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We report a direct and robust calculation, free from ergodic problems, of the nonuniform-to-uniform
(stripe) transition line of noncommutativeΦ4

2 by means of an exact Metropolis algorithm applied to the first
nontrivial multitrace correction of this theory on the fuzzy sphere. In fact, we reconstruct the entire phase
diagram including the Ising, matrix, and stripe boundaries together with the triple point. We also report
that the measured critical exponents of the Ising transition line agrees with the Onsager values in two
dimensions. The triple point is identified as a termination point of the one-cut-to-two-cut transition line and

is located at ð ~b; ~cÞ ¼ ð−1.55; 0.4Þ, which compares favorably with a previous Monte Carlo estimate.

DOI: 10.1103/PhysRevD.93.065056

I. INTRODUCTION

Noncommutative scalar phi-four theory is a two-
parameter model that enjoys three stable phases:
(i) disordered (symmetric, one-cut, disk) phase; (ii) uniform
ordered (Ising, broken, asymmetric one-cut) phase; and
(iii) nonuniform ordered (matrix, stripe, two-cut, annulus)
phase. This picture is expected to hold for noncommutative/
fuzzy phi-four theory in any dimension, and the three
phases are all stable and are expected to meet at a triple
point. The nonuniform ordered phase [1] is a full blown
nonperturbative manifestation of the perturbative UV-IR
mixing effect [2], which is due to the underlying highly
nonlocal matrix degrees of freedom of the noncommutative
scalar field.
The phase structure in four dimensions was discussed

using the Hartree-Fock approximation in [3] and studied by
means of the Monte Carlo method, employing the fuzzy
torus [4] as regulator, in [5].
In two dimensions the theory is renormalizable [6]. The

regularized theory on the fuzzy sphere [7,8] reads

S ¼ TrðaΦ½La; ½La;Φ�� þ bΦ2 þ cΦ4Þ: ð1:1Þ
The Laplacian Δ ¼ LaLa defines the underlying geometry,
i.e., the metric, of the fuzzy sphere in the sense of [9,10]. It
is found that the collapsed parameters are

~b ¼ bN−3=2=a; ~c ¼ cN−2=a2: ð1:2Þ
The above phase structure was confirmed in two dimen-
sions by means of Monte Carlo simulations on the fuzzy
sphere in [11,12]. The phase diagram is shown in Fig. 1.
Both parts were generated using the Metropolis algorithm
on the fuzzy sphere. In the first part coupling of the scalar
field Φ to a Uð1Þ gauge field on the fuzzy sphere is

included, and as a consequence, we can employ the UðNÞ
gauge symmetry to reduce the scalar sector to only its
eigenvalues. In the second part an approximate Metropolis,
which does not satisfy detailed balanced, is used.
The problem of the phase structure of fuzzy scalar

phi-four was also studied by means of the Monte Carlo
method in [13–17]. The analytic derivation of the phase
diagram of noncommutative phi-four on the fuzzy sphere
was attempted in [18–25]. The related problem of
Monte Carlo simulation of noncommutative phi-four on
the fuzzy torus and the fuzzy disk was considered in [5],
[26], and [27], respectively. For a recent study see [28].
In this paper, we are interested in studying by means

of the Monte Carlo method the first nontrivial multitrace
matrix model, quartic in the scalar field, which approx-
imates noncommutative Φ4 on the fuzzy sphere. The
multitrace approach was initiated in [18,19]. See also
[24] for a review and an extension of this method to the
noncommutative Moyal-Weyl plane. For an earlier
approach see [25], and for a similar more nonperturbative
approach see [20–23]. The multitrace expansion is the
analogue of the Hopping parameter expansion on the lattice
in the sense that we perform a small kinetic term expansion,
i.e. expanding in the parameter a of (1.1), while treating the
potential exactly. This should be contrasted with the small
interaction expansion of the usual perturbation theory.
This technique is expected to capture the matrix transition
between disordered and nonuniform ordered phases with
arbitrarily increasing accuracy by including more and more
terms in the expansion in a. From this we can then infer
and/or estimate the position of the triple point. Capturing
the Ising transition, and as a consequence the stripe
transition, is more subtle and is possible, in our opinion,
only if we include odd moments in the effective action and
do not impose the symmetry Φ → −Φ.
The effective action obtained in the multitrace approach
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moments mn ¼ TrMn of an N × N matrix M, which to the
lowest nontrivial order is of the form

V ¼ BTrM2 þ CTrM4 þD½TrM2�2
þ B0ðTrMÞ2 þ C0TrMTrM3 þD0ðTrMÞ4
þ A0TrM2ðTrMÞ2 þ…: ð1:3Þ

The parameters B and C are shifted values of b and c
appearing in (1.1). The primed parameters depend on a. The
second line includes terms that depend on the odd moments
m1 and m3. By diagonalization we obtain therefore the N
eigenvalues of M as our independent set of dynamical
degrees of freedom with an effective action of the form

Seff ¼
X
i

ðbλ2i þ cλ4i Þ −
1

2

X
i≠j

lnðλi − λjÞ2

þ
�
r2

8
v2;1

X
i≠j

ðλi − λjÞ2 þ
r4

48
v4;1

X
i≠j

ðλi − λjÞ4

−
r4

24N2
v2;2

�X
i≠j

ðλi − λjÞ2
�
2

þ…

�
: ð1:4Þ

The coefficients v2;1, v4;1, and v2;2 are given by the
following two competing calculations found in [18]
(Model I) and [24] (Model II):

v2;1¼−1; v4;1¼
3

2
; v2;2 ¼ 0; Model I

v2;1¼þ1; v4;1¼ 0; v2;2¼
1

8
; Model II: ð1:5Þ

The result found in [24] agrees with the nonperturbative
result of [20] and the corrected result of [19]. This can also
be confirmed by means of the Monte Carlo method. The first
model in the commutative limit N → ∞ is therefore a scalar

Φ4 theory on the sphere modulo multi-integral terms. In
here, we will study both models by means of the
Monte Carlo method and show that the first model, though
incorrect, sustains the uniform ordered phase. The second
model will sustain the uniform ordered phase only if we add
to it higher order multitrace corrections.
Since these models depend only on N independent

eigenvalues, their Monte Carlo sampling by means of
the Metropolis algorithm does not suffer from any ergodic
problem and thus what we get in the simulations is really
what should exist in the model nonperturbatively. This
should be contrasted with the Monte Carlo simulation (via
Metropolis, hybrid Monte Carlo, or other method) of (1.1)
which suffers from severe ergodic problems that do not
allow us easy and transparent access to the stripe transition
and the triple point [13–17]. Model I, which sustains the
uniform ordered phase, suffers, however, from critical
slowing down, for values of N of the order of N > 60,
and thus the use of the Wolf algorithm [29] would have
been more appropriate.
Some of our results in this article include the following:
(i) The phase diagram of Model I contains the three

phases discussed above. The critical boundaries are
determined, and the triple point is located.

