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A novel scenario for the emergence of geometry in random multitrace matrix models of a single
Hermitian matrixM with unitaryUðNÞ invariance, i.e. without a kinetic term, is presented. In particular, the
dimension of the emergent geometry is determined from the critical exponents of the disorder-to-uniform-
ordered transition, whereas the metric is determined from the Wigner semicircle law behavior of the
eigenvalues distribution of the matrixM. If the uniform ordered phase is not sustained in the phase diagram,
then there is no emergent geometry in the multitrace matrix model.
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I. INTRODUCTION AND MOTIVATION

The original motivation for this work is the theory of
noncommutative Φ4, which we now briefly describe. A
scalar phi-four theory on a nondegenerate noncommutative
Euclidean spacetime is a three-parameter matrix model of
the generic form

S ¼ TrHðaMΔM þ bM2 þ cM4Þ: ð1:1Þ
The Laplacian Δ captures precisely the underlying geom-
etry, i.e. the metric, of the noncommutative Euclidean
spacetime in the sense of [1,2]. This theory can be
regularized nonperturbatively using N × N matrices in
an almost obvious way; i.e. the Hilbert space H can be
taken to be finite dimensional of size N. This theory
exhibits the following three known phases:

(i) The usual second order Ising phase transition
between disordered hMi ¼ 0 and uniform ordered
hMi ∼ 1N phases. This appears for small values of c.
This is the only transition observed in commutative
phi-four, and thus it can be accessed in a small
noncommutativity parameter expansion.

(ii) A matrix transition between disordered hMi ¼ 0 and
nonuniform ordered hMi ∼ γ phases with γ2 ¼ 1N .
This transition coincides, for very large values of c,
with the third order transition of the real quartic
matrix model, i.e. the model with a ¼ 0, which
occurs at b ¼ −2

ffiffiffiffiffiffi
Nc

p
. In terms of ~b ¼ bN−3=2 and

~c ¼ cN−2 this reads

~b ¼ −2
ffiffiffi
~c

p
: ð1:2Þ

This is therefore a transition from a one-cut (disk)
phase to a two-cut (annulus) phase [3,4]. See
also [5,6].

(iii) A transition between uniform ordered hMi ∼ 1N
and nonuniform ordered hMi ∼ γ phases. The non-
uniform phase, in which translational/rotational

invariance is spontaneously broken, is absent in
the commutative theory. The nonuniform phase is
essentially the stripe phase observed originally on
Moyal-Weyl spaces in [7,8].

Thus, the uniform ordered phase hΦi ∼ 1N is stable in the
theory (1.1). This fact is in contrast with the case of the real
quartic matrix model V ¼ TrHðbM2 þ cM4Þ in which this
solution becomes unstable for all values of the couplings.
The source of this stability is obviously the addition of the
kinetic term to the action.
The nonuniform ordered phase [9] is a full blown

nonperturbative manifestation of the perturbative UV-IR
mixing effect [10], which is due to the underlying highly
nonlocal matrix degrees of freedom of the noncommutative
scalar field.
The above picture of the phase diagram holds for

noncommutative phi-four in any dimension, and the three
phases are all stable and are expected to meet at a triple
point. The phase structure in four dimensions was dis-
cussed using the Hartree-Fock approximation in [7] and
studied by means of the Monte Carlo method, employing
the fuzzy torus [11] as regulator, in [8].
In two dimensions the noncommutative phi-four theory

is renormalizable [12]. The regularized theory on the fuzzy
sphere [13,14] is given by the action (1.1) with a finite
dimensional Hilbert space H of size N and a Laplacian
Δ ¼ ½La; ½La;…�� where La are the generators of SUð2Þ in
the irreducible representation of spin ðN − 1Þ=2.
The above phase structure was confirmed in two

dimensions by means of Monte Carlo simulations on
the fuzzy sphere in [15,16]. Indeed, fuzzy scalar
phi-four theory enjoys three stable phases: (i) disordered
(symmetric, one-cut, disk) phase; (ii) uniform ordered
(Ising, broken, asymmetric one-cut) phase; and (iii) non-
uniform ordered (matrix, stripe, two-cut, annulus) phase.
The phase diagram is shown on the two graphs of
Fig. 1, which were generated using the Metropolis
algorithm.
The problem of the phase structure of fuzzy phi-four

