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Aharonov-Bohm phase in high density quark matter
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Stable non-Abelian vortices, which are color magnetic flux tubes as well as superfluid vortices, are
present in the color-flavor locked phase of dense quark matter with diquark condensations. We calculate the
Aharanov-Bohm phases of charged particles, that is, electrons, muons, and color-flavor locked mesons

made of tetraquarks around a non-Abelian vortex.
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I. INTRODUCTION

The concept of the superfluidity of nuclear matter inside
neutron stars was suggested a long time ago by Migdal [1].
The mechanism of the Cooper pair formation inside a
superconductor due to the electron-phonon interaction can
be extended to the nuclear matter inside a neutron star at
sufficiently high density and low temperature, leading to
superfluidity and/or superconductivity [2—4]. Several astro-
physical observations indicate that this is likely the case.
Pulsar glitches [5], that is, the sudden speedup of the
rotation frequency of the star, were proposed to be
explained by a sudden unpinning of a large number of
superfluid vortices in the inner crust of the star [6]; the
observed long-time relaxation after pulsar glitches can be
explained by two components of normal and superfluid
neutrons [4]; and the cooling process of a neutron star was
proposed to be explained by the formation of supercon-
ducting or superfluid gaps [7,8].

At much higher density, quarks are expected to form
Cooper pairs to show color superconductivity [9,10]; see
Refs. [11,12] as a review. The two-flavor superconducting
(2SC) phase in which up and down quarks participate in
condensations are expected to be realized at intermediate
density, while the color-flavor locked (CFL) phase in which
up, down, and strange quarks participate in condensations is
expected to be realized at asymptotically high density. The
Ginzburg-Landau free energy in the CFL phase was derived
in Refs. [13—15]. While magnetic flux tubes are created in
type-II metallic superconductor in the presence of magnetic
field, color magnetic flux tubes are present stably in the CFL
phase [16-19]. These flux tubes are superfluid vortices
created by a rapid rotation of a superconductor; see Ref. [20]
as areview. This color magnetic flux is a non-Abelian vortex
carrying collective coordinates parametrizing Nambu-
Goldstone modes CP? = SU(3)_/[SU(2) x U(1)] local-
ized around the vortex core that are gapless excitations
propagating along the vortex [21,22]. Such vortices will
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form a vortex lattice in rotating color superconductors,
showing color (anti)ferromagnetism [23].

The Aharanov-Bohm (AB) effect [24] is a quantum
mechanical effect that occurs when a charged particle
scatters from a solenoid with nonzero magnetic flux inside.
Outside the solenoid, the field strength is zero everywhere,
and the wave function of the particle vanishes at the center
of the solenoid. Nevertheless, when a particle goes around
the solenoid, it picks up the phase known as the AB phase,
leading to a nontrivial differential scattering cross section.
The AB effect was experimentally confirmed [25] and has
been studied in various nanomaterials in condensed matter
physics. Now, the investigation is not only limited to
materials but is also explored in various areas of funda-
mental physics such as cosmology, particle physics, and
field theory. Vortices or cosmic strings exhibiting the AB
effect, namely, “AB cosmic strings,” were studied exten-
sively [26]. In particular, AB strings feel friction as a
consequence of the AB effect [27,28]. AB cosmic strings
may give a possible observational signature of string theory
[29,30]. The AB effect around non-Abelian vortices in
supersymmetric gauge theory was found in Ref. [31], and it
has been extended [32,33] to the non-Abelian AB phase
[34]. In the context of dense quark matter, the AB effect
caused by a color magnetic flux tube was discussed before
in the 2SC phase [35], in which the authors discussed
scatterings of electrons, muons, and ungapped quarks via
the AB effect. The friction of vortices and effects on the
transport of particles were also discussed. However, color
magnetic flux tubes in the 2SC phase are unstable to decay.

In this paper, we investigate the AB effect of a color
magnetic flux tube (non-Abelian vortex) stably existing in
the CFL phase of dense quark matter. In the presence of the
electromagnetic interaction, a U(1),,, subgroup of the
flavor symmetry SU(3)p is gauged. Consequently, an
effective potential term on the CP? space is induced,
resulting in stable and metastable vortices with color
magnetic fluxes correspond to generators commuting with
U(1),,, [36]. The minimum energy configuration is the one
found by Balachandran, Digal and Matsuura (BDM) [16]
and the metastable vortices corresponding to the CP!
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subspace of which the isometry SU(2) commutes with
U(1),,, (hereafter, we call them CP! vortices). We calculate
the AB phases of charged particles, that is, electrons,
muons, and CFL mesons made of four quarks, around a
stable BDM vortex or a metastable CP' vortex in the CFL
phase. Since the nontrivial AB phase generates frictional
force on vortices as denoted above, it can affect the
conductivity of the vortex particle system, and it may
create anisotropy in the density of particles in the bulk,
which remains as a future problem.

