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We find that motion in internal moduli spaces of generic domain walls has an upper bound for its
velocity. Our finding is based on our generic formula for all-order effective actions of internal moduli
parameter of domain wall solitons. It is known that the Nambu-Goldstone mode Z associated with
spontaneous breaking of translation symmetry obeys a Nambu-Goto effective Lagrangian /1 — (9,Z)?
detecting the speed of light (|0yZ| = 1) in the target spacetime. Solitons can have internal moduli
parameters as well, associated with a breaking of internal symmetries such as a phase rotation acting on a
field. We obtain, for generic domain walls, an effective Lagrangian of the internal moduli € to all orders

in (O¢). The Lagrangian is given by a function of the Nambu-Goto Lagrangian: L = g(, /14 (8”6)2).
This shows generically the existence of an upper bound on Jye, i.e., a speed limit in the internal space. The
speed limit exists even for solitons in some nonrelativistic field theories, where we find that € is a type I
Nambu-Goldstone mode that also obeys a nonlinear dispersion to reach the speed limit. This offers a

possibility of detecting the speed limit in condensed matter experiments.
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I. INTRODUCTION

Solitons are used everywhere in physics, ranging from
elementary particle physics where domain walls are used
for brane-world scenarios, to condensed matter physics
where walls dividing two phases can be observed at
every scale. The dynamics of solitons is governed by
low energy modes propagating on the solitons, which
are often identified as Nambu-Goldstone massless modes.
Thus, providing a full effective action of Nambu-Goldstone
modes on solitons is quite important to characterize any
physics in phases with broken symmetries.

Internal symmetries are indispensable in physics. When
an internal symmetry is broken by a domain wall, an
associated Nambu-Goldstone mode ¢ appears (see Fig. 1).
The mode, called an internal moduli, is governed by some
effective action. So far, little is known for an all-order
expression of the effective action, since normally one
employs so-called Manton’s method [1,2] (the moduli
approximation) to calculate the action order by order. In
this article, we provide a generic form of the effective
action of an internal moduli parameter ¢ of a generic
domain wall to all orders in Oe,

Lgy = g(m 1+ (8,,6)2), (1)

where g is a system-dependent function, y = 0,1, ...,d — 1
spans the domain wall world volume coordinates, and m is
the mass of the original theory. Thus, our result paves the
way to construct the effective actions of various solitons in
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generic models. For simplicity, we mainly focus on the
domain wall in this article.

The argument /1 + (8”6)2 of the effective Lagrangian

is eventually of the form of Nambu-Goto action [3,4].
The action (1) provides generically an upper limit of
the moduli motion » = Jye in the internal space, since

\/1+ (9,6)* = V1 — v*. Therefore, the internal space of

domain walls has a speed limit: “an internal speed of light.”
Note that any internal space is nothing related to the real
spacetime, so generically it would be anticipated that there
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~
7

FIG. 1. A domain wall with an internal moduli parameter
(shown as a point on a circle above the wall). The motion of the
internal moduli € probes the internal “space.”
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should not be any speed limit in the internal space. Indeed,
in the standard breaking of vacuum symmetry, there
appears no speed limit for dye; see Appendix A. Here,
we find that for the breaking via solitons there exists the
speed limit in the internal space. Note that, as is the speed
of light, the upper bound is not a kind of cutoff. It is given
far below the UV cutoff of the theory.

As for translational symmetry that is not internal, it is
known that a Nambu-Goto action governs the Nambu-
Goldstone mode Z (see Fig. 1). Any domain wall in a flat
spacetime in any dimensions supported by a relativistic
field theory has a Nambu-Goto effective action for Z in a
static gauge [5,6], see also Appendix C,

de — —wa 1 + ((%Z)z (2)

The value of Z shows the location of the domain wall. The
action is valid to all orders in 0Z, when higher (0)"Z for
n > 2 is ignored. The Nambu-Goto action reflects the
special relativity of the spacetime in which the domain
wall lives. The effective action (2), with the wall velocity
0pZ in the transverse direction, is equal to an action of a

relativistic particle, —\/1 — (9yZ)?. So the structure of the
effective action shows that the upper limit of the domain
wall motion is the speed of light.

Note that the Nambu-Goto action (2) for Z was derived
based on the original Lorentz invariance in (d + 1)-
dimensional spacetime. Thus, emergence of the speed of
light in the Nambu-Goto action is quite natural since it is a
direct consequence of the Lorentz symmetry. On the other
hand, any internal moduli effective action cannot rely on
the original Lorentz symmetry. Our result (1) shows that,
nevertheless, the speed limit shows up in the internal space,
which is a novel feature that we report here. We emphasize
that the speed limit is nothing to do with any cutoff scales
of the theories under consideration, as is the usual speed of
light in spacetime.

Interestingly, our generic strategy can also be applied to
nonrelativistic models that frequently appear as effective
theories in condensed matter systems. Recently nonrela-
tivistic Nambu-Goldstone modes such as magnons
attracted much attention [7—11]. Because of our all-order
effective action, the internal moduli has a type I dispersion
for small velocity, while has a speed limit due to the
nonlinear dispersion. The speed limit may be observed in
experiments with symmetry-broken orders, such as mag-
netic domain walls.

II. GENERIC EFFECTIVE ACTIONS

A. Generic effective action in relativistic theory

We consider a generic Lagrangian of a relativistic
complex scalar field ¢(x#,z) in d + 1-dimensional space-
time (u=0,1,...,d—1 and x? = 7). The Lagrangian is
assumed to have only two derivatives at maximum, for
simplicity;
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L =-F(1pP)(10,4]> + 0.0 + m*|¢]*) = V(I¢]*). (3)

with generic F and V. The field ¢ has a mass m (which is
far below the cutoff of the theory). This system has a U(1)
global symmetry that rotates the phase of the field,
¢ — e™g where €, is a constant real parameter for the
internal space S'. We assume the existence of a static
domain wall solution with an §' moduli parameter [12]

¢ = e™opy(z;m), (4)
which solves the equation of motion of (3),
- aﬂ(Fa”¢) - az(FaZ¢) + sz/|¢|2¢ + m2F¢
+ V' + F'plo, ¢ + F'¢lo.¢|* = 0. (5)
In particular, the function ¢,(z;m) obeys
— 0.(FO.¢p) + m*(F'|po|* + F)po
+ Vo + F'eho| 0.0 |* = 0. (6)

Now, a motion of the internal moduli parameter ¢ can

be encoded as € = ¢,x* with a constant vector €,, which

amounts to ignoring dde. With this spacetime-dependent
internal moduli parameter €, let us make an ansatz for a
generic solution ¢ = e @ (z) (€ = ¢,x*). Plugging this
into Eq. (5), we find that ¢ obeys the following equation:

— 0.(FO.90) +m*(1+ (€,)*) (F'lo|* + F)gq,
+ Vo + F 0|00 |* = 0. (7)

Comparing this with (6), we can regard ¢ as a static
solution in the model (3) with m being replaced with

my/1+ (e,)>. Namely, we get a generic solution
®o(z) = o (Z; my/ 1+ (€ﬂ)2)- (8)

Thus, a new exact solution with moduli motion is

b= e o (5m /1 4 (6,)7). 9)
Substituting the solution (9) to the action (3), we obtain the

effective action of the internal moduli e(x) of a generic
domain wall,

S = / d'xdeL [pmem gm0 )

[ almfir@eR). o)

where g(m) is the on-shell action of the original static
domain wall, g(m)= [ dzLy_p (zm)- Interestingly, the
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effective action (10) is not a Nambu-Goto type

v 1+ (8ﬂ6)2, but generically a function of the
Nambu-Goto.
Some details for deriving the above result can be found

in Appendix B.