was also studied by means of the Monte Carlo method in*ydri@stp.dias.ie
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[17–21]. The analytic derivation of the phase diagram of
noncommutative phi-four on the fuzzy sphere was
attempted in [22–29].
The related problem of Monte Carlo simulation of

noncommutative phi-four on the fuzzy torus and the fuzzy
disk was considered in [8,30,31], respectively. For a recent
study see [32].
In [17] the phase diagram of fuzzy phi-four theory

was computed by Monte Carlo sampling of the eigen-
values λi of the scalar field M. This was possible by
coupling the scalar field M to a Uð1Þ gauge field Xa
on the fuzzy sphere, which then allowed us, by employ-
ing the UðNÞ gauge symmetry, to reduce scalar phi-
four theory to only its eigenvalues. The pure gauge
term is such that the gauge field Xa is fluctuating
around Xa ¼ La.
Another powerful method that allows us to reduce

noncommutative scalar phi-four theory to only its eigen-
values, without the additional dynamical gauge field, is the
multitrace approach. The multitrace approach was initiated
in [22,23]. See also [28] for a review and an extension of
this method to the noncommutative Moyal-Weyl plane. For
an earlier approach see [29], and for a similar more
nonperturbative approach see [24–27]. The multitrace
expansion is the analogue of the Hopping parameter
expansion on the lattice in the sense that we perform a
small kinetic term expansion, i.e. expanding in the param-
eter a of (1.1), while treating the potential exactly. This
should be contrasted with the small interaction expansion
of the usual perturbation theory. The effective action
obtained in this approach is a matrix model that can be
expressed solely in terms of the eigenvalues λi and which,
on general grounds, can only be a function of the
combinations T2n ∝

P
i≠jðλi − λjÞ2n. To the lowest non-

trivial order we get an effective action of the form
[23,24,28]

Seff ¼
X
i

ðbλ2i þ cλ4i Þ −
1

2

X
i≠j

lnðλi − λjÞ2

þ
�
aN
4

v2;1
X
i≠j

ðλi − λjÞ2 þ
a2N2

12
v4;1

X
i≠j

ðλi − λjÞ4

−
a2

6
v2;2

�X
i≠j

ðλi − λjÞ2
�
2

þ…

�
: ð1:3Þ

The logarithmic potential arises from the Vandermonde
determinant, i.e. from diagonalization. The coefficients
v2;1, v4;1, and v2;2 are given by v2;1 ¼ þ1, v4;1 ¼ 0, and
v2;2 ¼ 1=8. Furthermore, it is not difficult to convince
ourselves that the above action is a multitrace matrix model
since it can be expressed in terms of various momentsmn ¼
TrMn of the matrix M.
The original multitrace matrix model written down

[22] comes with different values of v’s, and therefore,
in the commutative limit N → ∞, it corresponds to a
phi-four theory on the sphere modulo multi-integral
terms.
Since these multitrace matrix models depend only on N

independent eigenvalues, their Monte Carlo sampling by
means of the Metropolis algorithm does not suffer from any
ergodic problem. The phase diagrams of these models
obtained in Monte Carlo simulations will be reported
elsewhere.
The remainder of this article is organized as follows:
(1) Section 2: We describe our proposal for how fuzzy

geometry can emerge in generic multitrace matrix
models.

(2) Section 3: We apply our proposal to an explicit
example. We will show that if the multitrace matrix
model under consideration does not sustain the
uniform ordered phase, then there is no emergent
geometry. On the other hand, if the uniform ordered
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FIG. 1. The phase diagram of noncommutative phi-four theory on the fuzzy sphere. In the first figure the fits are reproduced from
actual Monte Carlo data [17]. Second figure reproduced from [15] with the gracious permission of D. O’Connor.
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phase is sustained, then there is an underlying or
emergent geometry. In particular, we will show
(i) how to determine the dimension from the

critical exponents of the uniform-to-disordered
(Ising) phase transition, and

(ii) how to determine the metric (Laplacian, propa-
gator) from the Wigner semicircle law behavior
of the eigenvalues distribution of the matrix M.

(3) Section 4: We conclude by giving a straightforward
generalization to fuzzy CPn and fuzzy Tn.

