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This is an extensive work to our previous paper [S. Li and T. Jia, Matrix model and holographic baryons
in the D0-D4 background, Phys. Rev. D 92, 046007 (2015)] that studied the D0-D4/D8 holographic
system. We compute the three-body force for baryons with the D0-D4/D8 matrix model derived in [S. Li
and T. Jia, Matrix model and holographic baryons in the D0-D4 background, Phys. Rev. D 92, 046007
(2015)] with considering the nonzero QCD vacuum. We obtain the three-body force at short distances but
modified by the appearance of the smeared D0-branes, i.e., considering the effects from the nontrivial QCD
vacuum. We first test our matrix model in the case of ’t Hooft instanton and then in two more realistic cases:
(1) three-neutrons with averaged spins and (2) proton-proton-neutron (or proton-neutron-proton). The
three-body potential vanishes in the former case while in the two latter cases it is positive, i.e., repulsive and
makes sense only if the constraint for stable baryonic state is satisfied. We require all the baryons in our
computation aligned on a line. These may indicate that the cases in dense states of neutrons such as in
neutron stars, Helium-3 or Tritium nucleus all with the nontrivial QCD vacuum.
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I. INTRODUCTION

In nuclear physics, there is one of the fundamental
ingredients which is how to describe the interaction among
nucleons. QCD as an underlying theory of strong inter-
actions with asymptotic freedom, makes it possible to form
the confinement such as bound states of nucleons. People
have to study the behavior of nucleons to describe the
nuclear force. As it is known, the nuclear force cannot only
be explained by two-body force, but also three-body force
which plays an important role as well. For example, the
three-body nuclear force is vital in studying the excitation
spectra of light nuclei or high-density baryon matters such
as supernovae or neutron stars. However the properties of
three-body nuclear force are still to be revealed although it
has been developed for so many years. Since QCD at
nonzero baryon density is strongly coupled which thus is
notoriously difficult to solve, consequently it becomes the
main obstacle for revealing the aspects of nuclear force.
On the other hand, some classical or semiclassical gauge

field configurations may also be important in QCD or
nuclear physics, for example, some topologically nontrivial
solutions such as instantons, monopoles and so on. In
[1–4], the self-dual field strength has been studied and
proposed to be a mechanism for the confinement [5].
Therefore, the states with nonzero QCD vacuum θ angle [or
equivalently nonzero ∼θTrðFμν

~FμνÞ, here ~Fμν is the dual
field of the gauge field strength Fμν] could exist and affect
the mass of meson with the interaction among baryons, and
this θ-dependent term may also lead to some other

observable effects such as in the glueball condensation
or the Chiral Magnetic Effect (CME) [6,7]. Thus in this
paper, we would like to study the three-body nuclear force
with nonzero QCD vacuum θ angle by using the D0-D4/D8
holographic matrix model proposed in [8] for baryons.
We compute the three-body force at short distances for
baryons in the large Nc holographic QCD explicitly while
the two-body case has already been studied in [8].
By holography, in order to describe the states with

nonzero TrðFμν
~FμνÞ in the dual field theory, it corresponds

to adding smeared D0-branes to the compacted D4-brane
background [9,10] which is similar as the case of D-1-D3
system. And with introducing the flavor D8=D8-branes, the
meson spectrum has been studied in [9] while the baryon
spectrum was studied in [11] with the approach of Yang-
Mills instanton. As a comparison with [11] and study from
[12], we use the gauge/string duality (or AdS=CFT corre-
spondence, see [13–15] for a review) to derive our matrix
model from the Sakai-Sugimoto model [16,17] in the D0-
D4 background [9] (i.e., D0-D4/D8 system), in the large-
Nc limit at a large ’t Hooft coupling λ. That is to say, our
matrix model is also a low-energy effective theory on the
baryon vertex, which is the D4’-branes1 wrapped on S4 in
D0-D4/D8 system [9,18], in the gravity side of gauge/string
duality.
The matrix model could describe k-body baryons with

arbitrary k, since the rank of the matrix is determined by the
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1In order to distinguish the D4-branes which are responsible
for the background geometry, we use D4’-brane to denote the
baryon vertex since in D0-D4/D8 system the baryon vertex is also
a D4-brane.
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value of k, where k is the baryon number. In our matrix
model, the positions of k baryons are represented by the
diagonal elements of the matrices after integrating out the
off-diagonal elements. Furthermore, the classical values of
a pair of the complex k × Nf rectangular matrices are
related to the sizes of baryons and they describe the
dynamics of the strings connecting the flavor D8=D8-
branes and the baryon vertices. With all of these, it comes to
the well-known Atiyah-Drinfeld-Hitchin-Manin (ADHM)
matrix model of instantons.
In our previous work [8], we also studied on the baryon

spectrum (k ¼ 1) and two-body force at short distances for
baryons (k ¼ 2), except the derivation of our matrix model.
For the case of k ¼ 1, we find a constraint for stable
baryonic state in D0-D4/D8 system which is exactly the
same as the conclusion in [11] with the approach of
Yang-Mills instanton, but quite different from the original
Sakai-Sugimoto model. And our baryon spectrum could fit
the experimental data well just by adjusting the number
density of the D0-branes. For the case of k ¼ 2, we have
studied the two-body force at short distances and also found
a universal repulsive core for any baryonic state but
modified by the appearance of the smeared D0-branes. It
turns out that the two-body force at short distances could
become attractive which describes an unstable two-body
system if the constraint for stable baryonic state is
overcome.
Instead of phenomenological models, our matrix model

is for multibaryon systems with nonzero QCD vacuum θ
angle and based on the gauge/string duality with the
underlying string theory, so it is natural and interesting to
extend the analysis to derive the three-body force in D0-
D4/D8 system with our matrix model. So in this paper,
we extend our previous work in [8] and continue the
analysis to the case of k ¼ 3, as a parallel computation to
[19], to study the three-body force at short distances with
nontrivial QCD vacuum by using our matrix model. We
will focus on the two particular examples which are three
neutrons with averaged spins and proton-proton-neutron
(or proton-neutron-neutron), and require all the baryons
or nucleons aligned on a line with equal spacings for
each case. The system with averaged spins is typical for
dense states of multi-baryons in QCD, such as cores of
neutron stars, while the latter one is related to tritium
nuclei or Helium-3. From our results, we find the three-
body potential is suppressed if compared to the two-body
force in [8]. And both in the case of averaged spins and
proton-proton-neutron, the three-body potential would be
totally complex if ζ¼U3

Q0
=U3

KK >2 where U3
Q0

is related
to the number density of the smeared D0-brane. This
result is exactly the same as the constraint for the stable
baryonic state claimed in [8] and [11] with the approach
of Yang-Mills instanton.
In this paper, the organization is as follows. In Sec. II,

we briefly review the D0-D4/D8 matrix model and the

calculations for two-body force as shown in [8]. In Sec. III,
we calculate the three-body force with the “classical
treatment” i.e., the case with spin or isospin aligned
classically. In this case we find a vanished three-body
force which is independent on the nonzero QCD vacuum θ
angle,2 however this result is similar as in [19] and
consistent with the soliton approach in [20]. Then we
employ the setup for generic three-body forces with
quantum spin/isospin, the resultant three-body force is
modified by the appearance of the smeared D0-branes
(or equivalently by considering the nontrivial QCD vac-
uum) and also consistent with the constraint for stable
baryonic states claimed in [8,11]. The summary and
discussion are in the final section.

II. A BRIEF REVIEW OF D0-D4/D8
MATRIX MODEL

To calculate the three-body force for baryons by using
D0-D4/D8 matrix model is quite analogous to the compu-
tation of the two-body force which has been performed in
[8]. In this section, we will give a brief summary of the D0-
D4/D8 matrix model and the calculations of the two-body
force for baryons with this model.

A. Action of D0-D4/D8 matrix model

We proposed a D0-D4/D8 matrix model in [8] by using
the standard technique in string theory from the Sakai-
Sugimoto model in the D0-D4 background (i.e., D0-D4/D8
system). It is a quantum mechanical system with UðkÞ
symmetry which takes the following action

S ¼ λNcMKK

54π
ð1þ ζÞ3=2Tr

×
Z

dt

�
ðD0XMÞ2 − 2

3

�
1 −

1

2
ζ

�
M2

KKðX4Þ2

þD0ω̄
_α
i D0ωi _α −

1

6

�
1 −

1

2
ζ

�
M2

KKω̄
_α
iωi _α

þ 36π2

4λ2M4
KK

1

ð1þ ζÞ4 ð
~DÞ2 þ ~D · ~τ _α_βX̄

_βαX _αα

þ ~D · ~τ _α_βω̄
_βαω _αα

�
þ NcTr

Z
dtA0: ð2:1Þ

It is allowed to change the baryon number k by choosing
the gauge groupUðkÞ for the matrix model (2.1) to describe
k-body interaction in the D0-D4/D8 system. Note that the
rank of the gauge group UðkÞ is the number of baryons.
The parameter λ ¼ g2YMNc is the ’t Hooft coupling constant
and MKK is a unique scale while the parameter ζ is