The rest of this paper is organized as follows. In Sec. II, we
first give a brief introduction of the Ginzburg-Landau (GL)
free energy in the CFL phase and non-Abelian vortices in the
absence of the electromagnetic interaction. Then, in Sec. III,
we introduce the electromagnetic interaction by gauging a
U(1),, subgroup of the SU(3)r flavor symmetry and
calculate the AB phases for gapless excitation of the CFL
phase that are scattered by non-Abelian vortices. We make a
comment on the effect of the strange quark mass, in the
presence of which the AB phase remains nontrivial.
Section IV is devoted to a summary and discussion.

II. GINZBURG-LANDAU FREE ENERGY AND
NON-ABELIAN VORTICES IN THE CFL PHASE

In this section, we first introduce the GL description of
the CFL phase and study non-Abelian vortices based on the
GL description.

A. Ginzburg-Landau free energy

The GL description for the order parameter is appro-
priate at temperatures close to the critical temperature T,
for the CFL phase transition. Here, the GL order parameters
are the diquark condensates @ jr defined by

ABC ,, B C
quchc s

(I)Rfl\ ~ eabceAchRgchcc’ (1)

A
CI)LLZ ~ €gpc€

where g /g stand for left- and right-handed quarks with a,
b, c¢ as fundamental color [SU(3)-] and A, B, C as
fundamental flavor [SU(3); ] indices. The order param-
eters @y g transform as a bifundamental representation of
color and flavor groups. It was found that positive parity
states are favored compared to the one with negative parity
as a ground state. A convenient choice of order parameters
for symmetry breaking would be taken as ; = —Pp = P.
Then, the order parameter ® can be regarded as a
bifundamental representation of the symmetry group
U(1)g x SU(3)c x SU(3)g. Here, U(1)g is the global
Abelian transformation of baryon number conservation,
and the flavor group SU(3)p is the diagonal subgroup
SU(3) ;g of the total flavor group SU(3); x SU(3)g. The
GL free energy can be written in terms of the order
parameter ¢ as [13-15]
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3
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+ 4 [Tr(®7®) )2 + B, Tr[(T D)+, (2
where i, j = 1, 2, 3 are indices for space coordinates, 43 is a
magnetic permeability, and &3 is a dielectric constant for
gluons.

The GL parameters a=4N(u)logl, i =p)=

SZE(T?)Q N(u)=p and K3 = 12751(22)2 N(p) are obtained from

the weak-coupling calculations, which are valid at a
sufficiently high density [13,14]. Here, x4 stands for the
quark chemical potential, and we also have taken
Ao =€y = 43 = €3 = 1. We have introduced the density

of state N(u) at the Fermi surface N(u) = £

27%°

B. Non-Abelian vortices

Let us first briefly review a few salient features of the
non-Abelian vortices in the CFL phase in the absence of the
electromagnetic interaction.

The covariant derivative and the field strength of gluons
are defined by D,® = 0,0 - igAjT*®, F,, =0J,A,—
d,A, —igs[A,.A,]. Here, u and v are indices for spacetime
coordinates, and g, stands for the SU(3) coupling con-
stant. The transformation properties of the field ¢ can be
written as

P = €U PU!,
Uc € SU3),.

e e U(1)g,
Uy € SUQ3),. (3)

There is a redundancy in the action of the discrete
symmetries, and the actual symmetry group is given by

SU(3)e x SUB3)E x U(1)g

G:
Z3XZ3

(4)

In the ground state (®) = Acp 13 with Acg, =, /— g the

full symmetry group G is spontaneously broken down to

H= LJ(ZC”. (5)

The order parameter space is G/H = %ﬁum =U(@3). It
can be easily noticed that z;(G/H) = Z. This nonzero
fundamental group implies the existing vortices. Since the
broken U(1) is a global symmetry, the vortices are global
vortices or superfluid vortices [16]. The structure of these
vortices can be understood by the orientation and winding
of the configuration of the condensed scalar field ® far
away from the vortex core perpendicular to the vortex
direction. We place a vortex along the z direction.
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At the large distance R from the vortex core, the
condensation can have a configuration like

e? 0 0
DR, O)=Acp| O 1 0
0 0 1
1 00
= AcpLexpi g 0 1 0
0 0 1
2 0 0
+i-]10 -1 0 ) (6)
0 0 -1
This can be rewritten as
B(R,0) = &' J ¥ (R, 0), (7)

with A proportional to diag(2, -1, —1). From Eq. (7), the
minimum energy condition yields

2 ’

Di(I) — —l
3r

r— R (8)

at a large distance. From this boundary construction, one
can write down the ansatz as

elf(r) 0 0
O(r,0) = AcpL 0 g(r) 0 |.