II. THE PROPOSAL

We start with a general multitrace matrix model rewritten
in terms of the moments TrMn with generic parameters
B;C;D; B0; C0; D0; A0;… as

V ¼ BTrM2 þ CTrM4 þD½TrM2�2 þ B0ðTrMÞ2
þ C0TrMTrM3 þD0ðTrMÞ4 þ A0TrM2ðTrMÞ2 þ � � � :

ð2:1Þ

This action includes the noncommutative phi-four model
on the fuzzy sphere (1.3) and the multitrace matrix model
of [22] as special cases. It also includes as special cases the
multitrace matrix models obtained by expanding the kinetic
term on (i) fuzzy CPn [23,33], on (ii) Moyal-Weyl spaces
with and without the harmonic oscillator term [28], and on
(iii) fuzzy tori [11].
The phase diagram of the action (2.1) will generically

contain the matrix one-cut-to-two-cut transition line sepa-
rating the two stable phases of disorder and nonuniform
order. However, the uniform ordered phase will typically be
unstable as in the case of the real quartic matrix model

V ¼ BTrM2 þ CTrM4: ð2:2Þ

Our proposal goes as follows. We can check for a possible
emergence of geometry in the multitrace matrix model (2.1)
by following the three steps:
(1) We compute the phase diagram of the model (2.1). If

the uniform ordered phase remains unstable as in the
case of the real quartic matrix model (2.2), then there
is no geometry and the model is just a trivial
deformation of (2.2). In the opposite case we claim
that there is an underlying, i.e. emergent, geometry
with a well defined dimension (step 2) and a well
defined Laplacian/metric (step 3). This means that
we can rewrite the multitrace matrix model, in the
region of the phase diagram where the uniform
ordered phase exists, in terms of a scalar function
and a star product with a noncommutativity param-
eter θ by finding the appropriate Weyl map. As a
consequence, a small noncommutativity parameter
expansion can be performed and the limit θ → 0 can
be taken. The disordered-to-uniform-ordered phase

transition reduces therefore to the usual second order
Ising phase transition on the underlying geometry.

(2) We compute the dimension of the underlying by
computing the critical exponents of the disordered-
to-uniform-ordered phase transition, which, by uni-
versality, take specific values in each dimension.

(3) We compute the Laplacian by computing the free
behavior of the propagator. This is done explicitly by
computing the eigenvalues distribution of the matrix
M in the free regime, small values of C, and
comparing with the Wigner semicircle law behavior,
which must hold with a specific radius depending
crucially on the kinetic term.

III. EXPLICIT EXAMPLE: THE FUZZY SPHERE

A. Phase diagram

We consider as an example the multitrace matrix model
of [22] which comes with the v values v2;1 ¼ −1,
v4;1 ¼ 3=2, and v2;2 ¼ 0. The action is given explicitly by

V ¼ BTrM2 þ CTrM4 þD½TrM2�2 þ B0ðTrMÞ2
þ C0TrMTrM3: ð3:1Þ

The parameters D, B0, and C0 are constrained as D ¼
3N=4, B0 ¼ ffiffiffiffi

N
p

=2, and C0 ¼ −N. The phase diagram of
this model is computed by means of Monte Carlo simu-
lation elsewhere. The result is shown in Fig. 2. The details
of the corresponding nontrivial lengthy Monte Carlo cal-
culation will be reported elsewhere. As desired we have
three stables phases in this particular model meeting at a
triple point. In other words, we have established that this
multitrace matrix model sustains the uniform ordered
phase, which is the first requirement.

B. Dimension from critical exponents

The uniform ordered phase is also called the Ising phase
precisely because we believe that the corresponding tran-
sition to the disordered phase is characterized by the
universal critical exponents of the Ising model in two
dimensions derived from theOnsager solution. These critical
exponents are defined as usual by the following behavior:

m=N ¼ hjTrMji=N ∼ ðBc − BÞβ ∼ N−β=ν;

Cv=N2 ∼ ðB − BcÞ−α ∼ Nα=ν;

χ ¼ hjTrMj2i − hjTrMji2 ∼ ðB − BcÞ−γ ∼ Nγ=ν ∼ N2−η;

ξ ∼ jB − Bcj−ν ∼ N: ð3:2Þ

There are in total six critical exponents, the above five plus
the critical exponent δ that controls the equation of state,
but only two are truly independent because of the so-called
scaling laws. The Onsager solution of the Ising model in
two dimensions gives the following celebrated values [34]:

EMERGENT GEOMETRY FROM RANDOM MULTITRACE … PHYSICAL REVIEW D 93, 065055 (2016)

