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We develop the framework of boundary derivative expansion (BDE) formalism of fluid/gravity
correspondence in a compactified D4-brane system, which is a nonconformal background used in top-
down holographic QCD models. Such models contain the D4-D6 model and the Sakai-Sugimoto (SS)
model, with the background of the compactified black D4 branes under the near-horizon limit. By using the
dimensional reduction technique, we derive a 5D Einstein gravity minimally coupled with three scalar
fields from the 10D D4-brane background. Following the BDE formalism of fluid/gravity correspondence
in the conformal background, we directly derive all the first order transport coefficients for nonconformal
gluonic matter. The results of the ratio of the bulk to shear viscosity and the sound speed agree with those
obtained from the Green-Kubo method. This agreement guarantees the validity of the BDE formalism of
fluid/gravity duality in the nonconformal D-brane background, which can be used to calculate the second
order transport coefficients in nonconformal background.
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I. INTRODUCTION

The quantum chromodynamics (QCD) phase transition
and properties of hot/dense quark matter at high temper-
ature and baryon density are some of the most important
topics of high energy nuclear physics. The Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC) provide the opportunity to investigate properties
of nuclear matter at high temperature and small baryon
density. It is now believed that the system created at RHIC/
LHC is a strongly coupled quark-gluon plasma (sQGP) and
behaves like a nearly “perfect” fluid [1,2]. One crucial
quantity is the shear viscosity over entropy density η=s,
which is required to be very small to fit the elliptic flow at
RHIC/LHC. The result from AdS=CFT correspondence
gives the lower bound of η=s ¼ 1

4π [3,4], which is very close
to the value used to fit the elliptic flow v2 [5–7].
The anti–de Sitter/conformal field theory (AdS=CFT)

duality [8–10] is discovered through pioneering works on
the near-horizon structure of black branes (or black holes)
[11–17] and the scattering process of branes and bulk probe
fields [18–21]. It is generalized to a nonconformal brane
background in the near-horizon limit in Ref. [22], which is
called the gauge/gravity duality nowadays. The gravity/
gauge duality or AdS=CFT correspondence provides a
revolutionary method to tackle the problem of strongly
coupled gauge theories. It has been widely used to inves-
tigate QCD phenomenology, e.g., glueballs [23–25],

hadron spectra [26–30], the deconfinement phase transition
[27–29,31], and transport properties [32].
The shear viscosity in AdS=CFT was firstly calculated

in Ref. [32] through relations between the Green-Kubo
formula1 and the absorption cross section of gravitons
[18–21]. Studies on the near equilibrium QGP from
AdS=CFT duality in [35] gives a recipe of extracting
two-point real-time thermal correlators via classical bulk
action. Following [35], the authors of [36,37] calculated the
first order transport coefficients in near extremal D3 brane
background and found that, in the long-distance and low-
frequency limit, these correlators turn into hydrodynamical
forms. Second order transport coefficients of this system
were calculated in [38]. The framework that investigates
transport properties of a fluid via its corresponding gravity
is called the fluid/gravity correspondence, and the most
notable feature in the above works [36–38] is the use of
Green-Kubo formula; thus one may call it the Green-Kubo
formalism of fluid/gravity correspondence.
While the Green-Kubo formalism becomes popular in

extracting transport properties of liquidlike plasma,2

another systematic and powerful formalism—the boundary
derivative expansion (BDE) formalism [40,41]—has been
developed. The most remarkable feature for this formalism
is the use of boundary dependent boost parameters for
the bulk metric in the (in-going) Eddington-Finkelstein
coordinate. Expansions are implemented with respect to
boundary derivatives of the boost parameters and all the
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1This was first proposed by Kubo [33] in statistical mechanics
and recast into field theory formalism by Hosaya et al. [34].

2The literature on this topic can be found in the references
of [39].
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dissipative terms of boundary fluid are metric perturbations
(in the large r limit) solved from the Einstein equation. The
first example of the BDE formalism of fluid/gravity
correspondence is a duality of AdS5 black hole in the
bulk to finite temperature conformal N ¼ 4 SYM plasma
in the boundary [40], where the transport coefficients were
calculated to second order. The BDE formalism was
applied in several other models with an AdS5 black hole
background: (1) the AdS5-dilaton model [42], where the
gravity side is an AdS5 black hole plus a boundary
dependent dilaton field, while in the boundary is a fluid
with forcing terms; and (2) the charged AdS5 black hole
model [43,44], where the bulk is a charged AdS5 black
hole, and the fluid on the boundary has a chemical
potential. The addition of the Chern-Simons term for the
Uð1Þ gauge field causes the appearance of vorticity in the
first order dissipative expansion of R-charge current.
The development of fluid/gravity correspondence inter-

weaves with the studies on hydrodynamical modes on the
world volume of the blackfold [45–48], which opens a
window to extract the dynamical information on the world
volume of black branes in flat spacetime. The most obvious
difference of this kind of research from the fluid/gravity
correspondence is the need for a Dirichlet boundary
condition on a finite cutoff surface. In [49], the effective
hydrodynamics on a pþ nþ 2 dimensional “rigid wall”
located at r ¼ R in a D ¼ pþ nþ 3 dimensional space-
time is studied, where p and nþ 1 are the number of
(spatial) dimensions of the brane and the sphere, respec-
tively. Based on this, Emparan et al. [50] studied the
effective hydrodynamics on the world volume of a black
D3 brane to first order. Both the thermodynamical and
the viscous quantities depend on the location of the cavity
and the horizon; however, η=s of this model is still 1

