the gauge at this stage, e.g. by

choosing X1
q ¼ X2

q ¼ 0, i.e. choosing the so-called static
gauge, where fluctuations are transversal to the classical
string world sheet.4 The number of fluctuating X’s then
equals the number of dimensions transversal to the string
world sheet: d ¼ D − 2. We then obtain the effective
action, governing the fields λab and ρab,

Seff ¼ K0

Z
d2ω

ffiffiffiffiffiffiffiffiffiffi
det ρ

p
þ K0

2

Z
d2ωλabð∂aXcl · ∂bXcl − ρabÞ

þ d
2
tr log

�
−

1ffiffiffiffiffiffiffiffiffiffi
det ρ

p ∂aλ
ab∂b

�
; ð30Þ

where d ¼ D − 2 is the number of fluctuating X’s.
We use the proper-time regularization of the trace as in

(9), now with

O ¼ −
1ffiffiffi
ρ

p ∂aλ
ab∂b;

ffiffiffi
ρ

p ≡ ffiffiffiffiffiffiffiffiffiffi
det ρ

p
; ð31Þ

which reproduces the usual 2D Laplacian for λab given
by Eq. (28c).
Using the invariance of the measure in the path integral

over Xμ, λab and ρab, we derive the following exact set of
the quantum Schwinger-Dyson equations:

�
F½λ; ρ� 1ffiffiffi

ρ
p ∂aλ

ab∂bX
μ
cl

�
¼ 0; ð32aÞ

hρabF½λ; ρ�i ¼ h∂aX · ∂bXF½λ; ρ�i þ
�

1

K0

δF½λ; ρ�
δλab

�
;

ð32bÞ
�
λabffiffiffi
ρ

p F½λ; ρ�
�

¼
�
ρab
�
1 −

d
2K0

ffiffiffi
ρ

p hωje−a2Ojωi
�
F½λ; ρ�

�

þ
�

2

K0

ffiffiffi
ρ

p δF½λ; ρ�
δρab

�
: ð32cÞ

Here F½λ; ρ� is an arbitrary functional of λab and ρab.
In the mean-field approximation, which becomes exact

at large D, we can disregard fluctuations of λab and ρab
around the saddle-point values, i.e. simply substitute them
by mean values. This is analogous to what happens in the
N-component sigma model at large N, where we can
disregard quantum fluctuations of the Lagrange multiplier.
Disregarding the quantum fluctuations means in the

path-integral language that the path integrals over λab

and ρab are given by saddle points. These saddle points
can be alternatively found from the whole set of the
Schwinger-Dyson equations (32), assuming factorization.5

The Schwinger-Dyson equations are then reduced to three
equations for the saddle-point values λ̄ab ≡ hλabi and
ρ̄ab ≡ hρabi:

1ffiffiffī
ρ

p ∂aλ̄
ab∂bX

μ
cl ¼ 0; ð33aÞ4Fixing a static gauge produces a ghost determinant, which is a

determinant of an operator of multiplication by a function. At
large D this determinant can be ignored, but may become
essential to next orders of the 1=D-expansion. 5See e.g. page 247 of the book [35].
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ρ̄ab ¼ h∂aX · ∂bXi; ð33bÞ
λ̄abffiffiffī
ρ

p ¼ ρ̄ab
�
1 −

d
2K0

ffiffiffī
ρ

p hωje−a2Ojωi
�
: ð33cÞ

Equations (33a) and (33b) look similar to the classical
Eqs. (28a) and (28b), while Eq. (33c) contains an additional
term compared to the classical Eq. (28c), due to the fact that
operator O in Eq. (31) depends explicitly on ρ.
Using the known Seeley expansion for the cylinder, we

write Eq. (33c) in the bulk (i.e. away from the boundary) as

λ̄ab ¼ ρ̄ab
ffiffiffī
ρ

p �
1 −

dΛ2

2K0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det λ̄ab

p
�
: ð34Þ

This equation possesses the solution

λ̄ab ¼ Cρ̄ab
ffiffiffī
ρ

p
; C ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
−
dΛ2

2K0

s
; ð35Þ

which generalizes the classical solution (28c). Note that C
is fixed to be the ω-independent value between 1=2 and 1
given by Eq. (35). This will play a crucial role in the
following.
It is interesting to note that if we straightforwardly insert

Eq. (35) into the action (27), it results in a Polyakov-like
expression

S ¼ CK0

2

Z
d2ω

ffiffiffi
ρ

p
ρab∂aX · ∂bX þ K0ð1 − CÞ

Z
d2ω

ffiffiffi
ρ

p

ð36Þ
with independent ρab and Xμ. In the action (36) the
coefficients of the quadratic in Xμ term and the volume
term obey a certain relation. As we shall see below in
Sec. VII, this is necessary for the consistency.
Let us now discuss how λ̄ab depends on the world-sheet

coordinate ω. If we choose the conformal gauge, where ρab
is proportional to δab, we have from Eq. (35) λ̄ab ¼ Cδab,
i.e. λ̄ab is constant. This obviously satisfies Eq. (33a). For
general coordinates we expect that λ̄ab may depend only on
ω1 because of the cylinder geometry. We therefore obtain
from Eq. (33a) the restriction

∂1λ̄
11 ¼ 0; ∂1λ̄

12 ¼ 0; ð37Þ

so λ̄11 and λ̄12 ¼ λ̄21 have to be ω1-independent. Because
det λ̄ab ¼ C2, we conclude that λ̄22 is also ω1-independent.
Thus λ̄ab is constant.
As is shown in Sec. IV below, both ρ̄ab and λ̄ab are in fact

diagonal as a consequence of the diagonal form (29a) of the
classical solution and Eq. (33b). However, ρ̄11 and ρ̄22 are
not constant and depend on ω1 near the boundary in a
nontrivial way in order that the boundary conditions are
satisfied (as is discussed in Appendix B). Equation (35)

then implies that ρ̄11 and ρ̄22 will have the same ω1

dependence if λ̄11 and λ̄22 are constant since we have

λ̄11ρ̄11 ¼ λ̄22ρ̄22: ð38Þ

IV. SADDLE-POINT SOLUTION AT LARGE d

To compute ρ̄ab from Eq. (33b), we note that

h∂aXq · ∂bXqi ¼
d
K0

δ

δλabðωÞ tr log
�
1ffiffiffi
ρ

p ð−∂cλ
cd∂dÞ

�
:

ð39Þ
As we have shown in the previous section, the saddle-point
value λ̄ab is ω-independent. We have therefore a weaker
relationZ

d2ωh∂aXq · ∂bXqi ¼
d
K0

∂
∂λ̄ab tr log

�
1ffiffiffī
ρ

p ð−∂cλ̄
cd∂dÞ

�
:

ð40Þ
Using the proper-time regularization (9), we write for the

given world-sheet coordinates explicitly

tr log

�
1ffiffiffī
ρ

p ð−∂aλ̄
ab∂bÞ

�

¼ −
Z

∞

a2

dτ
τ

Xþ∞

m¼−∞

Xþ∞

n¼1

exp

	
−

τffiffiffī
ρ

p
�
λ̄11
�
πn
ωL

�
2

þ λ̄22
�
2πm
ωβ

�
2

þ ðλ̄12 þ λ̄21Þ
�
πn
ωL

��
2πm
ωβ

��

:

ð41Þ
We have substituted here a constant value of

ffiffiffī
ρ

p
because

ρ̄ab, as is already pointed out (see Appendix B), depends on
ω1 only near the boundary, and the contribution from such a
region will be suppressed in the closed string channel as
β=L. Below we will present formulas which are valid also
for ω1-dependent ρ̄11 and ρ̄22, and where this phenomenon
can be explicitly observed.
The right-hand side of Eq. (41) can be differentiated with

respect to λ̄ab. Acting with ∂=∂λ̄12 we findZ
d2ωh∂1Xq · ∂2Xqi

¼ d
K0

X
m;n

ðπnωL
Þð2πmωβ

Þ
λ̄11ðπnωL

Þ2 þ λ̄22ð2πmωβ
Þ2 þ 2λ̄12ðπnωL

Þð2πmωβ
Þ

× exp

	
−

a2ffiffiffī
ρ

p
�
λ̄11
�
πn
ωL

�
2

þ λ̄22
�
2πm
ωβ

�
2

þ 2λ̄12
�
πn
ωL

��
2πm
ωβ

��

; ð42Þ

where we have substituted λ̄21 ¼ λ̄12. From Eq. (42) it
follows that
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ρ̄12 ¼ 0; λ̄12 ¼ 0 ð43Þ

is a solution. That it is the correct solution can be shown
order by order of the semiclassical expansion in d=K0,
starting from the classical solution (29c) and using Eq. (35).
The reason for (43) can be traced to the diagonal form (29a)
of the classical solution. We thus conclude that ρ̄ab and λ̄ab

are diagonal.
For diagonal and in general ω-dependent ρ̄ab and

constant λ̄ab we have

tr log

�
1ffiffiffiffiffiffiffiffiffiffiffiffi

ρ̄11ρ̄22
p ð−λ̄11∂2

1 − λ̄22∂2
2Þ
�

¼ −
R
d2ω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄11ρ̄22

pffiffiffiffiffiffiffiffiffiffiffiffi
λ̄11λ̄22

p Λ2 þ βΛffiffiffiffiffiffi
λ̄22

p

þ 2 log η

�
i
2

ffiffiffiffiffiffi
λ̄11

λ̄22

s
ωβ

ωL

�
; ð44Þ

where the quadratic and linear divergences are as they
should be for the proper-time regularization. The finite term
is given as usual [36] by the Dedekind eta function.
Equation (44) coincides with the trace log of the 2D
Laplacian for the cylinder, extracted from the general
formula [25].
To avoid confusion, we point out that the boundary

divergence in Eq. (44) (given by the second term on the
right-hand side) is linked to the bulk divergence (given by
the first term on the right-hand side). No contradiction with
the open-closed string duality emerges in this case in
contrast to Ref. [37], where it was argued that the boundary
term is ruled out by open-closed string duality. In the so-
called analytic regularization employed in [37] one effec-
tively is using Λ ¼ 0, and in that case the boundary term
indeed vanishes.
We shall concentrate on the closed-string sector, where

L ≫ β (i.e. a long cylinder), and in this case the second
term on the right-hand side of Eq. (44) can be neglected.
We then use the modular transformation of the η-function

η

�
iτ
2

�
¼

ffiffiffi
2

τ

r
η

�
2i
τ

�
ð45Þ

and the asymptote

η

�
iτ
2

�
→ e−πτ=24 ð46Þ

to get6

tr log

�
1ffiffiffiffiffiffiffiffiffiffiffiffi

ρ̄11ρ̄22
p ð−λ̄11∂2

1 − λ̄22∂2
2Þ
�

¼ −
R
d2ω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄11ρ̄22

pffiffiffiffiffiffiffiffiffiffiffiffi
λ̄11λ̄22

p Λ2 −
π

3

ffiffiffiffiffiffi
λ̄22

λ̄11

s
ωL

ωβ
: ð47Þ

Substituting the regularized trace log from Eq. (47) into
Eq. (40), we finally obtain

1

ωβωL

Z
d2ωρ̄11 ¼

L2

ω2
L
þ πd
6K0

ffiffiffiffiffiffiffiffiffiffiffiffi
λ̄22

ðλ̄11Þ3

s
1

ω2
β

þ dΛ2

2K0

R
d2ω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄11ρ̄22

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ̄11Þ3λ̄22

p ; ð48Þ

1

ωβωL

Z
d2ωρ̄22 ¼

β2

ω2
β

−
πd

6K0

ffiffiffiffiffiffiffiffiffiffiffiffi
λ̄11λ̄22

p 1

ω2
β

þ dΛ2

2K0

R
d2ω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄11ρ̄22

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̄11ðλ̄22Þ3

p : ð49Þ

To solve these equations, we substitute

λ̄11 ¼ C

ffiffiffiffiffiffi
ρ̄22
ρ̄11

r
; λ̄22 ¼ C

ffiffiffiffiffiffi
ρ̄11
ρ̄22

r
ð50Þ

as it follows from Eq. (35) for diagonal ρ̄ab and use the
already mentioned fact that ρ̄11 and ρ̄22 have the same
ω-dependence [see Eq. (38)]. We then find the following
solution:

1

ωβωL

Z
d2ωρ̄11 ¼

L2

ω2
L

ðβ2 − β2
0

2CÞ
ðβ2 − β2

0

CÞ
C

2C − 1
;

1

ωβωL

Z
d2ωρ̄22 ¼

1

ω2
β

�
β2 −

β20
2C

�
C

2C − 1
ð51Þ

and

λ̄11 ¼ C
ωL

ωβL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − β20=C

q
;

λ̄22 ¼ C
ωβL

ωL

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − β20=C

p ð52Þ

with

β20 ¼
πd
3K0

: ð53Þ

It should be noted that the same solution can be obtained
by a straightforward minimization of the effective action
(30) with Eq. (47) inserted for the trace log and assuming
that ρ̄ab and λ̄ab are diagonal and constant:

6In Eq. (47) the sign of the first term on the right-hand side is
negative with the proper-time regularization, but it may be
positive for other regularizations. For instance, cutting of the
mode expansion at some maximal mode number leads to a
positive term as shown in Ref. [38].
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Seff ¼
K0

2

�
λ̄11

L2ωβ

ωL
þ λ̄22

β2ωL

ωβ
þ 2

Z
d2ω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄11ρ̄22

p

−λ̄11
Z

d2ωρ̄11 − λ̄22
Z

d2ωρ̄22

�

−
πd
6

ffiffiffiffiffiffi
λ̄22

λ̄11

s
ωL

ωβ
−
d
R
d2ω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄11ρ̄22

p

2
ffiffiffiffiffiffiffiffiffiffiffiffi
λ̄11λ̄22

p Λ2: ð54Þ

This simply repeats the original Alvarez computation
except that we start from an arbitrary ωβ × ωL rectangle
in the parameter space and use the proper-time regulari-
zation rather than the zeta-function regularization. We
reproduce the results [26], when ωL ¼ L, ωβ ¼ β and Λ ¼
0 as it is when using the zeta-function regularization.
However, we emphasize once again that the more cum-
bersome approach we have used by solving Eq. (33) leads
to the solution (51)–(52) without invoking the assumption
that ρ̄ab and λ̄ab are diagonal and constant.

V. THE LATTICELIKE SCALING LIMIT

Substituting the solution (51)–(52) into Eq. (54), we
obtain

Sspeff ¼ K0CL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − β20=C

q
ð55Þ

for the saddle-point value of the effective action. Further,
we find that the average area of a surface which appears in
the path integral is

A ¼ hAreai ¼
Z

d2ωh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det ρab

p
i ¼

Z
d2ω

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄11ρ̄22

p

¼ L
ðβ2 − β20=2CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2 − β20=C
p C

ð2C − 1Þ : ð56Þ

Formulas (55) and (56) are our main results, valid for
L ≫ β in the mean-field approximation. Let us now discuss
the physical implications of these formulas.
First, formula (35) for the constant C (which plays the

same role as α in our discussion of the random walk) shows
that the bare string tension K0 needs to be renormalized in
order for C to remain real. Also, C is clearly constrained to
take values between 1=2 and 1. Second, all calculations are
done with a proper time cutoff a ∼ 1=Λ, which as in the
random walk case can be thought of as the shortest distance
one can measure in target space. Thus it is questionable if it
makes sense to consider a β < a, i.e. it does probably not
make sense to enter the regime where Seff ceases to be real.
At first glance it seems impossible to obtain a finite Seff by

renormalizing K0 in (55), since K0 is of order Λ2. However,
let us try to imitate as closely as possible the calculation of
the two-point function of the string by choosing, for a fixed
cutoff a orΛ, β as small as possiblewithout entering into the
tachyonic regime of Seff . Thus we choose

β2min ¼ 2β20
K0

2dΛ2
¼ π

3

1

Λ2
¼ 1

3
ð2πaÞ2: ð57Þ

This choice ensures that β2min > β20=C for all values ofK0 >
2dΛ2 and that β20=C → β2min for K0 → 2dΛ2. With this
choice we have

Seff ¼
ffiffiffi
π

3

r
K0CL
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C − 1

p
: ð58Þ

Only if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C − 1

p
∼ 1=Λ can we obtain a finite limit for

Λ → ∞. Thus we are forced to renormalize K0 as follows:

K0 ¼ 2dΛ2 þ f
M4

ph

Λ2
; f ¼ 18d

π2
: ð59Þ

With this renormalization we find

Seff ¼ dMphL: ð60Þ

Since the partition function in this case has the interpre-
tation as a kind of two-point function for a string propa-
gating a distance L, we have the following leading L
behavior of the two-point function:

ZðLÞ ∼ e−Seff ¼ e−dMphLþOðlogLÞ; ð61Þ

where the mass is a tunable parameter. We note that the
situation is very similar to the situation for the free particle.
In that case we had the classical value α ¼ 1 and a
semiclassical expansion in 1=m0 which interpolated
between α ¼ 1 and the quantum value α ¼ 2=3. Here
we have the classical value C ¼ 1 and a semiclassical
expansion in 1=K0, which interpolates between C ¼ 1 and
the quantum value C ¼ 1=2.
In the scaling limit (59) we can calculate the average area

hAreai ¼ A of a surface using (56):

A ∝
L

M3
pha

2
: ð62Þ

It diverges. If we view the surface as made from nA
building blocks of size a2, we find

nA ∝
1

ðMphLÞ3
n4L; nL ¼ L

a
; ð63Þ

telling us that the Hausdorff dimension of the surface is
dH ¼ 4 since nL ¼ L=a is a typical linear extent of the
surface measured in units of the cutoff a.
Let us finally turn to the situation where L ≫ β ≫ a. In

this case we have a real extended minimal surface of area
Amin ¼ L × β, around which the string fluctuates. In this
case we find from (56) that
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A ∝
Amin

M2
pha

2
: ð64Þ

Again this can be written in terms of building blocks as

nA ∝
1

M2
phAmin

n2Amin
; nAmin

¼ Amin

a2
; ð65Þ

showing that the Hausdorff dimension of the surface is still
4 for this kind of surfaces.
Let us now discuss what we define as the physical string

tension. With the given boundary conditions the string
extends over the minimal area Amin and we write the
partition function as

ZðK0; L; βÞ ¼ e−SeffðK0;L;βÞ ¼ e−KphAminþOðL;βÞ: ð66Þ

This is precisely the way one would define the physical
(renormalized) string tension in a gauge theory, with L, β
being the side lengths of a Wilson loop and L; β ≫ a,
where a is the lattice link length. This is also the way the
physical string tension is defined in lattice string theories
like HLS and DT. Let us rewrite (59) as

K0 ¼ 2dΛ2 þ
~K2
ph

2dΛ2
; ð67Þ

very similar to the relation between the bare mass m0 and
the renormalized mass mph. From the explicit form of Seff
given in (56) we have

Kph ¼ K0C ¼ dΛ2 þ 1

2
~Kph þOð1=Λ2Þ: ð68Þ

Thus the physical string tension as defined above diverges
as the cutoff Λ is taken to infinity. However, the first
correction is finite and behaves as we would have liked Kph

to behave, namely as ~Kph ∝ dM2
ph.