B. Generic effective action in nonrelativistic theory

Condensed matter systems can be approximated by a
complex scalar field as an order parameter, while its theory
is nonrelativistic. Consider the following form [13] of the
scalar field Lagrangian,

imo

£ = (o) (5 @0ut  400d) + 030

o.P + m2|¢|2> V(). (1)

with i = 1,2,...,d — 1, which can be obtained from the
relativistic Lagrangian (3) by inclusion of a chemical
potential with a certain scaling. The static domain wall
(4) remains as a solution, while an exact solution with
moving moduli is given by

¢ = e, (z; m\/l - %806 + (aie)z). (12)

Then we can repeat the same argument to arrive at the
domain wall effective action

SINR) — / ddxg<m\/1—";l°aoe+(a,-e)2). (13)

The effective Lagrangian is invariant under the charge
conjugation ¢ — —e with the time reversal, as in the
original Lagrangian (11).

C. Speed limit in internal space

The Hamiltonian for the relativistic case is calculated as
9ne)?
H:_Mg/_g’ (14)
14 (9,€)*

which generically diverges at
(0p€)? — (0;€)* = 1. (15)

Reaching the speed limit (15) expends infinite energy, as in
the case of the speed of light in our spacetime. Therefore,
the internal motion has the speed limit (15). The speed limit
exists essentially owing to the higher order corrections in
Oe. In fact it cannot be seen in the usual moduli approxi-
mation to a finite order in Je. Notice that the normalization
of the moduli parameter is given by e¢. So the speed limit
in the internal space is 1/m. This scale is far below the
cutoff scale of the original theory (3).
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The speed limit sounds quite counterintuitive, since the
phase rotation acting on a field, ¢p — "¢, can be arbitrarily
fast in principle, as is mentioned in the introduction.
However, the physical reason for the existence of the speed
limit is the stability of the domain wall. Normally, the mass m
is related to the energy levels of the nonzero modes on the
domain wall; thus, putting energy in the internal zero mode
on the domain wall more than m means exciting too many
nonzero modes, leading to a demolition of the wall itself.

We notice that the effective Hamiltonian in the non-
relativistic case derived from (13) also diverges at

1 = (mo/m)dye + (d;¢)* = 0. (16)

Therefore, there again exists a speed limit. In particular, the
speed limit is 9y(me) = m*/m, for d;¢ = 0. Note that
the speed limit exists only for a certain direction of motion,
and there is no speed limit at 9y(me) = —m?*/my. It is
intriguing that even within a nonrelativistic theory the
domain wall internal space can have a speed limit, which
can be tested in experiments realizing the domain wall with
an internal degree of freedom.

III. EXAMPLES

A. Generalized Nambu-Goto via domain wall

Only a special class of Lagrangians leads to a
Nambu-Goto effective action. The condition for having a
Nambu-Goto effective action in (10) is g(m) o m. This is
equivalent to having V(|¢|?) = 0 in the original Lagrangian
(3), due to a scaling symmetry in L.

A particular example that leads to a Nambu-Goto
effective action is a massive CP' sigma model with the
Fubini-Study metric,

F(lgP?) = (1 +¢)~2

The explicit domain wall solution is ¢, = €™, and the
on-shell action is g(m) = —m. Thus, the effective action of
the internal moduli € is given by a Nambu-Goto [15],

S = —m / dlx\[1+ (9,€)*.  (18)

Figure 2 is a plot of the Hamiltonian of the Nambu-Goto
system (18) for €, = wdy,. It diverges at the speed limit in
the internal space, w = £m.

With a nontrivial V, we can derive various effective
action of the internal space. As an interesting example,
we introduce the following V in the massive CP' model
(see Appendix E for details):

V= 4pP(1 = [pP)*(1 + o)~ (19)

V=0. (17)

By the redefinition ¢ = ¢'®tan %, a part of the massive

CP! model can be recast to a sine-Gordon model with

m? sin® @ potential term. The additional potential (19) gives
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FIG. 2. A plot of the effective Hamiltonian of a domain wall, as
a function of @ = dye for 9;e = 0. The solid line: relativistic CP'
sigma model (giving a Nambu-Goto). The dashed line: relativistic
modified CP' sigma model (A = 1/2). Long dashed line: non-
relativisic CP! sigma model (my = 1). The Hamiltonians
(m = 1) diverge at the speed limits (15)—(16).

Asin? 2@. Thus, the massive CP' model with (19) includes
as a part the so-called double sine-Gordon model that has
been investigated for soliton confinement phenomena. The
static domain wall solution is

40 + m>cosh? (jnz) + m>sinh? (jnz)?
¢O<Z’ mvl,{) = |:\/ 9 2( = ) 2. 2<~ )
/44 + m*cosh? (7nz) — m?sinh? (7iz)

with 77 = /44 + m?, and using this, we obtain the effective
action for € as

= L2 2
Sgw = — ddx<\/i+ﬁtanh—‘ %) 20
‘ / 42 1 (20)

where 2 =4+ L}/4, and Lyg = —m /1 + (9,€)? is the

Nambu-Goto Lagrangian. The Hamiltonian is given by
+ (0 + (04¢)? A

H— \/_ ()€) ( 16) )tanh—] \/;’ (21)
42 2

which diverges at the speed limit (15), as in Fig. 2. A
conserved charge for the symmetry € — € + 0 is

Q= tanh \/ S 4/18 he.  (22)
This also diverges at the speed limit [16]. With € = ¢,x*,
H and Q coincide with the tension and Noether charge
calculated in the original nonlinear sigma model, which
serves as a nontrivial consistency. See also Appendix E for
other models.

B. Type I Nambu-Goldstone mode

We found the generic form (13) of the effective action of €
to all orders Oe. In the nonrelativistic massive CP! case with
(17), expanding (13) in Je up to quadratic order, we obtain
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1 1 21
LONR) — {1 - E@é - (@6) 5(8,»6)2} . (23)

Note that one cannot obtain the ¢ term by the usual order-by-
order moduli approximation: we need the exact solution (12)
to get (23). From (23), the dispersion relation is given by

2
w="""k|. (24)
mg

Thus, the Nambu-Goldstone mode ¢ is type I (that is, linear
and relativistic) [17]. Note that our speed limit w(= ¢) =
m/m, means the upper bound for the value of the internal
speed w.

C. Fattening and destroying the wall

As we anticipated, the motion of the internal moduli e
destroys the wall when it exceeds the speed limit. The
effective Hamiltonian acquires an imaginary part, which
signals the decay of the domain wall itself. The speed limit is
given by the scalar mass m; turning on the moduli motion Oye

reduces the mass to m+/1 — (9ye)?. So the speed limit amo-
unts effectively to the massless limit in the original theory.

The mass is inversely related to the width of the domain
wall, so we can expect that the internal moduli motion will
make the domain wall thicker, and finally decays smoothly
by the fattening. In Fig. 3, we plot the energy density of the

FIG. 3. Energy density profiles of the domain wall in
the CP' with (upper) / without (lower) V in (19), when we
change the internal moduli Jye. The parameter « is defined by
0pe = 1 —exp[—a]. a =0 corresponds to the original domain
wall. We chose m = 1 and A = 1/2 for this plot.
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exact domain wall solutions in the massive CP' sigma
model with/without V (19), by changing |0ye|. We can
clearly see the fattening of the domain walls. In the model
with V, at @ = 0 we can see that a single domain wall
consists of two constituent walls connecting ® = 0 — z/2
and 7z/2 — &, respectively. They are confined. As ®
increases, a large repulsive force appears that deconfines
the constituent domain walls.

IV. CONCLUSION

We show generically the existence of a speed limit in
internal moduli space ¢ of domain walls. The speed
dependence of the Hamiltonian is calculated to all orders
in Oe. The effective Lagrangian is generically a function of
the Nambu-Goto Lagrangian, in contrast to the transverse
moduli Z obeying a Nambu-Goto. Even for nonrelativistic
field theory, we find the speed limit, which may be seen in
experiments with symmetry-broken orders.

