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Stable non-Abelian vortices, which are color magnetic flux tubes as well as superfluid vortices, are
present in the color-flavor locked phase of dense quark matter with diquark condensations. We calculate the
Aharanov-Bohm phases of charged particles, that is, electrons, muons, and color-flavor locked mesons
made of tetraquarks around a non-Abelian vortex.
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I. INTRODUCTION

The concept of the superfluidity of nuclear matter inside
neutron stars was suggested a long time ago by Migdal [1].
The mechanism of the Cooper pair formation inside a
superconductor due to the electron-phonon interaction can
be extended to the nuclear matter inside a neutron star at
sufficiently high density and low temperature, leading to
superfluidity and/or superconductivity [2–4]. Several astro-
physical observations indicate that this is likely the case.
Pulsar glitches [5], that is, the sudden speedup of the
rotation frequency of the star, were proposed to be
explained by a sudden unpinning of a large number of
superfluid vortices in the inner crust of the star [6]; the
observed long-time relaxation after pulsar glitches can be
explained by two components of normal and superfluid
neutrons [4]; and the cooling process of a neutron star was
proposed to be explained by the formation of supercon-
ducting or superfluid gaps [7,8].
At much higher density, quarks are expected to form

Cooper pairs to show color superconductivity [9,10]; see
Refs. [11,12] as a review. The two-flavor superconducting
(2SC) phase in which up and down quarks participate in
condensations are expected to be realized at intermediate
density, while the color-flavor locked (CFL) phase in which
up, down, and strange quarks participate in condensations is
expected to be realized at asymptotically high density. The
Ginzburg-Landau free energy in the CFL phase was derived
in Refs. [13–15]. While magnetic flux tubes are created in
type-II metallic superconductor in the presence of magnetic
field, color magnetic flux tubes are present stably in the CFL
phase [16–19]. These flux tubes are superfluid vortices
created by a rapid rotation of a superconductor; see Ref. [20]
as a review. This color magnetic flux is a non-Abelianvortex
carrying collective coordinates parametrizing Nambu-
Goldstone modes CP2 ≃ SUð3ÞCþF=½SUð2Þ × Uð1Þ� local-
ized around the vortex core that are gapless excitations
propagating along the vortex [21,22]. Such vortices will

form a vortex lattice in rotating color superconductors,
showing color (anti)ferromagnetism [23].
The Aharanov-Bohm (AB) effect [24] is a quantum

mechanical effect that occurs when a charged particle
scatters from a solenoid with nonzero magnetic flux inside.
Outside the solenoid, the field strength is zero everywhere,
and the wave function of the particle vanishes at the center
of the solenoid. Nevertheless, when a particle goes around
the solenoid, it picks up the phase known as the AB phase,
leading to a nontrivial differential scattering cross section.
The AB effect was experimentally confirmed [25] and has
been studied in various nanomaterials in condensed matter
physics. Now, the investigation is not only limited to
materials but is also explored in various areas of funda-
mental physics such as cosmology, particle physics, and
field theory. Vortices or cosmic strings exhibiting the AB
effect, namely, “AB cosmic strings,” were studied exten-
sively [26]. In particular, AB strings feel friction as a
consequence of the AB effect [27,28]. AB cosmic strings
may give a possible observational signature of string theory
[29,30]. The AB effect around non-Abelian vortices in
supersymmetric gauge theory was found in Ref. [31], and it
has been extended [32,33] to the non-Abelian AB phase
[34]. In the context of dense quark matter, the AB effect
caused by a color magnetic flux tube was discussed before
in the 2SC phase [35], in which the authors discussed
scatterings of electrons, muons, and ungapped quarks via
the AB effect. The friction of vortices and effects on the
transport of particles were also discussed. However, color
magnetic flux tubes in the 2SC phase are unstable to decay.
In this paper, we investigate the AB effect of a color

magnetic flux tube (non-Abelian vortex) stably existing in
the CFL phase of dense quark matter. In the presence of the
electromagnetic interaction, a Uð1Þem subgroup of the
flavor symmetry SUð3ÞF is gauged. Consequently, an
effective potential term on the CP2 space is induced,
resulting in stable and metastable vortices with color
magnetic fluxes correspond to generators commuting with
Uð1Þem [36]. The minimum energy configuration is the one
found by Balachandran, Digal and Matsuura (BDM) [16]
and the metastable vortices corresponding to the CP1
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subspace of which the isometry SU(2) commutes with
Uð1Þem (hereafter, we call themCP1 vortices). We calculate
the AB phases of charged particles, that is, electrons,
muons, and CFL mesons made of four quarks, around a
stable BDM vortex or a metastable CP1 vortex in the CFL
phase. Since the nontrivial AB phase generates frictional
force on vortices as denoted above, it can affect the
conductivity of the vortex particle system, and it may
create anisotropy in the density of particles in the bulk,
which remains as a future problem.
The rest of this paper is organized as follows. In Sec. II, we

first give a brief introduction of the Ginzburg-Landau (GL)
free energy in the CFL phase and non-Abelian vortices in the
absence of the electromagnetic interaction. Then, in Sec. III,
we introduce the electromagnetic interaction by gauging a
Uð1Þem subgroup of the SUð3ÞF flavor symmetry and
calculate the AB phases for gapless excitation of the CFL
phase that are scattered by non-Abelian vortices. We make a
comment on the effect of the strange quark mass, in the
presence of which the AB phase remains nontrivial.
Section IV is devoted to a summary and discussion.

