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We consider the Skyrme model with the addition of extra scalar potentials that decrease the classical
binding energies of the Skyrmions to about the 3% level—without altering the pion mass—if we insist on
keeping platonic symmetries that are usually possessed by Skyrmions. A side effect of the potentials under
consideration is the smaller size of the 1-Skyrmion resulting in a smaller moment of inertia and in turn a
larger spin contribution to the energy upon semiclassical quantization. After taking into account the
quantum contributions we find total binding energies at the 6% level.
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I. INTRODUCTION

The Skyrme model was introduced by Skyrme as a
model for baryons in a low-energy effective field theory of
pions [1,2]. It first caught serious attention when it was
shown that its soliton—the Skyrmion—is the baryon in
the large-Nc limit of QCD [3,4]. It took, however, a
while before the higher-charged Skyrmion solutions—
corresponding to baryons with B > 2—were found. The
breakthrough came with the introduction of the rational
maps, where the Skyrmion is split into a radial component
and a sphere which is mapped to a Riemann sphere that is
wrapped B times [5,6]. The rational maps are believed to
describe the minimizers of the energy functional of the
Skyrmions to quite high precision for vanishing pion mass
and for small B ≤ 7. For small baryon numbers the pion
mass does not have a big impact on the Skyrmion solutions.
However, when the pion mass is turned on—at approx-
imately the value of the physical pion mass—the
Skyrmions prefer to order themselves as a crystal of alpha
particles [7] as opposed to the fullerenes described by the
rational maps. The Skyrmions do capture many phenom-
enological features of nuclear physics and moreover it gives
a geometrical interpretation of the physics behind.
Nevertheless, a long-standing problem of the Skyrme
model—which has been evident from the different cali-
bration attempts [8,9]—is that the binding energies natu-
rally come out too large, about one order of magnitude too
large. More precisely, the recalibration of the Skyrme
model in Ref. [9] ameliorates the problem of the large
binding energies by using a higher-charged Skyrmion
(B ¼ 6) as input (as opposed to the calibration using the
proton and delta resonance [8]).
The problem of too large binding energies has been the

motivation for improving the Skyrme model and gave rise
to three recent directions to do so. One attempt is to make a
model with an infinite tower of mesons, which is truly BPS
(Bogomol'nyi-Prasad-Sommerfield) in the limit where all

the mesons are included [10,11]. This model is derived
from the self-dual Yang-Mills theory in five dimensions.
The second line of research is based on a modified
Lagrangian that is composed of only a sixth-order deriva-
tive term (as opposed to the standard kinetic term and the
fourth-order Skyrme term) as well a potential; this theory is
called the BPS Skyrme model [12,13] and as opposed to the
normal Skyrme model (that does not have solutions
saturating its bound), its BPS bound on the energy can
be saturated for solutions with arbitrary large baryon
numbers. The third and last attempt to ameliorate the large
binding energy was made from the observation that the
pure Skyrme term (fourth order) as well as a unique
potential to the fourth power saturates an energy bound
[14] and thus is BPS for a single baryon (B ¼ 1). This
model is called the lightly bound Skyrme model [15]. Its
higher-charged Skyrmions, however, do not saturate said
bound [14], but they do in fact lie so close to the bound that
the model indeed gives rise to very small classical binding
energies—of the order of experimental data.
Although the lightly bound Skyrme model is a promising

attempt at producing viable binding energies for possibly all
nuclei, it has a drastic difference with the normal Skyrme
model, namely the shapes of the Skyrmions [15]. Its higher-
charged Skyrmion solutions take the shape of B spheres
situated at the vertices of a face-centered cubic (FCC) lattice.
This is quite in contrast to the Skyrmions of the normal
Skyrme model that prefer to sit in a lattice of alpha particles.
The latter is quite a welcomed feature from the point of view
of nuclear clusters [16] (see e.g. Fig. 6 in Ref. [16]), which
indeed hint at the importance of the alpha particles or the
B ¼ 4 solutions in baryons with higher baryon numbers.
A remarkable achievement in the Skyrme model is the

description of the Hoyle state in 12C (carbon-12) and its
corresponding band of rotationally excited states [17].
In this normal formulation of the Skyrme model, two
classical solutions with baryon number 12 are found to
have almost the same classical energy, but very different
shapes, resulting in moments of inertia whose ratio is about
2.5—in perfect agreement with experimental data [17]. The*bjarke@impcas.ac.cn
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ratio is indeed observable from the slopes of the rotational
bands coming from the ground state and the Hoyle states,
respectively.
The reconciliation of the two above-mentioned results is

however hard to meet. The lightly bound Skyrme model, in
contrast to the normal Skyrme model, predicts 12 spheres
situated at the vertices of the FCC lattice with nearly the
same energies of all its different configurations (this is of
course just a simple argument from the fact that the overlap
of the spheres is marginal and thus the energy is roughly
independent of where the spheres are placed on the nearby
vertices). It is easy to convince oneself that there are many
different configurations with almost the same energy, but
different moments of inertia. This degeneracy is observed
already at the classical level for B ¼ 6, 7, 8 in Ref. [15] (for
instance, five different configurations with B ¼ 8 and
nearly the same energy were found) and so it is expected
to be even higher for B ¼ 12. Although there might exist
one classical Skyrmion configuration with approximately
7 MeV higher energy than the global minimizer—the
ground state—and possibly giving rise to a slope that is
2.5 times lower than that of the ground state, there will still
be too many other states with different slopes. Whether
quantization or some other mechanism can solve this
puzzle is beyond the scope of the present paper.
The mechanism at work in the lightly bound Skyrme

model [15] is a repulsive force due to the nonlinear
potential of the form ð1 − Tr½U�=2Þ4 that acts at short
distances and is strong enough to separate the B-Skyrmion
into B identifiable spheres that are still bound together.
Notice that due to the nonlinearity of the potential, it does
not alter the linear force present in the Skyrme model
without the addition of this potential. The long-range
attractive forces present in the normal Skyrme model thus
remain. Exactly this type of potential was studied long ago
in the baby Skyrme model [18], see also Refs. [19–22].
In this paper the scope is to study (a part of) the

