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We consider the real topological string on certain noncompact toric Calabi-Yau three-folds X, in its
physical realization describing an orientifold of type IIA on X with an O4-plane and a single D4-brane
stuck on top. The orientifold can be regarded as a new kind of surface operator on the gauge theory with
8 supercharges arising from the singular geometry. We use the M-theory lift of this system to compute the
real Gopakumar-Vafa invariants (describing wrapped M2-brane Bogomol'nyi-Prasad-Sommerfield (BPS)
states) for diverse geometries. We show that the real topological string amplitudes pick up certain signs
across flop transitions, in a well-defined pattern consistent with continuity of the real BPS invariants. We
further give some preliminary proposals of an intrinsically gauge theoretical description of the effect of the
surface operator in the gauge theory partition function.
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I. INTRODUCTION

Amost interesting connection between gauge theory and
string theory is the relation between nonperturbative
instanton corrections in 4d/5d gauge theories with 8
supercharges [1,2], and the topological string partition
functions on noncompact toric Calabi-Yau (CY) three-
folds X (in their formulation in terms of Bogomol'nyi-
Prasad-Sommerfield (BPS) invariants [3–5]). Basically, the
BPS M2-branes on compact 2-cycles ofX are instantons of
the gauge theory arising from M-theory on X.
In this paper we are interested in extending this

correspondence to systems with orientifold projections.
A natural starting point is the real topological string,
introduced in [6] and studied in compact examples in
[7] and in noncompact CY three-folds in [8,9]. This real
topological string is physically related to type IIA on a CY
three-fold X quotiented by an orientifold, given by an
antiholomorphic involution σ on X and a flip on two of the
4d spacetime coordinates (say x2, x3); it thus introduces an
O4-plane, spanning the Lagrangian 3-cycle given by the
fixed point set,1 and the two fixed 4d spacetime dimensions
x0, x1. In addition, the topological tadpole cancellation [6]
requires the introduction of a single stuck D4-brane on top
of the (negatively charged) O4-plane, producing local
cancellation of RR charge.
The M-theory lift of this type IIA configuration [10]

corresponds to a freely acting quotient of M-theory on
X × S1, in which the action σ on X (and the flip of two 4d

coordinates) is accompanied by a half-period shift along the
S1. This M-theory lift provides a reinterpretation of the real
topological string partition function in terms of real BPS
invariants, which are essentially given by a combination of
the parent Gopakumar-Vafa (GV) BPS invariants, weighted
by the �1 eigenvalue of the corresponding state under the
orientifold action.
This orientifolding can be applied in the context of type

IIA/M-theory on noncompact toric CY three-foldsX which
realizes 5d gauge theories. More specifically, one should
consider the 5d gauge theory compactified to 4d, with an
orientifold acting nontrivially as a shift on the S1. Since the
orientifold plane is real codimension 2 in the 4d Minkowski
dimensions, the system describes the gauge theory in the
presence of a surface defect. Certain surface operators have
been studied in [11–15], also in the context of M-theory/
gauge theory correspondence, describing them by the
introduction of D2-branes/M2-branes in the brane setup
or D4-branes in the geometric engineering [5,16,17]. An
important difference with our discussion is that the hol-
onomy of our surface operators is an outer automorphism
of the original gauge group. In our case, the properties of
the gauge theory in this orientifold background are implic-
itly defined by the real topological vertex, even though
they should admit an eventual intrinsic gauge-theoretical
description. Hence, one can regard our real topological
string results as a first step in the study of a novel kind of
gauge theory surface operators.
Our strategy is as follows:
(i) For concreteness, we focus on the geometry

which realizes a pure SUðNÞ gauge theory, and
other similarly explicit examples. We construct the
real topological string on noncompact toric CY

1In this paper we focus on cases with nontrivial fixed point
sets; freely acting orientifolds could be studied using similar
ideas.
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three-folds X by using the real topological vertex
formalism [9].

(ii) In the M-theory interpretation, the real topological
string amplitudes correspond to a one-loop diagram
of a set of 5d BPS particles from wrapped M2-
branes, suitably twisted by the orientifold action as
they propagate on the S1. An important point is that
the effect of the orientifold action arises only after
the compactification to 4d on S1, so the 5d picture is
identical to the parent theory. Therefore, the corre-
spondence between M-theory and 5d N ¼ 1 gauge
theory is untouched.

(iii) The corresponding statement on the gauge theory
side is that the 4d partition function of the gauge
theory in the presence of the orientifold surface
defect must be given by the compactification of the
original 5d gauge theory on S1, but with modified
periodic/antiperiodic boundary conditions for fields
which are even/odd under the orientifold action.
This can in principle be implemented as the com-
putation of the Witten index with an extra twist
operator in the trace. This kind of operator has not
appeared in the literature. We use the comparison of
the oriented and real topological vertex partition
functions to better understand the nature and action
of this operator on the gauge theory.

Even though we do not achieve a completely successful
gauge theoretical definition of the orientifold operation, we
obtain a fairly precise picture of this action in some
concrete situations. Moreover, our discussion of the topo-
logical vertex amplitudes reveals new properties in the
unoriented case.
The rest of the paper is organized as follows. In Sec. II we

review the M-theory/gauge theory correspondence in the
oriented case: in Sec. II Awe review the topological vertex
computation of topological string partition functions on
local CY three-folds, in Sec. II B we describe the compu-
tation of the gauge theoretic Nekrasov partition function via
localization. In Sec. III we review the computation of real
topological string amplitudes: Sec. III A introduces some
general considerations of unoriented theories, and Sec. III B
describes the real topological string computation using the
real topological vertex. Explicit examples are worked out in
Sec. IV, like the conifold [U(1) gauge theory] in Sec. IVA,
wherewe correct some typos in the previously known result,
and the pure SUðNÞ theories in Sec. IV B, where we also
discuss their behavior under flop transitions. In Sec. V we
describe a twisted Nekrasov partition function, whose
structure is motivated by the action of the orientifold, and
compare it with the real topological string partition function.
Section VI offers our conclusions. Appendix A reviews
aspects of the real topological string and the topological
vertex formulation, Appendix B presents some new enu-
merative checks of the BPS integrality, and Appendix C
gathers some useful identities.

II. REVIEW OF THE ORIENTED CASE

In this section we review the correspondence between
BPS M2-brane invariants of M-theory on a toric CY three-
fold singularity X and the supersymmetric gauge theory
Nekrasov partition function [18–23]. We will take advan-
tage to introduce useful tools and notations to be used in the
discussion of the orientifolded case.

A. The topological string

1. BPS expansion of the topological string

We start with a brief review of closed oriented topo-
logical string interpreted in terms of BPS states in M-theory
[3,4]. Consider type IIA on a CY three-fold X, which
provides a physical realization of the topological A-model
on X. The genus g topological string amplitude FgðtiÞ,
which depends on the complexified Kähler moduli ti ¼
ai þ ivi with ai coming from the B-field and vi being the
volume, computes the F-term [24]

Z
d4x

Z
d4θFgðtiÞðW2Þg →

Z
d4xFgðtiÞF2g−2

þ R2þ;

ð2:1Þ

where the second expression applies for g > 1 only, and the
N¼2Weyl multiplet is schematicallyW¼Fþþθ2Rþþ���,
in terms of the self-dual graviphoton and curvature. If we
turn on a constant self-dual graviphoton background in the
four noncompact dimensions

Fþ ¼ ϵ

2
dx1 ∧ dx2 þ ϵ

2
dx3 ∧ dx4; ð2:2Þ

the sum may be regarded as the total A-model free-energy,
with coupling ϵ

F ðtiÞ ¼
X∞
g¼0

ϵ2g−2FgðtiÞ: ð2:3Þ

This same quantity can be directly computed as a one-loop
diagram of 5d BPS states in M-theory compactified on
X × S1, corresponding to 11d graviton multiplets and to
M2-branes wrapped on holomorphic 2-cycles. These states
couple to the graviphoton background via their quantum
numbers under the SUð2ÞL in the 5d little group
SUð2ÞL × SUð2ÞR. Denoting by GVg;β the multiplicity of
BPS states corresponding to M2-branes on a genus g curve
in the homology class β, we have an expression2

2A subtlety regarding the reality condition of the ϵ-background
has been discussed in [25].
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F ¼
X

β∈H2ðX;ZÞ

X∞
g¼0

X∞
m¼1

GVg;β
1

m

�
2i sinh

mϵ

2

�
2g−2

eimβ·t;

ð2:4Þ
with jeimβ·tj < 1 so that the BPS state counting is well
defined. Namely, the computation is carried out in the
large volume point in the Kähler moduli space. From the
M-theory point of view, the real part of t may be provided
by the Wilson line along S1, originated from the three-form
C3. Finally, the topological string partition function is
defined as