II. GINZBURG-LANDAU FREE ENERGY AND
NON-ABELIAN VORTICES IN THE CFL PHASE

In this section, we first introduce the GL description of
the CFL phase and study non-Abelian vortices based on the
GL description.

A. Ginzburg-Landau free energy

The GL description for the order parameter is appro-
priate at temperatures close to the critical temperature Tc
for the CFL phase transition. Here, the GL order parameters
are the diquark condensates ΦL=R defined by

ΦL
A
a ∼ ϵabcϵ

ABCqLBbCqL
C
c ;

ΦR
A
a ∼ ϵabcϵ

ABCqRBbCqR
C
c ; ð1Þ

where qL=R stand for left- and right-handed quarks with a,
b, c as fundamental color [SUð3ÞC] and A, B, C as
fundamental flavor [SUð3ÞL=R] indices. The order param-
eters ΦL=R transform as a bifundamental representation of
color and flavor groups. It was found that positive parity
states are favored compared to the one with negative parity
as a ground state. A convenient choice of order parameters
for symmetry breaking would be taken as ΦL ¼ −ΦR ≡ Φ.
Then, the order parameter Φ can be regarded as a
bifundamental representation of the symmetry group
Uð1ÞB × SUð3ÞC × SUð3ÞF. Here, Uð1ÞB is the global
Abelian transformation of baryon number conservation,
and the flavor group SUð3ÞF is the diagonal subgroup
SUð3ÞLþR of the total flavor group SUð3ÞL × SUð3ÞR. The
GL free energy can be written in terms of the order
parameter Φ as [13–15]

Ω¼Tr

�
1

4λ3
F2
ijþ

ε3
2
F2
0iþK3DiΦ†DiΦ

�
þαTrðΦ†ΦÞ

þβ1½TrðΦ†ΦÞ�2þβ2Tr½ðΦ†ΦÞ2�þ 3α2

4ðβ1þ3β2Þ
; ð2Þ

where i; j ¼ 1, 2, 3 are indices for space coordinates, λ3 is a
magnetic permeability, and ε3 is a dielectric constant for
gluons.
The GL parameters α ¼ 4NðμÞ log T

Tc
, β1 ¼ β2 ¼

7ζð3Þ
8ðπTcÞ2 NðμÞ≡ β and K3 ¼ 7ζð3Þ

12ðπTcÞ2 NðμÞ are obtained from

the weak-coupling calculations, which are valid at a
sufficiently high density [13,14]. Here, μ stands for the
quark chemical potential, and we also have taken
λ0 ¼ ϵ0 ¼ λ3 ¼ ϵ3 ¼ 1. We have introduced the density

of state NðμÞ at the Fermi surface NðμÞ ¼ μ2

2π2
.

B. Non-Abelian vortices

Let us first briefly review a few salient features of the
non-Abelian vortices in the CFL phase in the absence of the
electromagnetic interaction.
The covariant derivative and the field strength of gluons

are defined by DμΦ ¼ ∂μΦ − igsAa
μTaΦ, Fμν ¼ ∂μAν−∂νAμ − igs½Aμ; Aν�. Here, μ and ν are indices for spacetime

coordinates, and gs stands for the SUð3ÞC coupling con-
stant. The transformation properties of the field Φ can be
written as

Φ0 ¼ eiθBUCΦU−1
F ; eiθB ∈ Uð1ÞB;

UC ∈ SUð3ÞC; UF ∈ SUð3ÞF: ð3Þ

There is a redundancy in the action of the discrete
symmetries, and the actual symmetry group is given by

G ¼ SUð3ÞC × SUð3ÞF × Uð1ÞB
Z3 × Z3

: ð4Þ

In the ground state hΦi ¼ ΔCFL13 with ΔCFL ≡
ffiffiffiffiffiffiffiffi
− α

8β

q
, the

full symmetry group G is spontaneously broken down to

H≃ SUð3ÞCþF

Z3

: ð5Þ

The order parameter space is G=H≃ SUð3Þ×Uð1Þ
Z3

¼ Uð3Þ. It
can be easily noticed that π1ðG=HÞ ¼ Z. This nonzero
fundamental group implies the existing vortices. Since the
broken Uð1ÞB is a global symmetry, the vortices are global
vortices or superfluid vortices [16]. The structure of these
vortices can be understood by the orientation and winding
of the configuration of the condensed scalar field Φ far
away from the vortex core perpendicular to the vortex
direction. We place a vortex along the z direction.
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At the large distance R from the vortex core, the
condensation can have a configuration like