4π.
Erdmenger et al. [51] investigated the effective hydro-
dynamics of rotating black D3 branes. The common feature
of [50,51] is the use of dimensional reduction, which
transforms the effects of transverse directions into massless
fields on the longitudinal directions in which the branes lie.
This prompts our focus on the world volume theory.
The Green-Kubo formalism and BDE formalism of fluid/

gravity correspondence provide powerful tools for us to
study the liquidlike QGP (see, e.g., [52,53] for a phenom-
enological review on heavy ion collisions for theorists).
Generally speaking, QGP is a liquidlike plasma with small
shear viscosity, and can be described by relativistic hydro-
dynamics quite well. Results from the lattice show that
QGP exhibits nonconformal properties, especially around
the critical temperature Tc, e.g., the shear viscosity over
entropy density ratio has a minimum around Tc, and the
bulk viscosity over entropy density shows a peak around Tc
[54–57]. This behavior has been described in bottom-up
holographic QCD models [58–61]. However, current stud-
ies using fluid/gravity duality from a top-down method
are mostly on AdS background, whose dual fluid is of

course conformal and thus may only reflect the properties
of QGP at the conformal regime, i.e., above 2Tc. However,
when we are at the nonconformal zone around Tc, AdS
gravity may no longer be proper for a nonconformal gauge
theory.
A natural choice for a top-down holographic way to

tackle the strongly coupled nonconformal plasma is to
build models using the nonconformal D-branes. Such
studies include, e.g., [62] for D1-brane and [63] for Dp-
branes with p ≥ 2, where the Green-Kubo method is used.
There is another interesting work on this topic which can
handle more cases, including p ¼ 0, 1 and the fundamental
strings in type II string theory (but p ¼ 5 excluded): the
Ref. [64], where the BDE formalism in Fefferman-Graham
coordinates developed in [65] was used. Besides the Dp-
brane backgrounds like in Refs. [63,64], one may also use
the compactified D-brane backgrounds, e.g., the compac-
tified D4 brane. The compactified D4 brane is the back-
ground of the D4-D6 model [29] and the Sakai-Sugimoto
(SS) model [30], which are two nonconformal holographic
QCD models from top-down. The background of these two
models is the compactified D4 black branes under the near-
horizon limit. There are some previous studies on the
transport properties of this background. The sound speed
and bulk to shear ratio were calculated in [66]; the shear to
entropy density ratio was argued in this reference to be
1=4π by showing that the SS model background is in the
class of [67]. Using the null horizon focusing equation,
Eling and Oz [68] also calculated the ratio of the bulk
viscosity to the shear viscosity.
Based on the above review of the relevant literatures,

one can see that there is a lack of parallel formulation with
[40]. This motivates us to develop the framework of BDE
formalism of fluid/gravity duality for nonconformal gauge
theory plasma. In this paper, by using the BDE formalism
of fluid/gravity correspondence, we calculate the first
order transport coefficients of the nonconformal QGP
under the quenched limit on the boundary of both the D4-
D6 and SS model’s background. Our results are consistent
with former studies by other methods. The previous
results together with ours reveal that the plasma of the
D4-D6 and SS model is nonconformal with a small bulk
viscosity and saturates the KSS bound [3,4], and this
agreement guarantees the validity of the BDE formalism
of fluid/gravity correspondence for nonconformal D-
brane backgrounds with more than one submanifold
reduced. This work can been seen as a nonconformal
counterpart that is parallel with the AdS5 construction in
fluid/gravity correspondence of Bhattacharyya et al. [40].
This paper is organized as follows: After the

Introduction, we will firstly give the preliminaries from
a 10D compactified black D4-brane background to a five-
dimensional one in Sec. II in order to make a connection
with the recipe of fluid/gravity correspondence. Then, in
Sec. III, we will solve all the first order perturbative Ansätze
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and get the metric which perturbatively solves the Einstein
equation to the first order. By making use of this solution,
we calculate the boundary stress tensor for the QGP that
corresponds to the bulk of the SS model in Sec. IV and
analyze its transport properties. We give the discussion and
outlook in Sec. V.

II. THE SETUP

In this section, following [66], we will show how to
derive the action and classical background of the D4-D6
and SS model into 5D form through dimensional reduction
as in [50,51]. The purpose of doing this is to make a
connection with [40]; more details can be found in the
Appendix.
The D4-brane action of type IIA theory in Einstein frame

is given as

S ¼ 1

2κ210

Z
d10x

ffiffiffiffiffiffiffi
−G

p �
Rð10Þ −

1

2
ð10∇ϕÞ2 − g2s

2 · 4!
e
ϕ
2F2

4

�
;

ð1Þ

where 2κ210 ¼ ð2πÞ7g2sl8s is the 10D gravitational coupling
and 10∇ stands for 10D nabla. G is the determinant of the
following diagonal 10D metric tensor:

ds2 ¼ e2α1AgMNdxMdxN

þ e2α2Aðe2β1Bdy2 þ e2β2BγabdθadθbÞ; ð2Þ

where gMN , A and B only depend on xM, the coordinates of
the first 5 dimensions, and γab with a; b ¼ 1; 2; 3; 4 is the
metric on the S4. α1;2 and β1;2 are four parameters whose
value will be clear in the following context. The explicit
forms of the dilaton and Ramond-Ramond (RR) field are
given in (19). It should be noticed here that y is also a
compact dimension and we will integrate out both y and the
four-sphere to get a 5D effective theory.
From Eq. (2), we have

ffiffiffiffiffiffiffi
−G

p ¼ e5ðα1þα2ÞAþðβ1þ4β2ÞB ×ffiffiffiffiffiffi−gp ffiffiffi
γ

p
with γ ¼ det γab the determinant of the metric on

the unit four-sphere. During the reduction process, we have
used the following relation:

S ∼
Z

d10x
ffiffiffiffiffiffiffi
−G

p
ðRð10Þ þ � � �Þ

¼
Z

d5x
ffiffiffiffiffiffi
−g

p
eð3α1þ5α2ÞAþðβ1þ4β2ÞBðRþ � � �Þ: ð3Þ

To avoid the appearance of nonminimal coupling of the
gravity with the scalar field in the reduced theory, one
should set