2In fact, our result depends on the parameter ζ in this
holographic model, however it has been turned out ζ is related
to the parameter θ in the topological term in QCD [9].
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ζ ¼ U3
Q0
=U3

KK, where U
3
Q0

is related to the number density
of smeared D0-branes. Nc and Nf represent the number of
colors and flavors respectively. We have obtained the
baryon spectrum for the case of k ¼ 1 and fitted the
experimental data by adjusting the parameter ζ, computed
the two-body force (i.e. k ¼ 2) for baryons at short
distances with the matrix model (2.1) in [8]. To clarify
the symmetry in the matrix model (2.1), we summarize the
field content in Table I.
A0 and ~D are auxiliary fields while X and ω are

dynamical fields. For a more realistic case and simplicity,
only the two-flavor case is considered throughout this
paper, i.e. Nf ¼ 2. In the action (2.1), the trace is taken
over the indices of UðkÞ group. The total symmetry of
the matrix model (2.1) is UðkÞ × SUðNfÞ × SOð3Þ,
where the first UðkÞ group is a local symmetry group
while the last SOð3Þ represents the spatial rotation group
which forms a broken SOð4Þ≃ SUð2Þ × SUð2Þ in the
holographic dimension as shown in the table. The broken
symmetry yields the mass terms of X4 and ω. The
covariant derivatives in action (2.1) are defined as
D0XM ¼ ∂0XM − i½A0; XM�, D0ω ¼ ∂0ω − iA0ω and
D0ω̄ ¼ ∂0ω̄þ iA0ω̄. The indices of spinor for X are
defined as Xα _α ¼ ðXMσMÞα _α and σM ¼ ði~τ; 1Þ, σ̄M ¼
ð−i~τ; 1Þ where ~τ’s are Pauli matrices since only two-
flavor case (Nf ¼ 2) is the concern. Other details about
this matrix model from the Sakai-Sugimoto model in the
D0-D4 background are in [8].

B. Two-body effective force for baryons from
D0-D4 matrix model

Let us explain briefly how to calculate the two-body
effective force for baryons at short distances from the
matrix model (2.1) (See [8] for the complete review), and it
is also a parallel computation to [12]. We first obtain the

two-body Hamiltonian by integrating out the auxiliary field
A0 and describe a single baryon by its wave function.
However, the key here is to solve the “ADHM constraint”
[21] to minimize the potential introduced after integrating

out the other auxiliary field ~D. Since only the two-flavor
case (Nf ¼ 2) is the concern, the ADHM constraint could
be written exactly as

~τ _α_βðX̄
_βαX _αα þ ω̄ _βαω _ααÞBA ¼ 0; ð2:2Þ

with the indices A;B ¼ 1; 2.::k.
The equation (2.2) could be solved by choosing ω _αi ¼

U _αiρ for the case of a single baryon, where U is a SUð2Þ
matrix. For the two-body case (i.e., k ¼ 2), the generic
solution could be chosen as the ADHM data of SUð2Þ
Yang-Mills instantons, which are

XM ¼ τ3
rM
2

þ τ1YM;

ωA¼1
_αi ¼ UA¼1

_αi ρ1;

ωA¼2
_αi ¼ UA¼2

_αi ρ2; ð2:3Þ

where YM is the off-diagonal part of XM which is
defined as

YM ¼ −
ρ1ρ2
4ðrLÞ2

Tr½σ̄MrNσNððU1Þ†U2 − ðU2Þ†U1Þ�:

ð2:4Þ

We define jrj2 ¼ ðrMÞ2 and the vector rM is interpreted as
the distance between the two baryons. Uð1Þ and Uð2Þ are all
SUð2Þmatrices as the moduli parameters for each instanton
while ρ1 and ρ2 are associated with the size of each
instanton. The ADHM constraint is satisfied with this

choice and the potential associated with ~D in the action
(2.1) vanishes.
With the decomposition of Uð2Þ≃ Uð1Þ × SUð2Þ, i.e.,

A0 ¼ A0
012×2 þ A1

0τ
1 þ A2

0τ
2 þ A3

0τ
3, it is straightforward

to obtain the two-body Hamiltonian after integrating out the
auxiliary field A0 to evaluate the terms with A0 in the
action (2.1),

Son-shellkineticþCS ¼
λNcMKK

54π
ð1þ ζÞ3=2Tr

Z
dt½ðD0XMÞ2 þD0ω̄

_α
i D0ωi _α� þ NcTr

Z
dtA0

¼ λNcMKK

54π
ð1þ ζÞ3=2

Z
dt

�
2ðA1

0Þ2r2M þ 8ðA3
0Þ2Y2

M

þ 2ðρ21 þ ρ22Þ½ðA0
0Þ2 þ ðA1

0Þ2 þ ðA3
0Þ2�

þ 4ρ1ρ2A0
0A

1
0Tr½ðU1Þ†U2� þ 4ðρ21 − ρ22ÞA0

0A
3
0 þ

108π

λMKK
ð1þ ζÞ−3=2A0

�
: ð2:5Þ

TABLE I. Fields in the matrix model.

Fields index UðkÞ SUðNfÞ SUð2Þ × SUð2Þ
XM M ¼ 1, 2, 3, 4 adj 1 (2,2)
ωi _α _α ¼ 1, 2; i ¼ 1; 2.::Nf adj fund (1,2)
A0 adj 1 (1,1)
Ds s ¼ 1, 2, 3 1 1 (1,3)
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We need to substitute the solutions for all the components
of A0 back into (2.5) once we solve the equations of motion
for A0. The potential could be evaluated by using

R
dtV ¼

−Son-shell as

V ¼ 2V1−body þ V2−body;

V1−body ¼
27πNc

4λMKK

1

ð1þ ζÞ3=2 ;

V2−body ¼
27πNc

λMKK

1

ð1þ ζÞ3=2
u20

jrj2 þ 2ρ2 − 2u20ρ
2
: ð2:6Þ

Here we have used the same notation as [19] by defining
u0 ¼ 1

2
ðTr½ðU1Þ†U2�Þ with the choice of ρ1 ¼ ρ2 ¼ ρ and

kept the leading term in the large Nc expansion only.
There is also an additional term to (2.5) which is the

mass term for X4 in the action (2.1),

λNcMKK

54π
ð1þ ζÞ3=2 2

3

�
1 −

1

2
ζ

�
M2

KKTrðX4Þ2

¼ λNcMKK

81π
ð1þ ζÞ3=2

�
1 −

1

2
ζ

�
M2

KK

�
r24
2
þ Y2

4

�
:

ð2:7Þ

Thus there is an additional two-body potential from the
off-diagonal components of Y which is

Vmass
2−body ¼

λNcMKK

162π
ð1þ ζÞ3=2

�
1 −

1

2
ζ

�
M2

KK

×

�
ρ21ρ

2
2

ðr2MÞ2
ðriTr½iτiUð1Þ†Uð2Þ�Þ2

�
ð2:8Þ

with i ¼ 1, 2, 3. So we have the total two-body potential
which is the sum of (2.6) and (2.8). Note that the four-
dimensional interbaryon distance jrj2 is equal to the
distance between baryons in three dimensions, since for
the leading order in the large Nc expansion, the classical
value of the X4 vanishes for the single instantons.
Finally, in order to evaluate the vacuum expectation of

the potential (2.6) and (2.8), we need to use the nucleon
wave function as in [8,12,19,22], which is

1

π
ðτ2UÞIJ ¼

� jp ↑> jp ↓>

jn ↑> jn ↓>

�
IJ

¼ 1

π

�
a1 þ ia2 −a3 − ia4
−a3 þ ia4 −a1 þ ia2

�
IJ

: ð2:9Þ

The SUð2Þ matrix U represents a unit 4-vector as U ¼
iaiτi þ a412×2 with the normalization ða1Þ2 þ ða2Þ2þ
ða3Þ2 þ ða4Þ2 ¼ 1. Using the standard definition S12 ¼
12Ji1r̂

iJj2r̂
j − 4Ji1J

i
2 with r̂i ¼ ri=jrj and i ¼ 1, 2, 3, it

yields the form hViI1;I2;J1;J2 ¼ VCð~rÞ þ S12VTð~rÞ as the

potential of two-body nucleons. Then we obtain a central
and a tensor part of the two-body force at short distances
which are

Vð0Þ
C ð~rÞ ¼ π

�
33

2
þ 8ð~I1 · ~I2Þð~J1 · ~J2Þ

�
Nc

λMKK

1

ð1þ ζÞ3=2
1

r2
;

Vð0Þ
T ð~rÞ ¼ 2πð~I1 · ~I2Þ

Nc

λMKK

1

ð1þ ζÞ3=2
1

r2
: ð2:10Þ

Equation (2.10) is the leading order term from (2.5) in the
expansion by assuming rM ≫ ρ. And we also have the next
to the leading order terms in [8] which are

Vð1Þ
C ð~rÞ ¼

�
1

81
−

16

2187
ð~I1 · ~I2Þð~J1 · ~J2Þ

�

× ð1þ ζÞ3=2
�
1 −

1

2
ζ

�
λNcM3

KK

π

ρ4

r2
;

Vð1Þ
T ð~rÞ ¼ 8

2187
ð~I1 · ~I2Þð1þ ζÞ3=2

�
1 −

1

2
ζ

�
λNcM3

KK

π

ρ4

r2
:

ð2:11Þ

As we can see, the two-body potential is modified by the
appearance of smeared D0-branes, i.e., considering the
nontrivial QCD vacuum. And there would be an attractive
force in (2.11) if ζ > 2. Thus it is just the constraint for
stable baryonic states in the D0-D4/D8 system in two-body
case, which is the same as the constraint for the state of the
single baryonic state and is quite different from the original
Sakai-Sugimoto model obviously.