Ztop ¼ expF : ð2:5Þ

2. Topological vertex formalism

From now on we specialize to a particular class of M-
theory background geometries, directly related to super-
symmetric gauge theories. M-theory on a CY three-fold
singularity, in the decoupling limit, implements a geometric
engineering realization of 5d gauge theory with 8 super-
charges, with gauge group and matter content determined
by the singularity structure [26,27]. Upon compactification
on S1, it reproduces type IIA geometric engineering
[28,29]. This setup is therefore well suited for the matching
of gauge theory results in terms of topological string
amplitudes in the GV interpretation.
We will use the best known tool at large volume point in

moduli space to compute topological string partition
functions on local toric CY three-folds, namely the topo-
logical vertex formalism [30–33]. This can be even used
to define a refined version of the topological string
amplitude [32–38], associated to the theory in a nonself-
dual graviphoton background

F ¼ 1

2
ϵ1dx1 ∧ dx2 −

1

2
ϵ2dx3 ∧ dx4: ð2:6Þ

The unrefined topological string amplitude is recovered for
ϵ1 ¼ −ϵ2. We will describe the refined topological vertex
computation, but will eventually restrict to the unrefined
case, since only this is known in the unoriented case.
Happily, this suffices to illustrate our main points.
The basic idea is to regard theweb diagramof the resolved

singularity (the dual of the toric fan) as a Feynman diagram,
with rules to produce the topological string partition func-
tion. Roughly, one sums over edges that correspond to
Young diagrams Ri, with propagators ð−eitiÞjRij depending
on Kähler parameters ti, and vertex functions expressed in
terms of skew-Schur functions. The formalism is derived
from open-closed string duality and 3d Chern-Simons
theory [30,31,39].
Let us begin by introducing some useful definitions.

A Young diagram R is defined by the numbers of boxes
RðiÞ in the ith column, ordered as Rð1Þ ≥ Rð2Þ ≥
� � � ≥ RðdÞ ≥ Rðdþ 1Þ ¼ 0, see Fig. 1. We denote by

jRj ¼ P
d
i¼1 RðiÞ the total number of boxes, and by ∅

the empty diagram. For a box s ¼ ði; jÞ ∈ R, we also define

aRði; jÞ ≔ RtðjÞ − i; lRði; jÞ ≔ RðiÞ − j; ð2:7Þ

where Rt denotes transpose, see Fig. 1.
We recall some definitions useful to work with refined

topological vertex3 by following the conventions used in
[40]. An edge is labeled by a Young diagram ν, and has an
associated propagator ð−QνÞjνj, where Q is the exponential
of the complexified Kähler parameter of the corresponding
2-cycle. Edges join at vertices, which have an associated
vertex function

Cλμνðt; qÞ ¼ t−
‖μt‖2

2 q
‖μ‖2þ‖ν‖2

2 ~Zνðt; qÞ
X
η

�
q
t

�jηjþjλj−jμj
2

× sλt=ηðt−ρq−νÞsμ=ηðt−νtq−ρÞ; ð2:8Þ

where q ¼ e−iϵ2 and t ¼ eiϵ1 , sRðq−ρt−νÞ means sR
evaluated at xi ¼ qi−

1
2t−νðiÞ, and sμ=ηðxÞ are skew-Schur

functions: if sνðxÞ is Schur function and sνðxÞsρðxÞ ¼P
μc

μ
νρsμðxÞ, then sμ=νðxÞ ≔

P
ρc

μ
νρsρðxÞ [41] (in particu-

lar, s∅=R¼ δ∅;R, sR=∅ ¼ sR, and sμ=νðQqÞ ¼ Qjμj−jνjsμ=νðqÞ.)
Subindices are ordered according to Fig. 2(a), and we
defined

~Zνðt; qÞ ¼
Y
s∈ν

ð1 − qlνðsÞtaνðsÞþ1Þ−1: ð2:9Þ

We also define

FIG. 1. Notation for arm and leg lengths of the box
s ¼ ð2; 1Þ ∈ R.

3In subindex-packed formulas, we sometimes adopt Greek
letters to label Young diagrams.
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fνðt; qÞ ¼ ð−1Þjνjt‖νt‖22 q−
‖ν‖2
2 ;

~fνðt; qÞ ¼ ð−1Þjνjt‖νt‖22 q−
‖ν‖2
2

�
t
q

�jνj
2

; ð2:10Þ

so that when we glue two refined topological vertices, we
introduce framing factors ~fνtðt; qÞn or fνtðq; tÞn depending
on whether the internal line is the nonpreferred direction
[Fig. 2(b)] or preferred direction [Fig. 2(c)] respectively,
with n ≔ detðu1; u2Þ. The rule for the unrefined topological
vertex is recovered by setting t ¼ q.

3. Examples

SUðNÞ gauge theoryAs an illustrative example, consider
the toric diagram for an SUðNÞ gauge theory, given in
Fig. 3, where we use standard notation [18,19,31]. Among
the different possible ways to get SUðNÞ, we have taken our

diagram to be symmetric with respect to a vertical line, for
later use in Sec. IV when we impose Z2 orientifold
involutions. This constrains the slope of external legs in
the diagram entering the topological vertex computation (in
the gauge theory of the next section, this translates into a
choice of 5d Chern-Simons level K ¼ N − 2 [42].) We
denote by QFi

the exponential of the Kähler parameter for
the edge Ti (for i ¼ 1;…; N − 1). The exponentials of the
Kähler parameters for the horizontal edges Ri are denoted
by QBi

(for i ¼ 1;…; N), and they can be expressed in
terms of QB ≔ QB1

¼ QB2
as

QBi
¼ QB

Yi−1
m¼2

Q2ðm−1Þ
Fm

: ð2:11Þ

The refined topological string partition function is written

ZSUðNÞ
ref top ¼

X
T1 ;…;TN−1
R1 ;…;RN

T0
1
;…;T0

N−1

YN
i¼1

CTi−1Tt
iR

t
i
ðt; qÞ ~fTt

i
ðt; qÞð−QFi

ÞjTijfRi
ðq; tÞ−2iþ3ð−QBi

ÞjRijCT 0
iT

0 t
i−1Ri

ðq; tÞ ~fT 0t
i
ðq; tÞð−QFi

ÞjT 0
ij; ð2:12Þ

where the relevant rules and quantities are defined in Sec. II A 2. We focus on the unrefined case (i.e. set t ¼ q ¼ eiϵ), where
this can be explicitly evaluated to give

ZSUðNÞ
top ¼

X
R

�YN
i¼1

qð‖Rt
i‖

2−‖Ri‖2Þð1−iÞþ‖Rt
i‖

2 ~Z2
Ri
QjRij

Bi

� Y
1≤k<l≤N

Y∞
i;j¼1

�
1 −

�Yl−1
m¼k

QFm

�
qiþj−1−RkðiÞ−Rt

lðjÞ
�−2

: ð2:13Þ

Using Eqs. (C1) and (C4) we can recast the expression as sum over N-tuples of Young diagrams R ¼ ðR1;…; RNÞ such that
jRj ≔ P

ijRij ¼ k,

ZSUðNÞ
top ¼ ZSUðNÞ

top pert

X∞
k¼0

uk
X
jRj¼k

CSN;N−2

YN
i;j¼1

Y
s∈Ri

1

ð2iÞ2sin2 1
2
EijðsÞ

; ð2:14Þ

where

EijðsÞ ¼ ti − tj − ϵ1lRi
ðsÞ þ ϵ2½aRj

ðsÞ þ 1�; ð2:15Þ

FIG. 2. Refined vertex conventions. We express a leg in the preferred direction by ‖.
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(we also denote by E the unrefined expression, i.e. the one
with ϵ1 ¼ −ϵ2 ≕ ϵ). Here we have introduced the pertur-
bative contribution

ZSUðNÞ
top pert ≔

Y
1≤k<l≤N

Y∞
i;j¼1

�
1−

�Yl−1
m¼k

QFm

�
qiþj−1

�−2
ð2:16Þ

and the instanton fugacity

u ≔
QB

ðQN−1
i¼1 QN−i

Fi
Þ2
N

: ð2:17Þ

We have also introduced with hindsight the quantities
ti ¼ ai þ ivi, i ¼ 1;…; N, satisfying

P
iti ¼ 0, to rephrase

the Kähler parameters as

QFi
¼ eiðtiþ1−tiÞ: ð2:18Þ

viþ1 − vi encodes the length of vertical edge Fi in the web
diagram (and eventually the gauge theory Coulomb branch
parameters). They should satisfy jQFi

j < 1 or viþ1 > vi, so
that it is a good expansion parameter. In other words, we are
at a large volume point in the Kähler moduli space spanned
by vi. We also have the quantity (eventually corresponding
to the contribution from the gauge theory Chern-Simons
term)

CSN;K ≔
YN
i¼1

Y
s∈Ri

eiKEi∅ðsÞ: ð2:19Þ

Conifold Another illustrative example is the resolved
conifold, whose web diagram (again restricting to a case
symmetric under a line reflection, for future use) is given in
Fig. 4. The unrefined topological vertex computation gives

ZUð1Þ
top ¼ exp

�
−
X∞
m¼1

1

m
Qm

ðqm=2 − q−m=2Þ2
�

¼
Y∞
n¼1

ð1 −QqnÞn; ð2:20Þ

where Q is the Kähler parameter.