α1 ¼ −
5

3
; α2 ¼ 1; β1 ¼ 4; β2 ¼ −1; ð4Þ

so Eq. (2) becomes

ds2 ¼ e−
10
3
AgMNdxMdxN þ e2Aþ8Bdy2 þ e2A−2BdΩ2

4: ð5Þ

From Eq. (A7), the 10D Ricci scalar has the form of

Rð10Þ ¼ e
10
3
A

�
Rþ 10

3
∇2A −

40

3
ð∂AÞ2 − 20ð∂BÞ2

�

þ 12e−2Aþ2B: ð6Þ

During the reduction process, we have

ffiffiffiffiffiffiffi
−G

p
¼ ffiffiffiffiffiffi

−g
p ffiffiffi

γ
p

e−
10
3
A; ð7Þ

ffiffiffiffiffiffiffi
−G

p
Rð10Þ ¼ ffiffiffiffiffiffi

−g
p ffiffiffi

γ
p �

Rþ 10

3
∇2A −

40

3
ð∂AÞ2

− 20ð∂BÞ2 þ 12e−
16
3
Aþ2B

�
; ð8Þ

ffiffiffiffiffiffiffi
−G

p
ð10∇ϕÞ2 ¼ ffiffiffiffiffiffi

−g
p ffiffiffi

γ
p

e−
10
3
AGMN∂Mϕ∂Nϕ

¼ ffiffiffiffiffiffi
−g

p ffiffiffi
γ

p ð∂ϕÞ2; ð9Þ
ffiffiffiffiffiffiffi
−G

p g2s
2 · 4!

e
ϕ
2F2

4 ¼
ffiffiffiffiffiffi
−g

p ffiffiffi
γ

p Q2
4

2
e
ϕ
2
−34

3
Aþ8B: ð10Þ

Therefore the D4 brane action Eq. (1) is reduced to its 5D
form and takes the form of

S ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − 40

3
ð∂AÞ2

− 20ð∂BÞ2 − Vðϕ; A; BÞ
�
;

Vðϕ; A; BÞ ¼ Q2
4

2
e
ϕ
2
−34

3
Aþ8B − 12e−

16
3
Aþ2B; ð11Þ

where κ5 is the 5D surface gravity with the following
definition:

1

2κ25
≡ V1Ω4

2κ210
; ð12Þ

with V1 ¼
R
dy the volume of the compact circle. The

system turns into a 5D Einstein gravity minimally coupled
with three scalars ϕ, A, B and Vðϕ; A; BÞ is the scalar
potential. The equations of motion (EOMs) for this reduced
system are

EMN − TMN ¼ 0; ð13Þ

∇2ϕ −
Q2

4

4
e
ϕ
2
−34

3
Aþ8B ¼ 0; ð14Þ

∇2Aþ 17Q2
4

80
e
ϕ
2
−34

3
Aþ8B −

12

5
e−

16
3
Aþ2B ¼ 0; ð15Þ

∇2B −
Q2

4

10
e
ϕ
2
−34

3
Aþ8B þ 3

5
e−

16
3
Aþ2B ¼ 0; ð16Þ
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where

EMN ≡ RMN −
1

2
gMNR ð17Þ

is the Einstein tensor in the 5D spacetime, and

TMN ≡ 1

2

�
∂Mϕ∂Nϕ −

1

2
gMNð∂ϕÞ2

�

þ 40

3

�
∂MA∂NA −

1

2
gMNð∂AÞ2

�

þ 20

�
∂MB∂NB −

1

2
gMNð∂BÞ2

�
−
1

2
gMNV; ð18Þ

which can be viewed as the energy-momentum tensor in
the bulk.
The classical solution for black D4 brane in Einstein

frame reads

ds2 ¼ H
−3
8

4 ð−fðrÞdt2 þ d~x2Þ

þH
5
8

4

dr2

fðrÞ þH
−3
8

4 dy2 þH
5
8

4r
2dΩ2

4;

eϕ ¼ eΦ−Φ0 ¼ H
−1
4

4 ; F4 ¼ g−1s Q4ϵ4;

H4 ¼ 1þ r3Q4

r3
; fðrÞ ¼ 1 −

r3H
r3

; ð19Þ

where gs ¼ eΦ0 and Q4 ¼ ð2πlsÞ3gsNc=Ω4.
3 Note that we

write one of the directions in which the D4 brane lies
(denoted by y) separately from the other three directions
(denoted by f~xg) in order to compare with (5). Under the
near-horizon limit, the above metric becomes

ds2 ¼
�
r
L

�9
8ð−fðrÞdt2 þ d~x2Þ

þ
�
L
r

�15
8 dr2

fðrÞ þ
�
r
L

�9
8

dy2 þ L
15
8 r

1
8dΩ2

4; ð20Þ

eϕ ¼
�
r
L

�3
4

; ð21Þ

where L3 ¼ Q4=3 ¼ πgsNcl3s . The above metric differs
from the D4-D6 model and the SS model for the inter-
change of t with y. Also, it is in the Einstein frame, not
string frame. Comparing Eq. (5) with Eq. (20), we have

eA ¼ L
51
80r

13
80; eB ¼ L− 3

10r
1
10; ð22Þ

and the reduced 5D metric is

ds2 ¼ Lr
5
3ð−fðrÞdt2 þ d~x2Þ þ L4

r
4
3fðrÞ dr

2: ð23Þ

From its Ricci scalar R ∼ − 5
6r11=3

ð14r3 þ r3HÞ, when r → 0,
R will become minus infinity so r ¼ 0 is the curvature
singularity and away from that point the above metric will
always be regular; thus we will only focus on the regime of
r > 0 from now on. At the boundary r → ∞, R → 0 so
Eq. (23) is asymptotically flat, which is not obvious for the
appearance of r5=3 in the first four dimensions.
We turn to the ingoing Eddington-Finkelstein coordinate

by making the transformation dt ¼ dv − L3=2

r3=2fðrÞ dr; then the
above metric becomes

ds2 ¼ Lr
5
3ð−fðrÞdv2 þ d~x2Þ þ 2L

5
2r

1
6dvdr: ð24Þ

r ¼ 0 is still the curvature singularity of this 5D metric but
everywhere away from that is regular. Since we have
already lost track of the dimensions in the process of
dimensional reduction [Eq. (2)], keeping L explicit will
be insignificant, so from now on we set L ¼ 1, which
means Q4 ¼ 3. After a boost of coordinates dv ¼ −uμdxμ,
dxi ¼ Pi

μdxμ, where Pμν ¼ ημν þ uμuν, we have

ds2 ¼ r
5
3ð−fðrÞuμuνdxμdxν þ PμνdxμdxνÞ − 2r

1
6uμdxμdr;

uμ ¼ γð1; βiÞ; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2i

p . ð25Þ

In the above metric, uμ is the four-speed of the relativistic
fluid with the normalization uμuμ ¼ −1. Pμν is the projec-
tion tensor of the boundary with PμνPνρ ¼ Pρ