We have encountered a situation identical to the one met
in HLS and DT: it is possible by renormalizing the coupling
constant to define a two-point function with a positive,
finite mass. The Hausdorff dimension of the ensemble of
surfaces is dH ¼ 4, but then the effective string tension
defined as in (66) will be infinite. In addition the relation
(68) is precisely the relation one finds in the lattice string
theories. To make things clear, let us rephrase our scaling
relations in dimensionless units like it is done in the lattice
theories. Denote

K0a2 ¼ μ; d=2π ¼ μc;

Kpha2 ¼ K; Mpha2 ¼ M: ð69Þ

Then the renormalization we have encountered [Eqs. (59)
and (68)] can be rewritten as

MðμÞ ¼ c1ðμ − μcÞ1=4;
KðμÞ ¼ KðμcÞ þ c2ðμ − μcÞ1=2;
KðμcÞ ¼ μc=2 > 0: ð70Þ

These are the scaling relations obtained in lattice string
theory and we have now reproduced them by a standard
continuum mean-field calculation.

VI. SCALING TO THE STANDARD STRING
THEORY LIMIT

The scaling limit of the previous section was essentially
particlelike, because the string tension has remained
infinite. Remarkably, it is possible to have yet another
scaling behavior which is stringlike and where the string
tension is finite.
We have made a decomposition Xμ ¼ Xμ

cl þ Xμ
q, where

the parameters L and β refer to the “background” field Xμ
cl.

In standard quantum field theory we usually have to
perform a renormalization of the background field to obtain
a finite effective action. It is possible to do the same here by
scaling

Xμ
cl ¼ Z1=2Xμ

R; Z ¼ ð2C − 1Þ=C: ð71Þ

Notice that the field renormalization Z has a standard
perturbative expansion

Z ¼ 1 −
dΛ2

2K0

þOðK−2
0 Þ ð72Þ

in terms of the coupling constant K−1
0 , which in perturba-

tion theory is always assumed to be small, even compared
to the cutoff.
However, in the limit C → 1=2 it has dramatic effects

since, working with renormalized lengths LR and βR
defined as in (71):

LR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
2C − 1

r
L; βR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

2C − 1

r
β; ð73Þ

we now obtain for the effective action

Seff ¼ KRLR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2R −

πd
3KR

s
; KR ¼ K0ð2C − 1Þ≡ ~Kph:

ð74Þ

The renormalized coupling constant KR indeed makes Seff
finite and is identical to the ~Kph defined in (67). If we view
LR and βR as representing physical distances, (74) tells us
that we indeed have a renormalized, finite string tension
~Kph in the scaling limit. In fact (74) is identical to the
continuum string theory formula.
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The “price”we pay for this rescaling of lengths is that we
have introduced a tachyon in the theory. Before rescaling
we argued that the negative term under the square root was
of the order of the cutoff a2 and there was thus no
compelling reason to view it as responsible for a tachyon.
However, now it has become finite and in fact it is precisely
(minus) the closed bosonic string tachyon mass squared:

M2
tachyon ¼

πd

3 ~Kph

: ð75Þ

Looking at (74) there is no compelling reason why βR could
not be smaller than Mtachyon. However, let us write (71) in
the following form:

β

2πa
¼

ffiffiffiffiffiffi
1

πd

r ffiffiffiffiffiffiffi
KR

p
βR: ð76Þ

Thus, insisting that β=2πa > 1, since a plays the role of a
cutoff distance in target space, implies that β2R > πd=KR,
i.e. we are outside the tachyon region of (74). Being deep
into the tachyonic region, i.e. having βR ≪ Mtachyon=KR

means that originally β ≪ a, clearly a situation which is
strange starting out for instance in a hypercubic lattice
theory with lattice spacing a.
The background field renormalization we have per-

formed in the string case is very similar to the one we
made for the particle, and we can give it the same
interpretation: the background field renormalization is such
that the average areaA is finite, as one would define it to be
if we considered a theory of two-dimensional gravity
coupled to some matter fields. In fact, if we insert the
scaling (71) for Xμ and (74) for K0 in the expression (56)
for A, we obtain

A ¼ LR

ðβ2R − πd
6KR

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2R − πd

3KR

q ; ð77Þ

which is cutoff independent and thus finite when the cutoff
is removed. The area is simply the minimal area for βR ≫
Mtachyon=KR and diverges when βR → Mtachyon=KR.
One may wonder if it is possible to have a continuum

theory when L; β ∼ a, i.e. of the order of the cutoff. Of
course it is not in general. But in the scaling limit (67),
where ð2C − 1Þ → ~Kph=2dΛ2, the actual cutoff is

∼a=
ffiffiffī
ρ4

p
∝ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C − 1

p
, which is much smaller than a.

After the renormalization (73) the cutoff becomes ∼a in
the units, where the “physical” distances LR and βR are
finite, that is still much smaller than the distances.
This phenomenon can be explicitly seen within the mode

expansion, quite similarly to what is discussed in Sec. II for
the relativistic particle. The exponent of the cutting factor
[like in Eq. (42)] at the saddle point is

X
m;n

a2ffiffiffī
ρ

p
�
λ̄11
�
πn
ωL

�
2

þ λ̄22
�
2πm
ωβ

�
2
�

¼
X
m;n

a2ð2C − 1Þ
��

πn
L

�
2

þ
�

2πmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − β20=C

p �
2
�

¼
X
m;n

a2C

��
πn
LR

�
2

þ
�

2πmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2R − πd=3KR

p �
2
�
: ð78Þ

So the modes are cut off at nmax ∼ a−1LR,
mmax ∼ a−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2R − πd=3KR

p
. These numbers are as large

as usual (∼a−1) also in the scaling limit described in this
section.