B. Supersymmetric Yang-Mills on ϵ-background

We now consider a 4d N ¼ 2 gauge theory. Its exact
quantum dynamics is obtained by the perturbative one-loop
contribution and the contribution from the (infinite) set of
BPS instantons. These corrections can be obtained from a
5d theory with 8 supercharges, compactified on S1, as a
one-loop contribution from the set of 5d one-particle BPS
states. These particles are perturbative states of the 5d
theory and BPS instanton particles.
The 5d instanton partition function [1] is given by a

power series expansion Zinst ¼
P∞

k¼0 u
kZinst

k , where the
contribution for instanton number k ¼ c2 is

Zinst
k ðfaig; ϵ1; ϵ2Þ
¼ TrHk

½ð−1ÞFe−βHe−iϵ1ðJ1þJRÞe−iϵ2ðJ2þJRÞe−i
P

aiΠi �:
ð2:21Þ

Here we trace over the 5d Hilbert space H of one-particle
massive BPS states. Also, J1 and J2 span the Cartan
subalgebra of the SO(4) little group, JR the Cartan of the
SUð2ÞR R-symmetry, and Π are the Cartan generators for a
gauge group G. ai, i ¼ 1;…; rankG are Wilson lines of G
on the S1.
The BPS particles are W-bosons, 4d instantons (viewed

as solitons in the 5d theory) and bound states thereof. For
k ≠ 0, the partition function can be regarded as a Witten
index in the supersymmetric (SUSY) quantum mechanics
whose vacuum is the Atiyah-Drinfeld-Hitchin-Manin
(ADHM) moduli space, with the SUSY algebra

FIG. 3. Web diagram for a toric singularity engineering pure
SUðNÞ gauge theory with K ¼ N − 2. FIG. 4. Web diagram for the conifold.
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fQA
M;Q

B
Ng ¼ PμðΓμCÞMNϵ

AB þ i
4π2k
g2YM

CMNϵ
AB

þ iTrðvΠÞCMNϵ
AB; ð2:22Þ

where vi are the 5d Coulomb branch parameters. We will
eventually complexify them with the already appeared
Wilson lines to complete the complex Coulomb branch
parameters, bearing in mind that we will compare the
Nekrasov partition function in Eq. (2.21) with the topo-
logical string partition function in Eq. (2.5).
In the following we focus on G ¼ UðNÞ with 5d Chern-

Simons level K. The quantity in Eq. (2.21) can be evaluated
by using localization in equivariant K-theory [1,2,43] on
the instanton moduli space MðN; kÞ, more precisely on its
Gieseker partial compactification and desingularization
given by framed rank N torsion-free sheaves on
CP2 ¼ R4∪l∞, where the framing is given by a choice
of trivialization on the line at infinity l∞. The ϵ-background
localizes the integral, restricting it to a sum over fixed
points of the equivariant action.
The result of computation for pure G ¼ UðNÞ gauge

theory with Chern-Simons level K is [1,2,42,44–46]

ZUðNÞ
inst ¼

X∞
k¼0

uk
X
jRj¼k

YN
i¼1

Y
s∈Ri

×
eiKðEi∅ðsÞ−1

2
ðϵ1þϵ2ÞÞQ

N
j¼1ð2iÞ2 sin EijðsÞ

2
sin EijðsÞ−ðϵ1þϵ2Þ

2

: ð2:23Þ

For comparison with the topological string result, we take
K ¼ N − 2. We can restrict the result to SUðNÞ by
constraining the sum of the Coulomb branch moduli to
be zero. Note that the UðNÞ and SUðNÞ instanton partition
functions are in general different,4 but they agree in our
case of zero flavors with Chern-Simons level K ¼ N − 2.
With this proviso, we can see that Eq. (2.14) from

Sec. II A 3 can be written as ZSUðNÞ
top =ZSUðNÞ

top pert ¼ ZUðNÞ
inst

evaluated for K ¼ N − 2,
P

ti ¼ 0, and in the unrefined
limit ϵ1 ¼ −ϵ2 ≕ ϵ, by identifying the complexified Kähler
parameter with the complexified Coulomb branch moduli.
Hence we have an exact match up to the perturbative part.
Another interesting example is U(1) gauge theory.

Although it does not support semiclassical gauge instan-
tons, one can consider BPS states corresponding to small
instantons. A mathematically more rigorous way to define
them is to consider U(1) instantons on noncommutativeR4,
or equivalently rank 1 torsion-free sheaves on CP2 with
fixed framing on the line at infinity [50]. The gauge theory
result is [51,52]

X
R

QjRjQ
s∈Rð1 − q−lRðsÞ1 q1þaRðsÞ

2 Þð1 − q1þlRðsÞ
1 q−aRðsÞ2 Þ

¼ exp

�X∞
r¼1

1

r
Qr

ð1 − qr1Þð1 − qr2Þ
�
; ð2:24Þ

where q1 ¼ eiϵ1 , q2 ¼ eiϵ2 . The exponent agrees precisely
with the topological vertex result Eq. (2.20) in the unrefined
case q1q2 ¼ 1, by setting q1 ¼ q.

III. ORIENTIFOLDS AND THE REAL
TOPOLOGICAL VERTEX

In this section we review properties of the unoriented
theories we are going to focus on. We first introduce their
description in string theory andM-theory, and subsequently
review the computation of their partition function using the
real topological string theory in the real topological vertex
formalism.

A. Generalities

There are many ways to obtain an unoriented theory
from a parent oriented string theory configuration, which in
our present setup result in different gauge theory configu-
rations. In this paper we will focus on a particular choice,
which has the cleanest connection with the parent oriented
theory, in a sense that we now explain.
Consider the type IIA version of our systems, namely

type IIA on a noncompact toric CY threefold X singularity.
We introduce an orientifold quotient, acting as an anti-
holomorphic involution σ on X and as a sign flip in an R2

(parametrized by x2; x3) of 4d Minkowski space. For
concreteness, we consider σ to have a fixed locus L, which
on general grounds is a Lagrangian 3-cycle of X (one can
build orientifolds with similar M-theory lift even if σ is
freely acting). In other words, we have an O4-plane
wrapped on L and spanning x0; x1; we choose the O4-
plane to carry negative RR charge (see later for other
choices). We complete the configuration by introducing
one single D4-brane (as counted in the covering space)
wrapped on L and spanning x0; x1, namely stuck on the
O4−-plane.5
In general, if H1ðL;ZÞ is nontrivial, it is possible to turn

on Z2-valued Wilson lines for the D4-branes world volume
Oð1Þ≡ Z2 gauge group. This results in a different sign
weight for the corresponding disk amplitudes, as discussed
in the explicit example later on.
This setup is the physical realization of the real topo-

logical string introduced in [6] (see also [7–9]). In the
topological setup, the addition of the D4-brane corresponds
to a topological tadpole cancellation condition; in the

4The difference between the UðNÞ Nekrasov partition func-
tions and the SUðNÞ Nekrasov partition functions has been
discussed in [40,45,47–49]. It turns out that the web diagram
nicely encodes factors that account for the difference.

5Additional pairs of mirror D4-branes may be added; in the
M-theory lift, they correspond to the inclusion of explicit
M5-branes, so that open M2-brane states enter the computations.
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physical setup, it corresponds to local cancellation of the
RR charge, and leads to a remarkably simple M-theory lift,
which allows for direct connection with the 5d picture of
the oriented case, as follows.
This IIA configuration lifts to M-theory as a compacti-

fication onX × S1, with a Z2 quotient
6 acting as σ onX, as

ðx2; x3Þ → ð−x2;−x3Þ on 4d Minkowski space-time, and as
a half-shift along the S1. Because the Z2 is freely acting on
the S1, the configuration can be regarded as an S1

compactification of the 5d theory corresponding to
M-theory on X (with the S1 boundary conditions for the
different fields given by their eigenvalue under the orienti-
fold action). Since the 5d picture is essentially as in the
oriented case, these configurations have a direct relation
with the oriented Gopakumar-Vafa description of the
topological string. Specifically, the real topological string
amplitude is given by a one-loop diagram of 5d BPS states
running on S1, with integer (resp. half integer) KK
momentum for states even (resp. odd) under the orientifold
action [10].
For completeness, we quote the M-theory lifts corre-

sponding to other choices of O4-plane and D4-brane
configurations [53,54]:

(i) An orientifold introducing an O4−-plane with no
stuck D4-brane lifts to M-theory on X × S1 with a
Z2 acting as σ on X, flipping x2; x3 in 4d space, and
leaving the S1 invariant. This M-theory configura-
tion has orbifold fixed points and therefore is not
directly related to the 5d picture of the oriented
theory.