(ii) The uniform ordered phase exists in Model I only
with the odd terms included. If we assume the
symmetry M → −M, then the second line of (1.3)
becomes identically zero and the uniform ordered
phase disappears. This is at least true in the domain
studied in this article, which includes the triple point
of fuzzy Φ4 on the fuzzy sphere and extends to all its
phase diagrams probed in [11,12].

(iii) The delicate computation of the critical exponents of
the Ising transition is discussed, and our estimate
of the critical exponents ν, α, γ, β agrees very well
with the Onsager values [30].
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FIG. 1. The phase diagram of noncommutative phi-four theory on the fuzzy sphere. In the first part the fits are reproduced from actual
Monte Carlo data [17]. The second part is reproduced from [11] with the gracious permission of D. O’Connor.

B. YDRI, K. RAMDA, and A. ROUAG PHYSICAL REVIEW D 93, 065056 (2016)

065056-2



(iv) The phase diagram of Model II, with or without odd
terms, does not contain the uniform ordered phase.

(v) The one-cut-to-two-cut transition line does not extend
to the origin, i.e. to ~C ¼ 0, inModel II, which gives us
an estimation of the triple point in this case.

(vi) In Model II without the odd terms the termination
point can be computed analytically from the require-
ment that the critical point ~B� always remains
negative and the obtained result ð ~B; ~CÞ¼ ð0;1=12Þ
agrees with the Monte Carlo method.

(vii) In Model II with odd terms the termination point is
found to be located at ð ~B; ~CÞ ¼ ð−1.05; 0.4Þ. This is
our measurement of the triple point.

(viii) In all cases the one-cut-to-two-cut matrix transition
line agrees better with the double-trace matrix theory
than with the quartic matrix model. The double-trace
matrix theory is given by D ≠ 0 while all primed
parameters are zero.

(ix) The model of Grosse-Wulkenhaar is also briefly
discussed.

This article is organized as follows:
(1) Section 2: The Multitrace Matrix Models.
(2) Section 3: Exact Solutions.

(a) The Pure Real Quartic Matrix Model.
(b) The Double-trace Quartic Matrix Model.

(3) Section 4: Algorithm.
(4) Section 5: Monte Carlo Results.

(a) General Remarks.
(b) Monte Carlo Tests of Multitrace Approxi-

mations.
(c) Phase Diagrams.
(d) Gross-Wulkenhaar Model.

(5) Section 5: Conclusion.
We also include appendixes for the benefit of interested
readers as well as to make the presentation as self-contained
as possible.

II. THE MULTITRACE MATRIX MODELS

Our primary interest here is the theory of noncommu-
tative Φ4 on the fuzzy sphere given by the action

S ¼ 4πR2

N þ 1
Tr

�
1

2R2
ΦΔΦþ 1

2
m2Φ2 þ λ

4!
Φ4

�
: ð2:1Þ

The Laplacian is Δ ¼ ½La; ½La;…��. Equivalently with the
substitution Φ ¼ M=

ffiffiffiffiffiffiffiffi
2πθ

p
, where M ¼ P

N
i;j¼1Mijjiihjj,

this action reads

S ¼ TrðaMΔMþ bM2 þ cM4Þ: ð2:2Þ
The parameters are1

a ¼ 1

2R2
; b ¼ 1

2
m2; c ¼ λ

4!

1

2πθ
: ð2:3Þ

In terms of the matrix M the action reads

S½M� ¼ r2K½M� þ Tr½bM2 þ cM4�: ð2:4Þ
The kinetic matrix is given by

K½M� ¼Tr

�
−ΓþMΓM−

1

Nþ1
Γ3MΓ3MþEM2

�
: ð2:5Þ

The matrices Γ, Γ3, and E are given by

ðΓ3Þlm ¼ lδlm; ðΓÞlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm − 1Þ

�
1 −

m
N þ 1

�s
δlm−1;

ðEÞlm ¼
�
l −

1

2

�
δlm: ð2:6Þ

The relationship between the parameters a and r2 is
given by

r2 ¼ 2aN: ð2:7Þ
We start from the path integral

Z ¼
Z

dM expð−S½M�Þ

¼
Z

dΛΔ2ðΛÞ expð−TrðbΛ2 þ cΛ4ÞÞ

×
Z

dU expð−r2K½UΛU−1�Þ: ð2:8Þ

The second line involves the diagonalization of the matrix
M (more on this below). The calculation of the integral over
U ∈ UðNÞ is a very long calculation done in [18,24]. The
end result is a multitrace effective potential given by

Seff ¼
X
i

ðbλ2i þ cλ4i Þ −
1

2

X
i≠j

lnðλi − λjÞ2

þ
�
r2

8
v2;1

X
i≠j

ðλi − λjÞ2 þ
r4

48
v4;1

X
i≠j

ðλi − λjÞ4

−
r4

24N2
v2;2

�X
i≠j

ðλi − λjÞ2
�
2

þ…

�
: ð2:9Þ

The coefficients v will be given below.
We will assume now that the parameters b, c, and r2

scale as

~a¼ a
Nδa

; ~b¼ b
Nδb

; ~c¼ c
Nδc

; ~r2 ¼ r2

Nδr
: ð2:10Þ

Further, we will assume a scaling δλ of the eigenvalues
λ, viz.