Our calculation can extend to other spices of solitons. In
[18], D. Tong studied the internal S' moduli of a ’t Hooft-
Polyakov ~ Bogomol'nyi-Prasad-Sommerfield  (BPS)
monopole and showed that it obeys a Nambu-Goto action;
see Appendix G. Note that, as we demonstrated, the phase
of the domain wall in the massive CP' model also obeys
the Nambu-Goto action. This is not a coincidence. Indeed,
’t Hooft-Polyakov monopole in the Higgs phase is identi-
fied with a kink in the massive CP! model [19]. Thus, the
kink-monopole correspondence may be valid to all orders
in Oe [20].

Furthermore, even in the absence of solitons, a vacuum
itself can have an internal moduli, where our method can be
applied to show the nonexistence of the speed limit; see
Appendixes A and F.

The speed limit suggests emergence of an extra dimen-
sion of the spacetime. In fact, we can derive the effective
action of the internal moduli (10) by using a generalized
boost along a newly introduced extra dimension S'; see
Appendix D for the details.

When the world volume of the domain wall is (1 + 2)
dimensional, we can take a dual of the generalized Nambu-
Goto action to obtain a general nonlinear electrodynamics.
Those generalizations of the Born-Infeld action may
possess interesting structure, including a possible relation
to D-branes [21,22] in string theory and an open string
metric [23,24].

The existence of the speed limit in internal space is
encouraging for brane-world scenario and possible cosmo-
logical models using a speed limit of inflation rolling [25].
Various applications to particle physics, cosmology, and
condensed matter physics are expected.

In the appendixes, we provide detailed calculations that
are used in the main part of the article, and some additional
calculations that further support the claim in the article.
First, we present a calculation for the case of the vacuum
breaking of the internal symmetry and derive its effective
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action, to find out that there is no speed limit in the internal
space. Next, we show a calculation to obtain the generic
effective actions of the internal moduli for the domain wall,
(10) and (13) in detail. Then, we provide a brief review of
the derivation of the Nambu-Goto action for the transla-
tional moduli (2). We take a route different from that in
[5,6]. Then, we rederive our main effective action of the
internal moduli (10) by using extra dimensions, as an
instructive exercise. After that, we present detailed calcu-
lations of explicit examples of the domain wall solutions, as
well as a new example for a composite domain wall. Two
more examples follow, an example of a symmetry breaking
at a vacuum via extra dimensions, and an example of a
’t Hooft-Polyakov monopole.
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APPENDIX A: EFFECTIVE ACTION FOR A
SYMMETRY BREAKING AT VACUUM

We consider a generic Lagrangian of a complex scalar
field ¢(x*) (u=0,1,2,3). The Lagrangian is, for
simplicity,

S= [ st L=—lo,df -nlgP-v(#). (A1
We consider a spontaneous symmetry breaking,

V=clp|* + ¢

K (A2)

where —u> = m? + ¢ < 0 to make sure that the symmetry
breaking occurs, as the original Lagrangian looks like
L =—0,0 = (=*|p* + Algl*). (A3)
We treat m and ¢ independently in our analysis, although a
physically important quantity is the combination .
Let us first consider a classical solution with a moving
moduli,
¢ = vel"en (A4)
with a constant four vector ¢,. Since rotation in the internal

space excites massive modes, the amplitude v changes from
the vacuum expectation value (VEV) as

[,2 _ 302,2
V= /#, (6'2 = 6‘”6/4)_

(AS)
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Note thatw in €, = (w, 0,0, 0) can take any value. Nonzero

"
 just shifts the VEV as v = +/(u? + m*w?)/2A. Namely,
there is no limit for internal moduli in the homogeneous

vacuum. The Hamiltonian for this configuration is

(4 = me) (363 + 2)m® — )
42 '

H= (A06)
In order to obtain a low energy effective Lagrangian, we
plug (A4) into the Lagrangian and replace €, — 0,€e(x*).
Eventually, we find the following effective Lagrangian:

Lo = i (u* - m28ﬂ€8"€)2. (A7)

42
The configuration (A4) still solves the equation of motion
of this effective Lagrangian and the Hamiltonian is iden-
tical to Eq. (A6). The massive modes are correctly taken
into account via the higher derivative corrections. Clearly,
no speed limits for dye appear in this effective Lagrangian.

APPENDIX B: SOME DETAILS FOR DERIVING
THE GENERIC EFFECTIVE ACTION

In this subsection, we show details for deriving the
effective action (10) and (13). Let us begin with the
equations of motion of the relativistic Lagrangian (3),

- aﬂ(FaMd)) - 8z(Faz¢) + sz/|¢|2¢ + sz(ﬁ

+V'¢p+ F'$lo, 4 + F'plo.¢| = 0. (B1)

The domain wall solution perpendicular to the z axis,

P(z) = e™o(z;m), (B2)
is a solution to the reduced equation
= 0.(FO.po) + m*(F'|¢ho|* + F)po + V'ho
+ F'epo|0.po|* = 0. (B3)
Let us make an ansatz for a generic solution
b =e"py(z).  (e=ex). (B4)

Plugging this into Eq. (B1), we find that ¢ obeys the
following equation:
= 0,(F0,0) + m*(1 + (€,)*) (F'|o* + F)opy

+ Vo + F'0]0,90|* = 0. (B5)

Comparing this with (B3), we can regard ¢ as a static
solution in the model (3) with m being replaced with

my/1+ (e,)*. Namely, we get the generic solution
@0(2) = do(zimy/ 1+ (€,)%).

(B6)
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Correspondingly, if we plug ¢(x*,z) = e™p(x*,z) into
the Lagrangian (3), we find the Lagrangian for ¢,

L = =F(lgl)(10,0* + |0-0]* + me,,j*

+m*(1+(e,)))lol*) = VIeP). (B7)
with j# = i(pd"¢* — ¢*0"¢). Therefore, the on-shell
Lagrangian for the generic solution (B4) is directly
obtained as

/ dzL(¢p = e™qy) = / dzL ()

=g(m\/1+(g,)?).  (BY)
with g(m) = [dzL(¢p = e™¢y(z;m)). Finally, just replac-
ing €, by 0,€, we reach the final result (10).

We can repeat the same argument for the nonrelativistic
model. The equations of motion for the nonrelativistic
Lagrangian (11) are given as

D0 (FB) = 0,(FOy) + mP(FBP + )+ V'

im - -
+ = {F ($0op — $00h) b + FOup} + F'|01p ¢ = 0.
(B9)
with x! = x!, x2, ..., x47!, z. Clearly, (B2) is a solution of

this equation. Furthermore, the equation for ¢, with the
ansatz (B4) is obtained as

— 0,(FO o) + (m* — mgeq + m*(€;)*) (F'|po* + F) oo
+ Vg + F'po|0,00|* = 0. (B10)

Comparing this with (B3), we find the generic solution in
the nonrelativistic model is given by

o) = o (s [1- ey + ). @11

Correspondingly, if we plug ¢(x*,z) = e™¢p(x*,z) into
the nonrelativistic Lagrangian (11), we find the Lagrangian
for ¢,

~ im

£ = =) (5. @000 -~ 9000) + i
0.0 + meyji + (m? = moeq + (ei)2)|co|2>
V(o). (B12)

Therefore, the on-shell value of the original nonrelativistic
Lagrangian for the generic solution is given by
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[ a0 = ema) = [ L™ ()

:g<m\/1—%€0+(€i)2>.

(B13)

APPENDIX C: DERIVING NAMBU-GOTO
EFFECTIVE ACTION FOR
TRANSLATIONAL MODULI

Let us start with a real scalar field ¢ in d + 1 dimensions.
The Lagrangian is given by £ and thus the action is written
as

s— /dd+1xc[¢]. 1)

Suppose we obtain a domain wall as a classical solution of
this system,

p=hz),  (z=x9).