(ii) An orientifold introducing an O4þ-plane lifts to M-
theory on X × S1 with a Z2 acting as σ on X,
flipping x2; x3 in 4d space, and leaving the S1

invariant, with 2 M5-branes stuck at the orbifold
locus. Again this M-theory configuration has orbi-
fold fixed points.

(iii) Finally, there is an exotic orientifold, denotedgO4þ-plane, which lifts to M-theory as our above
freely acting orbifold (acting with a half-shift on S1),
with one extra stuck M5-brane. This M-theory
configuration contains a sector of closed membranes
exactly as in the O4− þ D4 case, and in addition an
open membrane sector which has no direct relation
to the 5d oriented theory (but is described by
Ooguri-Vafa invariants [5]).

Hence, as anticipated, we focus on the O4− þ D4, whose
M-theory lift is the simplest and closest to the parent 5d
oriented theory.
To finally determine the orientifold actions, we must

specify the antiholomorphic involution σ acting on X. In
general, a toric CY three-fold associated to an SUðNÞ

gauge theory admits two such Z2 actions,7 illustrated in
Fig. 5 for SU(4). They mainly differ in the effect of the
orientifold action on the Coulomb branch moduli of the 5d
gauge theory. Namely, the blue quotient in Fig. 5 reduces
the number of independent moduli, whereas the red one
preserves this number. Equivalently, the two quotients
either reduce or preserve the rank of the gauge group at
the orientifold fixed locus. Since the Coulomb branch
parameters play an important role in the parent gauge
theory localization computation, we will focus on rank-
preserving quotients to keep the discussion close to the
parent theories. We leave the discussion of rank-reducing
involutions for future projects.

B. The real topological string

The real topological string is a natural generalization of
the topological string in Sec. II A. It provides a topological
version of the IIA orientifolds in the previous section.
Namely, the real topological string computes holomorphic
maps from surfaces with boundaries and crosscaps into a
target X modded out by the orientifold involution σ.
Realizing the unoriented world-sheet surface as a quotient
of a Riemann surface by an antiholomorphic involution,8

Σ ¼ Σg=Ω, we must consider equivariant maps f as
in fig. 6.
The model includes crosscaps, and boundaries

(with a single-valued Chan-Paton index to achieve the
topological tadpole cancellation) ending on the Lagrangian
L. Hence, we must consider the relative homology class
f�ð½Σg�Þ ∈ H2ðX; L;ZÞ.
The total topological amplitude at fixed Euler character-

istic χ may be written as

FIG. 5. SU(4) with two involutions.

6The M-theory 3-form C3 is intrinsically odd under this Z2, so
we refer to it as “orientifold action” in M-theory as well.

7Certain cases, like the conifold, may admit additional
symmetries.

8The case Σ itself is a Riemann surface requires to start from a
disconnected Σg, and is better treated separately.
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GðχÞ ¼ 1

2

�
F ðgχÞ þ

X
F ðg;hÞ þ

X
Rðg;hÞ þ

X
Kðg;hÞ

�
;

ð3:1Þ
where the different terms account for closed oriented
surfaces, oriented surfaces with boundaries, surfaces with
one crosscap, and surfaces with two crosscaps. Different
consistency conditions, needed to cancel otherwise ill-
defined contributions from the enumerative geometry
viewpoint,9 guarantee integrality of the BPS expansion for

F real ¼
X
χ

iχϵχ
�
GðχÞ −

1

2
F ðgχÞ

�
: ð3:2Þ

This can be taken as the definition of the real topological
string.
This integrality of BPS invariants, as well as a physical

explanation of the tadpole cancellation and other consis-
tency conditions of the real topological string, may be
derived from the M-theory viewpoint [10]. The real
topological string amplitude is obtained as a sum over
5d BPS M2-brane states of the oriented theory, running in
the compactification S1 with boundary conditions deter-
mined by the eigenvalue under the orientifold operator. For
a short review, see Appendix A 1. Denoting by dGVĝ;β this
weighted BPS multiplicity of M2-branes wrapped on a
genus ĝ surface (as counted in the quotient) in the
homology class β, the equivalent to Eq. (2.4) is

F real ¼
X
β;ĝ

oddm≥1

dGVĝ;β
1

m

�
2 sinh

�
mϵ

2

��
ĝ−1

eimβ·t: ð3:3Þ

To compute real topological string partition function on
local Calabi-Yau, we will use the real topological vertex
[9], which is a generalization of the standard topological
vertex to take into account involutions of the toric diagram.
The formalism is still only available in the unrefined case,
on which we focus herefrom.
We apply the formalism to involutions of the kind shown

in Fig. 7, as described in more detail in Appendix A 2. For
these involutions there are no legs fixed pointwise in the
diagram, and this simplifies the computation of the

topological vertex. Due to the symmetry of the diagram
in the parent theory, one can use symmetry properties of the
vertex functions to cast each summand in the sum over
Young diagrams as a square [9]. Then the real topological
vertex amplitude is given by the sum of the square roots of
the summands. To define these in a consistent way, we
follow the choice of sign in [9], see Eq. (A6). In all our
examples this sign is trivial, since jRj � cðRÞ is even for
every R, and in the cases we consider also nþ 1 ¼ −2iþ 4
is even as well, as can be seen from Eq. (2.12).
Explicit examples will be described in Sec. IV.

IV. EXPLICIT EXAMPLES

In this section, we explicitly compute the real topological
string partition functions of the resolved conifold and also
the SUðNÞ geometry using the real topological vertex
formalism [9]. We first review the calculation of the real
topological string partition function of the resolved coni-
fold [9], correcting some typos. Then, we move on to the
computation of the real topological string partition function
for the SUðNÞ geometry, which shows an intriguing new
feature.

A. The real conifold

Let us apply the above recipe to the orientifold of the
resolved conifold. This is particularly simple because there
are no Coulomb branch moduli, and the only parameters
are the instanton fugacity and those defining the ϵ-
background.
The topological string side can be computed using the

real topological vertex formalism. The result10 reads

ZUð1Þ
real top ¼ exp

�
−
1

2

X∞
m¼1

1

m
Qm

ðqm=2 − q−m=2Þ2

�
X
modd

1

m
Qm=2

qm=2 − q−m=2

�
: ð4:1Þ

FIG. 7. Web diagram for our orientifolds of the conifold and
SU(2) theories.

FIG. 6. Commutative diagram for equivariant map.

9For example, for configurations in which H1ðL;ZÞ ¼ Z2 and
H2ðX; L;ZÞ ¼ Z, one needs to cancel homologically trivial disks
against crosscaps. 10This expression corrects some typos in [9].
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Our choice of orientifold plane charge corresponds to the
negative sign.11

The first term in the exponent corresponds to the
closed topological string contribution, while the second
reproduces the open and unoriented topological string
contributions.

B. Orientifold of pure SUðNÞ geometry, and its flops

In this section we study the unoriented version of the
SUðNÞ systems of Sec. II A 3, compute their real topo-
logical vertex amplitudes following the rules in [9], and
describe their behavior under flops of the geometry.

1. Real topological vertex computation

The web diagram is given in Fig. 8, which describes a Z2

involution of Fig. 3 (which was chosen symmetric in
hindsight).
We recall some expressions already introduced in

Sec. II A 3 for the oriented case. We define the perturbative
contribution as

ZSUðNÞ
real top pert ≔

Y
1≤k<l≤N

Y∞
i;j¼1

�
1 −

�Yl−1
m¼k

QFm

�
qiþj−1

�−1

:

ð4:2Þ

We also recall the Chern-Simons level Eq. (2.19)

CSN;K ≔
YN
i¼1

Y
s∈Ri

eiKEi∅ðsÞ; ð4:3Þ

where Eij is defined in Eq. (2.15) and ∅ denotes the empty
diagram. Finally, we introduce the rescaled instanton
fugacity

~u ≔
Q

1
2

B

ðQN−1
i¼1 QN−i

Fi
Þ1
N

; ð4:4Þ

which is the square root of the instanton fugacity Eq. (2.17)
in the oriented computation.
Expressing the (complexified) Kähler parameters in

terms of the (complexified) edge positions ti, withP
iti ¼ 0, and edges ordered such that Imtiþ1 > Imti in

a certain large volume region in the Kähler moduli space,
we take as in Eq. (2.18)

QFi
¼ eiðtiþ1−tiÞ: ð4:5Þ

Notice that in this case the fugacity can be written

as ~u ¼ Q
1
2

Be
it1 .