VII. POLYAKOV VERSUS NAMBU-GOTO
FORMULATIONS

It is natural to ask if it is possible to reproduce the above
results using the Polyakov formulation of string theory.
Let us rewrite the Nambu-Goto action as

S ¼ ð1 − αÞK0

Z
d2ω

ffiffiffi
g

p þ αK0

2

Z
d2ω

ffiffiffi
g

p
gab∂aX · ∂bX;

ð79Þ

where α is a constant and where gab is the induced metric,

gab ¼ ∂aX · ∂bX: ð80Þ

Let us now consider Xμ and gab as independent in (79).
We then have the Polyakov formulation of string theory.
Integrating over quantum fluctuations of Xμ, we arrive at
the following effective action for gab:

Seff ¼ ð1 − αÞK0

Z
d2ω

ffiffiffi
g

p

þ αK0

2

Z
d2ω

ffiffiffi
g

p
gab∂aXcl · ∂bXcl

þ d
2
tr log

�
−

αffiffiffi
g

p ∂a
ffiffiffi
g

p
gab∂b

�
: ð81Þ

The invariance of the measure in the path integral over gab
under a shift results in the Schwinger-Dyson equation,

�
gab
�
1 − α −

d
2K0

ffiffiffi
g

p hωjea2αΔjωi
��

¼ 0: ð82Þ

Using the Seeley expansion (in the bulk)

1ffiffiffi
g

p hωjea2Δjωi ¼ 1

2πa2
þ 1

24π
R ð83Þ

we find this equation is consistent if α satisfies
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K0ð1 − αÞ − dΛ2

2α
¼ m2; ð84Þ

where m2 is finite, i.e. if the quadratic divergence cancels.
Solving Eq. (84) for m2 ≪ K0 ∼ Λ2, we find

α ¼ C ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
−
dΛ2

2K0

s
ð85Þ

which is already familiar from the analysis where we used
the Nambu-Goto action.
For the value (85) of α, the Λ2 term in the action (81)

vanishes, so the action looks like the one obtainable using
the zeta-function regularization where Λ ¼ 0 and C ¼ 1.
The equation for the Liouville field φ (which appears in the
conformal gauge ρab ¼ eφδab) is then the standard
Liouville equation. In the stringlike scaling limit the
constant m2 in (84) is multiplied by ð2C − 1Þ and the
Liouville equation becomes a free field equation.
Thus the action (81) is consistent for α ¼ 1 only for

analytic regularizations with Λ ¼ 0. Otherwise, we have to
add the nonvanishing first term. The Nambu-Goto formu-
lation remarkably leads to the consistent action, as was
shown in Eq. (36) above.
A few comments regarding the Polyakov formulation are

in order. In the conformal gauge there appears the usual
ghost determinant, which can be neglected at large d.
Nevertheless, reparametrizations of the boundary remain
essential and for the case of the cylinder the path integral
over the reparametrizations (or, equivalently, over the
boundary value of φ) reduces to an integration over the
modular parameter ωβ=ωL. The latter integral can be
calculated at large d again by the saddle-point method
which implies a minimization with respect to ωβ=ωL. This
is in contrast to the Nambu-Goto formulation, where
ωβ=ωL was arbitrary.
The fact that

ffiffiffi
g

p
enters the action (81) linearly allows us

to compute the ground state energy. Fixing the conformal
gauge, we find at the saddle point with respect to φ for our
cylinder

Seff ¼
K0C
2

�
L2

ωβ

ωL
þ β2

ωL

ωβ

�
−
πd
6

ωL

ωβ
: ð86Þ

Notice that the bulk value of gab does not enter Eq. (86).
Minimizing (86) with respect to ωL=ωβ, we get

E0 ¼ K0C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 −

πd
3CK0

s
ð87Þ

that is the same as Eq. (55) for the Nambu-Goto formu-
lation. For C ¼ 1we reproduce the results [39] obtained for
the zeta-function regularization.

The mean area can be found by differentiating the
partition function with respect to K0:

−K0

∂
∂K0

logZ ¼ KphhAreai; ð88Þ

where the string tension Kph ¼ CK0 from Eq. (87), as in
Eq. (68). Differentiating we find

hAreai ¼ L
ðβ2 − β20=2CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2 − β20=C
p C

ð2C − 1Þ ; ð89Þ

which is the same as Eq. (56) for the Nambu-Goto
formulation.
However, it is not so clear how to link gab to the induced

metric. They are only related by the boundary condition,
stating they are the same at the boundary [25,40].

VIII. EXITED STATES

Masses of exited states can be extracted from the next
terms in the expansion of the η-function. Using Eq. (45)
with τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̄11=λ̄22

p
ωβ=ωL ¼ L−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − β20=C

p
, we expand

it in the closed-string sector as

η

�
2i
τ

�
−d

¼ edπ=6τ
Y∞
n¼1

ð1 − e−4πn=τÞ−d

¼ edπ=6τ
X∞
N¼0

dNe−4πN=τ; ð90Þ

where dN are the level occupation numbers. Repeating the
above computation, we obtain for the spectrum at level N:

EN ¼ KR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2R þ 2π

KR

�
4N −

d
6

�s
: ð91Þ

For N ∼ d this results in a linear Regge trajectory with the
“renormalized” Regge slope 1=8πKR ¼ α0=4. As usual it is
4 times smaller for the closed string than for an open string.
Equation (91) is again the usual formula for the spectrum

of excited string states, as it follows from the zeta-function
regularization.

IX. DISCUSSION

Using a mean-field continuum calculation, which we
expect to be reliable in the large-d limit, we have obtained
the same result for the bosonic string as was originally
obtained in lattice string theories (HLS or DT). In these
theories it was impossible to define a finite physical string
tension in the limit where the lattice cutoff a was taken to
zero. Our mean-field calculation allows us to trace in detail
how this nonscaling arises, and it also allows us to under-
stand how one in the continuum theory can perform an

J. AMBJØRN and Y. MAKEENKO PHYSICAL REVIEW D 93, 066007 (2016)

066007-12



alternative scaling which reproduces some of the standard
continuum results of bosonic string theory, like for-
mula (74). Rather surprisingly this scaling implies that
the distances one considers in target space are comparable
or even much smaller than the cutoff a one starts out
imposing. If one had started out with a lattice string theory
like HLS where the path integral is performed over surfaces
embedded on a hypercubic lattice with link lengths a, it
clearly makes no sense to consider target space distances
less than a. While one in these theories can define a scaling
limit for a two-point function, this scaling limit always
considers distances much larger than a: when a → 0 the
correlation length stays finite in target space, i.e. it involves
infinite many lattice spacings.
Working in a continuum formalism, nothing prevents us

from making an additional rescaling like (71) of the target
space, but from the point of the regularized theory we will,
as shown explicitly by e.g. formula (76), always be at cutoff
scale a for fixed rescaled distances βR, LR and fixed string
tension KR. In terms of the original variables L, β the
continuum string limit describes a Lilliputian world, which
is a world where the average area A remains finite [as
shown in formula (77)] when the cutoff is removed. Having
a finite A is natural from a two-dimensional world-sheet
point of view, so our Lilliputians are like two-dimensional
beings, while standard lattice scaling is an enterprise only
for Gulliver. In the case of the particle this shift between the
worlds of Gulliver and the Lilliputians is more or less an
academic exercise in the sense that the resulting propagator
was the same up to a cutoff dependent factor not depending
on xμ. However, in the string case the Lilliputian world is
the one of standard continuum string theory, while the
Gulliver world is one where strings are degenerated into so-
called branched polymers due to the nonscaling of the
string tension, as described long ago in the framework of
the HST or DT regularization.
From a standard field theory perspective it seems a little

contrived to insist that l is finite, as one would naturally do
in a one-dimensional quantum gravity theory, since the
average length of a world line goes to infinite in the path
integral when removing the cutoff. Nevertheless, as men-
tioned, this change of perspective has no consequences in
the case of the particle, contrary to the case of strings. In
ordinary continuum string calculations such a rescaling of
“distances” Xμ which makes the average area A finite, is
usually not mentioned explicitly. However, it is there.
Using the conformal invariance of the world-sheet field
theory involves a renormalization of the vertex operators
eipμX̂