parameter space of a class of potentials

Vn ∝
1

n

�
1 −

1

2
Tr½U�

�
n
; n > 2 ð1Þ

exhibiting repulsive forces and determine how low binding
energies can be attained without losing the B ¼ 4 cube that
is a welcomed feature of the Skyrme model in light of
clustering into alpha particles. As the parameter space of
the linear superposition of several potentials is obviously
huge, we limit ourselves to a slice in the parameter space
spanned by V2 and V4. V4 is exactly the holomorphic type
of potential of the lightly bound Skyrme model [15],
whereas V2 is a similar potential with a smaller repulsive
force.
We find that both V2 and V4 decrease the classical

binding energies, but V2 is able to lower the classical
binding energies further without breaking the platonic

symmetries of the Skyrmions, however, not quite enough
to reach the experimentally observed values of nuclei. The
inclusion of the pion mass was originally thought to be a
minor effect but its effect is studied over the entire selected
region of parameter space. It turns out that although it
lowers the classical binding energies when the potentials
V2 and V4 are turned off, it actually increases the classical
binding energies when a sizable value of the coefficient of
either one of the potentials is turned on. Although this
effect is less welcome, it also has the effect of maintaining
the platonic symmetries to larger values of the coefficients
of said potentials. After finding the optimal point in the
parameter space—which turns out to be at ðm2; m4Þ∼
ð0.7; 0Þ—a calibration to physical units is done and an
estimate of the contributions due to spin and isospin
quantization is taken into account. The result is that the
V2 model can retain platonic symmetries and have total
binding energies at the 6% level (whereas the classical
contribution is near the 3% level).
The paper is organized as follows. We introduce the

Skyrme model with the additional potentials in Sec. II and
present numerical results in Sec. III. Finally, we conclude
with a discussion in Sec. IV.

II. THE MODEL

The Lagrangian density of the model under study is
given by

L ¼ c2
4
Tr½LμLμ� þ c4

32
Trð½Lμ; Lν�½Lμ; Lν�Þ − VðUÞ; ð2Þ

where Lμ ≡U†∂μU is the left-invariant suð2Þ-valued
current, c2 > 0 and c4 > 0 are positive-definite real con-
stants, μ; ν ¼ 0, 1, 2, 3 are spacetime indices, U is the
Skyrme field related to the pions as

U ¼ 12σ þ iτaπa ð3Þ

obeyingU†U ¼ 12 which translates into σ2 þ πaπa ¼ 1, τa

are the Pauli matrices and finally, the potential is taken to be
a function of TrU with the vacuum expectation value of U
being at U ¼ 12. This vacuum breaks SUð2Þ × SUð2Þ
spontaneously down to a diagonal SU(2), but it keeps
the latter SU(2)—corresponding to isospin—unbroken.
The target space of the Skyrme modelM≃ SUð2Þ≃ S3

has a nontrivial homotopy group

π3ðMÞ ¼ Z; ð4Þ

which admits solitons called Skyrmions. The topological
degree B ∈ π3ðS3Þ is defined as

B ¼ 1

2π2

Z
d3xB0; ð5Þ
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where the baryon charge density is given by

B0 ¼ −
1

12
ϵijkTr½LiLjLk�: ð6Þ

B is often called the baryon number.
The model is a nonlinear sigma model, which means that

a lot of ambiguity is left in the potential. The vacuum is at
U ¼ 12 around which small excitations of the field corre-
spond to physical pions. Therefore one physical parameter
that is known in the pion vacuum is the pion mass, which is
given by

m2
π ¼ −2

∂V
∂Tr½U�

����
U¼12

: ð7Þ

Hence the traditional pion mass term is written as

V1 ¼ m2
1

�
1 −

1

2
Tr½U�

�
; ð8Þ

giving rise to a pion mass

m2
π ¼ m2

1: ð9Þ

However, another potential called the modified pion
mass term is given by [23–26]

V02 ¼
1

2
m2

02

�
1 −

1

4
Tr½U�2

�
; ð10Þ

which also yields Eq. (9), see also Refs. [27–31].1 By just
knowing the pion mass, we cannot distinguish between the
potentials V1 and V02 given in Eq. (8) and (10), respec-
tively. The difference is that V02 gives exactly the pion mass
term, whereas V1 gives the pion mass term as well as
higher-order pion interactions, such as ðπaπaÞ2 and higher
powers.
In fact, from just the pion mass term, any normalized

linear combination of the terms2

V0n ¼
1

n
m2

0n

�
1 −

1

2n
Tr½U�n

�
ð11Þ

gives rise to the physical pion mass around the vacuum
U ¼ 12.
One aspect of this argument is that the pion mass is only

the sum of any of the terms V0n in Eq. (11); the other side of
the same coin is that there is an enormous ambiguity in the
nonlinearity of the potential.

In particular, we can write a class of potentials

Vn ¼
1

n
m2

n

�
1 −

1

2
Tr½U�

�
n
; ð12Þ

which for n ≥ 2 gives no contribution to the pion mass in
the vacuum U ¼ 12.

3

As we mentioned in the Introduction, one of these
potentials, namely V4 has received some attention
recently, due to the fact that it saturates a lower bound
on the energy, giving a Skyrmion mass proportional to
the baryon number [14]. Unfortunately, only the solution
for B ¼ 1 (a single baryon) saturates the energy bound
[14]. However, solutions with baryon numbers larger than
1 have masses quite close to the bound, yielding the
possibility for relatively small classical binding energies.
The model is therefore dubbed the lightly bound Skyrme
model [15].
Let us contemplate for a moment what happens when

adding a potential Vn of Eq. (12) to the Skyrme
Lagrangian density. Since the Skyrmion is a map from
the target space S3 to space R3∪f∞g≃ S3, of positive
degree, then at least B > 0 points in configuration space
(R3) will attain the value U ¼ −12, i.e. the antipodal
point to the vacuum on the target space. At these points,
all the potentials Vn (for any n > 0) have their maximum
value. Since the map is topological, the Skyrmion cannot
avoid going over the points, but the effect is clear. The
Skyrmion field wants to get away from the antipodal
points as quickly as possible, but due to the presence of
the kinetic term, this induces an effective repulsion
between the antipodal points of the Skyrmion. The
implication is a reduction of the binding energy. A
similar effect was observed for the same potential in
the baby Skyrme model, where the authors called the
baby Skyrmions aloof due to the latter effect [20].
Let us define a rescaled mass

~mn ≡ 2
n
2mnffiffiffi
n

p : ð13Þ

At the antipodal point on the target space, Vn= ~m2
n tends to

unity. Therefore, if we now hold ~mn fixed and increase n,
nothing changes at the antipodal point, but the function
goes to zero faster the larger n is. It is now clear that the
potential Vn with larger n induces stronger repulsion than
Vn with a smaller n. In particular, the repulsion is a
monotonically increasing function of n. Figure 1 shows
the potentials Vn= ~m2

n for various values of n.
The potentials Vn for n > 1 are basically free parameters

of the theory as they are not directly measured (and are not
related to the pion mass). This is not the case for the

1This potential has two degenerate vacua allowing for a
domain wall interpolating between them.