μ, which
projects any tensor to the plane orthogonal to uμ. As
one can check, Eq. (25) is the zeroth order solution of 5D
EOM. The boundary of Eq. (25) is actually a fluid with
constant temperature and velocity, which is of course in
global equilibrium.
In order to mimic slight deviations from local equili-

bration and the anisotropy of the fluid, we promote the four
parameters in Eq. (25) to be xμ dependent: rH → rHðxÞ,
uμ → uμðxÞ, with the requirement that j ∂uT j ≪ 1, where T is
the local temperature of the fluid. Then Eq. (25) becomes

ds2 ¼ r
5
3ð−fðrHðxÞ; rÞuμðxÞuνðxÞdxμdxν

þ PμνðxÞdxμdxνÞ − 2r
1
6uμðxÞdxμdr; ð26Þ

which is no longer the solution of 5D EOM, but we can
make it the solution again by putting some perturbations in.
Using the method of [40], we should firstly expand the fluid
quantities of Eq. (26) at some special point, say, xμ ¼ 0 in
the local rest frame of the fluid, as

uμ ¼ −δ0μ þ xν∂νβjδ
j
μ; rHðxμÞ ¼ rHð0Þ þ xμ∂μrH:

ð27Þ
3The normalization condition for Q4 here is 2κ2μ4Nc¼

R
S4F4,

where 2κ2 ¼ 2κ210g
−2
s and μ4 ¼ ðð2πÞ4l5sÞ−1 is the D4-brane

charge.
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rHðxμ ¼ 0Þ is the location of the event horizon corresponding to xμ ¼ 0 in the boundary; it relates with the local equilibrium
temperature of the fluid at that point. In order to keep the formulations neat, we will just denote it as rH in the following
calculations but one should always remember that it is a local quantity at xμ ¼ 0. Then we have

uμdxμ ¼ −dvþ xμ∂μβidxi; uμuνdxμdxν ¼ dv2 − 2xμ∂μβidxidv;

Pμνdxμdxν ¼ d~x2 − 2xμ∂μβidxidv; fðrHðxÞ; rÞ ¼ fðrÞ − 3r2H
r3

xμ∂μrH: ð28Þ

Thus Eq. (26) becomes

ds2 ¼
�
−r53f þ 3r2H

r
4
3

xμ∂μrH

�
dv2 −

2r3H
r
4
3

xμ∂μβidvdxi þ 2r
1
6dvdr

þ r
5
3d~x2 − 2r

1
6xμ∂μβidxidr: ð29Þ

The above metric deviates the solution of the Ein-
stein equation slightly by the first order boundary
derivatives at xμ; we will see that adding some
perturbation terms will make it the solution again,
and these perturbations are solved in the next
section.

III. THE FIRST ORDER PERTURBATIONS

The SOð3Þ symmetry in Eq. (23) separates the
perturbations into tensors, vectors, and scalars of
SOð3Þ, and we will make use of this advantage to
solve these three kinds of perturbations one by one.
Generally speaking, all the perturbation Ansätze will
have the form

PðrÞ ×

8>><
>>:

∂iβi; for the scalar part;

∂vβi; for the vector part;

σij; for the tensor part;

ð30Þ

where PðrÞ is some function of r and can be solved
through the Einstein equation with the boundary con-
ditions as

(i) PðrÞ is regular at r ¼ rH;
(ii) limr→∞

PðrÞ
rn → 0.

Here n ¼ 0 or n ¼ 3 depends on the nature of pertur-
bation terms. We can see that the perturbations will
always be of the form of Eq. (30) with the above
boundary condition implemented.

A. The tensor part

We set the tensor part perturbation as

ds2ð1ÞT ¼ r
5
3αijðrÞdxidxj: ð31Þ

The EOM that αij satisfies is

Eij −
1

3
δijδ

klEkl ¼ Tij −
1

3
δijδ

klTkl: ð32Þ

It turns out that the differential equation for αij is

d
dr

�
r4f

dαij
dr

�
¼ −5r32σij; ð33Þ

where σij ≡ ∂ðiβjÞ − 1
3
δij∂kβk is the spatial part of shear

stress tensor. The purpose for writing the EOM for the
tensor part like this is due to the traceless of αij: the trace
part of EOM should be removed from the diagonal
components. The equation for the first order tensor per-
turbations takes similar form for different models, as can be
seen, e.g., from [40,50,51]; the reason for this may be due
to the universality of the shear viscosity in supergravity4

[3,67]. Since the metric of the SS model is also in the class
of [67], it is natural for Eq. (33) to take such a form. We
write αij as αij ¼ FðrÞσij; then FðrÞ can be solved from

F00 þ 4r3 − r3H
r4f

F0 þ 5

r
5
2f

¼ 0; ð34Þ

from which the result can be solved as

FðrÞ ¼ C2 þ
1

3
ffiffiffiffiffiffi
rH

p
�
2

ffiffiffi
3

p �
arctan

1 − 2
ffiffiffiffiffiffiffiffiffiffi
r=rH

p
ffiffiffi
3

p − arctan
1þ 2

ffiffiffiffiffiffiffiffiffiffi
r=rH

p
ffiffiffi
3

p
�

þ ln
ð ffiffiffi

r
p þ ffiffiffiffiffiffi

rH
p Þ2ðrþ ffiffiffiffiffiffiffiffi

rrH
p þ rHÞ

ðr − ffiffiffiffiffiffiffiffi
rrH

p þ rHÞ
þ C1 ln

r3 − r3H
r3

− lnð ffiffiffi
r

p
−

ffiffiffiffiffiffi
rH

p Þ2
�
: ð35Þ

4The tensor part perturbation corresponds to the shear viscous term.
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Regularity at r ¼ rH requires C1 ¼ 2 and the normalizability at r → ∞ requires C2 ¼ 2π=
ffiffiffiffiffiffiffiffi
3rH

p
; thus

FðrÞ ¼ 1

3
ffiffiffiffiffiffi
rH

p
�
2

ffiffiffi
3

p �
arctan

1 − 2
ffiffiffiffiffiffiffiffiffiffi
r=rH

p
ffiffiffi
3

p − arctan
1þ 2

ffiffiffiffiffiffiffiffiffiffi
r=rH

p
ffiffiffi
3

p þ π

�

þ ln
ð ffiffiffi

r
p þ ffiffiffiffiffiffi

rH
p Þ4ðrþ ffiffiffiffiffiffiffiffi

rrH
p þ rHÞ2ðr2 þ rrH þ r2HÞ

r6

�
: ð36Þ

It is regular in the whole regime of r > 0 and vanishes to 0
asymptotically.