ΦðR; θÞ ¼ ΔCFL

0
B@

eiθ 0 0

0 1 0

0 0 1

1
CA

¼ ΔCFL exp i

2
64θ
3

0
B@

1 0 0

0 1 0

0 0 1

1
CA

þ i
θ

3

0
B@

2 0 0

0 −1 0

0 0 −1

1
CA
3
75: ð6Þ

This can be rewritten as

ΦðR; θÞ ¼ eigs
R

A·dlei
θ
3ΦðR; 0Þ; ð7Þ

with A proportional to diagð2;−1;−1Þ. From Eq. (7), the
minimum energy condition yields

DiΦ ¼ −i
ϵijxj
3r2

Φ; r → R ð8Þ

at a large distance. From this boundary construction, one
can write down the ansatz as

Φðr; θÞ ¼ ΔCFL

0
B@

eiθfðrÞ 0 0

0 gðrÞ 0

0 0 gðrÞ

1
CA;

AiðrÞ ¼ −
1

3gs

ϵijxj
r2

½1 − hðrÞ�

0
B@

2 0 0

0 −1 0

0 0 −1

1
CA: ð9Þ

The form of the profiles fðrÞ and hðrÞ can be calculated
numerically with the boundary condition

fð0Þ ¼ 0; ∂rgðrÞj0 ¼ 0;

hð0Þ ¼ 1; fð∞Þ ¼ gð∞Þ ¼ ΔCFL;

hð∞Þ ¼ 0: ð10Þ
The vortex configuration in Eq. (9) breaks the unbroken

symmetry SUð3ÞCþF in the ground state into a subgroup
SUð2Þ × Uð1Þ inside the vortex core. This breaking results
in Nambu-Goldstone modes parametrizing a coset space,

SUð3Þ
SUð2Þ × Uð1Þ≃ CP2: ð11Þ

The low-energy excitation and interaction of these zero
modes can be calculated by the effective CP2 sigma model

action [21]. Generic solutions on the CP2 space can be
found by just applying a global transformation by a
reducing matrix,

U ¼ 1ffiffiffiffi
X

p
�
1 −B†

B X
1
2Y−1

2

�
;

X ¼ 1þ B†B;

Y ¼ 13 þ BB†; ð12Þ

where B ¼ fB1; B2g are inhomogeneous coordinates of the
CP2. The vortex solution with a generic orientation and in
the regular gauge takes the form

Φðr; θÞ ¼ ΔCFLU

0
B@

eiθfðrÞ 0 0

0 gðrÞ 0

0 0 gðrÞ

1
CAU†;

AiðrÞ ¼ −
ϵijxj
3gsr2

½1 − hðrÞ�U

0
B@

2 0 0

0 −1 0

0 0 −1

1
CAU†: ð13Þ

III. AHARONOV-BOHM PHASES AROUND
A NON-ABELIAN VORTEX

As mentioned in Introduction, the AB effect [24] is a
quantum mechanical effect that occurs when a charged
particle scatters from a solenoid with nonzero magnetic flux
inside. It leads to the differential scattering cross section

dσ
dϑ

¼ sin2ðπφÞ
2πksin2ðϑ

2
Þ ; φ ¼ q

2π
× Flux: ð14Þ

Here, q is the electric charge of a scattering particle, k is the
momentum perpendicular to the string, and ϑ is the scattering
angle. The scattering cross section depends on the flux of the
solenoid in a nontrivial way. In the case of a vortex carrying a
nonquantized flux, the same thing occurs [26]. Although
particles can get inside a vortex core, we have the same
formula as far as when we consider paths far from the
vortex core.
Non-Abelian vortices similar to those in the CFL phase

in dense QCD were found in the CFL phase in super-
symmetric gauge theories [37–39]; see Refs. [40–43] as a
review. When one gauges a U(1) subgroup of the flavor
group, non-Abelian vortices become AB strings [31]. This
was extended to non-Abelian gauging [32,33]. As for a
non-Abelian vortex in the CFL phase, the AB effect appears
once we introduce the electromagnetic interaction [Uð1Þem]
as a subgroup of the flavor symmetry group, as in the case
of supersymmetric theories. So, it would be interesting to
determine the value of φ for the scattering of particles that
are the relevant low-energy excitation in the CFL phase. In
the CFL phase, electrons, muons, and Nambu-Goldstone
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bosons, e.g., the CFL mesons, can be considered as
fundamental excitations in the bulk.1 Here, we calculate
the AB phases of electrons, muons, and the CFL mesons
present in the bulk.

A. Electromagnetic interactions of non-Abelian vortices

Here, we introduce Uð1Þem generator as a part of the
flavour symmetry SUð3ÞF:

Q ¼ 1

3

0
B@

2 0 0

0 −1 0

0 0 −1

1
CA: ð15Þ

Massless symmetry is realized by a linear combination of
color and the Uð1Þem subgroup. To see exactly which gauge
field remains unbroken, let us look at the covariant
derivative on the order parameter:

DμΦ ¼ ∂μΦ − igsAμΦ − ieAem
μ ΦQ: ð16Þ

When the order parameter is in a diagonal form Φdiag, the
covariant derivative can be written as

DμΦdiag ¼ ∂μΦdiag − iðgsAa
μHa − eAem

μ QÞΦdiag: ð17Þ
Here, we have taken only the color diagonal gauge fields,
and Ha ¼ fT8;T3g are generators of the Cartan subalgebra
of the SU(3) Lie algebra. The massive and massless
diagonal gauge fields in the bulk can be expressed as
(see, e.g., Ref. [11])