2See also Refs. [23,27].

3A recent paper considers this class of potentials in the BPS
Skyrme model [32].
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potentials V0n whose sum is constrained to be within
reasonable range of the measured pion mass.4

As we mentioned in the Introduction, the reduction of the
binding energy is of course more than welcome. However,
the repulsion—if too excessive—also leads to Skyrmions
with different symmetries than the platonic symmetries and
in particular not preferring crystals of alpha particles.
Reference [15] found that the Skyrmion in the limit of
large m4 consists of B spheres located at the vertices of an
FCC lattice.
In this paper, we will consider a more complicated

potential

V ¼ V1 þ V2 þ V4; ð14Þ

which depends on the parametersm1,m2 andm4. In light of
the above discussion, it is clear that V4 induces more
repulsion than V2 which in turn induces more repulsion
than V1. The value of m1 is, however, not quite a free
parameter, but m2 and m4 are.
Now let us consider the coefficientsc2 andc4. TheSkyrme

units correspond to c2 ¼ c4 ¼ 2where energies and lengths
are given in units of fπ=ð4eÞ and 2=ðefπÞ, respectively, see
Ref. [33]. As the region where the repulsion is large,
corresponding to smaller binding energies, is where the
parameters m2 and m4 are large, we choose to use different
values for the coefficients c2 and c4, namely

c2 ¼
1

4
; c4 ¼ 1: ð15Þ

Now the energies and lengths are given in units of fπ=e and
1=ðefπÞ, respectively.When the normal Skyrmemodel units

areused, a commonchoiceof thepionmass ismπ ¼ 1,which
in our rescaled units corresponds to mπ ¼ 1=4.
A mathematical problem is to find an energy bound for

the Skyrme model with the potential (14) and the closer the
energies for various B-Skyrmions are to the bound, the
smaller the classical binding energy must be.
Here, we are instead interested in a more difficult

problem. We want to get as close to the (best possible)
energy bound as we can and at the same time keep the
symmetries of the strongly bound Skyrmions. In particular,
we want the binding energy per nucleon of B ¼ 4 to be
larger than that of B ¼ 5 (and also that of B ¼ 8). This
latter condition implies that higher-B Skyrmions are
composed by crystals of alpha particles.
This problem is of course somewhat difficult to address

from a purely mathematical angle. We therefore turn to
numerical methods and calculate numerical solutions in the
next section.

III. NUMERICAL SOLUTIONS

In this section we embark on a large-scale numerical
calculation of many series of Skyrmion solutions in the
parameter space spanned by fm1; m2; m4g for B ¼ 1, 2, 3,
4, 5. We do not consider B > 5 in this paper due to the
amount of computing resources needed for this investiga-
tion. However, our analysis should be sufficient for having
only B equal 1 through 5.
Let us first mention the numerical method we will use to

calculate the numerical Skyrmion solutions. We will dis-
cretize space with the finite-difference method using a
fourth-order stencil and then cool the partial differential
equations with the relaxation method until a static solution
has been found to the accuracy that we require. The
relaxation method of course requires an initial condition
(configuration), for which we will use an appropriate
rational map Ansatz with the given baryon number B.
We will use the rational maps given in Ref. [6].
Let us define the observables that we calculate for each

solution. Of course the classical mass of the Skyrmion is an
important value. However, it will be convenient to evaluate
the classical binding energy

ΔB ¼ BE1 − EB; ð16Þ

and in particular the relative (classical) binding energy,
which we define as

δB ≡ ΔB

BE1

¼ 1 −
EB

BE1

: ð17Þ

This observable is very easy to compare to experimental
data as the units drop out. Comparing all solutions for all
values of B, we define

V
n  

/ m
∼

n2

Tr [U] / 2

V1 / m∼ 1
2

V2 / m∼ 2
2

V3 / m∼ 3
2

V4 / m∼ 4
2

 0

 0.2

 0.4

 0.6

 0.8

 1

−1 −0.5  0 0.5 1

FIG. 1. Potentials Vn= ~m2
n normalized by the rescaled masses as

functions of Tr½U�=2 for n ¼ 1, 2, 3, 4.

4The reason for not fixing the pion mass to the exact value
measured in experiment is that the latter value is the pion mass in
the pion vacuum, appropriate for describing pion physics. The
pion mass relevant for the Skyrmion is the renormalized effective
pion mass inside the baryon. This value is not necessarily the
same, but is expected to be within a factor of a few within the
measured value.
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εδðaÞ≡
X
B

ðδexpB − δB − aÞ2; ð18Þ

which measures the overall discrepancy between the
solutions and the experimental data for a given param-
eter-space point. The parameter a is introduced as an
overall bias, reflecting the fact that the ground state
energy of the quantized 1-Skyrmion is the classical mass
plus spin-1

2
and isospin-1

2
contributions, whereas e.g. the

ground state energy of the 4-Skyrmion is simply the
classical energy.5 The ground states of the 2- and
3-Skyrmions are the spin-1, isospin-0 and spin-1

2
, iso-

spin-1
2
states, respectively. Nevertheless, the additional

contribution to the ground state energy for the
1-Skyrmion typically turns out to be larger than both
that of the 2- and 3-Skyrmions. This can be understood
from the fact that the 2- and 3-Skyrmions are larger
resulting in larger moments of inertia and in turn smaller
quantum contribution to their energies.
A more rigorous method would be to identify the

symmetries of the B-Skyrmions for each point in the
parameter space and then quantize their zero modes,
incorporating the Finkelstein-Rubinstein constraints for
each of them, evaluating the moments of inertia tensors
and calculating their ground state energies. For now, we
will stick to just evaluating the classical binding energies,
knowing that they should be somewhat smaller than the
experimental values, but still in the ballpark.
Another observable is the size of the Skyrmion, which

we define in terms of the baryon charge density (6) as

r2B ≡ 1

2π2B

Z
d3xr2B0; ð20Þ

where r2 ¼ x2 þ y2 þ z2 is a radial coordinate measured
from the center of the charge distribution.6 The length unit
is just fitted to experimental data; therefore it will prove
convenient to use a relative size