065055-3



ν ¼ 1; β ¼ 1=8; γ ¼ 7=4;

α ¼ 0; η ¼ 1=4; δ ¼ 15: ð3:3Þ

This fundamental result is very delicate to check explicitly
in the Monte Carlo data. Since we must necessarily deal
with the critical region, we must face the two famous
problems of finite size effects and critical slowing down. In
this particular problem, the critical slowing down problem
can be shown to start appearing in Monte Carlo simulations
around N > 60 so we will keep below this value and
employ very large statistics of the order of 220 to avoid it. A
more systematic solution to this problem is to employ the
Wolf algorithm [35], which we do not attempt here. We
simply employ here the ordinary Metropolis algorithm. The
problem of finite size effects is also very serious for the
measurement of the critical exponents since the above
behavior (3.2) is supposed to hold only for large N. This
problem can be avoided by not including values of N less
than 20, and thus below we will quote for completeness
N ¼ 10 and N ¼ 15 data but, in most cases, we will not
take them into account in the fitting.
Since the Ising model appears from the Φ4 theory for

large values of the quartic coupling, it is preferable to use
values of ~C as large as possible. However, we are limited
from above by the appearance of the different physics of the
transition between the disordered and nonuniform-ordered
phases around ~C ¼ 1.5. Thus, we choose ~C ¼ 1.0, which is
relatively large but well established to be within the Ising
transition with an extrapolated critical point around ~B ¼
−3.07 (see below). The critical behavior of the

magnetization, susceptibility, and specific heat around
the critical value of ~B ¼ −3.10 is shown in Fig. 3. We
attach in Table I some data relevant for the computation of
the critical exponents ν, β, γ, and α. The other critical
exponents can be determined via scaling laws.
The measurements of the critical exponents ν, β, γ, and α

proceed as follows:
(i) Critical point and the critical exponent ν: By

plotting the critical point ~Bc obtained for each N
versus N (first and second columns of Table I) we
get immediately both the N ¼ ∞ critical point and
the critical exponent ν. We obtain (see Fig. 5 below)

~Bc ¼ −1.061ð168Þ · N−0.926ð83Þ − 3.074ð6Þ ⇒;

ν ¼ 0.926ð83Þ: ð3:4Þ

Also we obtain

~B� ¼ −3.074ð6Þ: ð3:5Þ

This prediction for ν agrees reasonably well with the
Onsager calculation. In the following we will as-
sume for simplicity that ν ¼ 1. The above fit is the
only instance in which we have included N ¼ 10
and N ¼ 15, and thus we believe that the obtained
value of − ~B� is an underestimation of the true
critical point.

(ii) Magnetization and the critical exponent β: The
magnetization and the zero power are defined by
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m ¼ hjTrMji; χ ¼ hjTrMj2i − hjTrMji2: ð3:6Þ

P0 ¼
��

1

N
TrM

�
2
�
: ð3:7Þ

Measurements of the magnetization m=N were per-
formed near the extrapolated critical point ~B ¼ −3.07

for ~C ¼ 1.0 but inside the uniform ordered phase.
These are then used to compute the critical exponent
β by searching for a power law behavior.
More precisely, we measure lnðm=NÞ versus lnN

for each value of ~B very near and around ~B ¼ −3.10,
fit to a straight line in the range 20 ≤ N ≤ 60,
compute the slope β, and then search for the flattest
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TABLE I. Measurements of the magnetization ðm=NÞ<�, the susceptibility χ<�, via the zero power ðP0Þ<�, and the specific heat
ðCv=N2Þ� used to compute the critical exponents β, γ, and α, respectively. Here ~C ¼ 1.0, the extrapolated critical point is ~B ¼ −3.07, the
critical point as the intersection point of curves of specific heat is ~B ¼ −3.08, and the critical point as the flattest line of decrease of
magnetization is ~B ¼ −3.13.

