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Cooling simulations of neutron stars and their comparison with the data from thermally emitting x-ray
sources put constraints on the properties of axions, and by extension, of any light pseudoscalar dark matter
particles, whose existence has been postulated to solve the strong-CP problem of QCD. We incorporate the
axion emission by pair-breaking and formation processes by S- and P-wave nucleonic condensates in a
benchmark code for cooling simulations, as well as provide fit formulas for the rates of these processes.
Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar
masses, featuring nonaccreted iron and accreted light-element envelopes, and a range of nucleon-axion
couplings. The models are based on an equation state predicting conservative physics of superdense nuclear
matter that does not allow for the onset of fast cooling processes induced by phase transitions to non-
nucleonic forms of matter or high proton concentration. The cooling tracks in the temperature vs age plane
were confronted with the (time-averaged) measured surface temperature of the central compact object in
the Cas A supernova remnant as well as surface temperatures of three nearby middle-aged thermally
emitting pulsars. We find that the axion coupling is limited to fa=107 GeV ≥ ð5–10Þ, which translates into
an upper bound on axion mass ma ≤ ð0.06–0.12Þ eV for Peccei-Quinn charges of the neutron jCnj ∼ 0.04
and proton jCpj ∼ 0.4 characteristic for hadronic models of axions.
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I. INTRODUCTION

Astrophysics provides means for constraining properties
of dark matter particles—in particular, light pseudoscalar
particles such as axions [1,2]. Axions were originally
introduced in the context of the Peccei-Quinn mechanism,
which postulates a new global Uð1ÞPQ symmetry [3,4] to
solve the strong-CP problem in QCD [5], but they may
play a significant role in cosmology and in stellar physics.
Stellar physics of the Sun and solar-type stars, red giants,
white dwarfs and supernovae puts constraints on the
couplings of axions to standard-model (SM) particles
[6]. The constraints are set by requiring that the coupling
of axions to SM particles not alter significantly the agree-
ment between theoretical models and observations. Axions
may efficiently be produced in the interiors of stars and act
as an additional sink of energy; therefore, they can alter
the energetics of some processes—for example, a type-II
supernova explosion. Several authors noted that the
emission of axions (a) in the nucleon (N) bremsstrahlung
N þ N → N þ N þ a may drain too much energy from the
type-II supernova process, making it energetically incon-
sistent with observations of such events [7–11]. Axions will
not affect the neutrino burst if they are trapped inside the
newborn neutron star, which would be the case if the axion
mass is larger than 10−2 eV [9]. In this case the axions are
radiated, in analogy to neutrinos, from the “axion sphere.”
Combined studies of the free-streaming and trapping
regimes suggest that an axion with mass in the interval
10−3 to 2 eV is excluded by the observation of neutrinos
from SN 1987A [9]. The coupling of axions to other SM

particles is also constrained by stellar physics. For example,
the axion coupling to electrons is constrained by the
cooling of white dwarfs and red giants, where the under-
lying energy-loss mechanism is the axion emission by
bremsstrahlung of electrons scattering off nuclei [12–15].
Solar physics provides another example where energy
arguments allow us to place limits on beyond-SM physics;
see Refs. [16,17]. These stellar constraints are comple-
mented by experimental [18] and cosmological [19]
bounds. For reviews of astrophysical limits on axion
properties, see Refs. [20,21].
Neutron star cooling by neutrino emission is a highly

sensitive tool to study the interior composition of neutron
stars (see, for example, reviews [22–24]). Neutron star
cooling via axions has evaded detailed scrutiny, although a
number of key reactions necessary for such an analysis
have been computed long ago [25–28] (for details, see
Sec. II B). Umeda et al. [29], in their pioneering study of
axion cooling of neutron stars, considered the axion
radiation process via the bremsstrahlung in NN collisions
in bulk nuclear matter. However, neutrino-antineutrion
pair emission via Cooper pair-breaking-formation (PBF)
processes [30,31], which start to operate below the critical
temperature of transition of baryons to the superfluid state,
plays an important role in the modern simulations of
cooling of neutron stars. These processes act as the
dominant cooling agent during the neutrino cooling era
(i.e., the time span 0.1 ≤ t ≤ 100 kyr) if the fast cooling
processes are not operative. Previously, Ref. [32] (hereafter
abbreviated as KS) computed the axion counterparts of the
PBF processes in neutron stars and set approximate limits
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on the axion’s coupling to baryons and its mass by
requiring that the axion emission rate via the PBF processes
be smaller than its neutrino counterpart [33–37].
The purpose of this work is to continue the KS analysis