ρB ≡ rB
r1

; ð21Þ

where rB ¼
ffiffiffiffiffi
r2B

p
and ρB is given in units of the size of the

B ¼ 1 solution. Comparing again all solutions for all values
of B, we define

ερ ≡
X
B

ερB ; ερB ≡ ρexpB − ρB: ð22Þ

Notice that we do not square the summands so that the sign
will be evident (negative if the solutions are too large and
positive if not).7

Finally, an observable which gives a good handle on the
accuracy, is the numerically integrated baryon number (5).
Our solutions will be equal to the integer B with an
accuracy in the range of [0.16%,0.019%] (with an overall
average around 0.052%).
For the B ¼ 1 sector, we calculate all the solutions with

very high accuracy using the ordinary differential equation
(ODE) derived from the Lagrangian density (2) with the
hedgehog Ansatz: U ¼ 12 cos fðrÞ þ iτ · x̂ sin fðrÞ. The
ODE reads

c2

�
frr þ

2

r
fr −

sin 2f
r2

�
þ c4

�
2sin2ðfÞfrr

r2

þ sinð2fÞf2r
r2

−
sinð2fÞsin2f

r4

�

¼ m2
1 sin f þm2

2ð1 − cos fÞ sin f
þm2

4ð1 − cos fÞ3 sin f; ð23Þ

where fr ≡ ∂rf, etc. The solution of the above equation
yields E1ðm1; m2; m4Þ with very high accuracy (better than
the 10−6 level). Let us now comment on how we calculate
the energy for the B > 1 solutions. As the B ¼ 1 sector is
very accurate, we need a precise estimate of the energy for
the higher-B solutions in order to calculate the classical
binding energy (16) and in turn the relative classical
binding energy (17) (otherwise we will underestimate
them). First, we find our solution relaxed down to the
accuracy level such that all equations of motion are satisfied
better than the 10−3 level locally. From this point on, the
energy as a function of relaxation time τ (steps) is then
fitted to an exponential curve and this process is continued
until the accuracy of the exponential fit has converged to a
given accuracy. Then we take the τ → ∞ limit of the
exponential as an estimate of the asymptotic energy value.
This trick is very precise and saves some computation time.
Now, since our finite-difference lattice is also just an
approximation to the continuous field and the fact that
the Skyrmion charge is a convex function (resulting in
Bnumerical < B), we compensate the final result by
B=Bnumerical. The final result has the form

5The contribution from the spin and isospin quantization of the
1-Skyrmion to the energy modifies δB as

δB → 1 −
EB

BðE1 þ ϵ1Þ
¼ 1 −

EB

BE1

þ ϵ1EB

BE2
1

þOðϵ21Þ; ð19Þ

where we for simplicity use the parameter a instead of the
physical parameter ϵ1. There is also a contribution ϵB, but it is
typically a smaller effect.

6A recent paper argues that using the baryon charge density for
the volume/size is in some sense the natural way in Skyrme-like
models [34] (as opposed to using e.g. the energy density).

7Although this definition allows for the caveat that some
cancellation between different B-Skyrmion sizes takes place, this
will not be an issue as all the B-Skyrmions are generally too small
compared to nuclei.
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EB ≃ B
Bnumerical

×
EB;numericalðτ0ÞEB;numericalðτ2Þ − E2

B;numericalðτ1Þ
EB;numericalðτ0Þ − 2EB;numericalðτ1Þ þ EB;numericalðτ2Þ

;

ð24Þ

where τ0 is the relaxation time where the solution is good
enough for the initial accuracy level (equations of motion at
the 10−3 level, locally), τ2 is the final relaxation time where
the exponential fit is precise enough and τ1 ¼ ðτ0 þ τ2Þ=2.
After this complicated process of estimating the energy
of the Skyrmion solution, we check for the B ¼ 1 sector
that we obtain the energies within an accuracy of about
2.7 × 10−4 or better.
We are now ready to present the results in the next

subsections, for vanishing and nonvanishing pion mass,
respectively, and finally the effect of semiclassical zero-
modes quantization.

A. Zero pion mass

We will begin with taking a vanishing pion mass m1 ¼ 0
and scan (a part of) the ðm2; m4Þ parameter space. In the
next subsection we will consider the inclusion of the
pion mass.
We start by calculating the Skyrmion energies in the

B ¼ 1 sector, for which as we mentioned above use simply
the ODE. This is very precise and we will use these
energies as the basis to calculate the binding energies for
the higher-B Skyrmion solutions. Figure 2 shows the
energies in our units (which are normalized differently
than the normal Skyrme units) for solutions in the
ðm2; m4Þ-parameter space. For comparison Fig. 2 has the
normal Skyrme units on the right-hand scale. Throughout
this section the ranges of the masses in the parameter space

will be chosen as m4 from 0 to 0.25 with steps of 0.01 and
for m2 from 0 to 0.6 with steps of 0.1.
Now we are ready to calculate the higher-B Skyrmions.

Weusevery small increasing/decreasing steps form4 anduse
the latest datapoint as an initial condition for thenext one.We
tried going both from the ðm2; m4Þ ¼ ð0; 0Þ point and
upwards in masses and the reverse in order to check that
the solutions foundare really theminimizersof theenergy for
the given value of ðm2; m4Þ. As we mentioned already, the
ðm2; m4Þ ¼ ð0; 0Þ point is calculated with the initial con-
ditions constructed from the rationalmapAnsätzeofRef. [6].
If the steps in, for instancem4, are too large then the direction
(increasing or decreasing of the mass) may give different
solutions to the approximated accuracy levels chosen for
numerical calculations. Therefore we use quite small steps
and check that the results do not change much by reversing
the direction (we found some critical points in parameter
space where the solutions did shift a bit, but it will not have
essential consequences for our purpose here). Figures 13–16
show isosurfaces of the baryon charge density at half-
maximum values for the chosen part of parameter space
in the ðm2; m4Þ plane (only every second solution in them4