1The noncommutativity parameter on the fuzzy sphere is
related to the radius of the sphere by θ ¼ 2R2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − 1

p
.
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~λ ¼ λ

Nδλ
: ð2:11Þ

It is easy to convince ourselves that in order for the above
effective potential to come out of order N2 we must have
the following values:

δa¼−1−2δλ; δb¼1−2δλ; δc¼1−4δλ; δr¼−2δλ:

ð2:12Þ

From the Monte Carlo results of [11,12], we know that the
scaling behavior of the parameters b and c appearing in the
above action on the fuzzy sphere is given by

δb ¼
3

2
; δc ¼ 2: ð2:13Þ

By substitution we obtain the other scalings

δλ ¼ −
1

4
; δa ¼ −

1

2
; δr ¼

1

2
: ð2:14Þ

The problem (2.9) is a generalization of the quartic
Hermitian matrix potential model. Indeed, by dropping
odd moments, this effective potential corresponds to the
matrix model given by

V ¼ V0 þ ΔV0: ð2:15Þ

The classical potential and the even correction ΔV0 are
given by

V0 ¼ bTrM2 þ cTrM4; ð2:16Þ

ΔV0 ¼ F0TrM2 þ E0TrM4 þD½TrM2�2: ð2:17Þ

The coefficients F0, E0, and D are given by

F0 ¼ aN2v2;1
2

; E0 ¼ a2N3v4;1
6

; D ¼ −
2ηa2N2

3
:

ð2:18Þ
The strength of the multitrace term η is given by

η ¼ v2;2 −
3

4
v4;1: ð2:19Þ

By including terms that involve the odd moments we get
the effective potential

V ¼ V0 þ ΔV0 þ ΔV: ð2:20Þ
The extra contribution and its coefficients are given by

ΔV ¼ B0ðTrMÞ2 þ C0TrMTrM3 þD0ðTrMÞ4
þ A0TrM2ðTrMÞ2; ð2:21Þ

B0 ¼ −
aN
2

v2;1; C0 ¼ −
2a2N2

3
v4;1;

D0 ¼ −
2a2

3
v2;2; A0 ¼ 4a2N

3
v2;2: ð2:22Þ

The coefficients v2;1, v4;1, and v2;2 are given by the follo-
wing two competing calculations found in [18] (Model I)
and [24] (Model II):

v2;1¼−1; v4;1¼
3

2
; v2;2 ¼ 0; Model I

v2;1¼þ1; v4;1 ¼ 0; v2;2¼
1

8
; Model II: ð2:23Þ

The difference in the sign of v2;1 is probably a typo on the
part of [18] while the discrepancy in the values of v4;1 and
v2;2 is more serious and is discussed in [24]. The result
found in [24] agrees with the result of [20] given by their
Eq. (2.39). The work [19] contains the correct calculation,
which agrees with the results of both [20] and [24].
The one-cut-to-two-cut transition line in the model

(2.15) is given by the exact result [24]

~b� ¼ −
~a
2
v2;1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~cþ ~a2

6
v4;1

r
þ 4η ~a2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~cþ ~a2

6
v4;1

q : ð2:24Þ

As pointed out in [24] this result is new. For a generali-
zation of this result see [20]. This critical value ~b� is
negative for

~c ≥
~a2

6
ð4η − v4;1Þ: ð2:25Þ

III. EXACT SOLUTIONS

In this section we will give a brief description of
the exact solutions of the real quartic matrix model
BTrM2 þ CTrM4 and the double-trace real quartic matrix
model BTrM2 þ CTrM4 þDðTrM2Þ2.

A. The pure real quartic matrix model

The phase structure of the pure real quartic matrix model
is studied, for example, in [31–34]. In here we will
summarize some of the salient results.
The basic model is given by

V ¼ BTrM2 þ CTrM4

¼ N
g

�
−TrM2 þ 1

4
TrM4

�
; ð3:1Þ

B ¼ −
N
g
; C ¼ N

4g
: ð3:2Þ

There are two phases in this case:
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Disordered phase (one-cut) for g ≥ gc:

ρðλÞ ¼ 1

Nπ
ð2Cλ2 þ Bþ Cδ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − λ2

p
¼ 1

gπ

�
1

2
λ2 − 1þ r2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 − λ2

p
ð3:3Þ

−2r ≤ λ ≤ 2r; ð3:4Þ

r ¼ 1

2
δ; ð3:5Þ

δ2 ¼ 1

3C
ð−Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 12NC

p
Þ

¼ 1

3
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3g

p
Þ: ð3:6Þ

Nonuniform ordered phase (two-cut) for g ≤ gc:

ρðλÞ ¼ 2Cjλj
Nπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 − δ21Þðδ22 − λ2Þ

q

¼ jλj
2gπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 − r2−Þðr2þ − λ2Þ

q
; ð3:7Þ

r− ≤ jλj ≤ rþ; ð3:8Þ
r− ¼ δ1; rþ ¼ δ2; ð3:9Þ

r2∓ ¼ 1

2C
ð−B ∓ 2

ffiffiffiffiffiffiffi
NC

p
Þ

¼ 2ð1 ∓ ffiffiffi
g

p Þ: ð3:10Þ
Critical point: A third order transition between the above

two phases occurs at the critical point

gc ¼ 1 ↔ B2
c ¼ 4NC ↔ Bc ¼ −2

ffiffiffiffiffiffiffi
NC

p
: ð3:11Þ

Specific heat: The behavior of the specific heat across the
matrix transition provides also a powerful result against
which we can calibrate our algorithms and Monte Carlo
simulations. In terms of B̄ ¼ B=Bc the specific heat reads
in the two phases of the theory as follows:

Cv

N2
¼ 1

4
; B̄ ¼ B=Bc < −1;

Cv

N2
¼ 1

4
þ 2B̄4

27
−

B̄
27

ð2B̄2 − 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̄2 þ 3

p
; B̄ > −1:

ð3:12Þ
Uniform ordered phase: The real quartic matrix model

admits also a solution with TrM ≠ 0 corresponding to a
possible uniform-ordered (Ising) phase. This UðNÞ-like
solution can appear only for negative values of the mass
parameter μ, and it is constructed, for example, in [31]. It is,
however, thought that this solution cannot yield to a stable

phase without the addition of the kinetic term to the real
quartic matrix model.
The density of eigenvalues in this case is given by

ρðzÞ ¼ 1

πN
ð2Cz2 þ 2σCzþ Bþ 2Cσ2 þ Cτ2Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððσ þ τÞ − zÞðz − ðσ − τÞÞ

p
: ð3:13Þ

This is a one-cut solution centered around τ in the interval
½σ − τ; σ þ τ� where σ and τ are given by

σ2 ¼ 1

10C
ð−3Bþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 15NC

p
Þ;

τ2 ¼ 1

15C
ð−2B − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 15NC

p
Þ: ð3:14Þ

This solution makes sense only for

B ≤ Bc ¼ −
ffiffiffiffiffi
15

p ffiffiffiffiffiffiffi
NC

p
: ð3:15Þ

B. The double-trace quartic matrix model

The double-trace real quartic matrix model is given by
the multitrace matrix model (1.3) with all odd moments set
to zero, viz.