by incorporating the rates of the PBF processes in a cooling
simulation code. Here we compute a large sample of
cooling models of neutron stars and confront them with
observations. The first aspect of our strategy is to use a
conservative model of cooling which is not contaminated
by the uncertainties in the rates of rapid neutrino emission
processes, which in turn strongly depend on the compo-
sition of dense matter at densities above the saturation of
nuclear matter. Modern simulations of the cooling of
neutron stars (see, for example, the work by different
groups on hadronic models [38–43] and hybrid star models
[44–47]) demonstrate that fast neutrino processes do not
operate in low-mass neutron stars with M ≤ 1.5M⊙,
because each such process is associated with a certain
density threshold (which need not be sharp; see in
particular Refs. [40,41] for this type of modeling). Light
neutron stars may not achieve these thresholds in their
centers, and therefore they will follow the slow cooling
scenario which is in line with the minimal cooling para-
digm that excludes fast cooling processes per se [38].
Below, the axion bounds will be derived from simulations
of the cooling of low-mass stars. (Wewill also report results
obtained for more massive stars in the framework of
minimal cooling, i.e., by simply excluding the fast proc-
esses, such as the direct Urca process.) The Akmal-
Pandharipande-Ravenhall (APR) equation of state (EOS)
that will be used in our simulations has nucleons and
leptons as constituents of matter at all densities and does
not include non-nucleonic degrees of freedom [38].
The second aspect of our strategy is to concentrate on a

small sample of relatively high-temperature young and
intermediate-aged objects which reside within the time
domain 0.1 ≤ t ≤ 100 kyr and which are known to be
weakly magnetized. The latter choice guarantees that no
contamination will arise from the uncertain physics of
internal heating processes. As argued in KS, a single
example that does not fit into the axion cooling scenario
already constrains the coupling of axions to SM particles.
As a representative for young nonmagnetized neutron stars
we choose the compact central object (CCO) located in the
Cas A supernova remnant. As with all CCOs, this neutron
star emits radiation in x rays without counterparts at other
wavelengths. As a representative for intermediate-aged
neutron stars, we selected three nearby thermally emitting
neutron stars, two of which are radio-active pulsars
B0656þ 14 and B1055-52, with the third being the
radio-quiet neutron star Geminga.
Finally, we use a benchmark code [48] which incorpo-

rates standard microphysical input (EOS, gaps, etc.) used
commonly in the cooling simulations. For details of the
code, physics input and results, see Ref. [38] and references

therein. We also conducted simulations with an alternative
code described in Refs. [44–46], with different EOSs
and microphysics input, and obtained quantitatively good
agreement at the relevant intermediate- and late-time
cooling.
This paper is structured as follows: In Sec. II we review

the axion properties and their emission rates in neutron stars.
The cooling simulations and the results are discussed in
Sec. III. Our conclusions and an outlook are given in Sec. IV.

II. AXION EMISSION RATES IN NEUTRON STARS

A. Axion couplings to SM particles

Quantum chromodynamics (QCD), the fundamental
theory of strong interactions, violates the combined CP
symmetry due to a topological interaction term in the QCD
Lagrangian

Lθ ¼
g2θ
32π2

Fa
μν
~Fμνa; ð1Þ

where Fa
μν ¼ ∂μAν − ∂νAμ þ gfabcAμbAνc is the gluon field

strength tensor, g is the strong coupling constant,
~Fa
μν ¼ ϵμνλρFλρa=2, fabc are the structure constants of the

SUð3Þ group, and the parameter θ, which is periodic with
period 2π, parametrizes the nonperturbative vacuum states
of QCD jθi ¼ P

n expð−inθÞjni; here n is the winding
number characterizing each distinct state, which is not
connected to another by any gauge transformation [5].
If quarks are present, then the physical parameter is
θ̄ ¼ θ þ arg detmq, where mq is the matrix of quark
masses. Experimentally, the upper bound on the value of
this parameter is θ̄ ≲ 10−10, which is based on the mea-
surements of the electric dipole moment of the neutron,
dn < 6.3 × 10−26e cm [49]. SM does not provide an
explanation on why θ̄ is not of the order of unity—a fact
known as the strong CP problem.
The Peccei-Quinn mechanism solves the CP problem by

introducing an new global Uð1ÞPQ symmetry which adds
an additional anomaly term to the QCD action proportional
to the axion field a [1,3]. The axion field value is then given
by hai ∼ −θ̄. The physical axion field is then a − hai, and
the undesirable θ term in the action is replaced by the
physical axion field, which can be viewed as the Nambu-
Goldstone boson of the Peccei-Quinn Uð1ÞPQ symmetry
breaking [1,2].
The Lagrangian of axion field a has the form