III. THREE-BODY FORCE FOR BARYONS
AT SHORT DISTANCES

In this section we will test our matrix model (2.1) by
computing the three-body effective potential (i.e. k ¼ 3) at
short distances. It is a parallel procedure to the case of
two-body potential for baryons as in the previous section,
and we follow the same procedures as mentioned in [19]
which are
(1) Choose the value of k (the number of baryons),

and solve the ADHM constraint (i.e. integrate out
the auxiliary field ~D and minimize the ADHM
potential).

(2) Substitute the solution back into the action (2.1) of
the matrix model.

(3) Integrate out the auxiliary field A0.
(4) Evaluate the Hamiltonian with the desired bar-

yonic state.
As a first test, we will consider a case that all three baryons
take the same classical spin or isospin. And second, we will
demonstrate the computations for baryons which are
aligned on a straight line with equal spacings after taking
the explicit setup for generic quantum spin or isospin to our
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system. In fact we are also less clear about how to get a
physical interpretation from the calculations for the baryons
with generic positions, thus we also choose this linear
position to simplify and illuminate our calculations.
Finally, we finish our tests by evaluating the three-body
Hamiltonian with two specific three-body quantum states.
They are the states of three neutrons with averaged spins
and proton-proton-neutron (or proton-neutron-proton).

A. Three-body force for baryons with classical
spin/isospin

Our goal is to evaluate the three-body Hamiltonian, so let
us start with the four steps mentioned above.

1. Solve the ADHM constraint

First, we need to consider minimizing the ADHM
potential in the matrix model. This is equivalent to solve
the ADHM constraint for any A, B ¼ 1, 2, 3. A simple
solution to this constraint is

ωA
_αi ¼ U _αiρ

A; ðA ¼ 1; 2; 3Þ

XM ¼
X
a¼3;8

λa

2
rMa : ð3:1Þ

Equation (3.1) is nothing but the ADHM data for the
’t Hooft instantons which has been used in [8,12,19].
Noting that the 2 × 2 unitary matrix U does not depend
on the index A while the degrees of freedom ω correspond
to the spin and isospin. The matrices X are diagonal and
their diagonal elements represent the location of the
baryons with M ¼ 1, 2, 3. The X’s and special ω’s of
the ADHM data for the ’t Hooft instantons (3.1) are sharing
the same orientation. “Classical spin/isospin” here means
that in fact we cannot fix the orientation U and consider
the wave functions with finite width at same time. All the
terms with the commutators ½X;X� vanish since the

matrices X are diagonal, which obviously satisfies the
ADHM constraint.

2. Substitute the ADHM data to the matrix action

The interbaryon potential comes from the terms after
integrating out the auxiliary field A0 and the mass term of
X4. However the mass term of X4 vanishes for the ’t Hooft
instantons because of no off-diagonal components in (3.1).
On the other hand, we are going to choose the gauge
∂0ω

A
_αi ¼ 0, thus there is no time dependence in ω or X.

So in this section, we need to consider the terms related to
A0 only.
With the gauge group UðkÞ and k ¼ 3 for three-body

case, the auxiliary field A0 could be written exactly by the
Gell-Mann matrices λa which is

A0 ¼ A0
013×3 þ

X8
a¼1

Aa
0

λa

2
: ð3:2Þ

As in the two-body case, only the kinetic terms of ω’s and
X’s contain A0 while only Uð1Þ component A0

0 appears in
the CS term in action (2.1). So for the kinetic term of X, it
takes the following exact forms by substituting the ADHM
data (3.1),

TrðD0XMÞ2 ¼ 1

2
½ðA1

0r
M
3 Þ2 þ ðA2

0r
M
3 Þ2�

þ 1

8
½ðA4

0Þ2 þ ðA5
0Þ2�ðrM3 þ

ffiffiffi
3

p
rM8 Þ2

þ 1

8
½ðA6

0Þ2 þ ðA7
0Þ2�ðrM3 −

ffiffiffi
3

p
rM8 Þ2: ð3:3Þ

And then we need to consider the kinetic term for ω. It is a
lengthy but straightforward calculation just by using the
ADHM data (3.1). As a result, we obtain the following
expression,

TrðD0ω̄
_α
i D0ωi _αÞ ¼ 2½ðρ1Þ2 þ ðρ2Þ2 þ ðρ3Þ2�

�
ðA0

0Þ2 þ
1

6

X8
a¼1

ðAa
0Þ2

�
þ 4ρ1ρ2A1

0A
0
0 þ 4ρ1ρ3A4

0A
0
0

þ 4ρ2ρ3A6
0A

0
0 þ 2A3

0A
0
0½ðρ1Þ2 − ðρ2Þ2� þ 2ffiffiffi

3
p A8

0A
0
0½ðρ1Þ2 þ ðρ2Þ2 − 2ðρ3Þ2�

þ 2ρ1ρ2ffiffiffi
3

p A1
0A

8
0 þ ρ1ρ2A4

0A
6
0 þ ρ1ρ2A5

0A
7
0 −

ρ1ρ3ffiffiffi
3

p A4
0A

8
0 þ ρ1ρ3A1

0A
6
0 − ρ1ρ3A2

0A
7
0

þ ρ1ρ3A3
0A

4
0 −

ρ2ρ3ffiffiffi
3

p A6
0A

8
0 þ ρ2ρ3A1

0A
4
0 þ ρ2ρ3A2

0A
5
0 − ρ2ρ3A3

0A
6
0

þ
�
1ffiffiffi
3

p A3
0A

8
0 þ

1

4
ðA4

0Þ2 þ
1

4
ðA5

0Þ2 −
1

4
ðA6

0Þ2 −
1

4
ðA7

0Þ2
�
½ðρ1Þ2 − ðρ2Þ2�

þ 1

12
½2ðA1

0Þ2 þ 2ðA2
0Þ2 þ 2ðA3

0Þ2 − 2ðA8
0Þ2 − ðA4

0Þ2 − ðA5
0Þ2 − ðA6

0Þ2 − ðA7
0Þ2�

× ½ðρ1Þ2 þ ðρ2Þ2 − 2ðρ3Þ2�: ð3:4Þ
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In fact (3.3) and (3.4) are as same as the “data” used in [19] since we start with the same ADHM data (3.1) for the ’t Hooft
instantons.
Finally, we also need to consider the Lagrangian for CS term which is

LCS ¼
162π

λMKKð1þ ζÞ3=2 A
0
0: ð3:5Þ

So the total Lagrangian involving the field A0 consists of (3.3), (3.4), and (3.5), which is denoted by LA0
,

LA0
¼ TrðD0XMÞ2 þ TrðD0ω̄

_α
i D0ωi _αÞ þ LCS: ð3:6Þ

3. Integrate out the auxiliary field A0

We need to solve all the equations of motion for all the components of A0. All the equations of motion can be obtained by
Euler-Lagrange equation with (3.6), i.e.

∂LA0

∂A0
0

¼ 0; or
∂LA0

∂Aa
0

¼ 0 ðfor a ¼ 1; 2…8Þ: ð3:7Þ

We obtain 9 equations while all the components of A0 are mixed to each other. By solving these equations we find a unique
solution as3

A0
0 ¼

9π

2ð1þ ζÞ3=2λðρ1Þ2ðρ2Þ2ðρ3Þ2MKKr23ðr23 − 3r28Þ2
f−r23ðρ1Þ2ðρ2Þ2½9ðr28Þ2 þ 8

ffiffiffi
3

p
r3r8ððρ2Þ2 − ðρ1Þ2Þ

− 6r28ðr23 − 2ððρ2Þ2 þ ðρ1Þ2ÞÞ þ r23ðr23 þ 4ððρ2Þ2 þ ðρ1Þ2ÞÞ� − ½ðr23 − 3r28Þ2ðρ1Þ2ðr23 þ ðρ1Þ2Þ þ ðr23 − 3r28Þ2ðρ2Þ4
þ ððr23 − 3r3r8Þ2r23 þ 18ðr23 þ r28Þðρ1Þ2Þðρ2Þ2�ðρ3Þ2
þ 4½2

ffiffiffi
3

p
r3r8ððρ2Þ2 − ðρ1Þ2Þ − r23ððρ2Þ2 þ ðρ1Þ2Þ − 3r28ððρ2Þ2 þ ðρ1Þ2Þ�r23ðρ3Þ4g;

A3
0 ¼

27π

2ð1þ ζÞ3=2λðρ1Þ2ðρ2Þ2MKKr23ðr23 − 3r28Þ2
fðr23Þ3½ðρ1Þ2 − ðρ2Þ2� þ 9ðr28Þ2½ðρ1Þ4 − ðρ2Þ4� þ ðr23Þ2½ðρ1Þ2 − ðρ2Þ2�

× ððρ1Þ2 þ ðρ2Þ2 þ 4ðρ3Þ2 − 6r28Þ þ ½2ðρ1Þ2ðρ2Þ2 þ ððρ1Þ2 þ ðρ2Þ2Þðρ3Þ2�8
ffiffiffi
3

p
r23ðr3r8Þ þ 3r23r

2
8½ðρ1Þ2 − ðρ2Þ2�

× ½3r28 − 2ððρ1Þ2 þ ðρ2Þ2 − 2ðρ3Þ2Þ�g;

A8
0 ¼

9π

2ð1þ ζÞ3=2λðρ1Þ2ðρ2Þ2ðρ3Þ2MKKr23ðr23 − 3r28Þ2
× f−9

ffiffiffi
3

p
ðr28Þ2½ðρ1Þ2 þ ðρ2Þ2�2ðρ3Þ2 þ ½2ðρ1Þ2ðρ2Þ2 − ððρ1Þ2 þ ðρ2Þ2Þðρ3Þ2�

ffiffiffi
3

p
ðr23Þ3 − 24r23ðr3r8Þ

× ½ðρ1Þ2 − ðρ2Þ2�½2ðρ1Þ2ðρ2Þ2 þ ðρ3Þ4� þ 3
ffiffiffi
3

p
r23r

2
8½2ðρ1Þ2ðρ2Þ2ð3r28 þ 4ðρ1Þ2 þ 4ðρ2Þ2Þ − 4ððρ1Þ2 þ ðρ2Þ2Þðρ3Þ4

− 3r28ðρ3Þ2ððρ1Þ2 þ ðρ2Þ2Þ þ 2ððρ1Þ4 þ ðρ2Þ4 þ 6ðρ1Þ2ðρ2Þ2Þðρ3Þ2� −
ffiffiffi
3

p
ðr23Þ2½−4ðρ1Þ2ðρ2Þ2ð−3r28 þ 2ðρ1Þ2

þ 2ðρ2Þ2Þ þ ðρ3Þ2ððρ1Þ4 − 6ðρ1Þ2ðρ2Þ2 − 6r28ðρ1Þ2 − 6r28ðρ2Þ2Þ þ 4ðρ3Þ2ððρ1Þ2 þ ðρ2Þ2Þ�g; ð3:8Þ

and

A1
0 ¼

27π½ðρ2Þ2 þ ðρ1Þ2�
ð1þ ζÞ3=2λMKKρ

1ρ2r23
;

A4
0 ¼

108
ffiffiffi
3

p
π½ðρ1Þ2 þ ðρ3Þ2�

ð1þ ζÞ3=2λMKKρ
1ρ3½ ffiffiffi

3
p

r23 þ 6r3r8 þ 3
ffiffiffi
3

p
r28�

;

A6
0 ¼

108π½r23 þ 2
ffiffiffi
3

p
r3r8 þ 3r28�½ðρ2Þ2 þ ðρ3Þ2�

ð1þ ζÞ3=2λMKKρ
2ρ3ðr23 − 3r28Þ2

; ð3:9Þ

3In order to simplified the formula, we have used r2a to represent rMa rMa and rarb to represent rMa rMb .
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while the solutions for other components are A2
0 ¼ A5

0 ¼ A7
0 ¼ 0. We can obtain the integrated Lagrangian from LA0

with
the moduli parameters rM3 , r

M
8 , and ρA by plugging the solutions (3.8) and (3.9) back to (3.6), which is

LA0
ðrM3 ; rM8 ; ρAÞ ¼ −

�
54π

λMKK

�
2 1

ð1þ ζÞ3
�
1

8

X3
A¼1

1

ðρAÞ þ
1

4ðrM3 Þ2
�
1þ ðρ1Þ2

2ðρ2Þ2 þ
ðρ2Þ2
2ðρ1Þ2

�

þ 1

ðrM3 þ ffiffiffi
3

p
rM8 Þ2

�
1þ ðρ1Þ2

2ðρ3Þ2 þ
ðρ3Þ2
2ðρ1Þ2

�

þ 1

ðrM3 −
ffiffiffi
3

p
rM8 Þ2

�
1þ ðρ2Þ2

2ðρ3Þ2 þ
ðρ3Þ2
2ðρ2Þ2

��
: ð3:10Þ

By employing the picture of soliton, we obtain the potential Vcl from the D0-D4/D8 matrix model, which is

S ¼ λNcMKK

54π
ð1þ ζÞ3=2

Z
dtLA0

¼ −
Z

dtVcl: ð3:11Þ

Thus we have

Vcl ¼ 54πNc

λMKK

1

ð1þ ζÞ3=2 ×
�
1

8

X3
A¼1

1

ðρAÞ þ
1

4ðrM3 Þ2
�
1þ ðρ1Þ2

2ðρ2Þ2 þ
ðρ2Þ2
2ðρ1Þ2

�

þ 1

ðrM3 þ ffiffiffi
3

p
rM8 Þ2

�
1þ ðρ1Þ2

2ðρ3Þ2 þ
ðρ3Þ2
2ðρ1Þ2

�
þ 1

ðrM3 −
ffiffiffi
3

p
rM8 Þ2

�
1þ ðρ2Þ2

2ðρ3Þ2 þ
ðρ3Þ2
2ðρ2Þ2

��
: ð3:12Þ

In order to obtain the potential intrinsic to the three-body
case, we have to subtract the one- and two- body Ham-
iltonians. It can be read from the computation for two-body
case in [8] with the ADHM data for the ’t Hooft instantons.
If we take the leading term in the large Nc expansion, we
have the following forms

Vcl
1−body ¼

27πNc

4λMKKð1þ ζÞ3=2
1

ðρAÞ2 ;

Vcl
2−body ¼

27πNc

4λMKKð1þ ζÞ3=2
1

ðrMÞ2
�
2þ ðρBÞ2

ðρAÞ2 þ
ðρAÞ2
ðρBÞ2

�
;

ð3:13Þ

where we have used rM to represent the distance between
the two baryons. Then according to (3.12) and (3.13), it
gives

X
A¼1;2;3

VðAÞcl
1−body þ

1

2

X
A≠B

VðA;BÞcl
2−body ¼ Vcl; ð3:14Þ

which means the three-body force of the baryons sharing
the same classical spins or isospins vanishes exactly. The
result remains as in [19] and in [20] with the soliton
approach.
In [8,11], we claim that the constraint for the stable

baryonic state is ζ < 2 in D0-D4/D8 system and it turns out
the two-body force is also affected by this constraint.

However according to (3.12) and (3.14), it seems this
constraint has nothing to do with our calculations for three-
body case. The direct reason is, during our calculations for
the “classical treatment” we have set the mass term of X4 to
zero, but the constraint for the stable baryonic state comes
from this term. The physical interpretation is, in fact we do
not keep the quantum spin or isospin degrees of freedom
explicitly in this “classical” computation, which means
some quantum effects about the QCD vacuum in this sense
are missing. Therefore the computation based on the
“classical treatment” is also unfortunately unrealistic for
the nucleons in the D0-D4/D8 system. So in the next
sections, we will focus on a more realistic case with the
quantum degrees of freedom for spin or isospin.

B. Generic three-body force
in D0-D4/D8 system

For a generic calculation about the three-body baryons in
D0-D4/D8 system, we will follow the four steps as well as
the case in the previous section.

1. Solve the ADHM constraint

As a warm-up in the previous section, we have fixed the
spins or isospins for baryons and computed the three-body
force with the ADHM data for the ’t Hooft instanton in our
D0-D4/D8 matrix model, which is easy but not realistic. In
this section, we keep the quantum spin or isospin degrees of
freedom, i.e., allow arbitrary U for each baryon,
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ωA
_αi ¼ UA

_αiρ
A; ðA ¼ 1; 2; 3Þ: ð3:15Þ

Since our D0-D4/D8 matrix model does not change the
ADHM constraint (2.2), we can choose the same solution
for X as in [19] which is

XM ¼
X
a¼3;8

λa

2
rMa þ

X
a¼1;4;6

λa

2
rMa : ð3:16Þ

The off-diagonal components are turned on in matrices
XM which makes (3.16) different from (3.1). The off-
diagonal r1, r4, and r6 should be small and r3 and r8

specify the positions of these three baryons. The classical
size of baryon is small enough for large λ, ρ ∼ λ−1=2, so
we also need the ADHM data for well-separated instan-
tons since the generic three-body ADHM data is not
available, i.e.

jr3 þ
ffiffiffi
3

p
r8j=2; j − r3 þ

ffiffiffi
3

p
r8j=2; jr8j ≫ ρA:

ð3:17Þ
The well-separated instanton is in [23] and we employ it

as the ADHM data in our notation, which the relevant
parts are4

rM1 σM ¼ dM12σM
jd12j2

ρ1ρ2½ðU2Þ†U1 − ðU1Þ†U2� þ ρ1ρ2ðρ3Þ2dM12σM
4jd12j2jd13j2jd23j2

× f½ðU3Þ†U2 − ðU2Þ†U3�d†23d31½ðU1Þ†U3 − ðU3Þ†U1�
− ½ðU3Þ†U1 − ðU1Þ†U3�d†31d32½ðU2Þ†U3 − ðU3Þ†U2�g þOðd−5Þ;

rM4 σM ¼ dM13σM
jd13j2

ρ1ρ3½ðU3Þ†U1 − ðU1Þ†U3� þ ρ1ρ3ðρ2Þ2dM13σM
4jd12j2jd13j2jd23j2

× f½ðU2Þ†U3 − ðU3Þ†U2�d†23d21½ðU1Þ†U2 − ðU2Þ†U1�
− ½ðU2Þ†U1 − ðU1Þ†U2�d†21d23½ðU3Þ†U2 − ðU2Þ†U3�g þOðd−5Þ;

rM6 σM ¼ dM23σM
jd23j2

ρ2ρ3½ðU3Þ†U2 − ðU2Þ†U3� þ ρ2ρ3ðρ1Þ2dM23σM
4jd12j2jd13j2jd23j2

× f½ðU1Þ†U3 − ðU3Þ†U1�d†13d12½ðU2Þ†U1 − ðU1Þ†U2�
− ½ðU1Þ†U2 − ðU2Þ†U1�d†12d13½ðU3Þ†U1 − ðU1Þ†U3�g þOðd−5Þ; ð3:18Þ

with the definition of the distance vector dij between the ith
and jth baryon,

dij ¼ dMij σM: ð3:19Þ

According to (3.16), we have the positions for the three
baryons respectively,

rM ¼ rM3 =2þ rM8 =2
ffiffiffi
3

p
; −rM3 =2þ rM8 =2

ffiffiffi
3

p
; −rM8 =

ffiffiffi
3

p
;

ð3:20Þ

with

d12 ¼ −d21 ¼ r3;

d13 ¼ −d31 ¼ ðr3 −
ffiffiffi
3

p
r8Þ=2;

d23 ¼ −d32 ¼ −ðr3 þ
ffiffiffi
3

p
r8Þ=2: ð3:21Þ

2. Substitute the ADHM data to the Lagrangian

Here we use the SUð2Þ matrices UA
_αi to represent the

rotation matrices for different three baryons with A ¼ 1, 2,
3, which can be written as u012×2 þ i

P
3
i¼1 uiτ

i withP
3
i¼1 ðuiÞ2 ¼ 1. Thus the terms consist of U ’s such as

in (3.18) can be written explicitly as

UA
_αiðUB

_βi
Þ† ¼ uðABÞ0 ð12×2Þ _α _β þ i

X3
i¼1

uðABÞi τi
_α _β
: ð3:22Þ

where u0 is defined as same as in (2.6). So we have new
terms with new parameters rMa with a ¼ 1, 4, 6 and uAB0 if
compared with the ADHM data in (3.1).
As the case in the previous section, we also need to write

the terms including A0, which are the kinetic terms of X and
ω plus the CS term. For the kinetic term of X, we have,

TrðD0XMÞ2 ¼ Tr

�
−i
�
A0;

X8
a¼1

λa

2
rMa

��2

: ð3:23Þ

And (3.23) could be simplified as4Here we follow the notation used in [19,24].
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TrðD0XMÞ2 ¼ 1

8
fðA4

0Þ2r21 þ ðA6
0Þ2r21 þ 4ðA1

0Þ2r23 þ ðA4
0Þ2r23 þ ðA6

0Þ2r23 − 2A1
0A

4
0r1r4 − 2

ffiffiffi
3

p
A6
0A

8
0r1r4 þ 6A1

0A
6
0r3r4

− 2
ffiffiffi
3

p
A4
0A

8
0r3r4 þ ðA1

0Þ2r24 þ ðA6
0Þ2r24 þ 3ðA8

0Þ2r24 − 2A1
0A

6
0r1r6 − 2

ffiffiffi
3

p
A4
0A

8
0r1r6 − 6A1

0A
4
0r3r6

þ 2
ffiffiffi
3

p
A6
0A

8
0r3r6 − 2A4

0A
6
0r4r6 þ 4

ffiffiffi
3

p
A1
0A

8
0r4r6 þ ðA1

0Þ2r26 þ ðA4
0Þ2r26 þ 3ðA8

0Þ2r26 þ ðA3
0Þ2½4r21 þ r24 þ r26�

þ 4
ffiffiffi
3

p
A4
0A

6
0r1r8 þ 2

ffiffiffi
3

p
ðA4

0Þ2r3r8 − 2
ffiffiffi
3

p
ðA6

0Þ2r3r8 − 2
ffiffiffi
3

p
A1
0A

6
0r4r8 − 6A4

0A
8
0r4r8 − 2

ffiffiffi
3

p
A1
0A

4
0r6r8

− 6A6
0A

8
0r6r8 þ 3ðA4

0Þ2r28 þ 3ðA6
0Þ2r28 − 2A3

0½4A1
0r1r3 þ 3A6

0r1r4 þ A4
0r3r4 −

ffiffiffi
3

p
A8
0r

2
4 − 3A4

0r1r6 þ A6
0r3r6

þ
ffiffiffi
3

p
A8
0r

2
6 þ

ffiffiffi
3

p
A4
0r4r8 −

ffiffiffi
3

p
A6
0r6r8�g: ð3:24Þ

Note that (3.24) does not include the terms of Aa
0 with a ¼ 2, 5, 7. We have omitted these terms since all Aa

0 with
a ¼ 2, 5, 7 appear in the Lagrangian as quadratic terms which yields Aa¼2;5;7

0 ¼ 0 by their equations of motion.
According to these, we have the kinetic term for ω which is similar to the case of the ’t Hooft instanton as
follows,

TrðD0ω̄
_α
i D0ω _αiÞ ¼ 2½ðρ1Þ2 þ ðρ2Þ2 þ ðρ3Þ2�

�
ðA0

0Þ2 þ
1

6

X
a¼1;3;4;6;8

ðAa
0Þ2

�
þ 4ρ1ρ2uð12Þ0 A1

0A
0
0 þ 4ρ1ρ3uð13Þ0 A4

0A
0
0

þ 4ρ2ρ3uð23Þ0 A6
0A

0
0 þ 2A3

0A
0
0½ðρ1Þ2 − ðρ2Þ2� þ 2ffiffiffi

3
p A8

0A
0
0½ðρ1Þ2 þ ðρ2Þ2 − 2ðρ3Þ2�

þ 2ρ1ρ2uð12Þ0ffiffiffi
3

p A1
0A

8
0 þ ρ1ρ2uð12Þ0 A4

0A
6
0 −

ρ1ρ2uð13Þ0ffiffiffi
3

p A4
0A

8
0 þ ρ1ρ3uð13Þ0 A1

0A
6
0 þ ρ1ρ3uð13Þ0 A3

0A
4
0

−
ρ2ρ3uð23Þ0ffiffiffi

3
p A6

0A
8
0 þ ρ2ρ3uð23Þ0 A1

0A
4
0 − ρ2ρ3uð23Þ0 A3

0A
6
0 þ

�
1ffiffiffi
3

p A3
0A

8
0 þ

1

4
ðA4

0Þ2 −
1

4
ðA6

0Þ2
�
½ðρ1Þ2 − ðρ2Þ2�

þ 1

12
½2ðA1

0Þ2 þ 2ðA3
0Þ2 − 2ðA8

0Þ2 − ðA4
0Þ2 − ðA6

0Þ2�½ðρ1Þ2 þ ðρ2Þ2 − 2ðρ3Þ2�: ð3:25Þ

We have used ωA
_αiλ

a
ABðωB

_αiÞ� ¼ 0 for a ¼ 2, 5, 7 since they
are proportional to UA

_αiðUB
_αiÞ† −UB

_αiðUA
_αiÞ† with A, B ¼ 1,

2, 3. So the total Lagrangian can be written as the form in
(3.6) again with the CS term given in (3.5).
Additionally, we have another term to the “on-shell”

Lagrangian which comes from the mass term of X4 in this
D0-D4 matrix model,

λNcMKK

54π
ð1þ ζÞ3=2 2

3

�
1 −

1

2
ζ

�
M2

KKTrðX4Þ2

¼ λNcM3
KK

34π

�
1 −

1

2
ζ

�
ð1þ ζÞ3=2

�
1

4

�
r43 þ

1ffiffiffi
3

p r48

�
2

þ 1

4

�
−r43 þ

1ffiffiffi
3

p r48

�
2

þ 1

3
ðr48Þ2 þ

1

2

X
ρ¼1;2;4;5;6;7

ðr4ρÞ2
�
:

ð3:26Þ

The two- and three-body terms are in the last term of (3.26)
while the first three terms are related to one baryon
potential. So we need to write the expressions for the
off-diagonal r1;2;4;5;6;7 to evaluate them.
Basically, the three-body force could be determined in

principle by straightforward calculations from (3.24),

(3.25), (3.26), and (3.5). However the calculations
would be very messy and we are less clear about
how to obtain a physical interpretation from the
calculations. To clarify the physical essence, we there-
fore are going to employ the arguments as in [19] i.e.
choose a particular alignment of the baryons. And the
physical essence and significance would be clear by
this choice.