μðωÞ, i.e. effectively an adjustment of scales dictated by
the fields XμðωÞ.
It should also be mentioned that a finite A is more

or less the starting point in noncritical string theory, which
can be viewed as two-dimensional quantum gravity
coupled to matter fields with central charge c < 1. In these
theories the finite A is obtained by a renormalization of the

two-dimensional gravitational cosmological term, i.e. the
first term on the right-hand side of Eq. (79). Some of our
calculations can formally be extended to the region c < 1,
since this region, again formally, corresponds to d < 0. As
is seen from our formulas everything is different if d < 0
and one obtains completely different scaling. Such a
different scaling could well be consistent with the scaling
obtained by the DT lattice theory which for c < 1 provides
a regularization of two-dimensional quantum gravity
coupled to matter, and where the scaling, contrary to the
situation for d > 0, agrees with continuum noncritical
string calculations. Our mean-field results might be reliable
in the d → −∞ limit, but we have not investigated it in
detail.
Our results are based on the mean-field approximation

and reproduce in the stringlike scaling limit the spectrum
obtained by the canonical quantization. It would be
interesting to pursue our approach beyond the mean-field
approximation, accounting for fluctuations of ρab and λab

to next orders in 1=d, to check whether or not the spectrum
changes.
Finally let us emphasize again that the present paper has

shown that it is important to treat the cutoff carefully if one
wants to understand how continuum bosonic string theory
is related to nonperturbative lattice formulations of string
theory. Our treatment does not provide a cure for the
bosonic tachyon problem since the corresponding scaling
limit corresponds to “strings” with infinite string tension
and not to the ordinary (tachyonic) continuum string.
However, the explicit role of the cutoff may be important
when one considers QCD strings where one for sure has a
cutoff of the order ΛQCD.
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APPENDIX A: MORE ON RELATIVISTIC PATHS

Let us explicitly check that the solution (17) to Eq. (12)
is the one which sums up the semiclassical expansion in
1=m0. The proper exact solution to the cubic Eq. (12) at
large L is

αðrÞ ¼ 2

3
þ ð1þ i

ffiffiffi
3

p Þð2 − 27r2 þ i3
ffiffiffi
3

p
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 27r2

p
Þ1=3

21=36

þ ð1 − i
ffiffiffi
3

p Þð2 − 27r2 − i3
ffiffiffi
3

p
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 27r2

p
Þ1=3

21=36
;

ðA1Þ
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where r ¼ dΛ=2m0. It has the required series expansion

α ¼ 1 − r −
r2

2
−
5r3

8
− r4 −

231r5

128
−
7r6

2
þOðr8Þ; ðA2Þ

monotonically decreases with r and indeed for

r ¼
ffiffiffiffi
2
27

q
− δ,

α ¼ 2

3
þ 2

ffiffiffi
2

3

r
δþOðδ2Þ: ðA3Þ

To explicitly compute the induced metric in the static
gauge, we use the mode expansion

xq ¼
ffiffiffi
2

p X∞
n¼1

an sin
πnω
ωL

: ðA4Þ

We then obtain

h_x2qi ¼
2

ωL

X∞
n¼1

�
πn
ωL

�
2

ha2ni cos2
πn
ωL

ωe−a
2λð πnωLÞ

2h−1=2

¼ 2

ωL

d
m0λ

X∞
n¼1

cos2
πn
ωL

ωe−a
2λð πnωLÞ

2h−1=2 : ðA5Þ

Replacing the sum by an integral, we find

h_x2qi ¼
2d
m0λ

Z
∞

0

dxcos2xe−a
2λx2h−1=2 ¼ dΛ

ffiffiffi
h4

p

m0λ
3=2 : ðA6Þ

This simply reproduces Eq. (13) without the last term,
which comes from the difference between the sum in
Eq. (A5) and the integral in Eq. (A6).
We have seen that nothing unexpected happens with the

induced metric in the case of paths. In particular, we can
make it constant by choosing the proper-time gauge (6).
This is in contrast to the case of surfaces, where the
dependence of the induced metric on ω is present to fulfill
the boundary condition for the component of the metric
tensor along the boundary, as is demonstrated in
Appendix B.
To see how the typical paths that dominate the path

integral look, let us compute the averaged transverse
displacement squared hx2⊥i. Proceeding as in Eq. (A5),
we find

hx2⊥i ¼
2

ωL

X∞
n¼1

ha2ni sin2
πn
ωL

ω ¼ 2

ωL

d
m0λ

X∞
n¼1

sin2 πn
ωL

ω

ðπnωL
Þ2

ðA7Þ

which is convergent. The sum is computable using
Joncquiére’s relation for dilogarithms which gives

hx2⊥i ¼
dω
m0λ

�
1 −

ω

ωL

�

¼ dL

m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð3α − 2Þp ω

ωL

�
1 −

ω

ωL

�
: ðA8Þ

In the scaling regime (18) it tends to a finite value

hx2⊥i ¼
dL
mph

ω

ωL

�
1 −

ω

ωL

�
ðA9Þ

with the transverse displacement growing like
ffiffiffiffi
L

p
, as it

should for the Brownian motion in target space.
In the other scaling regime (24), the right-hand side of

Eq. (A8) vanishes as m−1
0 ∼ Λ−1. However, if we renorm-

alize the transverse coordinate in the same way as in
Eq. (25), the transverse displacement would also be finite,

hxR2⊥i ¼
dLR

~mph

ω

ωL

�
1 −

ω

ωL

�
; ðA10Þ

and coinciding with (A9).
We can also compute the correlator at noncoinciding

“times” ω1 and ω2. The 1d Dirichlet Green function can be
computed through the mode expansion quite similarly to
Eqs. (A7)–(A10). We obtain

hxμqðω1Þxνqðω2Þi

¼ 2

ωL

δμν

m0λ

X∞
n¼1

sin πn
ωL

ω1 sin
πn
ωL

ω2

ðπnωL
Þ2

¼ δμνL

m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð3α − 2Þp �

ω1 þ ω2

2ωL
−
jω1 − ω2j

2ωL
−
ω1ω2

ω2
L

�
;

ðA11Þ
which reproduces Eq. (A8) for ω1 ¼ ω2. It vanishes if ωi ¼
0 (i.e. at the boundary), as the Dirichlet Green function
should. The first term in the brackets makes it positive.
In Eq. (A11) the coefficient L

m0

ffiffiffiffiffiffiffiffiffiffiffiffi
αð3α−2Þ

p equals either L
mph

in the scaling limit (18) or LR
~mph

in the scaling limit (24), if we

renormalize xμq. So the continuum formulas are identical in
both cases.