direction is shown in these figures due to space limitations).
The coloring adapted here is chosen such that the pions are
normalized to a unit vector ðπ̂2 ¼ 1Þ and π̂1 determines the
lightness whereas π̂3 þ iπ̂2 is mapped to the hue of the color
circle (the coloring scheme is similar to that adapted in
Refs. [35,36], see also Ref. [37]).
Now that we have the data for a bunch of Skyrmion

solutions, we begin by calculating the classical binding
energies for the different points. Figure 3 shows the relative
classical binding energies for all the solutions and the blue
crosses represent connected Skyrmions (for the baryon
charge density at half-maximum values), whereas the red
x’s are disconnected. Of course it is a bit arbitrary to choose
connectedness at half the maximum value of the baryon
charge density; any other reasonable value may be just as
good and shift the connected/disconnected lines of the
figures. Nevertheless, it is clear that in the far blue area the
platonic symmetries are still unbroken, whereas in the far
red area the Skyrmions are spheres at the vertices of an FCC
lattice.
What we seek is to find a region in parameter space

where the binding energy is decreased with respect to that
of the normal Skyrme model and where the platonic
symmetries are more or less still present. At least the
symmetries of the B ¼ 4 cubic Skyrmion would be
preferable to maintain, as it provides a number of phe-
nomenologically appealing properties as we mentioned in
the Introduction.
The lesson we learn from all these data points is that

increasing m4 (from zero) does indeed lower the binding
energy as expected. However, long before the binding
energies of experimental data are reached, the symmetries
of the Skyrmions change from platonic symmetries to the
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FIG. 2. Energy of the B ¼ 1 Skyrmion with various values in
the ðm2; m4Þ-parameter space. The series of points is for m2 ¼ 0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6 with m2 increasing from bottom to top.
The left-hand scale shows the units we are using in this paper
while the right-hand scale shows the normal Skyrme units.
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FCC lattice. On the other hand, increasing m2 (again from
zero) has the same qualitative effect; namely it decreases the
binding energy and eventually breaks the platonic sym-
metries to the same FCC lattice structure of aloof Skyrmions.
The difference, however, is that thebinding energies obtained
before the symmetries change are far lower when using V2

than when using V4. Consider the B ¼ 4 sector in Fig. 3. If
we regard the boundary between the blue and red dots as
some sort of measure of change of symmetry, then the
m2 ¼ 0 branch reaches classical binding energies of about
6%, whereas the m4 ¼ 0 branch goes down below 4%.
Moreover, it is observed from Fig. 3 that when m2 ¼ 0,

the binding energy does go down when increasing m4.
However, when m2 is large, increasing m4 does not lower
the binding energy substantially before it breaks the
platonic symmetries down to the FCC lattice symmetries.
Therefore, if we insist on keeping the old symmetries of the
normal Skyrme model, then we can basically turn off the
potential V4 and work with just V2. If however we prefer
the FCC lattice symmetries, then V4 is a suitable potential
that lowers the classical binding energies, but so is V2.
Considering now the function (18). This function is a

least-squares-fit function of the parameter space to the
experimental data for the nuclear binding energies. We use
the experimental values shown in Table I. Figure 4 shows

the fit in the calculated part of parameter space. The black
line shows where the B ¼ 4 Skyrmion splits up into
disconnected pieces at the level of the isosurfaces at the
half-maximum value of the baryon charge density. The left
panel of the figure is the real fit of the classical binding
energies to the experimental data, whereas the right panel
shows a fit where the value a has been optimized to
improve the fit (shape fit only). The physical meaning is
that if the energy of the B ¼ 1 Skyrmion is reduced about
4%, then the preferred region of the fit is within the
boundary of the black line and thus the platonic sym-
metries remain while the classical binding energies of the
higher-B Skyrmions match reasonably well the experimen-
tal values. Had the best value for a been a positive value,
then semiclassical quantization could be a fix to this
problem, but since it is negative then quantization will
only exacerbate the problem.
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FIG. 3. Relative classical binding energies δB for B ¼ 2, 3, 4, 5. The series of points is for m2 ¼ 0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6 with m2

increasing from top to bottom. The blue crosses (þ) are connected isosurfaces at half-maximum baryon charge density while the red x’s
(×) are disconnected.

TABLE I. Experimental values for nuclear masses.

1H 1.007825
2H 2.014101
3He 3.016029
4He 4.002603
5He 5.012057
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Next we will consider a rough fit of the sizes of the
Skyrmion solutions to the experimental values of charge
radii of nuclei. The experimental values used here are shown
in Table II. Of course the charge radius is not quite the size of
the nucleus, but we take that as a good approximation to
the latter. Figure 5 shows the fits of the Skyrmion sizes to the
experimental data for the B ¼ 2, 3, 4 sectors as well as the
average fit of all three sectors.
The qualitative information that can be read off of Fig. 5 is

that the 2-Skyrmion and the 3-Skyrmion are generally too
small. The 4-Skyrmion has about the right size when the
potentials are turned off, but then the binding energies are
too large. It is interesting to note that the Skyrmion size is
increased by the addition of the sixth-order potential, which
is the backbone of the BPS Skyrme model [12,13], see
also Ref. [37].

B. Nonzero pion mass

Now we consider a physical value of the pion mass,
which corresponds to m1 ¼ 1=4 (this is equal to mπ ¼ 1 in
the normal Skyrme units). This value is commonly used in
Skyrmion calculations, but other values could also be
considered. Here we are mostly interested in the qualitative
effect on our results with the addition of the pion mass.
As the common lore is that for B ≤ 7 the qualitative

effect of the addition of the pion mass is rather small, we
would a priori not expect big changes with respect to the
last subsection. However, as we will see shortly, some
changes do occur.