C. Hamiltonian for three baryons
aligned on a line

We consider the following condition as in [19] for the
baryons aligned on a line,

rM8 ¼ 0; rM3 ≡ rM ≠ 0; ð3:27Þ

which means three baryons are located at xM ¼ rM3 =2,
xM ¼ −rM3 =2, and xM ¼ 0, respectively. The resultant
Lagrangian would be simplified as

LA0
¼ λNcMKK

54π
ð1þ ζÞ3=2ðL1 þ L2Þ; ð3:28Þ

where
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L1 ¼
162πA0

0

λMKKð1þ ζÞ3=2 þ
ðA1

0Þ2r2
2

þ ðA4
0Þ2r2
8

þ ðA6
0Þ2r2
8

þ ½6ðA0
0Þ2 þ ðA1

0Þ2 þ ðA3
0Þ2 þ ðA4

0Þ2 þ ðA6
0Þ2 þ ðA8

0Þ2�ρ2

þ
�
A4
0A

6
0 þ

2A1
0A

8
0ffiffiffi

3
p

�
ρ2u120 þ

�
A3
0A

4
0 þ A1

0A
6
0 −

A4
0A

8
0ffiffiffi
3

p
�
ρ2uð13Þ0

þ
�
A1
0A

4
0 − A3

0A
6
0 −

A6
0A

8
0ffiffiffi
3

p
�
ρ2uð23Þ0 þ 4A0

0ðA1
0u

ð12Þ
0 þ A4

0u
ð13Þ
0 þ A6

0u
ð23Þ
0 Þρ2;

L2 ¼
1

4

�
2ðA3

0Þ2r21 þ
1

2
ðA4

0Þ2r21 þ
1

2
ðA6

0Þ2r21 − A1
0A

4
0r1r4 − 3A3

0A
6
0r1r4 −

ffiffiffi
3

p
A6
0A

8
0r1r4 þ

1

2
ðA1

0Þ2r24 þ
1

2
ðA3

0Þ2r24 þ
1

2
ðA6

0Þ2r24

þ
ffiffiffi
3

p
A3
0A

8
0r

2
4 þ

3

2
ðA8

0Þ2r24 þ 3A3
0A

4
0r1r6 − A1

0A
6
0r1r6 −

ffiffiffi
3

p
A4
0A

8
0r1r6 − A4

0A
6
0r4r6

þ 2
ffiffiffi
3

p
A1
0A

8
0r4r6 þ

1

2
ðA1

0Þ2r26 þ
1

2
ðA3

0Þ2r26 þ
1

2
ðA4

0Þ2r26 −
ffiffiffi
3

p
A3
0A

8
0r

2
6 þ

3

2
ðA8

0Þ2r26
�
: ð3:29Þ

For obtaining the expression (3.29), the terms related to r3;8
and Y have been eliminated since we have used the
following equations

rM3 r
M
1 ¼ 0; ðrM3 þ

ffiffiffi
3

p
rM8 ÞrM4 ¼ 0;

ðrM3 −
ffiffiffi
3

p
rM8 ÞrM6 ¼ 0; ð3:30Þ

which could be explicitly shown by the ADHM constraint
(2.2) in the expansion of jrj ≫ ρ (See the details of this
expansion in [23]). Then we have to evaluate the mass term
of X4 in this matrix model, as an explicit result it is

Vmass
3−body ¼

λNcM3
KK

2234π

�
1 −

1

2
ζ

�
ð1þ ζÞ3=2 ρ6

jrj6
× fTrðrT12ÞTr½rðT23T13 − T13T23Þ�
− 2TrðrT31ÞTr½rðT32T12 − T12T32Þ�
− 2TrðrT32ÞTr½rðT31T21 − T21T31Þ�g; ð3:31Þ

where r ¼ rMσM and Tij ¼ ðUiÞ†Uj − ðUjÞ†Ui ¼ −Tji.
And we have used (3.30) to simplify (3.18) for these
aligned baryons to obtain (3.31) as

rM1 σM ¼ 1

jrj2 ρ
1ρ2rT21 −

1

jrj4 ρ
1ρ2ðρ3Þ2rðT32T13 − T13T32Þ

þOð1=jrj5Þ;

rM4 σM ¼ 2

jrj2 ρ
1ρ3rT31 −

1

jrj4 ρ
1ρ3ðρ2Þ2rðT32T12 − T12T32Þ

þOð1=jrj5Þ;

rM6 σM ¼ 1

jrj2 ρ
2ρ3rT32 −

1

jrj4 ρ
2ρ3ðρ1Þ2

× rðT31T21 − T21T31Þ þOð1=jrj5Þ: ð3:32Þ

Note that only the second terms in each right-hand side
of (3.32) are related to the three-body case while the first

terms in the right-hand side of (3.32) equal the off-diagonal
entry of two-body case. This has been considered in
the potential of (3.31) with taking the classical value as
ρ1 ¼ ρ2 ¼ ρ3 ¼ ρ for the leading term in the large Nc
expansion.

1. Integrate out the auxiliary field A0

We also need to solve the equations of motion for A0

derived from Lagrangian (3.29). By plugging the solution
back into (3.29), we obtain

LA0
¼ −V;

V ¼
X

A¼1;2;3

VðAÞ
1−body þ

1

2

X
A≠B

VðA;BÞ
2−body þ V3−body: ð3:33Þ

As (2.6) or in [8], the expressions for one- and two-body
potential are

VðAÞ
1−body ¼

27πNc

4λMKKð1þ ζÞ3=2
1

ρ2
;

VðA;BÞ
2−body ¼

27πNc

λMKKð1þ ζÞ3=2
ðuðABÞ0 Þ2

jrðABÞj2 þ 2ρ2 − 2ðuðABÞ0 Þ2ρ2
:

ð3:34Þ

By the condition (3.27) for the aligned baryons

jrð12Þj ¼ r; jrð13Þj ¼ jrð23Þj ¼ r=2; ð3:35Þ

and then we will compute the three-body potential V3−body
in (3.33).
As we are going to use the same trick as in [19] to solve

the equations of motion for A0, we first rewrite the
Lagrangian L1 as

L1 ¼ ATMAþ BTA ð3:36Þ
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where

AT ¼ ðA0
0; A

1
0; A

3
0; A

4
0; A

6
0; A

8
0Þ; BT ¼ 162π

λMKKð1þ ζÞ3=2 ð1; 0; 0; 0; 0; 0Þ; ð3:37Þ

and

M ¼ ρ2

0
BBBBBBBBBB@

6 2uð12Þ0 0 2uð13Þ0 2uð23Þ0 0

2uð12Þ0 1þ r2=2ρ2 0 uð23Þ0 =2 uð13Þ0 =2 uð12Þ0 =
ffiffiffi
3

p

0 0 1 uð13Þ0 =2 −uð23Þ0 =2 0

2uð13Þ0 uð23Þ0 =2 uð13Þ0 =2 1þ r2=8ρ2 uð12Þ0 =2 −uð13Þ0 =2
ffiffiffi
3

p

2uð23Þ0 uð13Þ0 =2 −uð23Þ0 =2 uð12Þ0 =2 1þ r2=8ρ2 −uð23Þ0 =2
ffiffiffi
3

p

0 uð12Þ0 =
ffiffiffi
3

p
0 −uð13Þ0 =2

ffiffiffi
3

p
−uð23Þ0 =2

ffiffiffi
3

p
1

1
CCCCCCCCCCA
: ð3:38Þ

There should be another Lagrangian L2 for the compu-
tation, however it turns out that Lagrangian L2 is not
necessary in the next computation since our computation is
in a “long-distance” expansion ρ ≪ r and Lagrangian L2 is
at higher order in this expansion.5

By (3.36), the solution for the equation of motion for
A0 is

A ¼ −
1

2
M−1B; ð3:39Þ

and the Hamiltonian is therefore

V ¼ λMKKNc

54π
ð1þ ζÞ3=2 1

4
BTM−1B

¼ 35πNc

2λMKKð1þ ζÞ3=2 ½M
−1�ð1;1Þ: ð3:40Þ

We obtain the following leading term by expanding in
power series of ρ2=r2

V ¼ 35πNc

2λMKKð1þ ζÞ3=2

×

�
1

6ρ2
þ 2ðuð1;2ÞÞ2 þ 8ðuð1;3ÞÞ2 þ 8ðuð2;2ÞÞ2

9r2
þ 4ρ2fSI

9r4

�

þOðρ4=r6Þ; ð3:41Þ

where the function fSI is the spin/isospin phase defined as

fSI ¼ ðuð1;2Þ0 Þ4 − ðuð1;2Þ0 Þ2 þ 16ðuð1;3Þ0 Þ4 − 16ðuð1;3Þ0 Þ2

þ 16ðuð1;3Þ0 Þ4 þ 16ðuð2;3Þ0 Þ4 − 16ðuð2;3Þ0 Þ2

þ 4ðuð1;2Þ0 Þ2ðuð1;3Þ0 Þ2 þ 4ðuð1;2Þ0 Þ2ðuð2;2Þ0 Þ2

þ 16ðuð1;3Þ0 Þ2ðuð2;3Þ0 Þ2 − 24uð1;2Þ0 uð2;3Þ0 uð1;3Þ0 : ð3:42Þ

Subtracting the one- and two-body potential (3.34) from
(3.41), we obtain the three-body potential in the expansion
of ρ2=r2 as