N ~Bc, ~B� ¼ −3.07 χc ðCvÞ�, ~B� ¼ −3.08 ~B < ~B� ¼ −3.13 m<� 103ðP0Þ<�

10 −3.20 1.704(2) 56.467(94) −3.14 2.1776(12) 6.256(6)
15 −3.16 2.089(2) 129.111(217) −3.14 2.7750(14) 4.315(4)
20 −3.14 2.436(3) 229.861(389) −3.14 3.4423(15) 3.571(2)
25 −3.13 2.716(3) 365.183(621) −3.14 4.1759(16) 3.220(2)
30 −3.12 3.017(4) 524.253(891) −3.14 4.9772(16) 3.042(2)
36 −3.11 3.283(4) 749.099(1267) −3.14 5.8878(15) 2.860(1)
40 −3.11 3.515(4) 941.139(1607) −3.14 6.5134(14) 2.782(1)
50 −3.10 3.864(4) 1461.597(2479) −3.14 7.9250(12) 2.576(1)
60 −3.10 4.301(5) 2144.929(3658) −3.14 9.2021(11) 2.388(1)
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line, i.e. the smallest slope β. This value marks the
transition from the Ising phase to the disordered
phase. Deep inside the Ising phase the slope should
approach the mean field value −1=4, which can be
shown from the scaling behavior of the dominant
configuration. After determining the critical value we

then consider the value of ~B nearest to it but within
the Ising phase and take the slope there to be the
value of the critical exponent β. In our example
here, the flattest line occurs at ~B ¼ −3.13 with
slope −0.088ð10Þ after which the slope becomes
−0.109ð11Þ at ~B ¼ −3.14. The slope goes fast to the
mean field value −0.25 as we keep decreasing ~B. See
Fig. 4. Our measured value of the critical point ~B�
from the magnetization and of the critical exponent β
are therefore

~B� ¼ −3.13; ð3:8Þ
ln
m
N

¼ −0.109ð11Þ · lnN − 1.423ð43Þ
⇒ β ¼ −0.109ð11Þ: ð3:9Þ

(iii) Susceptibility and zero power and the critical
exponent γ: The measurement of the critical expo-
nent γ is quite delicate and will be done indirectly as
follows. We rewrite the susceptibility in terms of the
zero power and magnetization as
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χ ¼ hjTrMj2i − hjTrMji2 ¼ N2P0 −m2: ð3:10Þ

The critical exponent γ in terms of the critical
exponent γ0 of P0 is then given by

γ ¼ 2þ γ0: ð3:11Þ

By using the results shown in Table I at ~B ¼ −3.14,
plotted in Fig. 5, we obtain the following exponents:

lnP0 ¼ −0.352ð10Þ · lnN − 2.289ð36Þ
⇒ γ0 ¼ −0.352ð10Þ: ð3:12Þ

Or equivalently

lnN2P0 ¼ 1.648ð10Þ · lnN − 2.289ð36Þ
⇒ γ ¼ 1.648ð10Þ: ð3:13Þ

For consistency we can check that the second term in
the susceptibility behaves using the result (3.9) as

lnm2 ¼ 1.782ð22Þ · lnN − 2.846ð86Þ
⇒ γ ¼ 1.782ð22Þ: ð3:14Þ

Our two measurements of the critical exponent γ
agree reasonably well with the Onsager values.
If we try to fit the values of the susceptibility at its

maximum shown in the third column of Table I, i.e.
at the peak that keeps slowly moving with ~B, then
we will obtain a very bad underestimate of the
critical exponent γ given by

ln χmax ¼ 0.515ð08Þ · lnN − 0.652ð30Þ
⇒ γ ¼ 0.515ð08Þ: ð3:15Þ

This in our mind is due in part to the dependence of
~Bc on N and in another part is an indication of the
critical slowing down problem showing up in the
measurement of this second moment; i.e. the size of
the fluctuations is observed to grow with N at the
critical point but not at the correct rate indicated by
the independent measurements of the zero moment
and the magnetization. See Fig. 5.

(iv) Specific heat and the critical exponent α: The
specific heat is defined by

Cv ¼ hS2i − hSi2: ð3:16Þ

The critical point ~B� as measured from the specific
heat is identified by the intersection point of the
various curves with different N shown in Fig. 3.
We get