AM
μ ¼ gs

gM
A8
μ −

ηe
gM

Aem
μ ; Aq

μ ¼ ηe
gM

A8
μ þ

gs
gM

Aem
μ ; ð18Þ

respectively, where η ¼ 2ffiffi
3

p and g2M ¼ g2s þ η2e2. All fields

living in the bulk interact with Aq effectively as an effective
electromagnetic interaction ~Uð1Þem generated by Aq.
The original electromagnetic gauge potential can be

written as

Aem
μ ¼ gs

gM
Aq
μ −

ηe
gM

AM
μ : ð19Þ

So, the effective electromagnetic coupling for a particle
with charge q becomes

qgsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2s þ η2e2

p : ð20Þ

Construction of vortices with electromagnetic interaction
can be understood from the winding of scalar field and the
covariant derivative defined above.

The existence of Uð1Þem breaks the global SUð3ÞCþF
invariance to SUð2Þ × Uð1Þ, and consequently the CP2

Nambu-Goldstone zero modes become massive, leaving
the BDM vortices and CP1 vortices as (meta)stable
configurations.

1. BDM vortices

In this case, the scalar field configuration at large
distance R can be described as

ΦðR; θÞ ¼ ΔCFL

0
B@

eiθ 0 0

0 1 0

0 0 1

1
CA: ð21Þ

We can rewrite this in terms of a global Uð1ÞB rotation
added with rotation in color and electromagnetic action as

ΦðR; θÞ ¼ eigs
R

A·dlei
θ
3ΦðR; 0Þe−ie

R
AemQ·dl: ð22Þ

From this boundary condition, one can write down the
ansatz as

Φðr; θÞ ¼ ΔCFL

0
B@

eiθfðrÞ 0 0

0 gðrÞ 0

0 0 gðrÞ

1
CA;

AM
i ðrÞT8 ¼ −

ϵijxj
3gMr2

½1 − hðrÞ�

0
B@

2 0 0

0 −1 0

0 0 −1

1
CA: ð23Þ

The form of the profiles fðrÞ and hðrÞ can be calculated
numerically from the equations of motion with boundary
condition in Eq. (10) [16].

2. CP1 vortices

A CP1 sector at jBj → ∞ solutions of Eq. (13) remains
gapless [36] even in the presence of the electromagnetic
interaction. The vortex configurations can be written as

Φðr; θÞ ¼ ΔCFL

0
B@

gðrÞ 0 0

0 eiθfðrÞ 0

0 0 gðrÞ

1
CA;

AM
i ðrÞT8 ¼ 1

6gM

ϵijxj
r2

½1 − hðrÞ�

0
B@

2 0 0

0 −1 0

0 0 −1

1
CA;

A3
i ðrÞT3 ¼ −

1

2gs

ϵijxj
r2

½1 − hðrÞ�

0
B@

0 0 0

0 1 0

0 0 −1

1
CA: ð24Þ

It is clear from Eq. (24) that the existence of this vortex
spontaneously breaks the global U(2) invariance acting on
the lower-right 2 by 2 block, and this breaking generates
CP1 Nambu-Goldstone modes. It is important to note that

1The AB effect can be realized if there exist charged asymp-
totic states in the bulk of the condensate. Color charged
quasiparticle quarks cannot exist in the bulk freely because of
condensation. The quark condensate screens color charges in
the bulk.
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the configuration of AM
μ in Eq. (24) has a factor − 1

2

compared with that in Eq. (23).

B. Aharonov-Bohm phases of electrons and muons

The AB scattering of electrons or muons in the CFL
phase can be understood by writing the Dirac equation in
the vortex background,

ð∂ − ieAem þ iMe=μeÞψe=μe ¼ 0; ð25Þ

where ψe=μe are the Dirac fields for electrons and muons
with masses Me=μe . Using Eq. (19), we can write

�
∂ − i

egs
gM

Aq
μ þ i

ηe2

gM
AM
μ þ iMe=μe

�
ψe=μe ¼ 0: ð26Þ

The second term is just the coulomb term with effective
charge egs

gM
, but for the AB scattering, the last term would be

important. This can be understood in another way. The AB
phase for electrons or muons can be defined as

φe=μe ¼ −
e
2π

I
Aem · dl: ð27Þ

So, according to Eq. (19), we may calculate the above
integral as

φe=μe ¼
ηe2

2πgM

I
AM · dl: ð28Þ

Here, we have used the fact that

I
Aq · dl ¼ 0: ð29Þ

Am
i can be determined for the BDM case and for the CP1

case from Eqs. (23) and (24). So, the AB phase around a
BDM vortex can be calculated as

φBDM
e=μe

¼ ηe2

2πgM

I
AM ·dl¼ ηe2

2πgM
×
η2π

gM
¼ 2e2

3g2s þ2e2
; ð30Þ

while the AB phase φCP1
e=μe

around a CP1 vortex can be
determined as

φCP1

e=μe
¼ ηe2

2πgM

I
AM · dl ¼ −

ηe2

2πgM
×

ηπ

2gM
¼ −

e2

3g2s þ 2e2
:

ð31Þ

C. Aharonov-Bohm phases of CFL mesons

At high density, the chiral symmetry breaking generates
Nambu-Goldstone bosons, known as the CFL mesons. The
CFL mesons can be expressed using a composite operator
of the diquark field as

ΣAB
CFL ¼ Φ†L

AaΦ
R
aB: ð32Þ

Here, a and A and B are the color and flavor indices,
respectively. In terms of quarks, the CFL mesons can be
expressed as [44]

ΣAB
CFL ∼ ϵACDϵBEFqLðaCqLbÞDqRðaEqRbÞF; ð33Þ

where (…) denotes the antisymmetrization of indices. The
electromagnetic Uð1Þem group acts on this operator as

Σ0
CFL ¼ eieQαΣCFLe−ieQα; ð34Þ

where Q is defined by Eq. (15). So, the charge can be
measured by computing the simple commutator ½Q;ΣCFL�.
As we know, Q is basically the T8 generator of SU(3), and
ΣCFL could also be expanded in SU(3) generators. There are
only four components of ΣCFL that do not commute withQ,
which can be written as

0
B@

0 Σ1þ
CFL Σ2þ

CFL

Σ1−
CFL 0 0

Σ2−
CFL 0 0

1
CA: ð35Þ

So, the charges of ΣCFL mesons can be determined as

q ¼ f0;�eg: ð36Þ

In terms of quarks, the charged CFL mesons are

Σ1þ
CFL¼Σ12

CFL∼dLsLsRuR; Σ1−
CFL¼Σ21

CFL∼uLsLsRdR

Σ2þ
CFL¼Σ13

CFL∼ sLdLdRuR; Σ2−
CFL ¼Σ31

CFL∼uLdLdRsR:

ð37Þ

The AB phases φCFL for charged CFL mesons Σ�i can be
expressed by using Eqs. (30) and (31). The AB phases for
CP1 vortices (φCP1

CFL) and BDM vortices (φBDM
CFL ) can be

calculated as

φBDM
CFL ¼ � 2e2

3g2s þ 2e2
; φCP1

CFL ¼ ∓ e2

3g2s þ 2e2
: ð38Þ

D. Strange quark mass

The importance of CP1 vortices can be understood if we
study the vortices at an intermediate density regime, which is
more relevant in the core of neutron star. In this case, themass
of the strange quark (ms) becomes admissible and cannot be
neglected. The potential in Eq. (2) has to be changedby terms
like Tr½Φ†fðαþ 2ϵ

3
Þ1þ ϵT3gΦ�, where ϵ ∝ m2

s . This poten-
tial would generate instabilities in the effective theory of non-
Abelian vortices. The general CP2 vortices would decay
radically with lifetime of order 10−21 sec, as estimated in
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Ref. [22] for the case in which μ ∼ 500 MeV,Δ ∼ 10 MeV,
and ms ∼ 150 MeV. Only one type of CP1 vortex corre-
sponding to a single point (0,1,0) in full CP2 moduli space
would survive. So, only one ofCP1 vortices becomes a stable
vortex in the presence of the strange quark mass [22] as
mentioned above. Therefore, in such a situation, all vortices
have the AB phase φCP1

e=μe
.

IV. SUMMARY AND DISCUSSION

We have calculated the phases of the AB scattering of the
gapless fundamental excitations in the CFL phase of dense
quark matter and have found nontrivial AB phases due to
the scattering of electrons, muons, and CFL mesons with
vortices. The nontrivial AB phases arise because the flux
due to the Uð1Þem gauge field shares a fraction of the total
magnetic flux present inside vortices and the existence of
particles with electric charges present in the bulk of the
dense QCD medium as gapless excitations. In the absence
of the electromagnetism, non-Abelian vortices are degen-
erate and can be rotated in theCP2moduli space, resulting in
the effective action written as the CP2 sigma model. The
presence of Uð1Þem as a subgroup of flavor breaks the
SU(3) global invariance and generates a potential in theCP2

model. In this case, only stable vortices are those for which
the color gauge field direction and Uð1Þem directions are
parallel. We have found a mismatch in the AB phases
between scatteringwithBDMvortices (corresponding to the
B ¼ 0 point in the CP2 moduli space) and CP1 vortices
(corresponding to the B ¼ ∞ submanifold on the CP2

moduli space). This mismatch arises because of the fact
that the orientation of color flux to theCP1 direction changes
the fraction of the flux shared by colormagnetic field. So, the
fraction of electromagnetic flux changes automatically.
The AB scattering off non-Abelian vortices present in the

CFL phase is important property of the particles present in
the bulk of the CFL phase medium, as was discussed for
unstable vortices in the 2SC phase [35]. We will discuss

transportation properties of particles, the friction of vortices
in the CFL phase, and possible implications on physics of
neutron stars.
In this paper, we have discussed the AB scattering of a

single vortex. In the CFL phase under rotation, a vortex
lattice will be formed. The interaction of the electromag-
netic field with a vortex lattice was discussed in Ref. [45],
showing that the lattice behaves as a polarizer. The AB
scattering of charged particles inside a vortex lattice should
be an interesting future direction.
We have discussed the AB scattering of charged

particles due to the electromagnetic field in the presence
of a non-Abelian vortex. Non-Abelian vortices are color
magnetic fluxes having non-Abelian fluxes, too. Since
gluons are massive, the AB phase is usually thought to
be absent, but they may give a global analog of the AB
phase. Colored particles in the nontrivial representation of
the color SUð3ÞC group may have such a phase. The
interaction of quasiquarks with a non-Abelian vortex
[46–48] and the interaction of gluons with a vortex [49]
were studied before. The presence or absence of the (global)
AB phases of these colored particles should be clarified.