V ¼ BTrM2 þ CTrM4 þDðTrM2Þ2: ð3:16Þ

The scaling of the parameters is given by

~B ¼ BN−3=2; ~C ¼ CN−2; ~D ¼ DN−1: ð3:17Þ
The phase structure of this model is very similar to the
phase structure of the pure real quartic matrix model
outlined in the previous section. See, for example, [24].
The two stable phases are still given by the disordered
(one-cut) phase and the nonuniform-ordered (two-cut)

phase separated by a deformation of the line ~B� ¼
−2

ffiffiffiffi
~C

p
given by

~B� ¼ −2
ffiffiffiffi
~C

p
−

2 ~Dffiffiffiffi
~C

p : ð3:18Þ

For a generalization of this result see [20].
Another important result for us here is the existence of a

termination point in the model of [24] since the critical line
does not extend to zero. Indeed, in order for the critical
value ~B� to be negative, one must have ~C in the range

~C ≥ ~C� ¼
2η ~a2

3
¼ ~a2

12
: ð3:19Þ

Thus the termination point is located at (for ~a ¼ 1)

ð ~B; ~CÞ ¼ ð0; 1=12Þ: ð3:20Þ
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IV. ALGORITHM

We start from the potential and the partition function

V ¼ TrðBM2 þ CM4Þ þDðTrM2Þ2
þ B0ðTrMÞ2 þ C0TrMTrM3 þD0ðTrMÞ4
þ A0TrM2ðTrMÞ2; ð4:1Þ

Z ¼
Z

dM expð−VÞ: ð4:2Þ

The relationship between the two sets of parameters
fa; b; cg and fB;C;Dg is given by

B¼ bþaN2v2;1
2

; C¼ cþa2N3v4;1
6

; D¼−
2ηa2N2

3
:

ð4:3Þ
The collapsed parameters are

~B ¼ B

N
3
2

¼ ~bþ ~av2;1
2

; ~C ¼ C
N2

¼ ~cþ ~a2v4;1
6

;

D ¼ −
2η ~a2N

3
: ð4:4Þ

Only two of these three parameters are independent. For
consistency of the large N limit, we must choose ~a to be
any fixed number. We then choose for simplicity ~a ¼ 1 or
equivalently D ¼ −2ηN=3.2 The other parameters are

B0 ¼ −
aN
2

v2;1; C0 ¼ −
2a2N2

3
v4;1;

D0 ¼ −
2a2

3
v2;2; A0 ¼ 4a2N

3
v2;2: ð4:5Þ

We can now diagonalize the scalar matrix M as

M ¼ UΛU−1: ð4:6Þ

We compute

δM ¼ UðδΛþ ½U−1δU;Λ�ÞU−1: ð4:7Þ
Thus [with U−1δU ¼ iδV being an element of the Lie
algebra of SU(N)]

TrðδMÞ2 ¼ TrðδΛÞ2 þ Tr½U−1δU;Λ�2
¼

X
i

ðδλiÞ2 þ
X
i≠j

ðλi − λjÞ2δVijδV�
ij: ð4:8Þ

We count N2 real degrees of freedom as there should be.
The measure is therefore given by

dM ¼
Y
i

dλi
Y
i≠j

dVijdV�
ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðmetricÞ

p

¼
Y
i

dλi
Y
i≠j

dVijdV�
ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
i≠j

ðλi − λjÞ2
s

: ð4:9Þ

We write this as

dM ¼ dΛdUΔ2ðΛÞ: ð4:10Þ

The dU is the usual Haar measure over the group SU(N)
which is normalized such that

R
dU ¼ 1, whereas the

Jacobian Δ2ðΛÞ is precisely the so-called Vandermonde
determinant defined by

Δ2ðΛÞ ¼
Y
i>j

ðλi − λjÞ2: ð4:11Þ

The partition function becomes

Z ¼
Z

dΛΔ2ðΛÞ expð−TrðBΛ2 þ CΛ4Þ −DðTrΛ2Þ2Þ:

ð4:12Þ
We are therefore dealing with an effective potential
given by

Veff ¼B
X
i¼1

λ2i þC
X
i¼1

λ4i þD
�X

i¼1

λ2i

�
2

−
1

2

X
i≠j

lnðλi− λjÞ2:

ð4:13Þ

We will use the Metropolis algorithm to study this model.
Under the change λi → λi þ h of the eigenvalue λi the
above effective potential changes as Veff → Veff þ ΔVi;h

where

ΔVi;h ¼ BΔS2 þ CΔS4 þDð2S2ΔS2 þ ΔS22Þ þ ΔSVand
þ B0ΔS02 þ C0ΔS04 þD0ððΔS02Þ2 þ 2S21ΔS02Þ
þ A0ððS1 þ hÞΔS2 þ hS2Þ: ð4:14Þ

The monomials Sn are defined by Sn ¼
P

iλ
n
i while the

variations ΔSn and ΔSVand are given by

ΔS2 ¼ h2 þ 2hλi; ð4:15Þ

ΔS4 ¼ 6h2λ2i þ 4hλ3i þ 4h3λi þ h4; ð4:16Þ

ΔSVand ¼ −2
X
j≠i

ln

����1þ h
λi − λj

����; ð4:17Þ

ΔS02 ¼ h2 þ 2hS1; ð4:18Þ

ΔS04 ¼ ðS1 þ hÞð3hλ2i þ 3h2λi þ h3Þ þ hS3: ð4:19Þ
2The authors of [11,12] chose instead a ¼ 1. This should not

make any difference to the Monte Carlo simulations.
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V. MONTE CARLO RESULTS

A. General remarks

(1) We use the statistics 2P þ 2P × 2P
0
with P ¼ 15–20

and P0 ¼ 5 with N ¼ 10–60 and with the jackknife
method to estimate the error bars. We can even go
further to N ¼ 100 and beyond but noticed that
critical slowing down became a serious obstacle
especially in the measurement of critical exponents.