The domain wall world volume is perpendicular to the

direction z, so it is flat along the remaining directions x*

(u=0,1,...,d—1). The obvious zero mode Z of the

domain wall is the position of the domain wall in the z
axis. Inclusion of the zero mode gives us a generic solution

¢ =bo(z—-Z)

where Z is a constant parameter. Turning on Z does not cost
any energy and this remains as a classical solution of the
original system L.

Now, we are interested in the low energy effective
description of the domain wall. The zero mode Z can
depend on the world volume coordinates x#, as Z(x*).
Ignoring the higher derivatives such as (9)?Z, we should be
able to obtain an effective action of the domain wall

(C2)

(C3)

de—/dxd_lde[a”Z]. (C4)
The domain wall Lagrangian Lg,, is a functional of 0,Z
only, as the potential term V(Z) should not appear because
Z is a zero mode.

The easiest way to get L4, is to make a Lorentz
transformation. Consider the following Lorentz transfor-
mation,

z=A,z+ A x, (Cs)

X = Mgz + A XY, (Co)
where A is an SO(1,d) transformation matrix whose
determinant is 1. Then obviously we can generate a new
classical solution
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¢ = do(2). (C7)

This solution is a tilted domain wall moving in a transverse
direction with a constant velocity. Since

2 = Ay(z+ (A4,) A ), (C8)
it is possible to regard
Z(x) = —(A9y) " A X (C9)

So, once we obtain a domain wall effective action as a
function of the Lorentz transformation matrix elements A,
using (C9) we can regard it as a domain wall effective
action for Z(x*).

Let us calculate the effective action of the domain wall.
Substituting the transformed solution (C7) into the original
action, we can obtain the effective action

de :/ddx/dZ£|¢_¢o(§)

To compute this integral, we use the following trick. The
new domain wall solution (C7) depends only on z while the
spacetime coordinates x* should be kept as they are, so we
consider a general coordinate transformation (note that it is
not a Lorentz transformation),

(C10)

F=Az 4+ A, (C11)

Xt = x!. (C12)
The transformation for z is the same as the Lorentz
transformation (C5) while x* is kept intact. For this general
coordinate transformation, the Jacobian is found as

dx o, 0
— = , Cl13
dx < Ad,/ Add > ( )
so the metric is transformed as
g1l = (AP + AN =1 (Cl4)

The last equality is due to the SO(1,d) nature of the
Lorentz transformation A. Note that there appear nontrivial

off-diagonal elements of the metric such as g%, although
they are irrelevant in the following calculations.

When we substitute the new solution (C7) into the
Lagrangian, we may use the new Lagrangian transformed
by the general coordinate transformation (C11)—(C12),
since the Lagrangian is a scalar quantity under the general
coordinate transformation. The solution depends only on Z,
so all derivatives 0, acting on the solution vanish. The only

terms that are relevant are gﬂa;i(pa;@* and its higher

derivative analogues. Since gd d — 1, this concludes that
the Lagrangian with the new solution is equal to the
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Lagrangian with the original solution, via a simple replace-
ment z by z. Then the domain wall effective action (C10)
can be evaluated as

/ddX/dZLL/)(/)O(z)

= /ddx/dE \ _dEtg[£|¢:¢O(Z)]zreplaced byz’ (ClS)

The general coordinate transformation (C11)—(C12) gives

1

detg = , Cl16
AN 10
SO we obtain
— 1 d L
Saw = A_dd dx dZ[ |¢:(/)O(Z>]z replaced by Z
1

We define the on-shell value of the Lagrangian with the
classical solution (C2) integrated over z as a tension 7 of
the domain wall,

Taw=- / 2Ly py(c)-

Then we find the domain wall effective Lagrangian

(C18)

1
de = _wa d

C19

Using the SO(1, d) relation and the relation (C9), we find

B (M) 2N N =1+ (8,2)7,

(A7, 20

so we finally obtain the domain wall effective Lagrangian

de - _TdW\/ 1 + (aﬂZ)z

This is nothing but a Nambu-Goto Lagrangian. Hence,
we conclude that the effective action of the translational
zero mode Z(x*) of any domain wall is a Nambu-Goto
action, up to the first derivative of the zero mode Z(x*).

(C21)

APPENDIX D: EXTRA DIMENSIONS AND
DERIVING EFFECTIVE ACTION FOR
INTERNAL MODULI

Previously we derived the effective action of the internal
moduli of the domain wall, using the equations of motion
and explicit solutions. Here, we utilize an embedding to a
spacetime with an extra dimension to derive the same
expressions for the effective action of the internal moduli.

PHYSICAL REVIEW D 93, 065058 (2016)

First, we study what form of the Lagrangian can give a
domain wall with an internal moduli space S!. Next, we
embed the scalar system into a higher dimensional space-
time where the internal phase rotation is related to the extra
dimensional coordinate. We obtain generic effective action
of the domain wall. Then, we study what condition should
be met for the action to be Nambu-Goto type. Finally, we
study the speed limit in the internal space.

1. System with a domain wall with S! internal moduli

We consider a generic Lagrangian of a complex scalar
field ¢(x*,z) in a flat (d + 1)-dimensional spacetime
(u=0,...,d—1). The Lagrangian is assumed to have
only two derivatives at maximum, for simplicity;

S= / dtxL,

L==F(|p]*)(10,0] +0:41 +m?|p*) = V(I¢I*). (D)

The mass term is intentionally separated from the potential
functional V(|¢|?). This system has a U(1) global sym-
metry that rotates the phase of the field,

d — e, € ER. (D2)
We assume the existence of a domain wall solution
¢ = o(2) (D3)

where ¢ is a real function that interpolates two vacua that
have the same energy. We need an S' moduli for the domain
wall, so the domain wall needs to be a solution even if we
rotate it as

¢ = e py(z).

This, in particular, means that the vacua, ¢(z = —o0) and
¢(z = =), have to be a fixed point of the U(1) symmetry.
Otherwise the U(1) rotation changes the vacuum and
so the moduli become non-normalizable, which means
there is no sense in discussing effective action of the moduli
parameters.

Generically the fixed points of the phase rotation are
only ¢ =0 and ¢ = o0 (1/¢p =0), so this condition of
having the S' moduli constrains the Lagrangian as follows:
the total potential

(D4)

Vi = m?|¢PF(|$7) + V(I6) (D5)

has two minima at ¢» = 0 and ¢ = 0. In the following, we
treat this system. Several examples are given later.

2. Generalized Lorentz boost creating new solutions

Whether the internal moduli parameter can be regarded
as another spatial coordinate or not is an important
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question. As we have seen in the previous section, the
Nambu-Goto action can be obtained by the Lorentz trans-
formation of the soliton solution. So, here, we consider a
Lorentz transformation including the internal moduli direc-
tion. We are careful about what situation we perform the
Lorentz transformation in, below.