ACKNOWLEDGMENTS

This work is supported by the Ministry of Education,
Culture, Sports, Science (MEXT) Supported Program for the
Strategic Research Foundation at Private Universities
“Topological Science” (Grant No. S1511006). The work
of M. N. is supported in part by a Grant-in-Aid for Scientific
Research on Innovative Areas “Topological Materials
Science” (KAKENHI Grant No. 15H05855) and “Nuclear
Matter in Neutron Stars Investigated by Experiments
and Astronomical Observations” (KAKENHI Grant
No. 15H00841) from MEXT of Japan. The work of M. N.
is also supported in part by the Japan Society for the
Promotion of Science Grant-in-Aid for Scientific Research
(KAKENHI Grant No. 25400268).

[1] A. B. Migdal, Superfluidity and the moments of inertia of
nuclei, J. Exp. Theor. Phys. 10, 176 (1960).

[2] A. Bohr, B. R. Mottelson, and D. Pines, Possible analogy
between the excitation spectra of nuclei and those of the
superconducting metallic state, Phys. Rev. 110, 936
(1958).

[3] L. N. Cooper, R. L. Mills, and A. M. Sessler, Possible
superfluidity of a system of strongly interacting fermions,
Phys. Rev. 114, 1377 (1959).

[4] G. Baym, C. Pethick, and D. Pines, Superfluidity in neutron
stars, Nature (London) 224, 673 (1969).

[5] G. Baym, C. Pethick, D. Pines, and M. Ruderman, Spin up
in neutron stars: The future of the Vela Pulsar, Nature
(London) 224, 872 (1969).

[6] P. W. Anderson and N. Itoh, Pulsar glitches and restlessness
as a hard superfluidity phenomenon, Nature (London) 256,
25 (1975).

[7] C. O. Heinke and W. C. G. Ho, Direct observation of the
cooling of the Cassiopeia A neutron star, Astrophys. J. 719,
L167 (2010).

[8] D. Page, M. Prakash, J. M. Lattimer, and A.W. Steiner,
Rapid Cooling of the Neutron Star in Cassiopeia A

CHANDRASEKHAR CHATTERJEE and MUNETO NITTA PHYSICAL REVIEW D 93, 065050 (2016)

065050-6

http://dx.doi.org/10.1103/PhysRev.110.936
http://dx.doi.org/10.1103/PhysRev.110.936
http://dx.doi.org/10.1103/PhysRev.114.1377
http://dx.doi.org/10.1038/224673a0
http://dx.doi.org/10.1038/224872a0
http://dx.doi.org/10.1038/224872a0
http://dx.doi.org/10.1038/256025a0
http://dx.doi.org/10.1038/256025a0
http://dx.doi.org/10.1088/2041-8205/719/2/L167
http://dx.doi.org/10.1088/2041-8205/719/2/L167


Triggered by Neutron Superfluidity in Dense Matter, Phys.
Rev. Lett. 106, 081101 (2011).

[9] M. G. Alford, K. Rajagopal, and F. Wilczek, QCD at finite
baryon density: Nucleon droplets and color superconduc-
tivity, Phys. Lett. B 422, 247 (1998).

[10] M. G. Alford, K. Rajagopal, and F. Wilczek, Color flavor
locking and chiral symmetry breaking in high density QCD,
Nucl. Phys. B537, 443 (1999).

[11] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer,
Color superconductivity in dense quark matter, Rev. Mod.
Phys. 80, 1455 (2008).

[12] K. Rajagopal and F.Wilczek, The CondensedMatter Physics
of QCD, At the Frontier of Particle Physics, edited by M.
Shifman (World Scientific, Singapore, 2001), Vol. 3, p. 2061.

[13] I. Giannakis and H. C. Ren, The Ginzburg-Landau free
energy functional of color superconductivity at weak cou-
pling, Phys. Rev. D 65, 054017 (2002).

[14] K. Iida and G. Baym, The superfluid phases of quark matter:
Ginzburg-Landau theory and color neutrality, Phys. Rev. D
63, 074018 (2001); 66, 059903(E) (2002).

[15] K. Iida and G. Baym, Superfluid phases of quark matter. II:
Phenomenology and sum rules, Phys. Rev. D 65, 014022
(2001).

[16] A. P. Balachandran, S. Digal, and T. Matsuura, Semi-super-
fluid strings in high density QCD, Phys. Rev. D 73, 074009
(2006).

[17] E. Nakano, M. Nitta, and T. Matsuura, Non-Abelian strings
in high density QCD: Zero modes and interactions, Phys.
Rev. D 78, 045002 (2008).