The computation is as follows: we start from Eq. (2.12),
go to the unrefined limit, and apply real topological vertex
rules [9], cf. Appendix A 2. Since our involution does not
fix any leg pointwise, we only need to reconstruct the
square within summands using permutation properties of
the topological vertexCRR0R00 ðqÞ [see Eq. (A4)], and the fact
that Ti ¼ T 0

i due to the involution. We get

ZSUðNÞ
top jTi¼T 0

i
¼

X
T1 ;…;TN−1
R1 ;…;RN

YN
i¼1

C2
TiTt

i−1Ri
ðqÞQ2jTij

Fi
QjRij

Bi
ð−1ÞjRijð4−2iÞ

×q‖Ti‖2−‖Tt
i‖

2þð2−iÞð‖Rt
i‖

2−‖Ri‖2Þ: ð4:6Þ

We then take the square root, and notice that the sign
Eq. (A6) for the propagator is always þ1,

ZSUðNÞ
real top ¼

X
T1 ;…;TN−1
R1 ;…;RN

YN
i¼1

CTiTt
i−1Ri

ðqÞQjTij
Fi

QjRij=2
Bi

× q
1
4
ð‖Ti‖2−‖Tt

i‖
2Þþ1

4
ð‖Ti−1‖2−‖Tt

i−1‖
2Þþ2−i

2
ð‖Rt

i‖
2−‖Ri‖2Þ:

ð4:7Þ

By using combinatorial identities for Young diagrams
and skew-Schur functions, described in Appendix C [in
particular Eqs. (C1) and (C5)], we arrive at the final result

ZSUðNÞ
real top ¼ ZSUðNÞ

real top pert

X∞
k¼0

~uk
X
jRj¼k

ð−1Þ
P

i
ði−1ÞjRij

× CSN;N−2
2

YN
i;j¼1

Y
s∈Ri

1

2i sin 1
2
EijðsÞ

: ð4:8Þ

2. Behavior under flops

It is worthwhile to briefly step back and emphasize an
important point. In the above computation there is an
explicit choice of ordering of edges in the web diagram,

FIG. 8. SUðNÞ with K ¼ N − 2 and involution.

11The choice of positive sign can be recovered by turning
on a nontrivial Z2-valued Wilson line on the D4-brane stuck
at the O4-plane in the type IIA picture, since the fixed locus
L ¼ R2 × S1 has one nontrivial circle.
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which defines a particular large volume limit. Moving in
the Kähler moduli space across a wall of a flop transition12

can reorder the edges, so we need to redefine the expansion
parameters Eq. (2.18). Consider the simplest setup in which
the ordering of all edges is reversed, such that vi > viþ1 for
all i, and we take

QFi
¼ eiðtN−i−tN−iþ1Þ; ð4:9Þ

with jQFi
j < 1. In this case, we are at a different large

volume point in the enlarged Kähler moduli space com-
pared to the case when we defined ti by Eq. (4.5). From the
viewpoint of the five-dimensional pure SUðNÞ gauge
theory, it corresponds to moving to a different Weyl
chamber in the Coulomb branch moduli space by a
Weyl transformation ti → tN−iþ1 for all i. If we write the
result by using EijðsÞ and CSN;K defined in Eqs. (2.15) and
(2.19), this gives the same exact result except for sign
pattern ð−1ÞΣiðN−iÞjRij. The computation of this result is
similar to Eq. (4.8) except that we redefined dummy
variables Rnew

i ≔ ðRold
N−iþ1Þt, compared to the geometry

before the flop transition. When we regard Eq. (4.8) as a
function of ti, we have computed

Zreal topðtN−iþ1; KÞ ≕ ~Zreal topðti; KÞ; ð4:10Þ

which is not equal to Zreal topðti; KÞ as a function of ti in the
unoriented case.13 This is different from the oriented case
where we have Ztopðti; KÞ ¼ ZtopðtN−iþ1; KÞ, which should
be true since Weyl transformations are part of the gauge
transformations. Therefore, this is a feature special to the
real topological string partition function of pure SUðNÞ
geometry. From the viewpoint of five-dimensional pure
SUðNÞ gauge theory, the pure SUðNÞ gauge theory is
invariant under the Weyl transformation of SUðNÞ and this
is reflected into the invariance of the partition function
under the Weyl transformation in the oriented case. In the
unoriented case, however, the noninvariance of the partition
function under the transformation implies that the presence
of the orientifold or the corresponding defect in field theory
breaks the symmetry that existed in the oriented case.
It is similarly easy to consider intermediate cases of

partial reorderings. The simplest is to take N ¼ 3, and
move from v1 < v2 < v3 to v2 < v3 < v1. In this case, the
new expansion parameters are QF1

¼ eiðt3−t2Þ and
QF2

¼ eiðt1−t3Þ. The result is basically the same, but with
sign ð−1Þ2jR1jþjR3j. Here we redefined dummy variables as
Rnew
1 ≔ ðRold

3 Þt, Rnew
2 ≔ ðRold

1 Þt, Rnew
3 ≔ ðRold

2 Þt.

In other words, starting with the result in a given
chamber, moving across a wall of a flop transition
exchanging two edges with diagrams R, S produces a
change in the amplitude (expressed in the new Kähler
parameters) given by a sign ð−1ÞjRjþjSj.
This is the explicit manifestation of the fact that the

topological string amplitude regarded as a function of ti in
this unoriented theory is not universal throughout the
moduli space, but it has a nontrivial behavior.14

3. Behavior under other transformations

Let us consider another transformation which is a
refection with respect to a horizontal axis for the pure
SUðNÞ geometry of Fig. 8. The operation in the original
pure SUðNÞ geometry corresponds to charge conjugation,
which is given by a transformation of the Coulomb branch
moduli ti → −tN−iþ1 for i ¼ 1;…; N and a flip of the sign
of CS level.15 The transformation can be effectively
implemented by defining the Kähler parameters as

QFi
¼ eiðti−tiþ1Þ; ð4:11Þ

with jQFi
j < 1 and the same labeling for Ri for all i as in

Fig. 8. Compared to Eq. (4.5), we flip the sign of ti for all i.
Hence, we are now assuming vi > viþ1 for all i and hence
we effectively consider the pure SUðNÞ geometry upside-
down. If we write the result by using EijðsÞ and CSN;K

defined in Eqs. (2.15) and (2.16), this gives the same result
except for different CS level − N−2

2
and sign pattern

ð−1ÞΣiðN−iÞjRij. In this case, we did not redefine the dummy
variables Ri. The change in the sign of CS level is
consistent with the fact that the definition Eq. (4.11) is
related to charge conjugation of the original pure SUðNÞ
gauge theory. When we regard Eq. (4.8) as a function of ti,
we have computed

Zreal topð−ti;−KÞ ≕ ~Zreal topðti; KÞ; ð4:12Þ

which is again not equal to Zreal topðti; KÞ as a function of ti
in the unoriented case. This is different from the oriented
case where we have Ztopðti; KÞ ¼ Ztopð−ti;−KÞ.16 This is
another example of a transformation where the presence of
the orientifold defect breaks the invariance of the partition

12The flop transition considered here shrinks and introduces a
family of rational curves. This is different from the usual flop
which shrinks and introduces an isolated rational curve. The
behavior of the (nonreal) topological string partition function
under the usual flop has been studied in [55–57].

13In the case N ¼ 3 they are equal to each other accidentally.

14However, when we regard the topological string amplitude as
a function of a good expansion parameter which is always QFi

with jQFi
j < 1, then they are essentially the same function.

Namely, the real GV invariants are the same at the two different
points in the enlarged Kähler moduli space.

15When we regard the pure SUðNÞ geometry as a 5-brane web
diagram, the CS level can be read off from the asymptotic
behavior of the external legs [49,58,59]. In particular, when
we turn the 5-brane web upside-down, the sign of the CS level
of the gauge theory also flips.

16We have checked this for N ¼ 2, 3, 4 up to 5-instanton order.
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function under a transformation that existed in the original
theory without the defect.