First, we introduce the internal coordinate. Since the S*
moduli is associated with the phase U(1) symmetry
acting on the field ¢, it is natural to upgrade the phase
factor of the domain wall solution to the additional spatial
coordinate . The new internal space needs to be compact,
so we define a new complex scalar field ®(x*, z, ) that
lives in the (1 + d + 1)-dimensional spacetime spanned by
M= (x*z,a), as

<I>(x”,z,a) — pima Z ei”(’/Rg[)(”)(Xﬂ,Z)- (D6)

n=-—0o

The form is written in a Fourier expansion where 7 is the
Fourier mode number. In addition, we have introduced an
overall factor e"* by the following reason. Let us prepare
the following (d + 2)-dimensional action

1

= D7
27R 0 ( )

27R
da/ddXdZ£d+2,

Lipa = —=F(1pP)|ougl = V(IgP). (D8)
Then, substituting the expansion (D6), the factor e’*
provides exactly the mass term in the (d + 1)-dimensional
action (3). In fact, when we have only the n = 0 mode in
(D6), then substituting it to (D7) exactly reproduces (3). The
factor e/ in (D6) manifests a twisted periodicity condition
O(x, z,a + 27R) = *MRP(x#, 7, ), (D9)
which is called Scherk-Schwarz compactification [26].
Now, we have the domain wall solution ¢ = ¢y (z) of the
original £; then
D = Op(a, z) = ™ epy(2) (D10)
is a solution of the equation of motion of £, ,. This solution
just has the n = 0 component of the expansion (D6).
Since it is a solution of £,,,, and since £, appears to
be Lorentz invariant in (d 4+ 2) dimensions, we can make
use of the (d + 2)-dimensional Lorentz transformation to
create a new classical solution. In particular, we are
interested in the internal coordinate «; let us make a
transformation in the subspacetime spanned by a and x*.
As in the previous section, the Lorentz transformation is

a= Ao+ A%x", (D11)

o= Mya+ N, (D12)

PHYSICAL REVIEW D 93, 065058 (2016)

We enact this transformation to obtain a new solution,

CI) = <I>0(5c, Z)

= eim&fPo(Z)

= emAaapimh®d g (7). (D13)
Note that this is a solution of £,,, while it is not a solution
of the original (d 4 1)-dimensional £. The reason is that to
make the reduction to the d + 1 dimensions we need the
relation (D10) where the dependence on the extra dimen-
sion is e while the new solution (D13) has a different

phase factor e« In fact, a new (d + 1)-dimensional
solution that can be read off from (D13) as

¢ = e\ (2) (D14)
is not a solution of £ but a solution of
£ - £|m_)mAaa. (DIS)

The reason is obvious. The a dependence in the new
solution (D13) provides, together with the a derivatives in
L4.», a new mass term that is m?(A%,)? instead of the
original m?. In other words, we define a new solution

¢ = ei(m/A“a)A”ﬂx*‘qsO(Z; m/A%,), (D16)
where we have replaced m by m/A%,; then this (D16) is a
solution of the original Lagrangian L. In this way, we can

create new solutions by a generalized Lorentz transforma-
tion in the space including the internal direction. Taking

A% =1/4/1+(e,)* and A*, =¢,//1+ (¢,)?, we get

the solution (9).

3. General effective action for the internal S! moduli

We are ready for evaluating the effective action. Let
us first calculate it as an effective action of a (d + 2)-
dimensional solution. (That is, we here calculate first the
effective action without the above replacement of m. Later
we incorporate the effect of the replacement.) The on-shell
action is

1

S=—
2R 0

27R
da [ dirdzLoslsaeo:  (D17)

and to evaluate this explicitly we perform a general
coordinate transformation

G=Aa+ A%, W =x (DI

as in the previous section. Then, using ¢** =1 and

v—detg = 1/A%,, we find
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1 [27RA AN iy
TR Jw AR,

X /ddde[£d+2|(I>@0((1,2)](1replaced bya
1
ZZJZTA“QZ”RAGG / ddxdzﬁd+2|q>=<l>o(a,2)
= / ddxdz£d+2|q>=¢>o(a.1)

= / dxg(m).

In the last equality we have defined the on-shell action for
the original domain wall with the (d + 1)-dimensional
Lagrangian,

(D19)

(D19) means that the on-shell action is independent of
the Lorentz transformation parameters appearing in the
solution.

However, we have to remember the fact that the new
solution (D14) is not a solution of £ but a solution of £
defined in (D15) that is given by the replacement
m — mA“,. So, as mentioned in (D16), to have a solution
of the original (d + 1)-dimensional Lagrangian, we need to
make a redefinition of m as m — m/A“,. Therefore, the
correct effective action of the domain wall described by the
solution (D16) is given by (D19) with the replacement,

Saw = [ dixglm/Ac,). (p21)
We reinterpret the factor 1/A%, as a function of the
moduli. The procedure is already given in the previous
section. Comparing the constant moduli parameter € in the
solution (D4) and the new solution (D16), we can regard
the dynamical moduli parameter to have a configuration in
the new solution as
e(x*) = A%, x* /A%, (D22)
This is reminiscent of (C9) for the translational zero mode
Z in the previous section. So, similarly, we have

1
=1+ (Aaa)—ZA(zﬂAaU”;w =1+ ((9;46)2-

AL (D23)

Substituting this expression to the domain wall effective
action (D21), we obtain the final form of the generic
effective action for the internal moduli e(x*) of the domain
wall as

Saw = /ddxg(m 1+ (9,€)?). (D24)

This precisely reproduces (10).

PHYSICAL REVIEW D 93, 065058 (2016)

The generic action is a function of the Nambu-Goto
action. In the next subsection, we learn a condition of
having the Nambu-Goto form.

4. The condition for having the Nambu-Goto

Our final expression for the effective action of the
internal moduli is (D24). Obviously, the condition that
this action becomes a Nambu-Goto action is to have a linear
g(m) = Am where A is a constant.

We find below that a sufficient condition to have a
Nambu-Goto action for the effective action, in other words,
to have a linear g(m), is to start with

V=0 (D25)
in the original (d + 1)-dimensional Lagrangian. When
V =0, the total action is

S== [ aE () (0P + 7). (D20
Here, we put a,,qs — (0, which is satisfied for the solution.

The m dependence can be absorbed into the rescaling
Znew = MZ, such that

S=-m / dix / Lz F(PP) (OGP + |02).  (D27)

In this expression the derivative 92°V is with respect to .-
Now the m dependence appears only as an overall factor,
so the equation of motion is independent of m. Then the
domain wall solution is written as ¢y = f(2Zpew)> Which is
independent of m. Recovering the m dependence, we
obtain a solution ¢y = f(mz). Substituting this into the
action, we obtain an on-shell action

S = [ { [z (0P 098 + 0P s
(D28)

where the last factor written with “[ ]” is independent of m.

Denoting it as —A, we obtain a linear dependence,
g(m) = Am. (D29)

So, in summary, for a (d + 1)-dimensional system whose
action is given by

§= —/01"+196F(Iqblz)(la,qu)l2 +10.91> +m*|¢[).  (D30)
the internal moduli appearing in the solution as
§ = o) f(mz) (D31)
has an effective action of the Nambu-Goto form,
Saw = /ddxAm\ [1+(0,6)% (D32)
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where the overall coefficient A is given by

= —/sz(|¢|2)(|az¢|2 +1oP)p=sy-  (D33)

The Nambu-Goto action in 1 + 2 dimensions is equiv-
alent to the Born-Infeld action. So we complete the
derivation of the Born-Infeld action as an effective
action of an internal moduli of a domain wall, for a class
of 1 + 3-dimensional complex scalar field theories whose
Lagrangian is of the form (D30).

5. The speed limit in internal space

The Nambu-Goto action (D32) shows the existence of
the speed limit. As we parametrized the internal space as
(D31), this shows that the speed limit in the internal space
is m. So, the mass term in the original action has quite
an important property: it serves as the speed limit in the
internal space.

Looking at the generic effective action (D24) that we
obtained, it exhibits interesting structure: it is a function
of a Nambu-Goto Lagrangian. Since the Nambu-Goto
Lagrangian indicates the speed limit, the generic action
may have the speed limit in the internal space. The critical
speed is indeed the mass, m.

One may notice that the separation between the mass term
and the potential term V is arbitrary in our calculation.
Indeed, one can split the original mass term as m?|¢|> =
(m1)?|p? + (m3)*|p[* where m = \/(m)? + (m5)*, and
regard the (m,)? term as a potential term, while regarding
the (m;)* term as a mass term. Following the same
procedure as the previous subsection, we obtain an effective

action
Sqw = /ddxh(m“/l + (0,m)*. my) (D34)
where
h(my,my) = /dz£|4,4,0(z). (D35)
Here, the internal moduli field # is defined as
¢ = ™) f(mz). (D36)
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Notice the difference from (D31): the definitions of the
moduli fields are related as

mn(x*) = me(x*). (D37)
Now, obviously the splitting of the mass term should not
change the resultant effective action, so (D34) should be
equal to (D24). Indeed, if one notices the equality

(D38)

h(my,my) = g(m)]

m=/(m;)*+(my)*’

it is easy to show the equivalence of (D34) and (D24),
through the relation (D37).