B. The vector part

For the vector part, we set the perturbation Ansatz as

ds2ð1ÞV ¼ −
2r3H
r
4
3

widxidv: ð37Þ

The constraint equation for the vector perturbation is

grvðEvi − TviÞ þ grrðEri − TriÞ ¼ 0; ð38Þ

which gives

∂irH þ 2rH∂vβi ¼ 0: ð39Þ

The dynamical equation is

Evi − Tvi ¼ 0: ð40Þ

It turns out that wiðrÞ satisfies

w00
i −

2

r
w0
i −

5r
1
2

2r3H
∂vβi ¼ 0; ð41Þ

from which the solution is given as

wiðrÞ ¼ −
2r

5
2

r3H
∂vβi þ

1

3
r3C1i þ C2i: ð42Þ

It is easy to see that the above general solution is regular
at rH. The other boundary condition for the vector part
perturbation is

lim
r→∞

wi

r3
→ 0; ð43Þ

which means C1i must be 0. The appearance of C2i will
cause the ð0iÞ components of the boundary stress tensor to
go out of the Landau frame. So if one likes to express the
boundary stress tensor in the Landau frame, C2i should be
set to 0. Thus the final result for the vector perturbation of
first order is

ds2ð1ÞV ¼ 4r
7
6∂vβidvdxi: ð44Þ

C. The scalar part

The scalar part, similar to other works on the effective
hydrodynamics of black branes, e.g., [50,51], is the most
complicated part. We set the scalar part perturbation as

ds2ð1ÞS ¼
kðrÞ
r
4
3

dv2 þ r
5
3hðrÞδijdxidxj þ 2r

1
6jðrÞdvdr: ð45Þ

In our case, the gauge condition tr½g−1ð0Þgð1Þ� ¼ 0 [40,43]
cannot be used here for solving the scalar part perturbation,
since this will cause inconsistencies when solving the
EOMs and make the surface stress tensor unrenormaliz-
able. Other gauge conditions like hðrÞ ¼ 1 [44] cannot be
used either, since the spatial trace part of the metric is
nontrivial in the nonconformal case here. Thus we need to
keep all three unknowns. However, the labor cost to solve
all of them gives us a bonus that a bulk viscous term
will appear in the surface stress tensor, which does not
appear in the conformal models with AdS gravity like in
Refs. [40,43,44]. We have two constraint equations for the
scalar sector:

grrðErv − TrvÞ þ grvðEvv − TvvÞ ¼ 0; ð46Þ

grrðErr − TrrÞ þ grvðErv − TrvÞ ¼ 0; ð47Þ

which separately give

∂vrH ¼ −
2

5
rH∂iβi ð48Þ

and

3ð5r3 − 2r3HÞh0 − 30r2j − 5k0 þ 10r
3
2∂iβi ¼ 0: ð49Þ

We also have a total number of seven dynamical equations
for scalar perturbations. Four of them,

Err − Trr ¼ 0; ð50Þ

Erv − Trv ¼ 0; ð51Þ

Evv − Tvv ¼ 0; ð52Þ

X3
i¼1

ðEii − TiiÞ ¼ 0; ð53Þ
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come from the Einstein equation Eq. (13), and three of
them,

∇2ϕ −
9

4
e
ϕ
2
−34

3
Aþ8B ¼ 0; ð54Þ

∇2Aþ 153

80
e
ϕ
2
−34

3
Aþ8B −

12

5
e−

16
3
Aþ2B ¼ 0; ð55Þ

∇2B −
9

10
e
ϕ
2
−34

3
Aþ8B þ 3

5
e−

16
3
Aþ2B ¼ 0; ð56Þ

are from the three scalar field equations in the 5D bulk,
namely, Eqs. (14)–(16). This looks horrible at first
glance, but fortunately, not all of them give a useful
message. It turns out that Eq. (51) and Eq. (52) come out
of linear compositions of specific constraints with the
Einstein equation of the scalar sector, so they are not
independent equations, and Eqs. (54)–(56) give the same
differential equation for the three unknown scalar per-
turbations. So we only need to solve Eqs. (49), (50), (53),
and (54) to nail down Eq. (45), among which the last
three equations are

0 ¼ 6rh00 þ 9h0 − 10j0; ð57Þ

0 ¼ 12r4fh00 þ 12ð4r3 − r3HÞh0 − 6rk00 − 3k0

− 6ð5r3 − 2r3HÞj0 − 90r2jþ 20r
3
2∂iβi; ð58Þ

0 ¼ 2r3fj0 þ 12r2jþ 2k0 − 3r3fh0 − 2r
3
2∂iβi: ð59Þ

We will choose Eqs. (49), (57), (59) to solve the three
unknown scalar perturbations that we set in Eq. (45). From
Eq. (49) we have

6r2jþ k0 ¼ 3

5
ð5r3 − 2r3HÞh0 þ 2r

3
2∂iβi; ð60Þ

and after putting it into Eq. (59), we get

−10r3fj0 ¼ ð15r3 þ 3r3HÞh0 þ 10r
3
2∂iβi: ð61Þ

Then, putting the above equation into Eq. (57) one can
finally get the equation for h:

d
dr

�
r4f

dh
dr

�
þ 5

3
r
3
2∂iβi ¼ 0: ð62Þ

Without losing generality, we set h ¼ FhðrÞ∂iβi, and FhðrÞ
satisfies

d
dr

�
r4f

dFh

dr

�
¼ −

5

3
r
3
2: ð63Þ

If one compares the above equation with Eq. (33), one can
get Fh ¼ F=3 without solving it; thus

h ¼ 1

3
FðrÞ∂iβi: ð64Þ

Inserting h into Eq. (57) one has the equation for j ¼
FjðrÞ∂iβi as

10F0
j ¼ 2rF00 þ 3F0: ð65Þ

This is a first order differential equation, and the solution
can be obtained by direct integration; the result is