0 0 g(r)
1 2 0 0
A =——"in—nilo -1 0 | )
2 T 0 -1

The form of the profiles f(r) and A(r) can be calculated
numerically with the boundary condition

f(0)=0,  9,9(r)ly =0,
h(0) =1,  f(e0) = g(o0) = Acpr.
h(co) = 0. (10)

The vortex configuration in Eq. (9) breaks the unbroken
symmetry SU(3)c g in the ground state into a subgroup
SU(2) x U(1) inside the vortex core. This breaking results
in Nambu-Goldstone modes parametrizing a coset space,

SU(3)

su@) <o)~ (1)

The low-energy excitation and interaction of these zero
modes can be calculated by the effective CP? sigma model
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action [21]. Generic solutions on the CP? space can be
found by just applying a global transformation by a
reducing matrix,

1 ( 1 -B )
CVX\B Xxivi)
X =1+ BB,
Y =15 + BB, (12)
where B = {B, B, } are inhomogeneous coordinates of the

CP?. The vortex solution with a generic orientation and in
the regular gauge takes the form

ef(r) 0 0
®(r,0) = Acp U 0 g(r) 0 |U,
0 0 g(r)
2 0 0
€l'ij
A(r)=-Ll-nnufo -1 o |U". (13)
3957 0 0 -1

III. AHARONOV-BOHM PHASES AROUND
A NON-ABELIAN VORTEX

As mentioned in Introduction, the AB effect [24] is a
quantum mechanical effect that occurs when a charged
particle scatters from a solenoid with nonzero magnetic flux
inside. It leads to the differential scattering cross section

do  sin’(ngp) q
— = = — X Flux. 14
a9 2aksir(®) VT2 ™ (14)

Here, g is the electric charge of a scattering particle, k is the
momentum perpendicular to the string, and 9 is the scattering
angle. The scattering cross section depends on the flux of the
solenoid in a nontrivial way. In the case of a vortex carrying a
nonquantized flux, the same thing occurs [26]. Although
particles can get inside a vortex core, we have the same
formula as far as when we consider paths far from the
vortex core.

Non-Abelian vortices similar to those in the CFL phase
in dense QCD were found in the CFL phase in super-
symmetric gauge theories [37-39]; see Refs. [40-43] as a
review. When one gauges a U(1) subgroup of the flavor
group, non-Abelian vortices become AB strings [31]. This
was extended to non-Abelian gauging [32,33]. As for a
non-Abelian vortex in the CFL phase, the AB effect appears
once we introduce the electromagnetic interaction [U(1),,,]
as a subgroup of the flavor symmetry group, as in the case
of supersymmetric theories. So, it would be interesting to
determine the value of ¢ for the scattering of particles that
are the relevant low-energy excitation in the CFL phase. In
the CFL phase, electrons, muons, and Nambu-Goldstone
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bosons, e.g., the CFL mesons, can be considered as
fundamental excitations in the bulk.' Here, we calculate
the AB phases of electrons, muons, and the CFL mesons
present in the bulk.

A. Electromagnetic interactions of non-Abelian vortices

Here, we introduce U(1),,, generator as a part of the
flavour symmetry SU(3)g:

[r 00
0=z|0 -1 o [ (15)
0 0 -1

Massless symmetry is realized by a linear combination of
color and the U(1),,, subgroup. To see exactly which gauge
field remains unbroken, let us look at the covariant
derivative on the order parameter:

D,® = 9,P — ig,A,® — ieATDQ. (16)

When the order parameter is in a diagonal form ®g;,,, the
covariant derivative can be written as

qu)diag = 8ﬂq)diag - i(gsAzHa - eA;mQ)q)diag' (17)

Here, we have taken only the color diagonal gauge fields,

and H* = {T8, T3} are generators of the Cartan subalgebra

of the SU(3) Lie algebra. The massive and massless

diagonal gauge fields in the bulk can be expressed as

(see, e.g., Ref. [11])

AL =T8¢ T pem (18
Im

aM = I ys T gem
Im Im Im

"
respectively, where 7 = % and g3, = g2 + n’e*. All fields
living in the bulk interact with A9 effectively as an effective
electromagnetic interaction U(1)*™ generated by A4.