[18] E. Nakano, M. Nitta, and T. Matsuura, Non-Abelian strings
in hot or dense QCD, Prog. Theor. Phys. Suppl. 174, 254
(2008).

[19] M. Eto and M. Nitta, Color magnetic flux tubes in dense
QCD, Phys. Rev. D 80, 125007 (2009).

[20] M. Eto, Y. Hirono, M. Nitta, and S. Yasui, Vortices and other
topological solitons in dense quark matter, Prog. Theor.
Exp. Phys. 2014, 012D01 (2014).

[21] M. Eto, E. Nakano, and M. Nitta, Effective world-sheet
theory of color magnetic flux tubes in dense QCD, Phys.
Rev. D 80, 125011 (2009).

[22] M. Eto, M. Nitta, and N. Yamamoto, Instabilities of Non-
Abelian Vortices in Dense QCD, Phys. Rev. Lett. 104,
161601 (2010).

[23] M. Kobayashi, E. Nakano, andM. Nitta, Color magnetism in
non-Abelian vortex matter, J. High Energy Phys. 06 (2014)
130.

[24] Y. Aharonov and D. Bohm, Significance of electromagnetic
potentials in the quantum theory, Phys. Rev. 115, 485 (1959).

[25] A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J.
Endo, S. Yano, and H. Yamada, Evidence for Aharonov-
Bohm Effect with Magnetic Field Completely Shielded
from Electron Wave, Phys. Rev. Lett. 56, 792 (1986).

[26] M. G. Alford and F. Wilczek, Aharonov-Bohm Interaction
of Cosmic Strings with Matter, Phys. Rev. Lett. 62, 1071
(1989).

[27] A. Vilenkin, Cosmic string dynamics with friction, Phys.
Rev. D 43, 1060 (1991).

[28] J. March-Russell, J. Preskill, and F. Wilczek, Internal Frame
Dragging and a Global Analog of the Aharonov-Bohm
Effect, Phys. Rev. Lett. 68, 2567 (1992).

[29] J. Polchinski, Open heterotic strings, J. High Energy Phys.
09 (2006) 082.

[30] Y. Ookouchi, Discrete gauge symmetry and Aharonov-
Bohm radiation in string theory, J. High Energy Phys. 01
(2014) 049.

[31] J. Evslin, K. Konishi, M. Nitta, K. Ohashi, and W. Vinci,
Non-Abelian vortices with an Aharonov-Bohm effect, J.
High Energy Phys. 01 (2014) 086.

[32] S. Bolognesi, C. Chatterjee, and K. Konishi, Non-Abelian
vortices, large winding limits and Aharonov-Bohm effects,
J. High Energy Phys. 04 (2015) 143.

[33] S. Bolognesi, C. Chatterjee, J. Evslin, K. Konishi, K.
Ohashi, and L. Seveso, Geometry and dynamics of a coupled
4D-2D quantum field theory, J. High Energy Phys. 01 (2016)
075.

[34] P. A. Horvathy, The non-Abelian Aharonov-Bohm effect,
Phys. Rev. D 33, 407 (1986).

[35] M. G. Alford and A. Sedrakian, Color-magnetic flux tubes
in quark matter cores of neutron stars, J. Phys. G 37, 075202
(2010).

[36] W. Vinci, M. Cipriani, and M. Nitta, Spontaneous
magnetization through non-Abelian vortex formation in
rotating dense quark matter, Phys. Rev. D 86, 085018
(2012).

[37] R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi, and A. Yung,
Non-Abelian superconductors: Vortices and confinement in
N ¼ 2 SQCD, Nucl. Phys. B673, 187 (2003).

[38] A. Hanany and D. Tong, Vortices, instantons and branes, J.
High Energy Phys. 07 (2003) 037.

[39] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai,
Moduli Apace of Non-Abelian Vortices, Phys. Rev. Lett. 96,
161601 (2006).

[40] D. Tong, TASI lectures on solitons, arXiv:hep-th/0509216.
[41] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai,

Solitons in the Higgs phase: The moduli matrix approach, J.
Phys. A 39, R315 (2006).

[42] M. Shifman and A. Yung, Supersymmetric solitons and how
they help us understand non-Abelian gauge theories, Rev.
Mod. Phys. 79, 1139 (2007).

[43] D. Tong, Quantum vortex strings: A review, Ann. Phys.
(Amsterdam) 324, 30 (2009).

[44] T. Schäfer and E. V. Shuryak, Phases of QCD at high baryon
density, Lect. Notes Phys. 578, 203 (2001).

[45] Y. Hirono and M. Nitta, Anisotropic Optical Response
of Dense Quark Matter Under Rotation: Compact Stars as
Cosmic Polarizers, Phys. Rev. Lett. 109, 062501 (2012).

[46] S. Yasui, K. Itakura, and M. Nitta, Fermion structure of non-
Abelian vortices in high density QCD, Phys. Rev. D 81,
105003 (2010).

[47] T. Fujiwara, T. Fukui, M. Nitta, and S. Yasui, Index
theorem and Majorana zero modes along a non-Abelian
vortex in a color superconductor, Phys. Rev. D 84, 076002
(2011).