We will start by computing the relative classical binding
energies on the same parameter space as used in Fig. 3. The
color code is used in the same way such that blue indicates
a connected Skyrmion at the level of half-maximum baryon
charge isosurfaces and red indicates a disconnected
Skyrmion. The plots in the figure are arrows from the dots
(without pion mass) to the heads of the arrows (with pion
mass). It is interesting to note that the change due to the
inclusion of the pion mass is not monotonic over the
parameter space; for small m2 ≲ 0.1 − 0.2 the binding
energies decrease (more drastically for smaller values of
m4 than larger values), while for m2 ≳ 0.1 − 0.2 the bind-
ing energies increase. The same effect occurs for m4 ∼ 0.1
and larger. Another feature that we can read off the figure is
that the B ¼ 3 and B ¼ 4 Skyrmions become more
persistent not to deform as functions of increasing m2.
One may naively think that it may imply that smaller
binding energies may be reached before the Skyrmions split
up and change their symmetries, but the pion mass also
increases the binding energies in that region of parameter
space. Therefore there are two competing forces at
play here.
In Fig. 7 we display the least-squares-fit function εδ

which is the average mismatch of the classical binding
energies of all the Skyrmion sectors (B ¼ 2, 3, 4, 5)
compared with the experimental data. It is seen from the
figure that in this part of parameter space, the depend-
ence on m4 is rather weak, whereas the increase of m2

decreases the average classical binding energies to about
3%. The right-hand-side panel of Fig. 7 shows a fit to
the shape of the binding energies ignoring the B ¼ 1
Skyrmion’s energy. This fit prefers points in the param-
eter space around ðm2; m4Þ ¼ ð0.4; 0Þ (and along a line
extending in the m4 direction). This shape fit corre-
sponds to the situation where the B ¼ 2, 3, 4, 5
Skyrmions do not receive extra contribution upon semi-
classical quantization and the B ¼ 1 Skyrmion has about
4.6% lower energy. Since its ground state is a spin-1
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FIG. 4. Fits of the relative binding energies δB summed up in the function εδ.
ffiffiffiffiffiffiffiffiffi
εδ=4

p
corresponds to the average discrepancy of the

classical binding energy, which ranges from about 8% to 1%. The black line shows where the B ¼ 4 Skyrmion splits up into
disconnected pieces at the level of the isosurfaces at the half-maximum value of the baryon charge density. The zero point a is fitted in
the right panel of the figure, which corresponds to ignoring the B ¼ 1 Skyrmion’s energy (that is, fitting just the shape of the remaining
binding energies).

TABLE II. Experimental values for charge radii [38].

1H 0.8783 fm
2H 2.1421 fm
3He 1.9661 fm
4He 1.6755 fm
5He
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state, the quantum contribution will only worsen the
problem. The quantum contribution for the spin-1

2
,

isospin-1
2
state found in Ref. [39] is about 2.2% for

the B ¼ 1 Skyrmion.
The effect of turning on the pion mass is evident in

Fig. 6; however, the parameter space is unfortunately too
small in order to see the effect of the Skyrmions with the
pion mass turned on, breaking up into disconnected pieces
and eventually situating themselves in an FCC lattice.
Therefore we show a larger part of the parameter space for
the B ¼ 4 sector in Fig. 8. The situation is now quite clear.
The effect of increasing m4 (from zero) is a decrease in
binding energy, but long before the binding energies of
realistic nuclei are reached, the Skyrmion breaks up into
disconnected pieces and soon prefers the FCC lattice
structure. The effect of m2, on the other hand, is also a
decrease in binding energy, but much lower binding
energies can be reached before the symmetries of the
Skyrmion (in the B ¼ 4 sector) change. Another lesson that
can be drawn from Fig. 8 is that once m2 takes on a sizable
nonzero value, then the effect of m4 is rather weak (other
than breaking up the Skyrmion), i.e. meaning that the
binding energies do not drop quickly with the increase of
m4. Due to this latter fact, we will consider only m4 ¼ 0 in
the remainder of the paper.

In Fig. 9 we consider all B ¼ 2, 3, 4, 5 sectors and display
the relative classical binding energies for various values of
m2 ranging from zero to 1 in steps of 0.1. The isosurfaces of
their baryon charge densities at half-maximum values are
displayed in Fig. 10. It is seen from Fig. 9 that the larger the
values of m2 are, the closer the classical binding energies
come to those experimentally observed. However, for m2 ∼
0.7 − 0.9 the Skyrmions start to split up into disconnected
pieces and soon begin the transformation from platonic
symmetries to FCC lattice symmetries. Note that since these
binding energies are purely classical binding energies, we
are not seeking an exact match between the lines of the
model calculation and the experimental data. We are merely
seeking the right ballpark value and acceptable shapes of the
curves. The experimental data for the nuclear binding
energies should instead be compared to those of the semi-
classically quantized Skyrmions. We will consider this in the
next subsection.
Figure 11 shows the least-squares-fit function εδ as a

function of m2 for Skyrmions with B ¼ 2, 3, 4, 5 and the
pion mass m1 ¼ 1=4 turned on. The value of a that would
make the model fit the experimental data is about 2%–3%,
whereas the fit prefers negative values for a. This means
that even the classical value of the 1-Skyrmion energy is too
large by 0.5%–6.5%.
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FIG. 5. Fits of relative sizes, separately for B ¼ 2, 3, 4 and at last the mean fit of the same three Skyrmion sectors. Positive values
indicate that the Skyrmion size is too small compared with the experimental value for the nucleus [see Eq. (22)]. The value of ερ
corresponds roughly to the relative mismatch with data, which is in the range of 14% to 90%. The black line shows again where the
B ¼ 4 Skyrmion splits up into disconnected pieces at the level of the isosurfaces at the half-maximum value of the baryon charge
density.
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C. Quantization

We will now attempt to make a crude estimate of the
semiclassically quantized energy contributions to the
Skyrmions for m2 ¼ 0.7, m4 ¼ 0 and the pion mass m1 ¼
1=4 turned on. In order to carry out a rigorous job, one
should establish their symmetries and probably not rely on
the rigid body quantization because we are working on the
borderline where the Skyrmions are trying to split up and
change their symmetries. Instead of the rigid body quan-
tization, one should consider the procedure carried out in

Ref. [40], where the isospinning of the Skyrmion is taken
into account dynamically. This may reveal the symmetry to
be used for the quantization. The first row of Fig. 10 shows
the Skyrmions for m2 ¼ 0.7 and m4 ¼ 0. For the B ¼ 2

Skyrmion, there are two options; it may break up into two
localized (possibly deformed) spheres or it may restore
axial symmetry upon taking isospinning into account
dynamically. The B ¼ 3 and B ¼ 4 Skyrmions retain their
platonic symmetries, namely tetrahedral and cubic sym-
metry, respectively. The symmetry of the B ¼ 5 Skyrmion
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FIG. 7. Fits of the relative classical binding energies δB for Skyrmions with pion masses m1 ¼ 1=4, summed up in the function εδ.ffiffiffiffiffiffiffiffiffi
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corresponds to the average discrepancy of binding energy, which ranges from about 7% to 2.5%. The zero point a is fitted in the

right panel of the figure, which corresponds to ignoring the B ¼ 1 Skyrmion’s energy (shape fit).
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SVEN BJARKE GUDNASON PHYSICAL REVIEW D 93, 065048 (2016)