(2) Our first test for the validity of our simulations is to
look at the Schwinger-Dyson identity given for the
full multitrace model (2.20) by

hð2bTrM2 þ 4cTrM4 þ 2V2 þ 4V4Þi ¼ N2: ð5:1Þ

The quartic and quadratic pieces V2 and V4 are such
that

ΔV0 þ ΔV ¼ V2 þ V4: ð5:2Þ

In other words,

V2 ¼ F0TrM2 þ B0ðTrMÞ2; ð5:3Þ

V4 ¼ E0TrM4 þD½TrM2�2 þ C0TrMTrM3

þD0ðTrMÞ4 þ A0TrM2ðTrMÞ2: ð5:4Þ

(3) The second powerful test is to look at the conven-
tional quartic matrix model with a ¼ 0, viz. V ¼ V0.
The eigenvalues distributions in the two stable
phases [disorder(one-cut) and nonuniform order
(two-cut)] as well as the demarcation of their
boundary are well known analytically given by
the formulas (3.3), (3.7), and (3.11).

(4) Even the quartic multitrace approximation itself can
be verified directly in Monte Carlo simulation in
order to resolve the ambiguity in the coefficients v
between [24] and [18]. We must have as identity the
two equations�
a
Z

dUTr½La;UΛU−1�2
	

V0

¼h−V2ðΛÞiV0
; ð5:5Þ

�
1

2

�
a
Z

dUTr½La;UΛU−1�2
�

2
	

V0

¼
�
−V4ðΛÞ þ

1

2
V2
2ðΛÞ

	
V0

: ð5:6Þ

The coefficients v appear in the potentials V2 and
V4. The expectation values are computed with
respect to the conventional quartic matrix model
V0 ¼ V0ðΛÞ.
This test clearly requires the computation of the

kinetic term and its square, which means in particu-

lar that we need to numerically perform the integral
over U in the term

R
dUTr½La;UΛU−1�2, and it is

not obvious how to do this in any direct way.
Equivalently, we can undo the diagonalization in
the terms involving the kinetic term to obtain instead
the equations

haTr½La;M�2iV0
¼ h−V2iV0

; ð5:7Þ
�
1

2
ðaTr½La;M�2Þ2

	
V0

¼
�
−V4 þ

1

2
V2
2

	
V0

: ð5:8Þ

Now the expectation values in the left hand side
must be computed with respect to the conventional
quartic matrix model V0 ¼ V0ðMÞ with the full
matrix M ¼ UΛU−1 instead of the eigenvalues
matrix Λ. The expectation values in the right hand
side can be computed either way.
In other words, the eigenvalues Metropolis

algorithm employed in this article to compute
terms such as h−V2iV0

and h−V4 þ V2
2=2iV0

cannot
be used to compute the terms haTr½La;M�2iV0

and
haTr½La;M�2Þ2=2iV0

. We use instead the hybrid
Monte Carlo algorithm to compute these terms as
well as the terms h−V2iV0

and h−V4 þ V2
2=2iV0

in
order to verify the above equations. This also should
be viewed as a countercheck for the hybrid
Monte Carlo algorithm3 since we can compare the
values of h−V2iV0

and h−V4 þ V2
2=2iV0

obtained
using the hybrid Monte Carlo algorithm with those
obtained using our eigenvalues Metropolis algo-
rithm. We note, in passing, that the Metropolis
algorithm employed for the eigenvalues problem
here is far more efficient than the hybridMonte Carlo
algorithm applied to the same problem without
diagonalization. But this we can obviously tolerate
for testing purposes.

(5) The most detailed order parameter at our disposal is
the eigenvalues distribution of the field/matrix M,
which behaves in distinct ways in various phases.
This behavior mimics their behavior in the conven-
tional quartic matrix model V0, viz.
(a) The disorder (one-cut) phase is characterized by

a single-cut eigenvalues distribution symmetric
around 0 since in this phase hMi ¼ 0.

(b) The nonuniform order (two-cut) phase is
characterized by an eigenvalues distribution
symmetric around 0 but with two disjoint
supports since hMi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−b=2c
p

γ where γ is any

3Or a countercheck for the eigenvalues Metropolis algorithm
depending on which algorithm is more trustworthy. However, we
firmly believe that the eigenvalues Metropolis algorithm used
here is more robust on all accounts.

PHASE DIAGRAMS OF THE MULTITRACE QUARTIC … PHYSICAL REVIEW D 93, 065056 (2016)

065056-7



N-dimensional idempotent, i.e. γ2 ¼ 1. This
appears for large values of ~c.

(c) The uniform order (asymmetric one-cut) phase
is characterized by a single-cut eigenvalues
distribution centered around a nonzero value
since hMi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−b=2c
p

1. This appears for small
values of ~c.

(6) The specific heat defined with the respect to the
multitrace potential is given by

Cv ¼ hV2i − hVi2: ð5:9Þ
The relation of this powerful and most difficult to
measure second moment with the specific heat of
noncommutativeΦ4 on the fuzzy sphere is discussed
in the Appendix. In any case, this specific heat is
expected to approach the specific heat of the original
noncommutative Φ4 for large values of ~c, and as a
consequence it can be used to locate the boundary
between one-cut and two-cut phases as in the
conventional quartic matrix model with a ¼ 0.

(7) The magnetization and susceptibility are defined by

m¼hjTrMji; χ¼hjTrMj2i− hjTrMji2: ð5:10Þ

The magnetic susceptibility will exhibit peaks in the
second order phase transitions between disorder
(one-cut) and uniform order (Ising) and between
nonuniform order (two-cut) and uniform order
(Ising).

(8) The total power and power in the zero mode are
defined by

PT ¼
�
1

N
TrM2

	
; P0¼

��
1

N
TrM

�
2
	
: ð5:11Þ

In the Ising (uniform order) phase we will have in
particular the very distinguished signal P ¼ P0.