V. DISCUSSION: TOWARD GAUGE THEORY
INTERPRETATION

As explained in the introduction, the real topological
string on the local CY threefold should be related to the
partition function of the corresponding gauge theory in
the presence of a surface defect. Given the M-theory lift of
the orientifold in terms of a freely-acting shift on the S1,
this should correspond to a partition function of the theory
on S1, with modified boundary conditions, or equivalently
with an extra twist in the Witten index computation,

Zreal inst
k ðfaig; ϵ1; ϵ2Þ
¼ TrHk

½ð−1ÞFe−βHe−iϵ1ðJ1þJRÞe−iϵ2ðJ2þJRÞe−iΣaiΠiOΩ�;
ð5:1Þ

where OΩ is an operator implementing the orientifold
action in the corresponding Hilbert space sector.
In this section we exploit the intuitions from the

topological vertex computations to describe aspects of this
twist in explicit examples.

A. Invariant states and the conifold example

We start the discussion with the conifold. This is
particularly simple, because there is only one BPS
(half-)hypermultiplet, whose internal structure is invariant
under the orientifold, namely it is an M2-brane wrapped on
a 2-cycle mapped to itself under the orientifold. Then the
orientifold action is just action on the Lorentz quantum
numbers. From the viewpoint of gauge theory, there is a 5d
U(1) gauge theory, whose BPS states are instantons. In this
simple system it is possible to motivate the structure of the
twisted Nekrasov partition function Eq. (5.1), i.e. of the
operator OΩ. As discussed in Sec. II A 3, the ADHM
moduli space is just ðC2Þk=Sk where k is the instanton
number and Sk is the symmetric group of order k; these
moduli are intuitively the positions of the k instantons in
R4. Therefore the action of OΩ on this moduli space is
simply the geometric action imposed by the orientifold.
Since the orientifold action flips the space-time coordinates
ðx2; x3Þ → ð−x2;−x3Þ, we are motivated to take OΩ as
given by a shift

ϵ2 → ϵ2 þ π ð5:2Þ

in the original parent gauge theory expression Eq. (2.21).
Furthermore, we assume that the operator induces the
redefinition by a factor of 2 of certain quantities between
the parent theory and the twisted theory. In practice, it
requires that the twisted theory result should be expressed
in terms of the redefined weight

Q → Q
1
2: ð5:3Þ

We then consider the twisted Nekrasov partition function
of the U(1) instanton. First, we consider the refined
amplitude for the original theory Eq. (2.24), and perform
the shift ϵ2 → ϵ2 þ π. Taking the unrefined limit, we obtain

exp

�
−
1

2

X∞
m¼1

1

m
Q2m

ð2i sin ϵmÞ2 −
X
k odd

1

k
Qk

2i sin ϵk

�
: ð5:4Þ

We now redefine ϵ ¼ ~ϵ=2 and Q ¼ ~Q
1
2, and get

ZUð1Þ
real inst ¼ exp

�
−
1

2

X∞
m¼1

1

m

~Qm

ð2i sin 1
2
~ϵmÞ2

−
X
k odd

1

k

~Qk=2

2i sin 1
2
~ϵk

�
; ð5:5Þ

which agrees with Eq. (4.1) for the negative overall sign for
the unoriented contribution. One may choose a redefinition
Q ¼ − ~Q

1
2, which agrees with Eq. (4.1) for the positive

overall sign for the unoriented contribution. This choice
reflects the choice of Z2 Wilson line, although its gauge
theory interpretation is unclear.
Note that the conifold geometry is special in that the only

degree of freedom is one BPS (half-)hypermultiplet, from
an M2-brane on a CP1 invariant under the orientifold
action, which thus motivates a very simple proposal forOΩ.
This can in general change in more involved geometries,
where there are higher spin states, and/or states not
invariant under the orientifold. In these cases, the orienti-
fold action should contain additional information beyond
its action on 4d space-time quantum numbers.

B. A twisted Nekrasov partition
function for pure SUðNÞ

We now consider the case of the SUðNÞ geometry,
whose real topological string amplitude was described in
Sec. IV B 1, and discuss its interpretation in terms of a
twisted Nekrasov partition function.
We start with the following observation. Consider the

parent theory expression Eq. (2.23) for CS levelK ¼ N − 2
as starting point. Since part of the orientifold action
includes a space-time rotation which motivates the ϵ2-shift,
let us carry it out just like in the conifold case and check the
result.
Let us thus perform the ϵ2-shift and take the unrefined

limit (ϵ2 → −ϵþ π, ϵ1 → ϵ), and rescale ϵ → ϵ
2
, and ti →

ti
2

with u → ~uð¼ u
1
2Þ. We obtain the result
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ZUðNÞ
real inst ¼

X∞
k¼0

~uk
X
jRj¼k

ð−1ÞkþAþΓ

×
YN
i¼1

Y
s∈Ri

ei
N−2
2
Ei∅ðsÞQ

N
j¼1ð2iÞ sin 1

2
EijðsÞ

; ð5:6Þ

where A¼1
2
NðPi‖Rt

i‖2þjRijÞ, and Γ¼P
ij

P
s∈Ri

aRj
ðsÞ.

One can prove that AþΓ¼P
ij

P
ðm;nÞ∈Ri

Rt
jðnÞ≡kðmod2Þ,

so the final result is

ZUðNÞ
real inst¼

X∞
k¼0

~uk
X
jRj¼k

YN
i¼1

Y
s∈Ri

ei
N−2
2
Ei∅ðsÞQ

N
j¼1ð2iÞsin1

2
EijðsÞ

: ð5:7Þ

This expression evaluated for
P

ti ¼ 0 is remarkably
close to the real topological string computation
Eq. (4.8), up to i-dependent sign factors. Specifically
Eq. (4.8) can be recast as

ZSUðNÞ
real top=Z

SUðNÞ
real top pert ¼

X∞
k¼0

~uk
X
jRj¼k

YN
i¼1

Y
s∈Ri

×
ð−1Þi−1eiN−2

2
Ei∅ðsÞQ

N
j¼1ð2iÞ sin 1

2
EijðsÞ

: ð5:8Þ

As emphasized, our viewpoint is that the real topological
string computation defines the rules to describe the proper-
ties of the orientifold surface operator in the SUðNÞ gauge
theory. Let us now discuss the effect of the additional signs
from the perspective of the gauge theory, to gain insight
into the additional ingredients in OΩ beyond the ϵ2-shift.
The orientifold is acting with different (alternating) signs
on the different Young diagram degrees of freedom
associated to the edges in the web diagram. This might
imply an action with different signs on the states charged
under the corresponding Cartans (alternating when ordered
as determined by the 5d real Coulomb branch parameters).
It would be interesting to gain a more direct gauge theory
insight into the definition of this orientifold action.
Before concluding, we would like to mention an impor-

tant point. We have used the ϵ2-shift exactly as in the
conifold case in Sec. VA, and obtained a result very close
to the real topological vertex computation. However, one
should keep in mind that the BPS states of the SUðNÞ
theory have a much richer structure. Therefore, the addi-
tional signs are of crucial importance to reproduce the
correct results for the complete orientifold action on the
theory.
For instance, if we isolate the unoriented contribution

from Eq. (5.8), the extra signs are crucial to produce certain
nonzero real BPS multiplicities. This can be checked
explicitly e.g. for SU(2) using the results from
Appendix B. For instance, consider the real BPS multi-
plicities ngd1;d2 for M2-branes wrapped with degrees d1, d2

on the homology classes B and F, respectively. Already at
g ¼ 0 we have n01;0 ¼ −2 but n00;1 ¼ 0. The extra signs are
crucial to produce a nonzero result for the unoriented
contribution of the vector multiplet from the M2-brane on B
[which using Eq. (5.7) would give zero contribution.
Similar considerations can be drawn for many others of
the enumerative results in Appendix B.