APPENDIX E: EXAMPLES OF EFFECTIVE
ACTIONS ON DOMAIN WALLS

1. Massive CP! sigma model

An example satisfying this condition V = 0 and also the
condition of having two minima in (D5) is a massive CP!
sigma model (17),

FigP) = s V=0
(1 +[o*)?

The vacua are located at ¢) = 0 and ¢ = oo as mentioned
above, and an explicit domain wall solution is

$o(z) = e™.

Since the system is with V = 0, the solution is of the form
f(mz) as explained in the previous section. The on-shell

action is given by
2 2
SdW:—m/ddx[/dZM ]Z/ddx(—m).
p=c
(E3)

(E1)

(E2)

(1+]gpf)?

Thus, the effective action is of the Nambu-Goto type given
in Eq. (D32) with A = —1.

Let us verify if the Nambu-Goto action correctly
describes dynamics of the domain wall. For that purpose,
it is simple to see a time-dependent solution, namely, the
so-called Q-kink domain wall [21]. The solution is obtained
through a standard Bogomol’'nyi technique as

M=m / oD = idsinal® +|¢' — deosal* — (¢ - §d") sina+ (|p) cosa

>mT cosa+ mQsina,

with the Noether charge Q = [ dz M and the topological charge T = [ dz by

1+[p)?

the most stringent when tan @ = Q/T. Expressing sina = w/m and cos a =

mass formula of the Q-kink domain wall

(1+181%)?
(E4)

T+ The energy bound from below is

1 — (w/m)?, we get the BPS solution and
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¢:ei(bx0+ 1—(7)21’ M=m /T2+Q2: m
l-w

We can derive the same mass formula from the effective
Lagrangian of the Nambu-Goto type. The Lagrangian is

LNG = —n/ 1 + (8;46)2'

A conjugate momentum is

(E6)

; _ OLng
given by 7n, = v

—md°e/\/1+ (d,€)*. Then, the Hamiltonian takes the
form
1+ (9;¢)?
HNG = (806')71'6 _LNG = mM, (l = 1,2) (E7)
1+ (9,€)?

Reading x dependence of e(x*) from the Q-kink domain
wall solution (E5), we find e(x*) = @x. Plugging this into
Hyg, we find

m
This is precisely the same as the BPS mass formula given in

Eq. (ES). Thus, we confirm the Nambu-Goto action works
very well as the effective action.

Hyg = (E8)

2. An additional potential to massive CP!
sigma model: A model

In the previous subsection, we have seen the simplest
example in which the effective action of the domain
wall corresponds to the usual Nambu-Goto action. In this
section, we see an example that the effective theory is not of
the simple Nambu-Goto type.

We again consider the massive CP! model. But we
introduce an additional higher order interaction term (19)

o 2 _ 021512
- )
4 2 1= 2\2
p MU gy

where we assume A > 0. The total scalar potential is
positive definite, so that ¢ =0 and ¢ = oo remain as
the global vacua with zero vacuum energy. In addition, a
new local minimum appears at |¢p| = 1 due to the additional
term in the potential. Thus, a domain wall interpolating the
vacua ¢ = 0, oo still exists but it is deformed compared to
the one in the massive CP' sigma model in the previous
subsection. An advantage of the particular choice of the
potential (E10) is that we have an analytic solution of the
domain wall with which we can analytically obtain an
effective action of the deformed domain wall.

In order to illustrate the situation better, let us rewrite the
Lagrangian in terms of a spherical coordinate

PHYSICAL REVIEW D 93, 065058 (2016)
o, O
¢:e’q’tan5. (E11)

Then, the Lagrangian is written in the following form:

L = —[(0y0)? + sin> ©(9,,P)? — m? sin’> ® — Asin? 20)].

FN-

(E12)

The scalar potential in this Lagrangian is identical to the
so-called double sine-Gordon potential; see Fig. 4. The
double sine-Gordon model has been studied for a long time,
and a domain wall solution is known to be

s
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FIG. 4. The upper, middle, and lower panels show the double
sine-Gordon potential, the domain wall solutions, and energy
densities, respectively. Blue (solid), yellow (dashed), and green
(long-dashed) lines correspond to (m,4)=(1,0),(1/2,1/2),
(1073,1).
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- sinh (my/1+y(z — 2))
Veosh?(m/T+y(z=2)) +7)
4

A
- (E13)

® = arccos

where Z and e are constants. For the upper (lower) sign, ® goes to 0 (z) as z - —oo and to 7 (0) as 7z = +oo0.
Now, we can easily translate the above domain wall solution in terms of the original CP! field ¢. It is of a slightly
complicated form

o = o {\/y + cosh?(my/T +y(z — Z)) + sinh (my/T +y(z — Z))]% (E14)
C T Wy eosh (myT T 7z~ 2) F sinh (my/T T 7(z— 2)))

For the upper (lower) sign, ¢ goes to 0 (c0) as z = —oo and to oo (0) as z — +oo. Let us obtain the mass of the domain wall.
It can simply be done by making use of the standard Bogomol’nyi technique as

= [ {W¢dw¢mzﬂﬂg;@iz
+|¢|> (1+ 9P

£ (e 1 &) \/ g+ TP |¢|2>2}

1+g)?
—l€ / i€ f 1_ 2)\2
(e (e
where € is an arbitrary real constant. The Bogomol'nyi bound is saturated when the following first order differential
equation is satisfied:
rIoP(1 - 19)?
= tmety | |p? + L (i (E16)
\/ L+ [4*)?

This is indeed solved by ¢ given in Eq. (E14). Thus, the mass is given by

_ > [ ra-py
M) =m | "4 +f2)\/ MR
[\/ m? + 4 +—tanh 1\/7} (E17)

This is, of course, identical to the mass formula of the double sine-Gordon domain wall known in the literature.
We now extend the above solution to have a Q charge, which is a new solution existing only in the deformed massive CP!
model. In order to get the solution, the Bogomol’nyi technique is again useful,

B Y N S e
/( pTa {|¢ P \/|¢|

1+ |g)?
(e 4 0 \/|¢|2 He - 191 —iw(qés&s—qs&a)}

(1+[g)*)?
(O + e OF) | FBEA=1PE)? iw@fi)—@}
dz< +m s E18
Z/ e \/"’5| (07t 9P (E18)
where we have introduced
m?* = m? — ?, y= 24/1 5 (E19)
m> —w
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The energy bound is saturated when the first order differential equations are satisfied,

7|¢| (1-141*)? _
¢ =iop, ¢+l \/|¢|2 e (E20)
1+ |g?)?
This is solved by
¢Q = eiwl+i€0 |:\/}7 + COShZ(’/h \/1 + 7(2 - Z)) :I: Sinh (’;h \% 1 + 77(2 - Z)):| 7. (EZI)
V7 + cosh? (i /T +7(z — Z)) F sinh (/T + 7(z — Z))
The mass of the Q-double sine-Gordon domain wall is given by
1 m? + o’ 42
My(m, A w) == Z-w’ 442 tanh™'/—————|. E22
o(m, A, w) 2{ m” — "+ 41+ i an mz—a)2+4/1] (E22)
Note that this corresponds to the mass of the usual CP' Q domain wall in the limit A — 0 as
5 5 2 m2
My(m,0,w) = Vm* —w* + = . (E23)
¢ Vm? —*  Vm? — o?
The Q-charge density is given by
(1 + Irf)l )?
2V2 xteo
= [—tanh‘l <—\/— tanh (x\/ 44 + m? — w2)>}
4/ 40+ m? — @? B=—c0
AVY)
— 2 _tanh~"! Vi (E24)

= —tanh E————
2V/2 VAl + m? — a?