FjðrÞ ¼ −
2

5

r
5
2 − r

5
2

H

r3 − r3H
þ Cj þ

1

30
ffiffiffiffiffiffi
rH

p
�
2

ffiffiffi
3

p �
arctan

1 − 2
ffiffiffiffiffiffiffiffiffiffi
r=rH

p
ffiffiffi
3

p − arctan
1þ 2

ffiffiffiffiffiffiffiffiffiffi
r=rH

p
ffiffiffi
3

p
�

þ ln
ð ffiffiffi

r
p þ ffiffiffiffiffiffi

rH
p Þ4ðrþ ffiffiffiffiffiffiffiffi

rrH
p þ rHÞ2ðr2 þ rrH þ r2HÞ

r6

�
: ð66Þ

Since the above expression is already regular at r ¼ rH, the remaining boundary condition for j is

lim
r→∞

Fj → 0: ð67Þ

Thus Cj ¼
ffiffi
3

p
π

15
ffiffiffiffi
rH

p , so we have finally

FjðrÞ ¼ −
2

5

r
5
2 − r

5
2

H

r3 − r3H
þ 1

10
F: ð68Þ

We set k ¼ FkðrÞ∂iβi likewise and substitute h and j into Eq. (49), and we can have
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FkðrÞ ¼ −
2

ffiffiffi
3

p
π

15
ffiffiffiffiffiffi
rH

p r3 þ 4

5
r
5
2 þ Ck

−
1

15
ffiffiffiffiffiffi
rH

p ðr3 þ 2r3HÞ
�
2

ffiffiffi
3

p �
arctan

1 − 2
ffiffiffiffiffiffiffiffiffiffi
r=rH

p
ffiffiffi
3

p − arctan
1þ 2

ffiffiffiffiffiffiffiffiffiffi
r=rH

p
ffiffiffi
3

p
�

þ ln
ð ffiffiffi

r
p þ ffiffiffiffiffiffi

rH
p Þ4ðrþ ffiffiffiffiffiffiffiffi

rrH
p þ rHÞ2ðr2 þ rrH þ r2HÞ

r6

�
: ð69Þ

The integral constantCk is fixed by the requirement that the
final boundary stress tensor is in the Landau frame, which

gives Ck ¼ − 4
ffiffi
3

p
π

15
r
5
2

H. So we finally have

k ¼
�
4

5
r
5
2 −

1

5
ðr3 þ 2r3HÞF

�
∂iβi: ð70Þ

In order to make a consistent check, one may put h, j, and k
into Eq. (58), it comes out that the three first order
scalar perturbations that we have solved out satisfy
Eq. (58) just right. So the scalar perturbations that we need

to make Eq. (29) the solution of the Einstein equation again
turn out to be

ds2ð1ÞS ¼
�
Fk

r
4
3

dv2 þ r
5
3Fhδijdxidxj þ 2r

1
6Fjdvdr

�
∂kβk:

ð71Þ

D. Global form of the full metric containing
first order perturbations

Putting all the stuff of the zeroth and first order together,
we get

ds2 ¼
�
−r5=3f þ 3r2Hx

μ∂μrH
r4=3

þ Fk∂iβi
r4=3

�
dv2 þ

�
4r7=6∂vβi −

2r3Hx
μ∂μβi

r4=3

�
dxidv

þ 2r1=6ð1þ Fj∂iβiÞdvdrþ r5=3
�
δij þ

1

3
Fδij∂kβk þ Fσij

�
dxidxj

− 2r
1
6xμ∂μβidxidr: ð72Þ

The above is just the full solution of the first order at the vicinity of xμ ¼ 0 in some special frame, whose covariant form can
be constructed as

ds2 ¼ − r
5
3

�
fðrHðxÞ; rÞ −

FkðrHðxÞ; rÞ
r3

∂ρuρ
�
uμuνdxμdxν − 2r

7
6ðuμaν þ uνaμÞdxμdxν

þ r
5
3FðrHðxÞ; rÞσμνdxμdxν þ r

5
3

�
1þ 1

3
FðrHðxÞ; rÞ∂ρuρ

�
Pμνdxμdxν

− 2r
1
6ð1þ FjðrHðxÞ; rÞ∂ρuρÞuμdxμdr; ð73Þ

where σμν ¼ Pρ
μPσ

ν∂ðρuσÞ − 1
3
Pμν∂ρuρ is the 4D covariant

shear viscous tensor and aμ ¼ uν∂νuμ is the four-
acceleration related with uμ.

IV. THE BOUNDARY STRESS TENSOR AND
TRANSPORT PROPERTIES

A. Derivation of boundary stress tensor

The system of this model is a five-dimensional Einstein
gravity coupled with three scalar fields; its total action can
be written as

S ¼ Sbulk þ SGH þ Sc:t:; ð74Þ

where Sbulk is the bulk action (11) and SGH is the
corresponding Gibbons-Hawking action,

SGH ¼ −
1

κ25

Z
d4x

ffiffiffiffiffiffi
−h

p
K; ð75Þ

where hMN is the boundary metric tensor at a hyperplane
with constant large r. K is the trace of the external
curvature. The most crucial part in the total action is the
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bulk counterterm Sc:t:. Since the bulk metric is not AdS,
the results of the counterterm for AdS spacetime [69]
cannot be directly used here, but fortunately there are
also works on the renormalization of nonconformal
branes [70]. Here we adapt the counterterm used in
[71], which they borrow from the much earlier work [28]
on the renormalization of the black D4 brane; in the
Einstein frame it has the form of

Sc:t: ¼
1

κ210

Z
d9x

ffiffiffiffiffiffiffiffi
−H

p 5

2
e−

1
12
ϕ: ð76Þ

Here H is the determinant of the boundary metric of
Eq. (5),

ds2 ¼ e−
10
3
Ahμνdxμdxν þ e2Aþ8Bdy2 þ e2A−2BdΩ2

4: ð77Þ

Note xM ¼ fxμ; rg. After the dimensional reduction on
the above metric, Eq. (76) becomes