~B� ¼ −3.08: ð3:17Þ

This measurement is contrasted very favorably
with the independent measurement obtained from
the extrapolated value of ~Bc shown in Eq. (3.5)
but should also be contrasted with the measure-
ment obtained from the magnetization shown in
Eq. (3.8).
By using the results shown in Table I at the

critical point ~B ¼ −3.08, plotted in Fig. 5, we
obtain the following exponent:

ln
Cv

N2
¼ 0.024ð9Þ · lnN − 0.623ð31Þ

⇒ α ¼ 0.024ð9Þ: ð3:18Þ

C. Free propagator from Wigner semicircle law

We can also measure the emergent geometry by
measuring the free propagator of the theory. This will
give us information on both the dimension and the
metric since the free propagator is the inverse of the
Laplacian Δ that fully encodes the underlying geometry
in the sense of [1,2]. This goes as follows [29].
A noncommutative phi-four on a d-dimensional non-

commutative Euclidean spacetime Rd
θ reads in position

representation

S ¼
Z

ddx

�
1

2
∂iΦ∂iΦþ 1

2
m2Φ2 þ λ

4
Φ4�

�
: ð3:19Þ

The first step is to regularize this theory in terms of a
finite N -dimensional matrix Φ and rewrite the theory in
matrix representation. Then we diagonalize the matrix
Φ. The measure becomes

R Q
idΦiΔ2ðΦÞ R dU where Φi

are the eigenvalues, Δ2ðΦÞ ¼ Q
i<jðΦi − ΦjÞ2 is the

Vandermonde determinant, and dU is the Haar measure.
The effective probability distribution of the eigenvalues
Φi can be determined uniquely from the behavior of the
expectation values hR ddxΦ2n� ðxÞi. These objects clearly
depend only on the eigenvalues Φi and are computed
using a sharp UV cutoff Λ. If we are only interested in
the eigenvalues of the scalar matrix Φ, then the free
theory λ ¼ 0 can be replaced by the effective matrix
model [29]

S ¼ 2N
α20

TrΦ2: ð3:20Þ

This result can be traced to the fact that planar diagrams
dominate over the nonplanar ones in the limit Λ → ∞. This
means in particular that the eigenvalues Φi are distributed
according to the famous Wigner semicircle law with α0
being the largest eigenvalue, viz.
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ρðtÞ ¼ 2

πα20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − t2

q
; −α0 ≤ t ≤ þα0: ð3:21Þ

In the most important cases of d ¼ 2 and d ¼ 4 dimensions
we have explicitly

α20ðm;ΛÞ¼ 1

4π2

�
Λ2−m2 ln

�
1þΛ2

m2

��
; d¼ 4; ð3:22Þ

α20ðm;ΛÞ ¼ 1

π
ln

�
1þ Λ2

m2

�
; d ¼ 2: ð3:23Þ

Obviously, dimension four is eliminated by the results of
the critical exponents. In two dimensions the regulator Λ
originates in only one of two possible noncommutative
spaces [29]:
(1) Fuzzy torus: As it turns the results on the fuzzy

torus are different from those obtained using a
sharp momentum cutoff due to the different
behavior of the propagator for large momenta,
and as a consequence the resulting formula for α20
is different from the above Eq. (3.23). We obtain
instead

α20ðm;ΛÞ ¼ 4

Z
π

0

d2r
ð2πÞ2

1P
ið1 − cos riÞ þm2l2=2

;

d ¼ 2: ð3:24Þ

l here is the lattice spacing, the noncommutativity is
quantized as θ ¼ Nl2=π, and the cutoff is

Λ ¼ π

l
¼

ffiffiffiffiffiffiffi
Nπ

θ

r
: ð3:25Þ

The above behavior can easily be excluded in our
Monte Carlo data, and by hindsight we know that
this should be so indeed because the original
multitrace approximation is relevant to the fuzzy
sphere.

(2) Fuzzy sphere: The fuzzy sphere S2
N ¼ CP1

N is the
simplest of fuzzy projective spacesCPn

N . In this case
N ¼ N þ 1 and the scalar field Φ becomes an N ×
N matrix ϕ given by ϕ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π=Na
p

Φ. In this case
the cutoff is given in terms of the matrix size N and
the radius R of the sphere by

Λ ¼ N
R
: ð3:26Þ

Also, in this case the mass parameters B and m2 are
related by

m2 ¼ b
aR2

: ð3:27Þ

By using ~B ¼ B=N3=2 and choosing a ¼ 2π=N, so
that Φ ¼ ϕ, we obtain

Λ2

m2
¼ 2πffiffiffiffi

N
p

~B
: ð3:28Þ

We get then

α20ðm;ΛÞ ¼ 1

π
ln

�
1þ 2πffiffiffiffi

N
p

~B

�
: ð3:29Þ

In the limit B → ∞ we get the one-cut δ2 ¼ 2N=B
of the Gaussian matrix model BTrM2, viz.
B ¼ 2N =α20. This can also be obtained by taking
the limit B → ∞ of the one-cut (deformed Wigner
semicircle law) solution