Let us next compare the values of Lagrangian for the static and Q domain wall solutions. Substituting ¢, in Eq. (E14) and
¢ in Eq. (E21) into the Lagrangian (E9) and integrating it over z, we get
|

4/1
{\/m +42 +—tanh‘ 4/1] (E25) Lo = — {,/L2G+4/1+ —NG tanh~! 4 ]

Lig + 44
| (E28)
LM)Q]__E m* — @* + 42

This is very different from the standard Nambu-Goto
4 m? — o’ tanh-! 44 (E26) Lagrangian (4 — O limit is the Nambu-Goto Lagrangian).

NZY) m? —w? + 41 Conjugate momentum is given by

The latter can be obtained by just replacing m by vVm? — @? 2 1)
in the former. Having A%, = —— as a Lorentz boost I, = ——tanh™! Ope.  (E29
£ /= Nz \/ Ut @)+ B

toward the (d + 2)th direction, this replacement can be
understood as exchanging m — m/A®%,. Thus, we have  Then, the Hamiltonian is
verified that the deformed CP! model is in the category to

which our prescription can apply. 1 2014 (9ne)? L (O:€)2
Now, the effective action of the domain wall can be  H.p== \/m2(1+(('9 6)2)+4A+m (14 (9pe)” + (9se))
2 s NZY)

obtained by just replacing

. 4
m = Lyg = m\[1 + (9,¢)* (E27) xtanh 1\/ m?(1+ (9,€)?) +4,1]' (E30)

in the Lagrangian L[¢,] given in Eq. (E25), Finally, we consider the solution in the effective theory
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e() =21+ ¢ (E31)
m

The corresponding energy density is

1| 55—+
Heff__|: m2—a)2+4/1

2

m? + w? \/—T
————tanh ™!y | —5—F——|. E32
" Ny m? — o* + 4/1] (E32)

This is nothing but M,(m,A, ) given in Eq. (E22).
Furthermore, the Noether charge of the shift symmetry
€ — € + o for the solution (E31) is given by

22 Vm?—a?+41

(E33)

Oesr

€0

This Noether charge in the effective theory is exactly the
same as that in the original theory; see Eq. (E24). Thus, the
effective Lagrangian (E28) correctly reproduces not only
the mass but also the conserved charge.

3. An additional potential to massive CP!
sigma model: B model

Let us next consider a different scalar potential from
Eq. (E10) for the CP' model

_ el
(1+1gP)*

This model is not explained in the main part of the paper,
but we consider this model to give further support to the
main result of the paper. This potential lifts the vacuum at
the south pole || = oo while the point ¢ = 0 is left as the
unique vacuum. As shown in Fig. 5, the vacuum || = oo
remains as a local minimum for m?> > 5 while it becomes a
global maximum for m? <#. In terms of the spherical
coordinate (E11), we find the Lagrangian in the following
expression:

(n > 0). (E34)

! €]
L= 1 (0©)? + sin?@(0,,®)? — m?sin’® — 4nsin2§ .
(E35)

This is quite similar to the model (E12). A difference is the
period of the scalar potential in the ® direction. A static
domain wall solution of the equations of motion is given by

2m2€m(z—Z)

o = e m? — g2

(E36)

One should change coordinate from ¢ to ¢’ = 1/¢ in the
vicinity of the point ¢y — oo. This solution interpolates
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FIG. 5. The upper, middle, and lower panels show the double
sine-Gordon potential B, the domain wall solutions, and energy
densities, respectively. Blue (solid), yellow (dashed), green
(long-dashed), and orange (short-dashed) lines correspond to
(m,n) = (1,0),(1,1/3),(1,1), and (1,2).

the north pole (¢ = 0) at z > —oco, and passing through
the south pole (|¢p| = o0), it reaches back to the north
pole. Since the field trajectory goes across the potential
hill twice, the configuration is again a bound state of
two domain walls at a finite distance. This solution
might be unstable against generating tachyonic fluctuations
because the S' trajectory surrounding the S target space is
contractible. In the following, we do not worry about the
tachyonic modes at all. Instead, we concentrate on the zero
modes and massive modes around the background solution
given in Eq. (E36), since our main interest of this paper is
put in the effective theory of the zero modes.

065058-15



MINORU ETO and KOJI HASHIMOTO PHYSICAL REVIEW D 93, 065058 (2016)
Let us start with giving a Q-extension of the static domain wall solution in Eq. (E36),

2(m? - wz)em(z—z)

Vi —a?(z-Z)

¢ — Liwtte,
0= e

(E37)
m? — w? — ne’

We assume w® < m? because w® = m? corresponds to the vacuum solution, and w> > m? does not solve the equation of

motion. The tension of this solution is given in a slightly complicated form as

Mmz—n—m2>0 _ 2(m2 ) m* — w’
o m? —n — w?
n(m? —n —2w?) 2m? — = 20% + 2/ (m* — @) (m* — y — &)
+2 PR NV R 2 2 2 2\ (112 AW (E38)
(m* —n - o?) 2m? — = 2w* — 2/ (m* — @) (m* — iy — &?)
2 _ 4m?
e (E39)
m? — o’
Mmz—n—w2<0 o 4(’7 - mZ)\/(mZ - wz)('l - m2 + a)Z) + 7”7(’7 - m2 + 20)2)
o 2(71 — m2 + w2)3/2
n(n —m* + 2w?) cot-! 2/ (m? — @) (i — m? + @?) (E40)
(n —m? + 0?)3/? n—2m?+ 20’ '

As is done in the previous subsection, our first nontrivial check is comparing the value of integration of the Lagrangian over
the transverse coordinate z for the static solution ¢, and ¢y,

—/m? = 2 _
Lig)" 0 = —2m + ——-—log (m(m L 77)’ (E41)
2/m?—nq m(m+/m*> —n) +m* -1
Ligpo)" =" = ~4m, (E42)
2 n n _ 2m? —n
Ligo)" ”<0:—2m——<——tan1(—>). E43
@ N e G Y ()

As is expected, we find that L{¢,] is obtained by just replacing m by Vm? — w* in L{¢]. Now, we can construct a low
energy effective theory by replacing m with Lyg = my/1 + (6ﬂ€)2. Then, the Hamiltonian in the effective theory is

obtained in a standard way. For ¢ dependent only on x° it is expressed as

Hmz—n—é2>0 o 2(m2 - n)m VI1-— éz

eff - m2(1_6',2)_’7

e e e e e e
Hy " = ¢f’:1—é2’ (E45)

gm0 _ 4= m)my/(1 - €22><(Z:Z22((11 - ;2;;32 mn(n — m*(1 = 2¢%))
+ Z;”_ ‘m’Z(zfl_ ;3;31 - (zmm’7 ST (277(1—171;)1 - e2>>>. )
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FIG. 6. The on-shell Hamiltonian for m =1 and n = 1/3.
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By putting a solution € = wt/m in the effective theory, we
exactly reproduce the mass formula (E40) in the original
nonlinear sigma model.

A peculiar feature of the B model is that the mass does
not diverge at w/m = 1. Namely, there is no speed limit in
the internal moduli. An intuitive explanation is the follow-
ing. As @ — m, the effective mass becomes small. In the B
model, the potential of the small period (m? — w?) sin?> @
vanishes. This means that the two constituent domain walls
are further confined into one large domain wall; see Fig. 5.
Therefore, no flattering and destroying the domain wall
occurs in this model; see Fig. 6.

APPENDIX F: VACUUM SYMMETRY BREAKING
AND EXTRA DIMENSION

Analysis performed for (A1) can be done by using the
extra dimension technique that we introduced earlier.
A classical solution is

¢0 — eimeé’

Here, & is the Higgs vet and is constant, given explicitly as

¢ €R. (F1)

—C—I’T’l2

E= T (F2)
The vacuum depends on the parameter e, which can later
become a massless Nambu-Goldstone mode.