VA0

3−body ¼
216πNcρ

2

λMKKð1þ ζÞ3=2jrj4 ½ðu
ð1;2Þ
0 Þ2ðuð1;3Þ0 Þ2

þ ðuð1;2Þ0 Þ2ðuð2;3Þ0 Þ2 þ 4ðuð1;3Þ0 Þ2ðuð2;3Þ0 Þ2

− 6uð1;2Þ0 uð2;3Þ0 uð1;3Þ0 � þOðρ4=r6Þ: ð3:43Þ

With the mass term for X4 (3.31), we have the total three-
body potential which is

V3−body ¼ VA0

3−body þ Vmass
3−body: ð3:44Þ

We can evaluate the potential with a three-body baryonic
state with (3.43) and (3.44) for any spin or isospin. So we
will choose two different baryonic states as in [19] to study
the three-body nuclear potential.
Furthermore, we also have some comments about

(3.43). As mentioned that ρ is of order Oð1= ffiffiffi
λ

p Þ, thus
the three-body Hamiltonian is of order Oð1=λ2r4Þ which
is therefore suppressed by 1=λ2. It is also consistent with
[20] in which the generic k-body potential is of order
Oð1=λk−1r2k−2Þ with k ¼ 3 and MKK ¼ 1 if setting

5As in [19], we have also checked this to confirm that
Lagrangian L2 is indeed at higher order for the next computation.
However the computation is lengthy and not necessary for this
manuscript thus it is not presented here.
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ζ ¼ 0, i.e., no smeared D0-branes. Additionally, if
all the matrices UðiÞ’s in (3.44) are equal to each other
which means the ADHM data returns to the ’t Hooft

instantons, we would have uði;jÞ0 ¼ 1 and Aij ¼ 0,
yielding the vanishing three-body potential as same
as in (3.14) in this D0-D4/D8 system. Thus obviously
it is a consistent check for the results in the previous
section.

2. Evaluate the potential with baryonic states

In this subsection, we are going to compute the spin/
isospin dependence of the three-body short-distance force
with our three-body potential from the D0-D4/D8 matrix
model. As a parallel study, we would like to choose the
following two states as in [19] which are
(1) three-neutrons with averaged spins.
(2) proton-proton-neutron (or proton-neutron-neutron).

The first state is relevant to the dense states of many
neutrons as core of neutron stars or supernovae while the
second state is for the spectrum of Helium-3 nucleus. In
some high-density system, the nontrivial QCD vacuum
may affect nuclear force among baryons, as a description,
we would like to use our D0-D4/D8 matrix model to study
the nuclear force with nontrivial QCD vacuum since the
number density of D0-branes in this D0-D4/D8 system is,
for example, relevant to the glueball condensation or
CME [9–11].
(1) three-neutrons with averaged spins.
The single-baryon wave function has been given in (2.9)6

for protons and neutrons. Since we need neutron states
with averaged spins, thus for any given operators, the
appropriate expectation is

hVi ¼ 1

2
½hn ↑ jOjn ↑i þ hn ↓ jOjn ↓i�: ð3:45Þ

We need to take the expectation value for three baryons for
O being the three-body Hamiltonian. Here we will not
antisymmetrize the wave function although the nucleons
are fermions. We consider a single baryon case as (3.45), it
yields

hVi ¼
Z

dΩ3

1

2
½Ojh~ajn ↑ij2 þOjh~ajn ↓ij2�: ð3:46Þ

The dΩ3 is the integration over S3 by the unit vector ~a. By
the wave function (2.9), we have

jh~ajn ↑ij2 þ jh~ajn ↓ij2

¼ 1

π2
½ða1Þ2 þ ða2Þ2 þ ða3Þ2 þ ða4Þ2�

¼ 1

π2
; ð3:47Þ

therefore,

hVi ¼ 1

2π2

Z
dΩ3O: ð3:48Þ

So according to (3.48), with the spin-averaged wave
function, the three-body potential would be,

hVA0

3−bodyinnnðspin-averagedÞ
¼ 216πNcρ

2

λMKKð1þ ζÞ3=2jrj4
1

ð2π2Þ3

×
Z

dΩð1Þ
3 dΩð2Þ

3 dΩð3Þ
3 ½ðuð1;2Þ0 Þ2

× ðuð1;3Þ0 Þ2 þ ðuð1;2Þ0 Þ2ðuð2;3Þ0 Þ2

× 4ðuð1;3Þ0 Þ2ðuð2;3Þ0 Þ2 − 6uð1;2Þ0 uð2;3Þ0 uð1;3Þ0 �: ð3:49Þ
And the next computation is quite similar as done
in [19]. For example, using u0 ¼ 1

2
ðTr½ðU1Þ†U2�Þ and

ða1Þ2 þ ða2Þ2 þ ða3Þ2 þ ða4Þ2 ¼ 1, thus for ðuð1;2Þ0 Þ2 we
have

uði;jÞ0 ¼ 1

2
Tr½UðiÞ†UðjÞ� ¼ ~aðiÞ · ~aðjÞ; ð3:50Þ

where ~aðiÞ is unit 4-component vector, pointing one phase
for spin or isospin on S3 by the definition of U. Therefore,
we can obtain

Z
dΩð1Þ

3 ðuð1;2Þ0 Þ2

¼
Z

dΩð1Þ
3 cos2θ ¼

Z
cos2θsin2θ sin θ̄dθdθ̄dϕ ¼ π2

2
;

Z
dΩð1Þ

3 dΩð2Þ
3 dΩð3Þ

3 uð1;2Þ0 uð2;3Þ0 uð1;3Þ0 ¼ π6

2
; ð3:51Þ

where θ is the angle between ~aðiÞ and ~aðjÞ. Finally we
obtain

hVA0

3−bodyinnnðspin-averagedÞ ¼ 0: ð3:52Þ

Therefore we also obtain a vanished three-body potential
from the A0 terms with the spin-averaged neutron wave
function.
Similarly, we can obtain the expression of the expect-

ation for Vmass
3−body as

6The wave function may be deformed if we consider the
baryons or nucleon with nonzero QCD vacuum. Thus here we use
(2.9) as an ansatz to study the nuclear force with nonzero QCD
vacuum.
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hVmass
3−bodyinnnðspin-averagedÞ ¼

λNcM3
KK

2234π

�
1−

1

2
ζ

�
ð1þ ζÞ3=2 ρ6

jrj6
1

ð2π2Þ3
Z

dΩð1Þ
3 dΩð2Þ

3 dΩð3Þ
3 fTrðrT12ÞTr½rðT23T13 − T13T23Þ�

− 2TrðrT31ÞTr½rðT32T12 − T12T32Þ�− 2TrðrT32ÞTr½rðT31T21 − T21T31Þ�g

¼ −
λNcM3

KK

2233π

�
1−

1

2
ζ

�
ð1þ ζÞ3=2 ρ6

jrj6
1

ð2π2Þ3
Z

dΩð1Þ
3 dΩð2Þ

3 dΩð3Þ
3 TrðrT21ÞTr½rðT23T13 − T13T23Þ�:

ð3:53Þ

The integration of (3.53) could be performed by using the
polar coordinates and we have used the symmetry for
exchanging of the integration variables. As a result, we
have the following integration

1

ð2π2Þ3
Z

dΩð1Þ
3 dΩð2Þ

3 dΩð3Þ
3 TrðrT21ÞTr½rðT23T13 − T13T23Þ�

¼ −8j~rj2: ð3:54Þ

Therefore we obtain the expectation from (3.53) which is

hVmass
3−bodyinnnðspin-averagedÞ ¼

2−1=2315=2π2Nc

λ2M3
KKð1 − 1

2
ζÞ1=2ð1þ ζÞ3j~rj4 ;

ð3:55Þ

where the three-dimensional vector ~r specifies the inter-
baryon distance in our space. The four-dimensional dis-
tance could be identified as three-dimensional distance
since we can choose the classical value for the four-
dimensional component r4 of rM ¼ ð~r; r4Þ vanished at
leading order in 1=N expansion. And in (3.55), we have
substituted the classical value of ρ, which is ρ ¼
2−1=437=4

ffiffiffi
π

p
λ−1=3M−1

KKð1 − 1
2
ζÞ−1=4ð1þ ζÞ−3=4 in [8], for

the two-flavor case also for the leading order in the 1=Nc
expansion. So we obtain the total three-body potential in
our D0-D4/D8 system as,

hV3−bodyinnnðspin-averagedÞ
¼ hVA0

3−bodyinnnðspin-averagedÞ þ hVmass
3−bodyinnnðspin-averagedÞ

¼ 2−1=2315=2π2Nc

λ2M3
KKð1 − 1

2
ζÞ1=2ð1þ ζÞ3j~rj4 : ð3:56Þ

This three-body force is obtained by considering effect of
nontrivial QCD vacuum in the D0-D4/D8 system and also
with averaged spin. The three-body force is suppressed if
compared to the two-body potential (2.10) for large λ. As in
[20], our three-body potential is also a generic hierarchy
between N þ 1- to N-body potential. MKK is the energy
scale for the dual QCD-like field theory, and our calcu-
lations are as well valid at short distances. However if we
focus on the factor ð1 − 1