ρðλÞ ¼ 1

Nπ
ð2Cλ2 þ Bþ Cδ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − λ2

p
;

δ2 ¼ 1

3C
ð−Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 12NC

p
Þ ð3:30Þ

of the quadratic matrix model BTrM2 þ CTrM4.
This result was also generalized in [26]. The

eigenvalues distribution of a free scalar field theory
on the fuzzy sphere with an arbitrary kinetic term,
viz. S ¼ TrðMKM þ BM2Þ=2, where Kð0Þ ¼ 0 and
K is diagonal in the basis of polarization tensors Tl

m,
is always given by a Wigner semicircle law with a
radius

R2 ¼ δ2 ¼ α20 ¼
4fðBÞ
N

;

fðBÞ ¼
XN−1

l¼0

2lþ 1

KðlÞ þ B
: ð3:31Þ

Some Monte Carlo results are shown in Figs. 6 and 7.
These are obtained in Monte Carlo runs with 220 thermal-
ization steps and 218 thermalized configurations where each
two configurations are separated by 24 Monte Carlo steps in
order to reduce autocorrelation effects. We consider
N ¼ 20 − 40, ~C ¼ 0.05 − 0.35, and ~B ¼ 0 − 5.
It is not difficult to convince ourselves that the mass

parameter B is precisely the mass squared in this regime.
For each value of ðN; ~C; ~BÞ we compute the eigenvalues
distribution ρðλÞ and fit it to the Wigner semicircle law
(3.21) (see Fig. 6). We obtain thus a measurement of the
radius of the Wigner semicircle law δ2 ¼ α20 ¼ R2. We
have checked carefully that in this regime the Wigner
semicircle law is the appropriate behavior rather than the
one-cut solution (3.30) as evidenced by the first graph in
Fig. 6. The measurement of the radii δ2 for various values
of ~B is then plotted and compared with the expected
theoretical behaviors (3.29) as well as with the B → ∞
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behavior δ2 ¼ 2N=B (see Fig. 7). The agreement with
(3.29) is very reasonable with some deviation for small
values of ~B as we approach the nonperturbative region
where the uniform ordered phase appears at some ~B < 0.

This discrepancy for small values of ~B is already seen in
Fig. 6 when we fit the distributions to the Wigner
semicircle law. However, this effect is reduced as we
decrease the value of ~C.
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FIG. 6. The semicircle law as a function of ~B.
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In summary we conclude that we are indeed dealing with
the geometry of the fuzzy sphere and, given hindsight, we
know that this should be true.

IV. GENERALIZATION AND CONCLUSION

The emergence of geometry in the very early universe is
a problem of fundamental importance to our understanding
of quantum gravity and cosmology. In this article, we have
proposed a novel scenario for the emergence of geometry in
random multitrace matrix models that depend on a single
Hermitian matrix M with full unitary UðNÞ invariance and
without any kinetic term. Thus, the model under consid-
eration has no geometry a priori precisely because of the
absence of a kinetic term. On the other hand, previous
proposals of emergent geometry required the input of
several matrices with some rotational symmetry group
besides the UðNÞ gauge symmetry [36].
Our proposal consists in checking whether the uniform

ordered phase is sustained by the multitrace matrix model
under consideration. If yes, then the dimension of the
underlying geometry, in the region of the phase diagram
where the uniform ordered phase is stable, can be inferred

from the values of the critical exponents of the Ising phase
transition, whereas themetric/Laplacian of this geometry can
be inferred from the behavior of the free propagator encoded
in the Wigner semicircle law behavior of the eigenvalues
distribution of the matrix M in the weakly coupled regime.
An explicit example is given in which the geometry of the
fuzzy sphere emerges, with all the correct properties, in the
phase diagram of a particular multitrace matrix model
containing multitrace terms depending on the moments
m1 ¼ TrM, m2 ¼ TrM2, and m3 ¼ TrM3 in a particular
way [22].
This idea can be generalized in a straightforward way to

all higher fuzzy projective spaces CPn and fuzzy tori Tn by
tuning appropriately the coefficients of the multitrace
matrix model and/or including higher moments in the
multitrace matrix model.
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