It is straightforward to obtain the on-shell action, but
here we follow the procedures using the extra dimensions
since it is instructive. First, we upgrade the system to a
(d + 2)-dimensional system,
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(. z.a) = e Y eMaRpln (). (F3)

n=—0o

The action is

1 27R d
S = 271'_R A da/ d Xdzﬁd+2, (F4)
Ly = =10ug* = V(I9]?). (F5)

The Sherk-Schwarz boundary condition is
O(x#, a + 27R) = " MRD (1, ). (F6)

Let us consider a boosted solution in (d + 2) dimensions.
The original solution is

P = By(a) = e (F7)
and it is boosted by a Lorentz transformation
a= A+ A% x*, ¥ =Mua+ M. (F8)
The result is
B = B (@)
— pimag

— eimA"aaeimA"”x“ é: (Fg)

With this new solution, we can calculate the effective
action as before. With the general coordinate transforma-
tion

a= Ao+ A% x*, Xt = xt, (F10)

the substitution of the boosted solution to the action gives

1 [27RA%+A% % g r
~ 2zR A® A“, x[ d+2|q’:q’0(“)]areplaced bya
#

— / d*xL 10| o, (a)
_ / dx[-m?& - V(&)]
_/d4xw.

S

0 (F11)

Replacing m by m/A%, = my/1+ (d,€)?, we obtain the

effective action for the internal moduli field e(x*) as

s— [ (e 3 0,

4 2,2 4
_ 4 |H U 2 M 2\2
—/deM 51 (0,€) a7 (aﬂe))} (F12)
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So, if we rescale the moduli field e(x*) as

my
N(xt) =—e(xH), F13
() =" (F13)
the effective action is
S = d* 18N2 A 0,N)?*)? F14
= const. + X _E( u ) +4//L4<( u ) ) . ( )

The normalization of the Nambu-Goldstone field is
encoded in the original field as

(F15)

This relation seems ill defined when the inside of the square
root becomes negative. However, since the original scalar
field is complex, there is no problem. The effective action
itself does not provide any reality constraint; thus, there is
no speed limit.

APPENDIX G: EFFECTIVE ACTION FOR
’t HOOFT-POLYAKOV MONOPOLE

Let us turn to the case of the popular SU(2) ’t Hooft-
Polyakov monopole, following [18]. We find that the
effective action for the internal moduli parameter e(r)
for the SU(2) 't Hooft-Polyakov monopole is given by a
Nambu-Goto action, that is, an action for a relativistic
particle whose position is given by ¢(t). Therefore, we have
a speed limit in the internal space.

We start with the SU(2) Yang-Mills-Higgs theory

1 1 1
S = _gz/d4x [4(F;w)2 +§(Dﬂ¢ )? (G1)

where we use the normalization of the SU(2) generators
as tr[T°T"] = 8,,/2 (a,b =1, 2, 3), and the component
expansion is A, = AT“ and ¢ = ¢“T“. The field strength
and the covariant derivative are defined as

F,=0,A-0,A,-iA,A,l] (G2)
D,p=0,0—ilA,. ] (G3)

The BPS equation for a monopole is given by
Bi — Di¢’ Ei - 0, (G4)

with B; = (1/2)e;xF jx and E; = F;. The monopole sol-
ution is given as

Af =€t (1=K(r))/r. AG=FJ(r)/r, ¢*=FH(r)/r.
(G5)

with
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K(r)=Cr/sinh(Cr), J(r)=0, H(r)=Crcoth(Cr)-1.
(G6)

Here, C is a constant parameter, and provides the Higgs
VEV at spatial infinity, ¢ = CF,,.

The 't Hooft-Polyakov monopole has R* x ' moduli
space, and the latter S! is the internal moduli parameter. It is
generated by an unbroken global part of the local symmetry
generated by

U = exp [-2ie*T*/C] (G7)

so that the periodicity for the constant moduli parameter € is
0 < e < 2x. It is easy to see that the transformation leaves
the scalar field solution intact, while it changes the gauge
field solution by
2
OA; = eED,»qﬁ. (G8)
This is the internal zero mode that we are interested in.
Now, we upgrade this constant internal moduli parameter
€ to a one-dimensional field e(7). Since the monopole is a
pointlike object, its worldline is one dimensional, so the
moduli can depend only on time .
It is important to note that, once we consider a time-
dependent ¢(¢), it amounts to an electric field. In fact, the
transformation (G7) generates also an electric field,

2
8Ag = (Ope) E¢'

So the internal motion provides the electric field, and turns
the monopole into a dyon. The famous Julia-Zee dyon
solution is given by

(G9)

K(r) = C'r/sinh(C'r), (G10)
J(r) =tanhyH(r), (G11)
H(r) = coshy[C'rcoth(C'r) — 1]. (G12)
Here, C’ is related to the previous C as
C'coshy =C (G13)

such that the asymptotic value of the Higgs field ¢ is the
same as that of the original monopole solution. The BPS
equation for the dyon is

(coshy)B; = D¢, (cothy)E; = D;¢. (G14)

Comparing (G11) in this Julia-Zee dyon solution with
(G9), we find a relation

(806)% = tanhy. (G15)

We calculate the effective action of the zero mode e(#). It is
sufficient to calculate the on-shell action of the dyon.
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Substituting the dyon solution to the original action, we
obtain

4nC’
s=-"2 [ ar=

g g

4rC 1
—— [ dt . Gl6
2 coshy (G16)
Using the relation (G15) between y and the moduli field e(¢),
we obtain the effective action for the internal moduli as

5= —z—’; / din/(C/2)% = (9ye)?-

This is an action of a relativistic particle, in other words, a
one-dimensional Nambu-Goto action. The speed of light is
given by C/2.

As a consistency check, let us calculate the Hamiltonian
and compare it with the dyon mass. The Hamiltonian
calculated from the moduli effective action (G17) is

(G17)

oo Sy (G18)
P\/(C/2)? = (Doe)*

Substituting the relation (G15), this Hamiltonian is written
with y as

4xC 47xC’

H= ?coshy = cosh?y,

(G19)

which is exactly equal to the Julia-Zee dyon mass. So, we
conclude that the moduli effective action (G17) describes
correctly the dynamics of the moduli.
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It is intriguing to note that the speed limit C/2 in the
internal space turns out to be equal to the mass of the
W-bosons. For the case of the CP! domain walls the speed
limit is given by the mass of the original scalar field,
and we find a universal feature here: the internal speed
limit is given by the mass of the original massive field,
per second.

It might be interesting to consider the BPS ’t Hooft-
Polyakov monopole in the Higgs phase in AV = 2 super-
symmetric QCD with Ng = N¢ = 2 [19]. There, the VEV
C of the adjoint field in an SU(2) vector multiplet is
determined by a fundamental quark mass matrix M = mo;
as (¢) = M. Namely, we have C = 2m. Since the monop-
ole in the Higgs phase is pierced by a squeezed magnetic
flux, a vortex string, the moduli space is R x S'. Assuming
the effective action (G17) is valid even in the Higgs phase,
the speed limit in the internal S' space can be read as
0pe = m. In [19], it was found that the monopole can be
identified with a kink inside the vortex string. Namely, the
kink is a topological soliton in the 1 4 1-dimensional
massive CP! model that is the low energy effective action
of the internal moduli of a non-Abelian vortex [27-30]. The
moduli space of the kink in 1 + 1 dimensions is R! x S! as
we explained in the main body of the paper. More
concretely, the massive CP! sigma model for the monopole
is given by F = ‘;—?(1 +|¢*)72 in Eq. (17). This leads to
the Nambu-Goto action (18) with the factor m multiplied
by 47/ It gives the speed limit m and it is identical to the
Nambu-Goto action (G17) with C = 2m.
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