The original electromagnetic gauge potential can be
written as

Ao = v g0 1€ ym (19)

9m 9m

So, the effective electromagnetic coupling for a particle
with charge g becomes

q9s

NCAE

Construction of vortices with electromagnetic interaction
can be understood from the winding of scalar field and the
covariant derivative defined above.

(20)

'"The AB effect can be realized if there exist charged asymp-
totic states in the bulk of the condensate. Color charged
quasiparticle quarks cannot exist in the bulk freely because of
condensation. The quark condensate screens color charges in
the bulk.
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The existence of U(1),, breaks the global SU(3)c, ¢
invariance to SU(2) x U(1), and consequently the CP?
Nambu-Goldstone zero modes become massive, leaving
the BDM vortices and CP; vortices as (meta)stable
configurations.

1. BDM vortices

In this case, the scalar field configuration at large
distance R can be described as

e’ 0 0
@(R, 9) = ACFL 0 1 O (21)
0 0 1

We can rewrite this in terms of a global U(1)g rotation
added with rotation in color and electromagnetic action as
(I)(R, 9) — ei'g" fA»dleigq)(R, O)e—ie fAemQ-dl. (22)

From this boundary condition, one can write down the
ansatz as

eof(ry 0 0
(r,0) = Acp 0 g(r) 0 )
0 0 g(r
2 0 0
AM(ATS = =1 —p(r]| 0 =1 0 (23)
Sour 0 0 -1

The form of the profiles f(r) and h(r) can be calculated
numerically from the equations of motion with boundary
condition in Eq. (10) [16].

2. CP! vortices

A CP! sector at |B| — oo solutions of Eq. (13) remains
gapless [36] even in the presence of the electromagnetic
interaction. The vortex configurations can be written as

g(r) 0 0
O(r,0) =Acg| 0 €9f(r) 0 |,
0 0 g(r)
2 0 0
1 €ijx,
A,M(r)T8:6— 2 -h(r]l0 -1 0 [,
r
M 0 0 -1
| 00 0
€,"x.
AN =——"2L1-h(r]| 0 1 0 (24)
29, r
0 0 -1

It is clear from Eq. (24) that the existence of this vortex
spontaneously breaks the global U(2) invariance acting on
the lower-right 2 by 2 block, and this breaking generates
CP' Nambu-Goldstone modes. It is important to note that
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1

the configuration of A}YI in Eq. (24) has a factor —3

compared with that in Eq. (23).

B. Aharonov-Bohm phases of electrons and muons

The AB scattering of electrons or muons in the CFL
phase can be understood by writing the Dirac equation in
the vortex background,

(ﬂ - iEAem + iMe/ﬂe)ll/e/ﬂe = 0, (25)

where vy, are the Dirac fields for electrons and muons

with masses M., . Using Eq. (19), we can write

2
.€4g; .ne .
<8_lﬂAZ+lEA}¥+lM€/ﬂe>we/#g =0. (26)

The second term is just the coulomb term with effective
charge %, but for the AB scattering, the last term would be

important. This can be understood in another way. The AB
phase for electrons or muons can be defined as

e
Pefue = 52 j{ AT - dl. (27)

So, according to Eq. (19), we may calculate the above
integral as

2
nhe % M
= AM - dl. 2
Do, G dl (28)

Here, we have used the fact that

A?-dl = 0. (29)
y

A™ can be determined for the BDM case and for the CP!
case from Egs. (23) and (24). So, the AB phase around a
BDM vortex can be calculated as

2 2 2 22
g =T ]{AM-dl_—”e I (30)
¢« 2mgm 2rgm gm 395 +2e

while the AB phase (pg/}:e around a CP' vortex can be
determined as

2 2 2
crt e j[AM-dl_—”e NP A
e 2mgm 2gm 29m 3g5 +2e

(31)

C. Aharonov-Bohm phases of CFL mesons

At high density, the chiral symmetry breaking generates
Nambu-Goldstone bosons, known as the CFL mesons. The
CFL mesons can be expressed using a composite operator
of the diquark field as

PHYSICAL REVIEW D 93, 065050 (2016)
T = 0Tk, Dhp. (32)

Here, a and A and B are the color and flavor indices,
respectively. In terms of quarks, the CFL mesons can be
expressed as [44]

B ~ PG Gy P ara ar) (33)

where (...) denotes the antisymmetrization of indices. The
electromagnetic U(1),,, group acts on this operator as