VI. CONCLUSIONS

In this work we have explored the extension of the
correspondence between topological strings on toric CY
three-folds and 4d/5d supersymmetric gauge theories with
8 supercharges to systems with orientifolds with real
codimension 2 fixed locus. On the topological string side,
we have focused on quotients which produce the real
topological string of [6], because of its remarkably simple
physical realization in M-theory. We have analyzed the
properties of the systems, and emphasized their behavior
under flops of the geometry.
The real topological string amplitudes define the proper-

ties of a new kind of surface defect in the corresponding
gauge theory. We have rephrased the amplitudes in a form
adapted to a gauge theory interpretation, by means of a
newly defined twisted Nekrasov partition function, and we
have taken the first steps toward providing an intrinsically
gauge-theoretic interpretation of the twisting operator.
It would be interesting to complete the gauge theory

interpretation of the twist operator. The partition function
obtained by the simple ϵ2 shift does not distinguish
invariant states from noninvariant states. Therefore, M2-
branes wrapping F and M2-branes wrapping B essentially
give the same contribution to the partition function
Eq. (5.7). However, in general, they would give a different
contribution in the real topological string amplitude since
the former correspond to noninvariant states and the latter
correspond to invariant states. Hence, another implemen-
tation may be related to some operation that distinguishes
the invariant states from the noninvariant states. There may
be also a possibility to shift the Coulomb branch moduli
like the ordinary orbifolded instantons [15].
A way to complete the gauge theory interpretation may

be to give a more specific description of the orientifold in
the ADHM quantum mechanics. In [15], instantons with a
surface defect were identified with orbifolded instantons
via a chain of dualities of string theory. It would be
interesting to extend their reasoning to our case and
determine an effect of the orientifold defect in the
ADHM quantum mechanics. Once we identify the effect
in the ADHM quantum mechanics, then we may proceed in
the standard localization technique with it.
There are several other interesting directions worth

exploring:
(i) It would be interesting to exploit the M-theory

picture to develop a refined real topological vertex
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formalism, and to compare it with the gauge theory
computations.

(ii) As explained, there are different kinds of O4-planes
in the physical type IIA picture, which correspond to
different M-theory lifts, and different unoriented
topological strings (albeit, with intricate relations).
We hope to explore the gauge theory description of
those in future works.

(iii) It would also be interesting to consider the addition
of extra D4-branes, either on top of the O4-plane or
possibly on other Lagrangian 3-cycles, to describe
the unoriented version of the relation of open
topological strings and vortex counting on surface
defects [16,60].

We hope to come back to these question in the future.
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APPENDIX A: REAL TOPOLOGICAL STRING

1. M-theory interpretation of the real topological string

BPS state counting As already observed, we consider
tadpole canceling configurations, such that the M-theory
lift of the O4/D4 system is smooth, i.e. there are no fixed
points. This guarantees that locally, before moving around
theM-circle, the physics looks like in the oriented case. The
SUð2ÞL × SUð2ÞR group is broken by the orientifold to its
Cartan generators, which are enough to assign multiplic-
ities to the 5d BPS states.
There will be two kinds of states, as follows. First, those

not invariant under the orientifold, will have their orienti-
fold image curve somewhere in the covering X, and will

contribute to closed oriented amplitudes (thus, we can
neglect them). Second, those corresponding to curves
mapped to themselves by the involution; their overall Z2

parity is determined by their SUð2ÞL and SUð2ÞR multiplet
structure: as in the original GV case, the R part para-
metrizes our ignorance about cohomology of D-brane
moduli space, while the L part is cohomology of
Jacobian, and we know how to break it explicitly, due to
our simple orientifold action. Let us split the second class
of states, for fixed genus ĝ and homology class β, according
to their overall parity

GV0
ĝ;β ¼ GV0þ

ĝ;β þ GV0−
ĝ;β: ðA1Þ

Once we move on the circle, these invariant states
acquire integer or half-integer momentum, according to
their overall parity; this is taken into account in the 2d
Schwinger computation, that finally yields, after removing
even wrapping states that correspond again to closed
oriented sector, the numbers

dGVĝ;β ≔ GV0þ
ĝ;β − GV0−

ĝ;β ðA2Þ

that appear in Eq. (3.3). The detailed computation is
described in [10].
Tadpole cancellation The requirement that physical

tadpoles are canceled has an interesting implication
for real topological amplitudes, for geometries with
H1ðL;ZÞ ¼ Z2 and H2ðX; L;ZÞ ¼ Z; these include
well-studied examples like the real quintic or real local
CP2. We discuss this for completeness, even though the
geometries in the main text do not have this torsion
homology on L.
Denote the degree of a map by d ∈ H2ðX; L;ZÞ. By

looking at the appropriate exact sequence in homology, one
can see that crosscaps contribute an even factor to d, while
boundaries may contribute even or odd factor. Moreover,
by looking at the M-theory background form C3, one can
see that it contributes to the central charge a factor of i=2 for
every crosscap, i.e. RP2, that surrounds the O4-plane. This
translates into a minus sign once Poisson resummation is
performed, more precisely a ð−1Þmc sign, where c is the
crosscap number andm wrapping number around the circle
(recall the states we are interested in have odd m.)
Finally, since boundaries do not receive such contribu-

tions and one can show, with a heuristic argument regarding
real codimension one boundaries in the moduli space of
stable maps, that there is a bijection between curves that
agree except for a replacement of a crosscap with a
(necessarily even-degree) boundary, we conclude that
these two classes of curves cancel against each other.
This implies that the only contributions may arise from
odd-degree-boundary curves, and it is written as a restric-
tion χ ¼ dmod 2 on the summation in Eq. (3.3), as it has
been proposed in [6] based on the fact that these two

TOWARDS A GAUGE THEORY INTERPRETATION OF THE … PHYSICAL REVIEW D 93, 066001 (2016)

066001-13



contributions to the topological amplitude are not math-
ematically well-defined separately, and the above men-
tioned prescription produces integer BPS multiplicities.

2. Real topological vertex

The real topological vertex [9] is a technique that allows
us to compute the all genus topological string partition
functions, in the presence of toric orientifolds, namely a
symmetry of the toric diagram with respect to which we
quotient. This corresponds to an involution σ of X, and it
introduces boundaries and crosscaps in the topological
string theory. We restrict to unrefined quantities, since at
the moment real topological vertex technology is only
available for that setup.
The recipe morally amounts to taking a square root of the

topological vertex amplitude of the corresponding oriented
parent theory, as follows. First, we observe that contribu-
tions from legs and vertices that are not fixed by the
involution can be dealt with using standard vertex rules,
and they automatically give rise to a perfect square once
paired with their image. We then only need to explain how
to deal with a fixed edge connecting two vertices. Their
contribution to the partition function is given by a factorX

Ri

CRjRkRi
ð−e−tiÞjRijð−1ÞnjRijq

1
2
nð‖Ri‖2−‖Rt

i‖
2ÞCR0

jR
0
kR

t
i
;

ðA3Þ

where C ≔ Cðq; qÞ was introduced in Eq. (2.8), and
notation corresponds to Fig. 9. Here n ≔ detðvj0 ; vjÞ, where
vm represents an outgoing vector associated to leg m.
There are three cases: the involution can act as a

point reflection at the center of the line (1), a reflection
at the line perpendicular to the compact leg (2), or a
reflection along the compact leg (3). The case interesting
for us is (2), namely a leg that is not pointwise fixed by the
involution, and where the representations in one vertex are
mapped to representations in the other. In this case, no
restriction is imposed on the internal representation Ri,
while leg j is mapped to leg k0 and similarly k → j0.
This imposes Rj ¼ R0t

k and Rk ¼ R0t
j , where the trans-

position is implemented since the involution introduces

an orientation-reversal of the plane in Fig. 9. By exploiting
the symmetry of function C

CABtC ¼ q
‖A‖2−‖At‖2þ‖Bt‖2−‖B‖2þ‖C‖2−‖Ct‖2

2 CBAtCt ; ðA4Þ

we can rewrite Eq. (A3) as a perfect square, and take the
square root:X
Ri

CRjRkRi
e−

1
2
tijRijð−1Þ12ðnþ1ÞsðRiÞ

× q
1
4
ðn−1Þð‖Ri‖2−‖Rt

i‖
2Þþ1

4
ð‖Rt

k‖
2−‖Rk‖2Þþ1

4
ð‖Rj‖2−‖Rt

j‖
2Þ: ðA5Þ

We introduced a sign in Eq. (A5)

ð−1Þ12ðnþ1ÞsðRiÞ; ðA6Þ
determined by sðRÞ ¼ jRj � cðRÞ, where cðRÞ is defined
via jRj − cðRÞ ¼ 2

P
iRð2iÞ. Finally, there is a global

prescription for the choice of cðRiÞ vs. cðRt
iÞ.