B. Monte Carlo tests of multitrace approximations

It is quite obvious that resolving the ambiguity between
the calculations of [18] and [24], summarized in Eq. (2.23),
is straightforward in Monte Carlo tests. We only need to
show that the two equations (5.7) and (5.8) hold as
identities in the correct calculation. However, this requires
a different algorithm than the eigenvalues Metropolis
algorithm used here. Indeed, to solve this problem we
need to Monte Carlo sample both the eigenvalues and the
angles of the matrix M using the Metropolis or the hybrid
Monte Carlo algorithm, the quartic matrix model

V0 ¼ bTrM2 þ cTrM4: ð5:12Þ
Monte Carlo simulations of this model can also be
compared to the exact solution outlined in Sec. III. A so
calibration in this case is easy. The detail of this simple
exercise is reported in [24]. There, it is decisively shown

that the calculation of [24] gives the correct approximation
of noncommutative scalar Φ4

2 on the fuzzy sphere.

C. Phase diagrams

(1) Model I: Model of [18]:
(a) Ising: Some of the results for the Ising transition

for this model are shown in Table I. The critical
point is taken at the peak of the susceptibility.
The behavior of various observables is shown in
Fig. 2. The fit for the extrapolated critical value
is given by

~C ¼ 0.291ð0Þ · ð− ~BÞ þ 0.104ð1Þ: ð5:13Þ
This transition can be confirmed to be between
disordered and uniform-ordered by looking at
the eigenvalues distribution. In the disordered
phase we have one-cut symmetric around zero,
whereas in the uniform-ordered we have one-cut
symmetric around

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−B=2C

p
. See Fig. 3.

(b) Critical exponents: The calculation of the critical
exponents of the above Ising transition is a very
delicate exercise in Monte Carlo simulation due
to the known problem of critical slowing down,
and as a consequence the use of a different
algorithm, for large values ofN, such as theWolf
algorithm [29] is essential. For values of N less
than N ¼ 60 the current algorithm is sufficient.
In any case, this lengthy calculation is reported
elsewhere. Suffice it to say here that the critical
exponents obtained are consistent, within the
best statistical errors, with the Onsager solution
of the Ising model in two dimensions given by
the celebrated values [30]

ν¼ 1; β¼ 1=8; γ¼ 7=4; α¼ 0; η¼ 1=4:

ð5:14Þ
This has always been known to be true, but this
is the first Monte Carlo direct calculation of
these critical exponents.

(c) Matrix: Some of the results for the matrix
transition between disorder and nonuniform
order for this model are shown in Table II.
The critical point is determined at the point

TABLE I. The Ising transition points for N ¼ 10–50. These are
determined at the peak of the susceptibility (discontinuity in the
specific heat). The search step is 0.01.

~C N ¼ 10 N ¼ 25 N ¼ 36 N ¼ 50 ~B extrapolated

0.3 −0.71 −0.69 −0.68 −0.68 −0.672ð2Þ
0.5 −1.44 −1.39 −1.38 −1.38 −1.361ð3Þ
1.0 −3.21 −3.13 −3.11 −3.10 −3.073ð2Þ
1.2 −3.9 −3.82 −3.8 −3.79 −3.763ð2Þ
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where the eigenvalue distributions go from one-
cut in the disorder phase to two-cut in the
nonuniform phase. The splitting of the distribu-
tion is considered to have occurred when the
height of the distribution at λ ¼ 0 is less than
some tolerance Tol. We take Tol ¼ 0.001.
The behavior of the specific heat across this
transition is effectively that of the pure quartic
matrix model a ¼ 0. A sample of the corre-
sponding specific heats and eigenvalue distribu-
tions is shown in Fig. 4. The fit for the
extrapolated critical value is given by

~C ¼ 2.206ð67Þ · ð− ~BÞ − 7.039ð301Þ: ð5:15Þ

(d) Stripe: This transition is quite difficult to ob-
serve in Monte Carlo simulation even in this
simplified setting that involves the sampling of
N eigenvalues. We can observe this transition for
medium values of ~C immediately above, but not
too close to, the triple point. The transition point
is taken at the point where we observe a jump or
a discontinuity in the zero power P0 and the
specific heat as seen in Fig. 5.

Alternatively, we can approach the critical
boundary by fixing the value of ~B and changing
~C starting from small values, i.e. inside the
uniform ordered phase, until the curves for the
total and zero powers start to diverge marking
the transition to the nonuniform ordered phase.
The signal we obtain in this way is quite clear and
unambiguous as shown in Fig. 6, and some
measurements are included in Table III. Since
this is a very delicate transition, we do not perform
any extrapolation of the critical point, and the
critical boundary is given by the fit of the largest
value of N. In any case we observe no strong
dependence onN of the measured critical value ~C
as seen in Table III. The stripe critical line is then
approximated by the fit for N ¼ 50 given by

~C¼ 0.154ð22Þ · ð− ~BÞþ 0.530ð131Þ; N ¼ 50:

ð5:16Þ
(e) Triple point and phase diagram: The location of

the triple point is obtained from the intersection
point of the Ising and matrix lines (5.13)
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FIG. 2. Some observables of the multitrace model of [18] across the disorder-to-uniform transition.
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and (5.15), respectively. Indeed, the measure-
ment of these two lines is more robust than the
measurement of the stripe line (5.16). We get
then immediately

ð ~B; ~CÞ ¼ ð−3.73; 1.19Þ: ð5:17Þ

The phase diagram of the multitrace model of
[18] is shown in Fig. 7. The Ising and matrix
transition data points are not shown explicitly,

but we only include their extrapolated fits,
whereas the N ¼ 50, 36, and 25 stripe data
points are indicated explicitly. We observe that
the matrix boundary is closer to the double-trace
theory than it is to the quartic matrix model. The
stripe critical boundary is, of course, expected to
be closer to the N ¼ 50 measurement.