La ¼ −
1

2
∂μa∂μaþ LðNÞ

int ð∂μa;ψNÞ þ LðLÞ
int ða;ψLÞ; ð2Þ

where the second term describes the coupling of the axion
to nucleon fields (ψN) and the third term describes the
coupling to the lepton fields (ψL) of the SM. The coupling
of axion to nucleonic fields is described by the following
interaction Lagrangian:
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LðBÞ
int ¼ 1

fa
BμAμ; ð3Þ

where fa is the axion decay constant, and the baryon and
axion currents are given by

Bμ ¼
X
N

CN

2
ψ̄Nγ

μγ5ψN; Aμ ¼ ∂μa; ð4Þ

where N ∈ n; p labels neutrons and protons, and CN are
the Peccei-Quinn (PQ) charges of the baryonic currents.
The dimensionless Yukawa coupling can be defined as
gaNN ¼ CNmN=fa with the implied “fine-structure” con-
stant αaNN ¼ g2aNN=4π. The coupling of axions to leptons
(in practice we consider only electrons) is commonly taken
in the pseudoscalar form

LðeÞ
int ða;ψeÞ ¼ −igaeeψ̄eγ5ψea; ð5Þ

where the Yukawa coupling is given by gaee ¼ Ceme=fa.
The CN charges are generally given by generalized
Goldberger-Treiman relations:

Cp ¼ ðCu − ηÞΔu þ ðCd − ηzÞΔd þ ðCs − ηwÞΔs; ð6Þ

Cn ¼ ðCu − ηÞΔd þ ðCd − ηzÞΔu þ ðCs − ηwÞΔs; ð7Þ

where η ¼ ð1þ zþ wÞ−1, with z ¼ mu=md, w ¼ mu=ms,
and Δu ¼ 0.84� 0.02, Δd ¼ −0.43� 0.02 and Δs ¼
−0.09� 0.02. The main uncertainty is associated with
z ¼ mu=md ¼ 0.35–0.6. For hadronic axions, Cu;d;s ¼ 0,
and the nucleonic charges vary in the range

−0.51 ≤ Cp ≤ −0.36; −0.05 ≤ Cn ≤ 0.1: ð8Þ

These ranges imply that neutrons may not couple to axions
(Cn ¼ 0), whereas protons always couple to axionsCp ≠ 0.
The values of PQ charges define a continuum of axion
models; for a review see, for example, Ref. [4]. In the
so-called invisible axion DFSZ model, these couplings are
of the same order of magnitude and are related via the ratio
of two Higgs vacuum expectation values tan β as follows:
Ce ¼ cos2β=3, Cu ¼ sin2β=3, Cd ¼ cos2β=3, where β is a
free parameter. In the alternative KVSZ model, ordinary
SM particles do not have PQ charges and Ce ¼ 0; the
coupling of baryons to axions arises from PQ charges of
unknown very heavy quarks. To keep the discussion
general enough, we will abstract from a particular axion
model and will treat the PQ charges of fermions as free
parameters taken from the range (8); we will also explore
the case of large neutron PQ charge to contrast our result
with the case where jCnj ∼ jCpj. If only nucleonic proc-
esses are considered, the emission rates depend on a certain
combination of charges and axion decay constant.

In general, when leptonic processes are involved, this is
not the case.
The axion mass is related to fa via the relation

ma ¼
z1=2

1þ z
fπmπ

fa
¼ 0.6 eV

fa=107 GeV
; ð9Þ

where the pion mass mπ ¼ 135 MeV, decay constant
fπ ¼ 92 MeV, and we adopt from the range of z values
quoted the value z ¼ 0.56. Equation (9) translates a lower
bound on fa into an upper bound on the axion mass.