APPENDIX B: ENUMERATIVE CHECKS

We compute the real GV invariants of the SUðNÞ
geometry with the involution considered in Sec. IV B.
We describe some numerical checks that the topological
vertex amplitudes indeed produce integer BPS multiplic-
ities, corresponding to the proposed BPS state counting for
the real topological string [6,10]. The enumerative checks
support the new result of the real topological string partition
function for SUðNÞ geometry in Sec. IV B.
After removing the purely closed oriented contribution,

we perform an expansion

Zunor ¼ Zrealffiffiffiffiffiffiffi
Zor

p

¼ 1þ Zreal
1-instu

1
2 þ

�
Zreal
2-inst −

1

2
Z1-inst

�
uþOðu3

2Þ:

ðB1Þ
Note that the perturbative contribution does not contribute
to the unoriented string part in the current choice of
involution. From Eq. (B1), we can compute the real GV
invariants: they are the numbers n appearing if we rewrite it
using Eq. (3.3),

Zunor¼ exp
X

d1;d2;g;oddk

ngd1;d2
k

�
2isin

kϵ
2

�
g−1

Q
kd1
2

B Q
kd2
2

F ; ðB2Þ

where we focus on the SU(2) computation; from Eq. (4.8)
with N ¼ 2 we obtain

Zreal
1-inst ¼

1

2 sin ϵ
2
sin t

ðB3ÞFIG. 9. Three involutions for a generic internal leg; notice that
each involution requires a specific symmetry to be present.
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and

Zunor
u1 ¼−

3

8

1

sin2 ϵ
2
ðcos2t−cosϵÞ−

1

16

1

sin2 tsin2 ϵ
2

: ðB4Þ

For illustration, we obtain real GV numbers up to d2 ≤ 6

and g ≤ 6. We have n01;d2 ¼ −2, for d2 ¼ 0, 2, 4, 6, and the
others are zero. For ng2;d2, we have

d2ng 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 3 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 12 0 3 0 0 0

5 0 0 0 0 0 0 0

6 0 30 0 18 0 0 0

ðB5Þ

For d1 ¼ 3 we have

d2ng 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 −6 0 −4 0 0 0 0

3 0 0 0 0 0 0 0

4 −28 0 −58 0 −28 0 −4
5 0 0 0 0 0 0 0

6 −82 0 −324 0 −362 0 −184

ðB6Þ

For d1 ¼ 4 we have

d2ng 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 12 0 5 0 0 0

3 0 0 0 0 0 0 0

4 0 153 0 268 0 177 0

5 0 0 0 0 0 0 0

6 0 900 0 3107 0 4670 0

ðB7Þ

For d1 ¼ 5 we have

d2ng 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 −12 0 −20 0 −6 0 0

3 0 0 0 0 0 0 0

4 −156 0 −744 0 −1212 0 −962
5 0 0 0 0 0 0 0

6 −990 0 −8518 0 −27704 0 −49814

ðB8Þ

For d1 ¼ 6 we have

d2ng 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 30 0 30 0 7 0

3 0 0 0 0 0 0 0

4 0 900 0 3293 0 5378 0

5 0 0 0 0 0 0 0

6 0 10255 0 70128 0 232826 0

ðB9Þ

Bound on genus One possible check we can perform is
obtain the maximal g for given d [61]. To do this, let us take
diagonal combinations ngd ≔

P
d1þd2¼dn

g
d1;d2

:

dng 0 1 2 3

1 −2 0 0 0

2 0 0 0 0

3 −2 0 0 0

4 0 3 0 0

5 −8 0 −4 0

6 0 24 0 8

ðB10Þ

They satisfy tadpole cancellation d ¼ χ ¼ g − 1mod 2. For
fixed d ¼ d1 þ d2, a smooth curve in CP1 × CP1 has
genus g ¼ ðd1 − 1Þðd2 − 1Þ, which is the top genus. For
d ¼ 1, we have a nonzero contribution from d1 ¼ 1 and
d2 ¼ 0 for the involution we are considering. The top genus
contribution appears from g ¼ 0. The Gopakumar-Vafa
invariant is then related to the Euler characteristic17 of the
moduli space [61]

n01 ¼ n01;0 ¼ −eðCP1Þ ¼ −2; ðB11Þ

which is consistent with Eq. (B10).
The dimension of the moduli space of a curve

inside CP1 × CP1 may be understood as follows. The
Gopakumar-Vafa invariants ngd1;d2 are related to M2-branes
wrapping a two-cycle

17Recall that eðCPmÞ ¼ mþ 1 and eðRPmÞ ¼ 1, 0 for m
even/odd respectively.
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d1½CP1
B� þ d2½CP1

F�; ðB12Þ

where ½CP1� represents a divisor class of CP1. The degrees
are also related to the degree of a polynomial that represents
the curve byX

a1;a2;b1;b2

αa1;a2;b1;b2X
a1
0 Xa2

1
~Xb1
0
~Xb2
1 ¼ 0;

a1 þ a2 ¼ d2; b1 þ b2 ¼ d1; ðB13Þ

where ðX0; X1Þ are homogeneous coordinates of CP1
B and

ð ~X0; ~X1Þ are homogeneous coordinates of CP1
F. We are

now considering the case with d1 ¼ 1, d2 ¼ 0, which is

α0;0;1;0 ~X0 þ α0;0;0;1 ~X1 ¼ 0: ðB14Þ

α0;0;1;0 and α0;0;0;1 still take value in C and Eq. (B14) is still
a complex equation. Therefore, the moduli space para-
metrized by α0;0;1;0 and α0;0;0;1 is CP1. On the other hand,
the deformation space of the curve class d2½CP1

F� gives a
real projective space due to the involution acing on CP1

B. In
general, the moduli space may be given by CPd1 ×RPd2.
We can also consider the case d ¼ 2. Then the top genus

comes from g ¼ 0. But this contribution will be absent
since this does not satisfy the tadpole condition
d ¼ g − 1mod 2. This is also consistent with Eq. (B10).

The degree 3 case is also the same, namely

n03 ¼ n01;2 ¼ −eðCP1ÞeðRP2Þ ¼ −2: ðB15Þ

One may do similarly for d ¼ 4. The maximal genus is 1
and hence 3 in Eq. (B10) will be related to the Euler
characteristic of the moduli space: we find

n14 ¼ n12;2 ¼ ð−1Þ2eðCP2ÞeðRP2Þ ¼ 3: ðB16Þ

For d ¼ 5 we find

n25 ¼ n23;2 ¼ ð−1Þ3eðCP3ÞeðRP2Þ ¼ −4; ðB17Þ

which is again consistent with the obtained result. For
d ¼ 6, the top genus is g ¼ 4. But this does not satisfy the
tadpole condition and hence n46 ¼ 0. That is also consistent
with the result.

APPENDIX C: DEFINITIONS
AND USEFUL IDENTITIES

In this appendix we list some useful identities for
quantities appearing in the topological vertex amplitudes.
For non trivial ones, we cite a reference where a proof can
be found.
One can prove [62] [Eqs. (2.9) and (2.16)] the identity

Y∞
i;j¼1

ð1 −Qqiþj−1−R1ðjÞ−R2ðiÞÞ ¼
Y∞
i;j¼1

ð1 −Qqiþj−1Þ
Y
s∈R2

ð1 −Qq
−aRt

1
ðsÞ−1−lR2 ðsÞÞ

Y
s∈Rt

1

ð1 −Qq
aR2 ðsÞþ1þlRt

1
ðsÞÞ: ðC1Þ

From definition ‖R‖2 ≔
P

iRðiÞ2, some simple combinatorial identities follow

X
i

iνðiÞ ¼ ‖νt‖2

2
þ jνj

2
;

X
ði;jÞ∈ν

~νtðjÞ ¼
X
ði;jÞ∈~ν

νtðjÞ;
X
s∈ν

lνðsÞ ¼
‖ν‖2

2
−
jνj
2
; ðC2Þ

which imply

X
ðm;nÞ∈Ri

aRj
ðm; nÞ ¼ 1

2
ð‖Rt

j‖2 þ jRjj − ‖Rt
i‖2 − jRijÞ þ

X
ðm;nÞ∈Rj

aRi
ðm; nÞ: ðC3Þ

Using the above we get

Y
s∈Ri

ð1 − eiEijðsÞÞ−1
Y
s∈Rj

ð1 − e−iEjiðsÞÞ−1 ¼ ð−1ÞjRijei
tji
2
ðjRijþjRjjÞei

ϵ
4
½‖Rt

j‖
2−‖Rj‖2−‖Rt

i‖
2þ‖Ri‖2�

Y
s∈Ri

1

2i sin EijðsÞ
2

Y
s∈Rj

1

2i sin EjiðsÞ
2

: ðC4Þ

Finally, the important identity for skew-Schur functions [[41], page 93]

X
μ

sμ=ηðxÞsμ=ξðyÞ ¼
Y∞
i;j¼1

ð1 − xiyjÞ−1
X
μ

sξ=μðxÞsη=μðyÞ ðC5Þ

gives upon iteration [[22], Lemma 3.1]
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X
ν1 ;…;νN

η1 ;…;ηN−1

YN
k¼1

sνk=ηk−1ðxkÞQjνkj
k sνk=ηkðykÞ ¼

Y
1≤k<l≤Nþ1

i;j≥1

ð1 −QkQkþ1…Ql−1xki y
l−1
j Þ−1; ðC6Þ

where η0 ¼ ∅ ¼ ηN and xk ¼ ðxk1; xk2;…Þ.
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