(f) Even model: This is the model in which we set
all odd moments to zero in the action. We get
then the double-trace model

V ¼ BTrM2 þ CTrM4 þDðTrM2Þ2: ð5:18Þ

The most fundamental property of this model,
observed in Monte Carlo simulation, is the
absence of the uniform ordered phase. Indeed,
only the disorder and the nonuniform order
phases exist in the phase diagram. The critical
boundary is very close to the double-trace
critical line shown in Fig. 7, which consists of
two branches. Some precise measurements for
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FIG. 4. The specific heat and the eigenvalues distribution of the
matrix M in the multitrace model of [18] across the disorder-to-
nonuniform transition.

 0

 0.5

 1

 1.5

 2

 2.5

-1 -0.5  0  0.5  1

ρ 
(λ

)

λ

CT=1.0

N=10,BT=-4.0
BT=-3.5
BT=-3.0
BT=-2.0

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

ρ(
λ)

λ

CT=1.0

N=36,BT=-4.0
BT=-3.5
BT=-3.0
BT=-2.0

FIG. 3. The eigenvalues distribution of the matrix M in the
multitrace model of [18] with ~C ¼ 1.0 across the disorder-to-
uniform transition.

TABLE II. The matrix transition points for N ¼ 10–50. These
are determined at the point where the eigenvalue distribution
splits, which is taken at the value of ~B where the distribution
drops below 0.001 at zero. The search step is 0.025.

~C N ¼ 10 N ¼ 25 N ¼ 36 N ¼ 50 ~B extrapolated

2.0 −4.925 −4.475 −4.325 −4.225 −4.090ð37Þ
2.5 −5.225 −4.725 −4.575 −4.475 −4.321ð31Þ
3.0 −5.525 −4.975 −4.875 −4.725 −4.576ð36Þ
4.0 −6.025 −5.525 −5.225 −5.175 −4.993ð83Þ
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the first branch are included in Table IV. The
turning point, toward the second branch, occurs
around ~C ∼ 0.1 where the critical point − ~B�
becomes increasing, instead of decreasing, as we
decrease ~C.

(2) Model II: Model of [24]: This model as pointed out
previously is the correct approximation of noncom-
mutative scalar Φ4

2 on the fuzzy sphere. However, this
model is characterized by the absence of the uniform
ordered phase, and only the matrix transition line
separating disordered and nonuniform ordered phases
exists in the phase diagram. This fundamental result
holds with and without odd terms. The role of the odd
terms seems to be negligible, and the two cases with
and without odd terms are close. The double-trace
theory is also a very good approximation. A phase
diagram is attached in Fig. 7.
The second fundamental observation in this

case is the existence of a termination point. The
matrix critical line does not extend to the origin
and terminates at a point around ~C ¼ 0.083 in the

case without odd terms, which agrees with the
double-trace theory prediction (3.20), and at a point
around ~C ¼ 0.4 in the case with odd terms.
This termination point is exhibited in Monte Carlo
simulation by the failure of the Schwinger-Dyson
identity (5.1).
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functions of ~B, of the multitrace model of [18] across the
nonuniform-to-uniform transition.
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In particular, we observe for N ¼ 50 that ~C ¼ 0.4
is the smallest value at which the disordered
(one-cut) and nonuniform ordered (two-cut) phases
are well defined. For ~C ¼ 0.2–0.3 the nonuniform

ordered phase cannot be clearly observed, whereas
for ~C ≤ 0.1 both the disordered and the nonuniform
ordered phases become indiscernible. It is therefore
natural to identify the triple point with the termi-
nation point ~C ¼ 0.4. Our estimation of the termi-
nation point is given by

ð ~B; ~CÞ ¼ ð−1.05; 0.4Þ: ð5:19Þ

D. Grosse-Wulkenhaar model

The multitrace approach can also be applied to a
regularized noncommutative Φ4

2 on the Moyal-Weyl plane
in the matrix basis [24] with action given by

S ¼ TrN

�
1

2
m2M2 þ u

N
M4 þ aðEM2 þ ffiffiffiffi

ω
p

ΓþMΓMÞ
�
:

ð5:20Þ

Two cases are of importance to us here:
(1) The noncommutative theory without a harmonic

oscillator term. In this case the effective action takes
the form

Seffe¼ bTrNM2þcTrNM4þdðTrNM2Þ2
þb1ðTrNMÞ2þc1ðTrNMÞ4
þd1TrNM2ðTrNMÞ2þeTrNMTrNM3: ð5:21Þ

The parameters are given by

b¼m2

2
þaN

2
; c¼ u

N
−
a2N
24

; d¼−
a2

12

b1 ¼−
a
2
; c1 ¼

a2

24N2
; d1 ¼−

a2

12N
; e¼ a2

6
:

ð5:22Þ

If we assume the symmetry M → −M, then all odd
moments vanish identically and we end up with the
action
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FIG. 7. The phase diagrams of the multitrace models of [18]
and [24]. Model I: The Ising and matrix transition data points are
not shown but only their extrapolated fits are included, whereas
the N ¼ 25, N ¼ 36, and N ¼ 50 stripe data points are indicated
explicitly. Model II: The triple point is identified as the termi-
nation point located at ð ~B; ~CÞ ¼ ð−1.05; 0.4Þ which is to be
compared with the double-trace prediction at ð0; 1=12Þ.

TABLE IV. The matrix transition points for N ¼ 10–50 in
Model I without odd terms. In this case only this transition exists
and extends to a turning point in accordance with the double-trace
theory. The search step is 0.025.

~C N ¼ 10 N ¼ 17 N ¼ 25 N ¼ 36 N ¼ 50 ~B

0.5 −4.325 −4.225 −4.025 −3.875 −3.825 −3.738ð72Þ
1 −4.375 −4.175 −4.025 −3.875 −3.775 −3.685ð54Þ
2 −4.925 −4.675 −4.475 −4.325 −4.225 −4.098ð50Þ
3 −5.475 −5.275 −5.025 −4.825 −4.725 −4.601ð84Þ
5 −6.525 −6.275 −6.025 −5.725 −5.625 −5.479ð108Þ

TABLE III. The nonuniform-to-uniform transition points ~C for
N ¼ 10–50. These are determined at the discontinuity of the zero
power.