[48] C. Chatterjee, M. Cipriani, and M. Nitta, Coupling between
Majorana fermions and Nambu-Goldstone bosons inside a
non-Abelian vortex in dense QCD, Phys. Rev. D 93, 065046
(2016).

[49] Y. Hirono, T. Kanazawa, and M. Nitta, Topological inter-
actions of non-Abelian vortices with quasi-particles in high
density QCD, Phys. Rev. D 83, 085018 (2011).

AHARONOV-BOHM PHASE IN HIGH DENSITY QUARK MATTER PHYSICAL REVIEW D 93, 065050 (2016)

065050-7

http://dx.doi.org/10.1103/PhysRevLett.106.081101
http://dx.doi.org/10.1103/PhysRevLett.106.081101
http://dx.doi.org/10.1016/S0370-2693(98)00051-3
http://dx.doi.org/10.1016/S0550-3213(98)00668-3
http://dx.doi.org/10.1103/RevModPhys.80.1455
http://dx.doi.org/10.1103/RevModPhys.80.1455
http://dx.doi.org/10.1103/PhysRevD.65.054017
http://dx.doi.org/10.1103/PhysRevD.63.074018
http://dx.doi.org/10.1103/PhysRevD.63.074018
http://dx.doi.org/10.1103/PhysRevD.66.059903
http://dx.doi.org/10.1103/PhysRevD.65.014022
http://dx.doi.org/10.1103/PhysRevD.65.014022
http://dx.doi.org/10.1103/PhysRevD.73.074009
http://dx.doi.org/10.1103/PhysRevD.73.074009
http://dx.doi.org/10.1103/PhysRevD.78.045002
http://dx.doi.org/10.1103/PhysRevD.78.045002
http://dx.doi.org/10.1143/PTPS.174.254
http://dx.doi.org/10.1143/PTPS.174.254
http://dx.doi.org/10.1103/PhysRevD.80.125007
http://dx.doi.org/10.1093/ptep/ptt095
http://dx.doi.org/10.1093/ptep/ptt095
http://dx.doi.org/10.1103/PhysRevD.80.125011
http://dx.doi.org/10.1103/PhysRevD.80.125011
http://dx.doi.org/10.1103/PhysRevLett.104.161601
http://dx.doi.org/10.1103/PhysRevLett.104.161601
http://dx.doi.org/10.1007/JHEP06(2014)130
http://dx.doi.org/10.1007/JHEP06(2014)130
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRevLett.56.792
http://dx.doi.org/10.1103/PhysRevLett.62.1071
http://dx.doi.org/10.1103/PhysRevLett.62.1071
http://dx.doi.org/10.1103/PhysRevD.43.1060
http://dx.doi.org/10.1103/PhysRevD.43.1060
http://dx.doi.org/10.1103/PhysRevLett.68.2567
http://dx.doi.org/10.1088/1126-6708/2006/09/082
http://dx.doi.org/10.1088/1126-6708/2006/09/082
http://dx.doi.org/10.1007/JHEP01(2014)049
http://dx.doi.org/10.1007/JHEP01(2014)049
http://dx.doi.org/10.1007/JHEP01(2014)086
http://dx.doi.org/10.1007/JHEP01(2014)086
http://dx.doi.org/10.1007/JHEP04(2015)143
http://dx.doi.org/10.1007/JHEP01(2016)075
http://dx.doi.org/10.1007/JHEP01(2016)075
http://dx.doi.org/10.1103/PhysRevD.33.407
http://dx.doi.org/10.1088/0954-3899/37/7/075202
http://dx.doi.org/10.1088/0954-3899/37/7/075202
http://dx.doi.org/10.1103/PhysRevD.86.085018
http://dx.doi.org/10.1103/PhysRevD.86.085018
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.029
http://dx.doi.org/10.1088/1126-6708/2003/07/037
http://dx.doi.org/10.1088/1126-6708/2003/07/037
http://dx.doi.org/10.1103/PhysRevLett.96.161601
http://dx.doi.org/10.1103/PhysRevLett.96.161601
http://arXiv.org/abs/hep-th/0509216
http://dx.doi.org/10.1088/0305-4470/39/26/R01
http://dx.doi.org/10.1088/0305-4470/39/26/R01
http://dx.doi.org/10.1103/RevModPhys.79.1139
http://dx.doi.org/10.1103/RevModPhys.79.1139
http://dx.doi.org/10.1016/j.aop.2008.10.005
http://dx.doi.org/10.1016/j.aop.2008.10.005
http://dx.doi.org/10.1007/3-540-44578-1
http://dx.doi.org/10.1103/PhysRevLett.109.062501
http://dx.doi.org/10.1103/PhysRevD.81.105003
http://dx.doi.org/10.1103/PhysRevD.81.105003
http://dx.doi.org/10.1103/PhysRevD.84.076002
http://dx.doi.org/10.1103/PhysRevD.84.076002
http://dx.doi.org/10.1103/PhysRevD.93.065046
http://dx.doi.org/10.1103/PhysRevD.93.065046
http://dx.doi.org/10.1103/PhysRevD.83.085018