Tep, = €98 cpL e 0, (34)

where Q is defined by Eq. (15). So, the charge can be
measured by computing the simple commutator [Q, ¢ |-
As we know, Q is basically the T® generator of SU(3), and
2cpr, could also be expanded in SU(3) generators. There are
only four components of Xy, that do not commute with Q,
which can be written as

0 21(+3FL 22(erFL
Y O o . (35)
e 0 0

So, the charges of Zcr mesons can be determined as
q = {0, te}. (36)
In terms of quarks, the charged CFL mesons are

I+ 512 T = 52
X gL = X0 ~AUSLSRUR, X opp = 2R ~ ULSLSRAR

220 = i, ~ i dy dg sg.
(37)

2+ _v13 <4
2R = ZCFLNSLdeRuR’

The AB phases g, for charged CFL mesons X*/ can be
expressed by using Egs. (30) and (31). The AB phases for
CP' vortices (¢Sh ) and BDM vortices (pBRM) can be
calculated as

2¢2 &2

BDM _ cp! ‘
32 + 2¢* 397 + 2¢?

PcrL (38)

Pcp, = F

D. Strange quark mass

The importance of CP' vortices can be understood if we
study the vortices at an intermediate density regime, which is
more relevant in the core of neutron star. In this case, the mass
of the strange quark () becomes admissible and cannot be
neglected. The potential in Eq. (2) has to be changed by terms
like Tr[®"{(a + %)1 + €T3} ®], where € o m?. This poten-
tial would generate instabilities in the effective theory of non-
Abelian vortices. The general CP? vortices would decay
radically with lifetime of order 10721 sec, as estimated in
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Ref. [22] for the case in which u ~ 500 MeV, A ~ 10 MeV,
and mg ~ 150 MeV. Only one type of CP! vortex corre-
sponding to a single point (0,1,0) in full CP? moduli space
would survive. So, only one of CP! vortices becomes a stable
vortex in the presence of the strange quark mass [22] as
mentioned above. Therefore, in such a situation, all vortices

have the AB phase ¢/, '

IV. SUMMARY AND DISCUSSION

We have calculated the phases of the AB scattering of the
gapless fundamental excitations in the CFL phase of dense
quark matter and have found nontrivial AB phases due to
the scattering of electrons, muons, and CFL mesons with
vortices. The nontrivial AB phases arise because the flux
due to the U(1),,, gauge field shares a fraction of the total
magnetic flux present inside vortices and the existence of
particles with electric charges present in the bulk of the
dense QCD medium as gapless excitations. In the absence
of the electromagnetism, non-Abelian vortices are degen-
erate and can be rotated in the CP? moduli space, resulting in
the effective action written as the CP? sigma model. The
presence of U(1),, as a subgroup of flavor breaks the
SU(3) global invariance and generates a potential in the CP?
model. In this case, only stable vortices are those for which
the color gauge field direction and U(1),,, directions are
parallel. We have found a mismatch in the AB phases
between scattering with BDM vortices (corresponding to the
B = 0 point in the CP?> moduli space) and CP! vortices
(corresponding to the B = co submanifold on the CP?
moduli space). This mismatch arises because of the fact
that the orientation of color flux to the CP! direction changes
the fraction of the flux shared by color magnetic field. So, the
fraction of electromagnetic flux changes automatically.

The AB scattering off non-Abelian vortices present in the
CFL phase is important property of the particles present in
the bulk of the CFL phase medium, as was discussed for
unstable vortices in the 2SC phase [35]. We will discuss

PHYSICAL REVIEW D 93, 065050 (2016)

transportation properties of particles, the friction of vortices
in the CFL phase, and possible implications on physics of
neutron stars.

In this paper, we have discussed the AB scattering of a
single vortex. In the CFL phase under rotation, a vortex
lattice will be formed. The interaction of the electromag-
netic field with a vortex lattice was discussed in Ref. [45],
showing that the lattice behaves as a polarizer. The AB
scattering of charged particles inside a vortex lattice should
be an interesting future direction.

We have discussed the AB scattering of charged
particles due to the electromagnetic field in the presence
of a non-Abelian vortex. Non-Abelian vortices are color
magnetic fluxes having non-Abelian fluxes, too. Since
gluons are massive, the AB phase is usually thought to
be absent, but they may give a global analog of the AB
phase. Colored particles in the nontrivial representation of
the color SU(3)- group may have such a phase. The
interaction of quasiquarks with a non-Abelian vortex
[46-48] and the interaction of gluons with a vortex [49]
were studied before. The presence or absence of the (global)
AB phases of these colored particles should be clarified.
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