~B N ¼ 10 N ¼ 25 N ¼ 36 N ¼ 50

−9.0 1.95� 0.55 1.8� 0.4 1.75� 0.15 1.95� 0.15
−8.0 1.85� 0.15 1.65� 0.25 1.8� 0.2 1.8� 0.2
−7.0 1.6� 0.4 1.45� 0.05 1.55� 0.15 1.6� 0.3
−6.5 1.65� 0.15 1.45� 0.05 1.45� 0.05 1.45� 0.15
−6.0 1.65� 0.15 1.35� 0.05 1.55� 0.05 1.5� 0.2
−5.5 1.55� 0.05 1.35� 0.05 1.35� 0.15 1.35� 0.05
−5.0 1.45� 0.05 1.45� 0.05 1.25� 0.15 1.4� 0.1
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Seffe ¼ bTrNM2 þ cTrNM4 þ dðTrNM2Þ2: ð5:23Þ

(2) At the self-dual point we have Ω2 ¼ 1, and thusffiffiffiffi
ω

p ¼ 0, and as a consequence the effective action
reduces to the multitrace model

Seffe ¼ bTrNM2 þ cTrNM4 þ dðTrNM2Þ2: ð5:24Þ

The parameters b, c, and d are given by

b ¼ m2

2
þ aN

2
; c ¼ u

N
−
a2N
24

; d ¼ a2

24
:

ð5:25Þ

Both the actions (5.23) and (5.24) do not contain odd
moments, and thus the corresponding phase diagrams are
expected to not contain the uniform ordered phase with all
matrixlike behavior as a consequence.

VI. CONCLUSION

A Monte Carlo study of the multitrace quartic matrix
model of [18], which is claimed to be the first nontrivial
correction to noncommutative Φ4 on the fuzzy sphere, is
presented. This model does not suffer from the severe
ergodic problems encountered in the simulations of non-
commutative Φ4 on the fuzzy sphere, and the Metropolis
algorithm is very effective in probing the entire phase
space. In particular, Monte Carlo measurement of the one-
cut-to-two-cut and the Ising transition lines as well as a
direct Monte Carlo measurement of the nonuniform-to-
uniform transition line are performed. The odd terms in
the action that are dropped in [18] do play the central role
in generating the Ising phase and the nonuniform-to-
uniform transition line and thus a triple point. A quanti-
tative sketch of the phase diagram and the triple point is
outlined.
The closely related multitrace quartic matrix model of

[24], which is the correct approximation of noncommuta-
tive scalar Φ4

2 on the fuzzy sphere, is also considered in this
article where it is shown that the one-cut-to-two-cut
transition line does not extend to the origin and terminates
at a point consistent with the triple point of noncommu-
tative Φ4 on the fuzzy sphere [11].
We also commented in this article on the

Grosse-Wulkenhaar model, which is examined using a
combination of the multitrace technique and the
Monte Carlo method. At this order of the multitrace
approximation the two models obtained in this case do
not exhibit the Ising phase and the nonuniform-to-uniform
transition line.
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APPENDIX: SUSCEPTIBILITY
AND SPECIFIC HEAT

1. Susceptibility

We consider Φ4 on the fuzzy sphere coupled to a
constant magnetic field H given by the action

S ¼ TrðaΦ½La; ½La;Φ�� þ bΦ2 þ cΦ4 þHΦÞ: ðA1Þ

The magnetization and the susceptibility are defined by

magnetization ¼ 1

N
hTrΦi

¼ −
1

N
∂
∂H lnZ; ðA2Þ

susceptibility ¼ hðTrΦÞ2i − hTrΦi2

¼ ∂2

∂H2
lnZ

¼ −N
∂
∂Hmagnetization: ðA3Þ

On the fuzzy sphere we have

xa ¼
2R
N

La; ½xa; xb� ¼
iθ
R
ϵabcxc;

θ ¼ 2R2

N
; Tr ¼ N

4πR2

Z
d2x: ðA4Þ

The regularized noncommutative plane is then
defined by

x3 ¼ R; ½x1; x2� ¼ iθ; ∂i ¼ −
1

R
ϵijLj ¼ −

1

θ
ϵijxj;Z

d2x ¼ 2πθTr: ðA5Þ

We have ϵ12 ¼ 1. The above action becomes, including a
rescaling of the field Φ → ϕ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Na=2π
p

Φ, given by the
equation

S ¼ 2πθTr

�
1

2
ϕ∂i∂iϕþ 1

2
m2ϕ2 þ 1

4
λϕ4 þ hϕ

�
; ðA6Þ

m2 ¼ b
aR2

; λ ¼ 4πc
Na2R2

; h ¼
ffiffiffiffiffiffiffiffi
N
2πa

r
H
2R2

: ðA7Þ

The commutative limit is θ → 0. By using a lattice in this
limit we have
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S ¼ l2
X
n

�
1

2
ðϕ∂i∂iϕÞlattice þ

1

2
m2ϕ2

n þ
1

4
λϕ4

n þ hϕn

�
:

ðA8Þ
We compute in this limit on the lattice

magnetization ¼ 1

N
hTrΦi

→
N 2l2

4πR2

�
1

N 2

X
n

Φn

	
: ðA9Þ

The volume of the lattice must be equal to the area of the
sphere, viz. N 2l2 ¼ 4πR2. Also we compute

susceptibility ¼ hðTrΦÞ2i − hTrΦi2

¼ N2

N 4

N 2l2

4πR2

���X
n

Φn

�
2
	
−
�X

n

Φn

	
2
�
:

ðA10Þ

2. Specific heat

The specific heat is defined by

Cv ¼
∂2

∂β2 lnZ
¼ hS2i − hSi2: ðA11Þ

The inverse temperature is introduced in the usual way as

Z ¼
Z

dM expð−βS½M�Þ: ðA12Þ

The calculation of the effective potential proceeds as before
with the replacement a → aβ. The partition function in the
quartic multitrace approximation is

Z ¼
Z

dΛΔ2ðΛÞ expð−βV0Þ

þ β

Z
dΛΔ2ðΛÞ expð−βV0Þð−V2Þ

þ β2
Z

dΛΔ2ðΛÞ expð−βV0Þ
�
−V4 þ

1

2
V2
2

�
: ðA13Þ

A straightforward calculation yields

Cv ¼ hðVþV4Þ2i− hðVþV4Þi2 − 2hV4þ 2V2
4þ 2V2V4Þi:

ðA14Þ

The last term could make this approximation of the specific
heat negative. This actually happens in the approximation
of [18].
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