APPENDIX B: INDUCED METRIC IN THE
WORLD-SHEET COORDINATES

Let us compute the induced metric h∂aX · ∂bXi in the
string case to verify its coordinate dependence.
Using the mode expansion

Xq ¼ 2
X
m;n≥0

�
amn cos

2πmω2

ωβ
þ bmn sin

2πmω2

ωβ

�
sin

πnω1

ωL
;

ðB1Þ
we have explicitly for the quantum part of the induced
metric
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h∂1Xq · ∂1Xqi ¼
2

ωβωL

X∞
m¼0

X∞
n¼1

�
πn
ωL

�
2
�
ð2 − δm0Þha2mnicos2

2πm
ωβ

ω2 þ 2hb2mnisin2
2πm
ωβ

ω2

�
cos2

πn
ωL

ω1

¼ 2

ωβωL

d
K0

Xþ∞

m¼−∞

X∞
n¼1

ðπnωL
Þ2

λ̄22ð2πmωβ
Þ2 þ λ̄11ðπnωL

Þ2 cos
2
πn
ωL

ω1: ðB2Þ

The sum over m is convergent and easily done, while the sum over n can be substituted by an integral as L → ∞ (the
closed string channel). For the divergent part we find

d

πK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ̄11Þ3λ̄22

p Z
∞

0

dx
x2

y2 þ x2
cos2

�
xω1ffiffiffiffiffiffi
λ11

p
�
e−εx

2 ¼ d

K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ̄11Þ3λ̄22

p 1

8πε

�
1 −

ελ11

ω2
1

þ e−
ω2
1

ελ̄11

�
2þ ελ̄11

ω2
1

��
; ðB3Þ

where

ε ¼ a2ffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄11ρ̄22

p ¼ 1

4πΛ2
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄11ρ̄22

p : ðB4Þ

For the finite part we get

d

K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ̄11Þ3λ̄22

p 1

π

Z
∞

0

dxx
�
coth

�
ωβx

2
ffiffiffiffiffiffi
λ̄22

p
�
− 1

�
cos2

�
xω1ffiffiffiffiffiffi
λ11

p
�

¼ πd
6K0ω

2
β

ffiffiffiffiffiffi
λ̄22

p

ðλ̄11Þ3=2 þ
d

K0

ffiffiffiffiffiffiffiffiffiffiffiffi
λ̄11λ̄22

p 1

π

�
1

8ω2
1

−
π2λ̄22

2ω2
βλ

11

1

sinh2ð2πω1

ωβ

ffiffiffiffiffi
λ̄22

λ̄11

q
Þ

�
: ðB5Þ

The first term on the right-hand side is familiar from the integrated version of Sec. IV. The second term makes the induced
metric to be ω1-dependent. At ω1 ¼ 0 it is equal to the first term.
Adding (B3) and (B5), we finally obtain

h∂1Xq · ∂1Xqi ¼
d

K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ̄11Þ3λ̄22

p 1

8πε

�
1þ e−

ω2
1

ελ̄11

�
2þ ελ̄11

ω2
1

��
þ πd
6K0ω

2
β

ffiffiffiffiffiffi
λ̄22

p

ðλ̄11Þ3=2 −
πd

2K0ω
2
β

ffiffiffiffiffiffi
λ̄22

p

ðλ̄11Þ3=2
1

sinh2ð2πω1

ωβ

ffiffiffiffiffi
λ̄22

λ̄11

q
Þ
:

ðB6Þ

We see from Eq. (B2) that the mean value equals

1

ωβωL

Z
d2ωh∂1Xq · ∂1Xqi ¼

d

8πεK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ̄11Þ3λ̄22

p þ πd
6K0ω

2
β

ffiffiffiffiffiffi
λ̄22

p

ðλ̄11Þ3=2 ðB7Þ

which coincides with the right-hand side of Eq. (B6) far
away from the boundary. The fact that the induced metric is
ω1-dependent near the boundary does not affect the mean
value, because its contribution to the mean value is
Oð1=LÞ. This ω1-dependence of the induced metric near
the boundary is specific to the cylinder (and disk) topology.
It would be missing for a torus.

Exactly at the boundary we have from Eq. (B6) the twice
larger value than the mean value (B7),

h∂1Xq · ∂1XqijB ¼ d

4πεK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ̄11Þ3λ̄22

p þ πd
3K0ω

2
β

ffiffiffiffiffiffi
λ̄22

p

ðλ̄11Þ3=2 :

ðB8Þ
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As we shall momentarily see, this guarantees for the gauge condition (38) to be satisfied in the bulk.
Analogously, we find

h∂2Xq · ∂2Xqi ¼
1

ωβωL

2d
K0

X
m;n

ð2πmωβ
Þ2

λ̄22ð2πmωβ
Þ2 þ λ̄11ðπnωL

Þ2 sin
2
πn
ωL

ω1

¼ λ̄11

λ̄22
h∂1Xq · ∂1Xqi −

1

ωβωL

2d
K0λ̄

22

X
m;n

�
λ̄11ðπnωL

Þ2
λ̄22ð2πmωβ

Þ2 þ λ̄11ðπnωL
Þ2 − sin2

πn
ωL

ω1

�

¼ λ̄11

λ̄22
h∂1Xq · ∂1Xqi −

λ̄11

λ̄22
h∂1Xq · ∂1XqijB þ d

K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̄11ðλ̄22Þ3

p 1

4πε
ð1 − e−ω

2
1
=ελ̄11Þ: ðB9Þ

We see that at the boundary h∂2Xq · ∂2XqijB ¼ 0 because
of the boundary condition XqjB ¼ 0 and because the
derivative is along the boundary.
Using Eq. (B8) and adding the classical parts, we rewrite