Sc:t: ¼
1

κ25

Z
d4x

ffiffiffiffiffiffi
−h

p 5

2
e−

5
3
A− 1

12
ϕ: ð78Þ

This counterterm contributes to the surface stress tensor
as

2ffiffiffiffiffiffi
−h

p δSc:t:
δhμν

¼ 1

κ25

�
−
5

2
e−

5
3
A− 1

12
ϕhμν

�
: ð79Þ

Using Eq. (22) (and remember that we have set L ¼ 1),
one has the surface stress tensor with contribution from
the counterterm as

Tsurf
μν ¼ 1

κ25

�
Kμν − hμνK −

5

2
r−

1
3hμν

�
: ð80Þ

In the standard technic for 3þ 1 decomposition of
general relativity, hMN is defined as

hMN ¼ gMN − nMnN; ð81Þ

where nM ¼ N∇Mr is the unit normal vector for a hyper-
plane at constant large r in the 5D bulk, of which the metric
can be written as

ds2 ¼ ðN2 þ NMNMÞdr2 þ 2NMdrdxM þ hMNdxMdxN:

ð82Þ

N ¼ ðgMN∇Mr∇NrÞ−1
2 is called the lapse function and NM

is the shift vector. The index of nM and NM goes up and
down with hMN . The external curvature KMN is related with
hMN by

KMN ¼ −
1

2
LnhMN

¼ −
1

2
ðnP∂PhMN þ ∂MnPhPN þ ∂NnPhPMÞ; ð83Þ

in which Ln is the Lie derivative along the unit normal nM.

B. Transport properties of QGP in D4
holographic QCD model

The surface stress tensor that we obtain is

Tsurf
μν

¼ 1

2κ25

�
1

2
r3HPμν þ

5

2
r3Huμuν − 2r

5
2

Hσμν −
4

15
r
5
2

H∂ρuρPμν

�
:

ð84Þ

Comparing with the result in relativistic hydrodynamics,
we get

Thydro
μν ¼ pPμν þ εuμuν − 2ησμν − ζ∂ρuρPμν; ð85Þ

where p, ε, η, and ζ are the momentum density, the energy
density, shear viscosity, and bulk viscosity, respectively.
We can get the respective hydrodynamical quantities for
our system as

p ¼ 1

2κ25

1

2
r3H; ε ¼ 1

2κ25

5

2
r3H;

η ¼ 1

2κ25
r
5
2

H; ζ ¼ 1

2κ25

4

15
r
5
2

H: ð86Þ

From Eq. (23) we can get the temperature for the 5D
spacetime as

T ¼ 3r
1
2

H

4π
: ð87Þ

As one can easily see from the above two expressions, both
the thermodynamic and the transport coefficients only
depend on temperature. This is due to the setup of this
model. One can also get the entropy density as

s ¼ εþ p
T

¼ 1

2κ25
4πr

5
2

H: ð88Þ

So the ratios of shear and bulk viscosity to entropy density
are

η

s
¼ 1

4π
;

ζ

s
¼ 1

15π
: ð89Þ

Here we meet the renowned 1=4π again and this suggests
that both the bulk of the D4-D6 model and SS model
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belong to the class in [67], as [66] has pointed out. The bulk
to shear ratio is

ζ

η
¼ 4

15
; ð90Þ

which is also the same as in [66] and [68]. It is interesting to
compare our result Eq. (90) with the results of Refs. [63,64]
in which the bulk to shear viscosity ratio are both 1=10.
This is understandable since the case we considered here is
the compactified near-horizon, nonextremal D4 brane in
which the relativistic fluid resides only on 1þ 3 dimen-
sions out of the 1þ 4 dimensional D4 brane’s world
volume. The spacetime here comes from dimensional
reduction on S1 × S4. But in Refs. [63,64], for a D4 brane,
the submanifold that is reduced is the S4 and the relevant
hydrodynamics is 1þ 4 dimensional. Another consistency
with [66] is the sound speed that can be obtained via
thermodynamic quantities:

c2s ¼
∂p
∂ε ¼ 1

5
: ð91Þ

As a self-consistent check, we calculate the dispersion
relations by using the constituent relation Eq. (84) as in
[40]. If considering the temperature rHðxÞ and 3-velocity
βiðxÞ has fluctuations as

rHðxÞ ¼ rH þ δrHe−iωvþi~k·~x; βiðxÞ ¼ δβie−iωvþi~k·~x;

ð92Þ

one can get the relations of the fluctuations by putting the
above equations into the EOM of boundary fluid, i.e., the
conservation equation for Tsurf

μν :

∂μTsurf
μν ¼ 0: ð93Þ

Treating δrH and δβi as first order quantities, one can get
the linear equation for the fluctuations

5

2
ωδrH − rHkiδβi ¼ 0; ð94Þ

3i
2
kiδrH þ ðr1=2H

~k2 − 3irHωÞδβi þ
3

5
r1=2H kikjδβj ¼ 0:

ð95Þ

In order to make the above equations have a nontrivial
solution, the determinant of coefficients should be 0, which
gives

ω ¼ −
i

3r1=2H

~k2; shear mode

ω ¼ � 1ffiffiffi
5

p j~kj − i
4

15r1=2H

~k2 þOðj~kj3Þ; soundmode:

ð96Þ

Comparing with the following results in hydrodynamics,

ω ¼ −i
η

εþ p
~k2; shear mode

ω ¼ csj~kj − i
ζ þ 4

3
η

2ðεþ pÞ
~k2; soundmode; ð97Þ

one can read the following relations:

η

εþ p
¼ 1

3r1=2H

; c2s ¼
1

5
;

ζ þ 4
3
η

2ðεþ pÞ ¼
4

15r1=2H

:

ð98Þ

Comparing with the results in Eq. (86), we can find perfect
consistency.