065048-10



is somewhat harder to determine at this stage. Since we are
only interested in a ballpark estimate of the contribution
from semiclassical quantization to their ground state
energies, we will (possibly unjustified) assume that they
can be quantized with the platonic symmetries used for the
quantization in Ref. [39]. As we will see shortly, the
mistake of this assumption (if wrong) will be negligible.
In order to add the classical Skyrmion mass and the

semiclassically quantized energy contribution, we can no
longer ignore the calibration of the model and have to make
a choice. Fitting the B ¼ 4 sector gives rise to

m2 ¼ 0.7∶ e ¼ 3.45; fπ ¼ 69.80 MeV;

⇒ mπ ¼ 120.25 MeV; ð25Þ

m2 ¼ 0.5∶ e ¼ 3.49; fπ ¼ 75.65 MeV;

⇒ mπ ¼ 132.14 MeV; ð26Þ

m2 ¼ 0∶ e ¼ 3.62; fπ ¼ 88.00 MeV;

⇒ mπ ¼ 159.34 MeV; ð27Þ

where we have used the nuclear mass of 4He∶ 3727 MeV
and the charge radius of 4He∶ 1.6755 fm. As per usual in
the Skyrme model, the physical values used in the B ¼ 0
sector, i.e. pion physics are not quite captured by the fits to
experimental nuclear data.
As can readily be seen from the above calibrations, the

choice of m1 ¼ 1=4 is not an accurate choice and in order
to match the physical pion mass, one should recalibrate the
system for each ðm2; m4Þ point in the parameter space
and adjust m1 accordingly. In this paper, we have merely
chosen an average value that fits in the ballpark of the
physical value.
Using the results of Ref. [39], the semiclassical quantum

contributions to the ground state energies are given by

E
J¼1

2
;I¼1

2

1 ¼ fπ
e
E1 þ

3e3fπ
8V11

; ð28Þ

EJ¼1;I¼0
2 ¼ fπ

e
E2 þ

e3fπ
V11

; ð29Þ

E
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2
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2

3 ¼ fπ
e
E3 þ

3e3fπ
8

U11 þ V11 − 2W11
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e
E4; ð31Þ
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FIG. 8. Relative classical binding energies δB for B ¼ 4 with
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E
J¼3

2
;I¼1

2

5 ¼ fπ
e
E5 þ

e3fπ
4

3U11 þ V11

U11V11 −W2
11

þ e3fπ
8

9U33 þ V33 þ 6W33

U33V33 −W2
33

; ð32Þ

where we have restored the physical units and the tensors in
our notation are given by [39]

Uij ¼ −
1

2

Z
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�
c2TiTj þ

c4
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�
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FIG. 10. Isosurfaces of baryon charge density for Skyrmion solutions with baryon number B ¼ 2 through B ¼ 5 for m4 ¼ 0 as
functions of m2 ¼ 0.7, 0.8, 0.9, 1 (from top to bottom). The coloring is described in the text.
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Vij ¼ −
1

2

Z
d3xϵilmϵjnpxlxnTr

×

�
c2LmLp þ

c4
4
½Lk; Lm�½Lk; Lp�

�
; ð34Þ

Wij ¼
1

2

Z
d3xϵjlmxlTr

�
c2TiLm þ c4

4
½Lk; Ti�½Lk; Lm�

�
;

ð35Þ

and Ti ≡ i
2
U†½τi; U�.

The binding energies for the quantum states—that is, the
classical Skyrmion masses with the addition of the spin and
isospin contribution—are shown in Fig. 12(a) for m2 ¼ 0,
0.5, 0.7, m4 ¼ 0 and the pion mass turned on m1 ¼ 1=4.
Although the m2 ¼ 0.7 series (roughly) retains the platonic
symmetries of the Skyrmions and lowers the binding
energies till about the 6% level, there is still some way to
go in order for the model to reproduce the experimentally
measured binding energies of nuclei. In Fig. 12(b) is shown
the breakdown of the binding energies of the m2 ¼ 0.7
series. As can be seen from the figure, now the problem of
the classical binding energies is at the same level as the
quantum contributions to the masses. Since the ground state
of the 4He nucleus is a spin-0, isospin-0 state and the
experimentally measured binding energy is ≲1%, the spin
contribution of almost 3% to the B ¼ 1 Skyrmion energy
presents an equally big problem as the classical counterparts
in the quest for low binding energies in the Skyrme model.
We also note that the contributions from the semiclassical
quantization to the higher-charged SkyrmionsB ¼ 2, 3, 4, 5
is so low that although they lower the binding energies, their
importance is somewhat academic at this stage. We should

remind the reader of the possibly unjustified calculation for
the spin and isospin contribution to the B ¼ 2 and B ¼ 5
Skyrmions. The proper identification of the relevant sym-
metries and rigorous quantization is an interesting problem
which however is beyond the scope of this paper.
Let us sum up what we learned so far. The classical

binding energies for the Skyrmion are generically too large
(as very well known) and the 1-Skyrmion is too small giving
rise to a large spin contribution upon semiclassical quan-
tization (large means 2%–3%). The lightly bound model
which uses V4 as well as our new potential V2 can both
decrease the classical binding energies to the level of the
experimentally observed values, but at the same time
the quantum contribution to the spin-1

2
state—identified as

the ground state—of the 1-Skyrmion increases and is by no
means negligible. The lightly bound model (which uses V4)
cannot retain the platonic symmetries and lower the classical
binding energies below about 5.5%, whereas the V2 model
can obtain classical binding energies below 3% (approx-
imately) maintaining the platonic symmetries of the
Skyrmions. In the V2 model, the classical binding energies
and the quantum contributions are thus of the same order of
magnitude, yielding total binding energies near the 6% level.