Eq. (B9) as the following relation between components of
the whole induced metric:

λ̄11h∂1X · ∂1Xi ¼ λ̄22h∂2X · ∂2Xi

þ d

4πεK0

ffiffiffiffiffiffiffiffiffiffiffiffi
λ̄11λ̄22

p e−ω
2
1
=ελ̄11 : ðB10Þ

We see that h∂2X · ∂2Xi equals h∂1X · ∂1Xi everywhere
outside the ε-vicinity of the boundary, where a more careful
analysis of the second term on the right-hand side is
required.
Using the mode expansion, we can also compute the

transversal size of the string. Proceeding as above, we get

hX2
qi ¼

1

ωβωL

2d
K0

Xþ∞

m¼−∞

X∞
n¼1

1

λ̄22ð2πmωβ
Þ2 þ λ̄11ðπnωL

Þ2

× sin2
πn
ωL

ω1 ¼
d

πK0

ffiffiffiffiffiffiffiffiffiffiffiffi
λ̄11λ̄22

p
X∞
n¼1

1

n

× coth

 
πn
ωL

ωβ

2

ffiffiffiffiffiffi
λ̄11

λ̄22

s !
sin2

�
πn
ωL

ω1

�
: ðB11Þ

The divergent part of the sum in Eq. (B11) can be replaced
by an integral which has a logarithmic domain for
ε ≪ ω2

β=λ̄
22. The (logarithmically) divergent part is

X∞
n¼1

1

2n
coth

 
πn
ωL

ωβ

2

ffiffiffiffiffiffi
λ̄11

λ̄22

s !
e−ϵλ

11ð πnωLÞ
2 ¼ 1

4
log

ω2
β

ελ̄22
: ðB12Þ

The finite part for β ≪ L is

X∞
n¼1

1

n
coth

 
πn
ωL

ωβ

2

ffiffiffiffiffiffi
λ̄11

λ̄22

s !�
sin2
�
πn
ωL

ω1

�
−
1

2

�

¼ π
ω1

ffiffiffiffiffiffi
λ̄22

p

ωβ

ffiffiffiffiffiffi
λ̄11

p
�
1 −

ω1

ωL

�
: ðB13Þ

Finally, we obtain for large L

hX2
qi ¼

d
K0C

	
1

4π
log

�
ωβωL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − β20=C

p
εCL

�

þ ω1

ωL

�
1 −

ω1

ωL

�
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2 − β20=C
p 


: ðB14Þ

If we perform the above renormalization (71) of the length
scale X2

q → ð2C − 1Þ½X2
q�R=C, then K0 in the denominator

becomes KR:

h½X2
q�Ri ¼

d
KR

	
1

4π
log

�
1

a2

�
β2R −

πd
6KR

��

þ ω1

ωL

�
1 −

ω1

ωL

�
LRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2R − πd=3KRÞ
p 


: ðB15Þ

The first term on the right-hand side of Eq. (B15) is
familiar from the open-string case. It has the logarithmic
divergence which cannot be renormalized, so it always
diverges. It is the same for the zeta-function regularization,
where the log is replaced by ζð1Þ ¼ ∞. The appearance of
the second term on the right-hand side of Eq. (B15) is
specific to a cylinder. It comes from the modes with m ¼ 0
(the zero mode) and is missing for an open string. It looks
pretty much like the one in Eq. (A10) for the random paths,
if we identify ~mR with the mass of the lowest string state
which propagates the distance LR.
It is not hard to compute a correlator analogous to (A11)

in the string case. Setting ω0
2 ¼ ω2, we find for β ≪ L
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hXμ
qðω1;ω2ÞXν

qðω0
1;ω2Þi

¼ 2δμν

ωβωLK0

Xþ∞

m¼−∞

X∞
n¼1

sin πn
ωL

ω1 sin πn
ωL

ω0
1

λ̄22ð2πmωβ
Þ2 þ λ̄11ðπnωL

Þ2

¼ d
2πK0C

X∞
n¼1

1

n
coth

�
πn
ωL

ωβ

2

��
cos

πn
ωL

ðω1 − ω0
1Þ

− cos
πn
ωL

ðω1 þ ω0
1Þ
�
; ðB16Þ

where we set

ωβ ¼
ωL

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − β20=C

q
ðB17Þ

for simplicity of the formulas.
Equation (B16) represents the 2D (nonregularized)

Dirichlet Green function for a cylinder at ω0
2 ¼ ω2. If

jω1 − ω0
1j ≪ ωβ, (B16) behaves as

ðB16Þ ⟶
jω1−ω0

1
j≪ωβ

−
δμν

K0C
1

2π
log

jω1 − ω0
1j

ωβ
; ðB18Þ

i.e. as the ordinary Green function. If jω1 − ω0
1j ≫ ωβ,

(B16) behaves as

ðB16Þ ⟶
jω1−ω0

1
j≫ωβ δμν

K0C

�
ω1 þ ω0

1

2ωβ
−
jω1 − ω0

1j
2ωβ

−
ω1ω

0
1

ωβωL

�

ðB19Þ

so only the zeromode (i.e. them ¼ 0modes) remains at large
L with an exponential accuracy and the result is quite
analogous to Eq. (A11) in the particle case. In the open-string
case this zeromodewasabsentandthecontributionofnonzero
modes coincides with the open-string result [26].
We can also compute h∂1Xqðω1;ω2Þ · ∂1Xqðω0

1;ω2Þi for
ωβ ≫ jω1 − ω0

1j ≫
ffiffiffi
ε

p ¼ a=
ffiffiffī
ρ4

p
by differentiating (B16)

with respect to ω1 and ω0
1. We then find

h∂1Xqðω1;ω2Þ · ∂1Xqðω0
1;ω2Þi⟶

ω0
1
~ω1 d
K0C

π

2ω2
β

�
−

1

π2ðω1 − ω0
1Þ2

þ 1

3
−

1

sinh 2πω1

ωβ

�
: ðB20Þ

In particular, we recover this way the ω1-dependent term in the final part of the induced metric displayed in Eq. (B6). The
constant term is also reproduced but this could be a coincidence because it is in general regularization dependent.
Remarkably, the log divergence, contaminating Eqs. (B14) and (B15), is missing in the correlator (B16). It comes back if

jω1 − ω0
1j ≲ ffiffiffi

ε
p ¼ a=

ffiffiffī
ρ4

p
. This could be most probably interpreted as an effect of spikes, i.e. very long thin pieces of

surfaces of negligible area, of longitudinal size of the cutoff at the world sheet.
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