2
ζÞ1=2, it implies that the three-

body potential is totally complex with ζ > 2, which is
nothing but our constraint for stable baryonic state in this
system. We will discuss it in detail in the final section.
(2) proton-proton-neutron (or proton-neutron-proton).
In this subsection, let us evaluate the three-body potential

with the state of proton-proton-neutron (which is also a
same calculation for the case of proton-neutron-proton). We
will consider the three-nucleon state with a total spin 1=2
and a total isospin 1=2. We can use the following state to
represent a proton-proton-neutron state with the third
component of the total isospin þ1=2,

1ffiffiffi
6

p ½jp ↑>1 jp ↓>2 jn ↓>3 −jp ↓>1 jp ↑>2 jn ↑>3 −jp ↑>1 n ↑>2 jp ↓>3

þ jp ↓>1 jn ↑>2 jp ↑>3 −jn ↑>1 jp ↓>2 jp ↑>3 þjn ↑>1 jp ↑>2 jp ↓>3�: ð3:57Þ
The next calculations are straightforward and similar to what we have done for three-neutrons with averaged spins. With the
following integrals Z

dΩð1Þ
3 dΩð2Þ

3 dΩð3Þ
3 jψð~a1; ~a2; ~a3Þj2ðuð1;2Þ0 Þ2ðuð1;3Þ0 Þ2 ¼ 1

36
;

Z
dΩð1Þ

3 dΩð2Þ
3 dΩð3Þ

3 jψð~a1; ~a2; ~a3Þj2uð1;2Þ0 uð2;3Þ0 uð1;3Þ0 ¼ 1

36
;

Z
dΩð1Þ

3 dΩð2Þ
3 dΩð3Þ

3 jψð~a1; ~a2; ~a3Þj2TrðrT21ÞTr½rðT23T13 − T13T23Þ� ¼ −
320

27
j~rj2: ð3:58Þ

With these formulas, we have

hVA0

3−bodyippn ¼ 0; hVmass
3−bodyippn ¼

25=239=25π2Nc

λ2M3
KKð1 − 1

2
ζÞ1=2ð1þ ζÞ3j~rj4 : ð3:59Þ
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Therefore we have the total three-body potential for proton-
proton-neutron which is

hV3−bodyippn ¼ hVA0

3−bodyippn þ hVmass
3−bodyippn

¼ 25=239=25π2Nc

λ2M3
KKð1 − 1

2
ζÞ1=2ð1þ ζÞ3j~rj4 : ð3:60Þ

This three-body potential is positive which means there is a
repulsive three-body force at short distances. The compu-
tation for three other wave functions ðþ1=2;−1=2Þ,
ð−1=2;þ1=2Þ, and ð−1=2;−1=2Þ of the third component
of the spin and isospin, is the same as the current
computation for ðþ1=2;þ1=2Þ. And the result turns out
to be the same as (3.60) since our matrix model (2.1) is
SOð3Þ invariance for rotational symmetry and SUð2Þ
invariance for isospin symmetry.

IV. SUMMARY AND DISCUSSION

We proposed a matrix model with UðkÞ gauge symmetry
in [8] for k-body baryon systems with nontrivial QCD
vacuum. And in this paper, we use this matrix model to
compute the three-body force for baryons at short dis-
tances. We find the result includes some effects, maybe
such as in glueball condensation and CME, from the
nontrivial QCD vacuum. We derived the matrix model
by using the standard technique from gauge/string duality
(also the AdS=CFT correspondence), thus our matrix
model is not a phenomenological model. Precisely,
the matrix model is a low-energy effective theory for the
baryon vertex, which is denoted as a D4’-brane, in the D0-
D4/D8 holographic system of large Nc QCD with non-
trivial vacuum. Consequently, we can compute the k-body
baryon potentials for arbitrary number of k with this
framework by considering the nontrivial QCD vacuum.
Our computation is parallel to [19] thus is straightforward.

We took k ¼ 3 for the case of three baryons, i.e., the Uð3Þ
matrix model and evaluate the Hamiltonian with a quantum
three-body state which is a tensor product of single-baryon
states. Then the potential intrinsic to the three-body case is
obtained after subtracting the one- and two-body contribu-
tions. However our calculations are valid only at short
distances, i.e., 1=

ffiffiffi
λ

p
MKK ≪ jrj ≪ 1=MKK where λ is the ’t

Hooft coupling constant.7 As two typical and explicit
examples, we choose (1) three-neutrons with averaged spins
and (2) proton-proton-neutron (or proton-neutron-proton),
and in both cases the baryons or nucleons are aligned on a
line with equal spacings. We obtain the resultant three-body
potentials for baryons in (3.56) and (3.60), both of which are
positive (i.e., repulsive) and modified by the appearance of
the smeared D0-branes (i.e., the nontrivial QCD vacuum).

And as a quick check, all our results would return to [19] if
setting ζ ¼ 0, i.e., no smeared D0-branes.
Furthermore, we would like to give some more com-

ments to our results and discuss the importance of them.
According to the form of the wave function (2.9), our
results (3.56) hold also for the case of three-protons since
the matrix action is SUð2Þ invariance for isospin. So the
results (3.56) hold if all three baryons or nucleons have the
same flavor. Therefore, the three-body potential for proton-
neutron-neutron takes the same form as (3.56), which
implies the additional repulsive three-body force may exist
in addition to two-body force and be affected by some
effects from nontrivial QCD vacuum at short distances.
Besides, the three-body potentials obtained in (3.56) and
(3.60) are suppressed if compared with the two-body
potential (2.10). At short distances, i.e. 1=

ffiffiffi
λ

p
MKK ≪ jrj ≪

1=MKK , the suppression factor 1=λðrMKKÞ2 is small which
makes our computation valid.
On the other hand, as a difference from the original Sakai-

Sugimotomodel, we find the resultant three-body potentials
(3.56) and (3.60) are totally complex if ζ > 2. It corresponds
to the constraint for stable baryonic states in the D0-D4/D8
holographic system discussed in [8,11] for the two-body
case. During our computation, the three-body potentials
(3.56) and (3.60) actually come from the mass term in the
matrix action (2.1) since the contributions from other terms
vanish. From the matrix action (2.1), it is obvious to see that
the matrix model describes an unstable system if ζ > 2 (i.e.,
a quantummechanical systemwith complexmass term), that
is the reason that the computation does not depend on the
number density of the smeared D0-branes in the (3.14) from
“classical treatment,” while our results (3.56) and (3.60) are
also consistentwith these. Therefore according to our results
in [8] and the three-body force (3.56) (3.60), it implies that
the constraint for stable baryonic state may hold in the
methods for N-body case. Besides, if comparing our results
(3.56) and (3.60) with the two-body force (2.10) and (2.11),
we find the three-body force would be going to infinity as
ζ → 2. This implies the three-body force would become
dominant if the nontrivial QCD vacuum is too important to
be neglected, which is also different from [19]. At ζ ¼ 2, the
total effect from the θ angle (or D0-branes) on the inter-
actions amongNc quarks becomemuch larger than the effect
on one pair of quark and antiquark. Since our discussion is at
the large Nc limit, i.e., a baryon may consist of a large
number of quarks, thus the interactions among such a large
number of quarks could destabilize the baryons [11]. This is
why the baryon becomes unstable at ζ ¼ 2, however the
meson may remain stable since a meson is formed by a
quark-antiquark pair only. Thus it may imply a phase
transition with the parameter at ζ ¼ 2 and we would like
to take this for the future study.
With ζ < 2, these three-body forces would also become

stronger if the distances get shorter. As a result, three-body
forces give additional repulsive potential at short distances
if the neutrons are highly dense. As mentioned, the effects

7If we fit pion decay constant with λ, then MKK would be
Oð1 − 0.5Þ GeV when it fit with the mass of baryon or meson
[16,17,24].
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from nontrivial QCD vacuum, for example in the glueball
condensation or CME, may also play the important roles in
such high-density matter. Physically, the mass spectrum of
mesons is modified by considering the effects from non-
trivial QCD vacuum with the D0-D4/D8 holographic
system as discussed in [9], so the potential of the interaction
among baryons would also be modified since the nucleons
interact with each other by exchanging such mesons, which
is also consistent with [8,11]. In the viewpoint of dual field
theory, adding smeared D0-branes equals adding nonzero
θTrðFμν

~FμνÞ term to the action. With this term, the
propagator derived in the dual quantum field theory is
modified, thus yielding the modified three-body potential.
Additionally, we also find the three-body forces for proton-
proton-neutron and proton-neutron-neutron are all positive
i.e. repulsive, thus our result seems also responsible for
Helium and Triton if the effects from the nontrivial vacuum
are considered.
However, our results are as examples limited to three

baryons on a line and only valid at short distances since the

calculations for three baryons with generic positions are too
messy to get the physical significance. So our result is not
conclusive enough for those interests listed above but
suggestive. Therefore, there is still a long way from the
holographic model with an underlying theory toward real-
world nuclear matters.
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