V. DISCUSSIONS AND OUTLOOK

We develop the BDE formalism of fluid/gravity corre-
spondence in a compactified black D4-brane background
and investigate the transport properties of its gauge-side
dual gluonic matter. Compactified D4 branes are the
background of the D4-D6 and the SS models, which are
the two nonconformal top-down holographic QCD models.
The SS model is a holographic model whose dual field
theory lives on the world-volume of the flavor D8-branes; it
is convenient to extract hadronic properties such as the
meson and baryon spectrums from the SS model, since the
Dirac-Born-Infeld (DBI) action of D8 branes describes
some meson effective theory like the chiral perturbation
theory (χ-PT). However, in the SS model, people focus
more on the flavor sector, and may ignore the bulk sector.
Our current work focuses on the bulk sector, i.e., the
compactified black D4-brane background whose asymp-
totic region is not an AdS spacetime. Therefore, we choose
the compactified black D4-brane background to describe
nonconformal gluonic matter.
The strategy is to use the dimensional reduction tech-

nique on the compact structure of the SS model background
in the Einstein frame, and one can get a 5D effective
Einstein gravity minimally coupled with three scalars with
exponential potentials. Following the standard BDE for-
malism of fluid/gravity correspondence, we derive the
constituent relation and read the thermodynamical and
hydrodynamical quantities such as the energy and momen-
tum density and the shear and bulk viscosities. It is found
that the ratio of bulk to shear viscosity and sound speed
from our results are consistent with the previous studies on
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the transport properties of the SS model [66,68], which
shows the validity of the BDE formalism of fluid/gravity
correspondence in a nonconformal background. The cal-
culation of second order transport coefficients are techni-
cally direct based on this work. What is more, this
work offers us a nonconformal prototype in fluid/gravity
duality that is in parallel with the AdS5 construction of
Bharttacharyya et al., which provides us with the oppor-
tunity to study nonconformal systems with the 5D metric
(23) given in this work.
As further applications, the most straightforward project

is to calculate the second order transport coefficients of
nonconformal gluonic matter by using the BDE formalism.
The second order transport coefficients have been calcu-
lated in conformal systems with [43,44] or without [40,42]
chemical potentials using the BDE formalism of fluid/
gravity duality, and they have also been calculated via
Green-Kubo formulas in both conformal [38] and non-
conformal [72] systems. For the nonconformal Dp-brane
backgrounds, the form of the second order viscous tensor
has been predicted in [64].
One may also study the effective fluid on a cavity with

finite r ¼ R using the compactified black D4-brane sol-
ution (not under the near-horizon limit) as in [50,51]. The
most different point of the effective recipe from the present
work is the dilaton; A and B should be boundary dependent
since they both relate withH4, and thus rQ4. This is like the
case in [51] where scalars also relate with the harmonic
functions, but unlike that in [50], in which the scalar is only
r dependent and the cutoff surface can be chosen as
isodilatonic. Thus we should let those three scalars all
have first order perturbations just like in [51], which may
make us solve six equations in all for the scalar part
perturbation.
Another interesting attempt in the future is to investigate

nonconformal fluid with an axial chemical potential μ5 via
the SS model with smeared D0 charge on the D4-brane
world volume [73]; this model can extract the axial
chemical potential and the axial charge diffusion constant
besides the hydrodynamical quantities in the present work.
What is more, all the hydrodynamical quantities should be
dependent on both temperature and axial chemical poten-
tial. We can also use the method developed in this work to
investigate the newly found anomalous effects [74] (such as
the chiral magnetic effect, chiral separation effect, and so
on) analytically.
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APPENDIX: DIMENSIONAL REDUCTION
FROM 10D TO 5D

We will do dimensional reduction on the following 10D
diagonal background:

ds2 ¼ e2α1AgMNdxMdxN

þ e2α2Aðe2β1Bdy2 þ e2β2BγabdθadθbÞ: ðA1Þ

The nontrivial Christoffel symbols of this metric are (the
ones with tildes are ten-dimensional components)

~ΓM
NP ¼ ΓM

NP þ α1ðδMN ∂PAþ δMP ∂NA − gNP∇MAÞ;
~ΓM
yy ¼ −ðα2∇MAþ β1∇MBÞeð−2α1þ2α2ÞAþ2β1B;

~Γy
My ¼ α2∂MAþ β1∂MB;

~ΓM
ab ¼ −ðα2∇MAþ β2∇MBÞeð−2α1þ2α2ÞAþ2β2Bγab;

~Γa
Mb ¼ ðα2∂MAþ β2∂MBÞδab;
~Γa
bc ¼ Γa

bc: ðA2Þ

From the above results, we also have

~ΓN
MN ¼ ΓN

MN þ 5α1∂MA;

~ΓP
MP þ ~Γy

My þ ~Γa
Ma ¼ ΓP

MP þ ð5α1 þ 5α2Þ∂MA

þ ðβ1 þ 4β2Þ∂MB; ðA3Þ

which can make our computation more convenient. The
components of the Ricci tensors are

~RMN ¼ RMN − ð3α1 þ 5α2Þ∇M∇NA − ðβ1 þ 4β2Þ∇M∇NB − α1gMN∇P∇PA

þ ð3α21 þ 10α1α2 − 5α22Þ∂MA∂NA − ð3α21 þ 5α1α2ÞgMNð∂AÞ2
þ ðα1β1 − α2β1 þ 4α1β2 − 4α2β2Þð∂MA∂NBþ ∂NA∂MBÞ
− ðα1β1 þ 4α1β2ÞgMN∂PA∂PB − ðβ21 þ 4β22Þ∂MB∂NB; ðA4Þ
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~Ryy ¼ −½α2∇2Aþ β1∇2Bþ ð3α1α2 þ 5α22Þð∂AÞ2 þ ð3α1β1 þ 6α2β1 þ 4α2β2Þ∂A · ∂B
þðβ21 þ 4β1β2Þð∂BÞ2�eð−2α1þ2α2ÞAþ2β1B; ðA5Þ

~Rab ¼ −½α2∇2Aþ β2∇2Bþ ð3α1α2 þ 5α22Þð∂AÞ2 þ ð3α1β2 þ α2β1 þ 9α2β2Þ∂A · ∂B
þðβ1β2 þ 4β22Þð∂BÞ2�eð−2α1þ2α2ÞAþ2β2Bγab þ 3γab: ðA6Þ

Again, the components with tildes are ten-dimensional ones. Then we have the Ricci scalar,

Rð10Þ ¼ ½R − ð8α1 þ 10α2Þ∇2A − ð2β1 þ 8β2Þ∇2B − ð12α21 þ 30α1α2 þ 30α22Þð∂AÞ2
−6ðα1 þ 2α2Þðβ1 þ 4β2Þ∂A · ∂B − ð2β21 þ 8β1β2 þ 20β22Þð∂BÞ2�e−2α1A
þ 12e−2α2A−2β2B: ðA7Þ
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