IV. DISCUSSION

In this paper we have studied the Skyrme model with the
addition of two scalar potentials that do not contribute to the
pion mass, but yield repulsive forces at short range—
thus reducing the classical binding energies. The two
potentials we have considered are V2 ∝ ð1 − TrU=2Þ2
and V4 ∝ ð1 − TrU=2Þ4, where the latter was considered
in Refs. [14,15]. Both potentials are able to lower the
classical binding energies, but V2 can lower them further
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FIG. 12. (a) Relative total binding energies δtotB with semiclassical quantum contributions from spin and isospin included for B-
Skyrmions with the pion mass m1 ¼ 1=4 turned on. The series of points shown is for m2 ¼ 0, 0.5, 0.7 with m2 increasing from top to
bottom. The red-dashed line is again the experimental data from Table I. (b) Breakdown of the semiclassical quantum contribution to the
m2 ¼ 0.7 series from spin and isospin quantization. The black line shows the classical binding energies whereas the blue line is the total
binding energies. The orange arrows represent the B ¼ 1 quantum contribution and the difference between the arrow heads and the blue
line is the B quantum contribution (which vanishes for B ¼ 4 as it should).
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FIG. 13. Isosurfaces of baryon charge densities for Skyrmion solutions with baryon number B ¼ 2 in the ðm2; m4Þ-parameter space.
The values of m4 ¼ 0; 0.02; 0.04; 0.06; 0.08; 0.1; 0.12; 0.14; 0.16; 0.18; 0.2; 0.22; 0.24 (increasing from bottom to top) while m2 ¼
0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6 (increasing from left to right). The coloring is described in the text.
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FIG. 14. Isosurfaces of baryon charge densities for Skyrmion solutions with baryon number B ¼ 3 in the ðm2; m4Þ-parameter space.
The values of m4 ¼ 0; 0.02; 0.04; 0.06; 0.08; 0.1; 0.12; 0.14; 0.16; 0.18; 0.2; 0.22; 0.24 (increasing from bottom to top) while m2 ¼
0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6 (increasing from left to right). The coloring is described in the text.
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FIG. 15. Isosurfaces of baryon charge densities for Skyrmion solutions with baryon number B ¼ 4 in the ðm2; m4Þ-parameter space.
The values of m4 ¼ 0; 0.02; 0.04; 0.06; 0.08; 0.1; 0.12; 0.14; 0.16; 0.18; 0.2; 0.22; 0.24 (increasing from bottom to top) while m2 ¼
0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6 (increasing from left to right). The coloring is described in the text.
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FIG. 16. Isosurfaces of baryon charge densities for Skyrmion solutions with baryon number B ¼ 5 in the ðm2; m4Þ-parameter space.
The values of m4 ¼ 0; 0.02; 0.04; 0.06; 0.08; 0.1; 0.12; 0.14; 0.16; 0.18; 0.2; 0.22; 0.24 (increasing from bottom to top) while m2 ¼
0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6 (increasing from left to right). The coloring is described in the text.
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without breaking the platonic symmetries well known to
describe the lowest-energy configurations forV2 ¼ V4 ¼ 0,
i.e. the normal Skyrme model. Although the potential V2 is
able to lower the classical binding energies to about the 3%
level, semiclassical quantization of the 1-Skyrmion—
corresponding to taking the proton or neutron spin into
account—yields another 3% contribution such that the total
binding energies of the model is about 6%—if platonic
symmetries are wished intact. If we give up on the platonic
symmetries, both V2 and V4 can lower the classical binding
energies further, but since both potentials have the effect of
shrinking the 1-Skyrmion, the V11 inertia tensor decreases,
yielding an increasing spin contribution to the energy. This
thus increases the total binding energies of all the B-
Skyrmions (since the higher-B Skyrmions do not have
sizable contributions from quantization). The question of
whether the experimental values of the binding energies can
be reachedwith either one of the two potentials is beyond the
scope of this paper—but an interesting future problem.
One of the aims of this paper has been to retain the

platonic symmetries of the Skyrme model, which may or
may not be necessary. The simple argument in favor of
keeping the symmetries is to keep the successes of the
Skyrme model, including the description of the Hoyle state
in 12C [17]. Further studies on this problem are however
required.
It was argued in Ref. [20] that the aloof property that

comes hand in hand with the lightly bound Skyrme model
is welcome for two reasons. The first is obviously the
reduction of the classical binding energies and the second is
that the normal Skyrmions are claimed to be too symmetric.
The argument of Ref. [20] is based on the fact that the
B ¼ 7 Skyrmion fits poorly the experimentally observed
data because the Skyrmion has a very large symmetry that
eliminates the states with spin-1

2
, spin-3

2
, and spin-7

2
which is

in conflict with the experimental observation that the
ground state of 7Li is a spin-3

2
state. The recent paper

[41], however, remedies the failure of the Skyrme model to
include the spin-3

2
state by considering quantization of the

vibrational modes of the 7-Skyrmion. The result is that a
spin-3

2
state is present in the normal Skyrme model enjoying

the platonic symmetries.
Since our model does not quite achieve the requirement

of very low binding energies observed experimentally in
nuclei, further improvements are needed. It has been

observed in this paper that the pion mass term actually
increases the classical binding energies and thus exacer-
bates the problem at hand. One possibility is to switch the
traditional pion mass term for another potential also
yielding the pion mass, but with different nonlinear
realization. One candidate here is the modified pion mass
term (V02), which was studied in Refs. [23–31]. As
discussed in Sec. II, a large class of potentials gives rise
to the pion mass, but may have different effects on the
Skyrmions—including their classical binding energies.
Another direction that may be considered in the search

for improvement of the model is to include the sixth-order
derivative term of the BPS Skyrme model [12,13]. This
obviously introduces another parameter in the model, but
may yield properties that are more than welcome, for
instance its near-perfect fluid properties [42–45]. It has
been observed in several contexts that the BPS Skyrme
term increases the size of the Skyrmion [15,37], which is
very welcome in light of the fact that the Skyrmions are too
small and that the moment of inertia of the 1-Skyrmion is
too small.
One approximation that when relaxed may ameliorate

the problem of the total binding energies is the unbroken
isospin symmetry. In the setting we are working in now,
the proton and the neutron are the same object and so the
1-Skyrmion ground state should be considered as an
average of the two. Taking the splitting in energy into
account due to the isospin breaking may improve
the model.
Finally, we have not exhausted the possibilities for

potential terms. Other powers and also noninteger powers
may be considered. Other potentials than those we have
considered may have interesting and important effects that
have not yet been explored.
The quest for finding a high-precision Skyrme-like

model that can capture important features for many
(all?) nuclei is certainly interesting and important. We will
end on this remark: whether the symmetries of the
Skyrmions should be platonic or FCC. The jury is still out.
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