B. Axion emission via PBF process

KS obtained the axion emissivity of S-wave paired
superfluid by assuming that the PQ charges of nucleons
are fixed by CN=2 ¼ 1. By matching Eq. (5) of KS
with Eq. (4), we see that we need to rescale their
f−1a → ðCN=2Þf−1a to obtain explicitly the expression for
the axion emissivity in the present notations. Thus, the
axion emissivity now reads

ϵSaN ¼ 2C2
N

3π
f−2a νNð0Þv2FNT5ISaN; ð10Þ

where νNð0Þ ¼ m�
NpFN=π2 is the density of states at the

Fermi surface, vFN is the Fermi velocity, the superscript S
indicates isotropic pairing in the 1S0 channel,

ISaN ¼ z5N

Z
∞

1

dy
y3ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p fFðzNyÞ2; ð11Þ

and zN ¼ ΔS
NðTÞ=T. The bound obtained by KS from the

requirement that the axion cooling not overshadows the
cooling via neutrinos after rescaling reads

ϵSa
ϵSν

¼ 59.2C2
N

4f2aG2
FΔS

NðTÞ2
rðzÞ ≤ 1; ð12Þ

where rðzÞ is the ratio of the phase-space integral for axions
(11) and its counterpart for neutrinos and is numerically
bound from above rðzÞ ≤ 1; therefore it can be dropped
from the bound on fa. Substituting the value of the Fermi
coupling constant GF ¼ 1.166 × 10−5 GeV−2 in Eq. (12),
we rewrite the bound found by KS as

fa=1010 GeV
CN

> 0.038
�
1 MeV
ΔSðTÞ

�
; ð13Þ

which now includes the PQ charge of the neutron or proton
explicitly. Using Eq. (9), this translates to an upper bound
on the axion mass of

maCN ≤ 0.163 eV

�
ΔS

NðTÞ
1 MeV

�
: ð14Þ
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Note that the nucleon pairing gap on the right-hand side
can be replaced by the critical temperature Tc, because
in the range of temperatures important for pair-breaking
processes, 0.5 ≤ T=Tc < 1, the BCS theory predicts
ΔðTÞ≃ Tc.
Neutron condensate in neutron star cores is paired in the

3P2-3F2 channel in a state which features an anisotropic
gap [50]. As pointed out in KS, the results above can
be trivially extended to the P-wave pairing following
analogous discussion for neutrino emission in Ref. [33].
The corresponding axion emissivity is obtained from the
S-wave rate above (10) by setting v2Fn ¼ 1 and angle-
averaging the phase-space integral (11) to account for the
anisotropy of the gap

ϵPan ¼
2C2

n

3π
f−2a νnð0ÞT5IPan; ð15Þ

where

IPan ¼
Z

dΩ
4π

z5N

Z
∞

1

dy
y3ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p fFðzNyÞ2; ð16Þ

where dΩ denotes the integration over the solid angle and
zN ¼ ΔPðT; θÞ=T depends on the polar angle θ, where
ΔPðT; θÞ is the pairing gap in the P-wave channel. By
adapting Eq. (11) to the P-wave case, we automatically
include the vertex corrections that were omitted in Ref. [33].
Note that Cn ¼ 0 is not excluded; i.e., conceivably axions
may not be emitted by the neutron P-wave condensate.
For the purpose of numerical simulations of axion

cooling, it is useful to obtain fits to the dependence of
the integrals (11) and (16) on reduced temperature
τ ¼ T=Tc, where Tc is the critical temperature. We
first obtain the asymptotic forms of these integrals in the
limits T → 0 and T → Tc. In the low-temperature limit
ΔðTÞ=T ≫ 1, i.e., z ≫ 1, and because y ≥ 1 we can set in
(11) f2FðzyÞ ¼ exp ð−2yzÞ. (We drop the indicesN, n and p
in the intermediate steps and recover them in the final
expressions). The integration with subsequent expansion in
z ≫ 1 gives

ISaN ¼ z5
�
K1ð2zÞ þ

K2ð2zÞ
2z

�
≃ z5

2

ffiffiffi
π

z

r
expð−2zÞ; ð17Þ

where KnðzÞ is the Bessel function of the second kind of
nth order.
In the limit T → Tc, we approximate the denominator of

the integrand
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p ≃ y and obtain

ISaN ¼ ð9ζð3Þ − π2Þ Δ
2
N

6T2
≃ 0.158

Δ2
N

T2
: ð18Þ

There exist two competing states for P-wave superfluid,
which differ by the anisotropy of the gap. We denote these

states as A and B and assign them the following depend-
ences on the angle θ:

ΔA ¼ ΔA
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3cos2θ

p
; ΔB ¼ ΔB

0 sin θ: ð19Þ

In the high-temperature (T → Tc) limit, we have

IP
A

an ¼ IPan

Z
dΩ
4π

ð1þ 3 cos2 θÞ ¼ 2IP
0

an; ð20Þ

IP
B

an ¼ IPan

Z
dΩ
4π

sin2 θ ¼ 2

3
IP

0

an; ð21Þ

where IP
0

an stands for the isotropic part of the integral and
is given by (18) where ΔN is replaced by ΔA;B

0 . In the
anisotropic case, the low-temperature limit does not have a
simple analytical representation.
The exact numerical calculations of the integrals (11)

and (16) were fitted in the range 0 ≤ z ≤ 15 using suitable
functions which reproduce correct asymptotic forms as
described above. For S-wave pairing, we used the following
fit formula:

ISaNðzÞ ¼ ðaz2 þ cz4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fz

p
e−

ffiffiffiffiffiffiffiffiffiffiffi
4z2þh2

p
þh; ð22Þ

where a ¼ 0.158151, c ¼ 0.543166, h ¼ 0.0535359, and
f ¼ π=4c2. This formula fits the numerical result with
relative accuracy ≤ 5.6% for z ∼ 1 and much more accu-
rately in the asymptotic regimes. In the case of PA-wave
pairing, we used the function

IP
A

anðzÞ ¼
ðaz2 þ cz4Þð1þ fz2Þ

ð1þ bz2 þ gz4Þ e−
ffiffiffiffiffiffiffiffiffiffiffi
4z2þh2

p
þh; ð23Þ

where a ¼ 2 × 0.158151, b ¼ 0.856577, c ¼ 0.0255728,
f ¼ 2.22858, g ¼ 0.000449543 and h ¼ 2.22569. The
relative accuracy of the fit is ≤ 4% at z ∼ 10 and is better
in the rest of the domain. Finally, in the case of PB-wave
pairing we used the function

IP
B

an ðzÞ ¼
ðaz2 þ cz4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fz2

p
ð1þ bz2 þ gz4Þ ; ð24Þ

where a ¼ ð2=3Þ × 0.158151, b ¼ −0.043745, c ¼
−0.000271463, f ¼ 0.0063470221, g ¼ 0.0216661. The
relative error in this case remains below 2%. The exact
results for the integrals (11) and (16) are shown in Fig. 1
together with the approximate fits given by Eqs. (22)–(24).

C. Axion bremsstrahlung emission in the crust

Electrons undergoing acceleration in the vicinity of a
nucleus characterized by charge Z and mass number A will
emit axions. The PQ charge of electrons Ce is related
to the dimensionless coupling of axions to electrons by
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gaee ¼ Ceme=fa. The emissivity of the axion bremsstrah-
lung process is given by [25,27]

ϵaee ¼
π2

120

Z2α

A

�
Ceme

faϵe

�
2

nBT4

�
2 lnð2γÞ − ln

α

π

�
; ð25Þ

where ϵe is the Fermi energy of electrons and γ is the
Lorentz factor of ultrarelativistic electrons, α ¼ 1=137 is
the fine-structure constant, and nB is the baryon number
density. This axion bremsstrahlung process has its neutrino-
pair emission counterpart, and its rate is given by [51]

ϵνee ¼
8π

567
G2

FC
2þZ2α4niT6L; ð26Þ

where C2þ ¼ 1.675, 0 ≤ L ≤ 1 includes many-body cor-
rections to the rate of the process related to the correlations
among the nuclei, electron screening, finite nuclear size,
etc., and ni is the number density of nuclei. To see the
relative importance of the axion and neutron emissivities,
we fix the electron PQ charge Ce ¼ 1, in which case the
ratio of the axion to neutrino emissivity is given by

ϵaee
ϵνee

≃ 189π

320

C2
e

ðCþGFTfaÞ2α3L
�
me

ϵe

�
2

¼ 2.8

�
1

T=109 K

�
2
�

1

fa=1010 GeV

�
2

; ð27Þ

where for the sake of estimate we set me=ϵe ¼ 10−2, L ¼ 1
and set the expression in brackets in Eq. (25) equal to unity.
We also use nB=A ¼ ni, which applies when the density of
free neutrons in the crust is negligible, as has been assumed
in Eq. (8) of Ref. [25].

D. Axion bremsstrahlung emission in the core

To describe the axion emission in the core of the neutron
stars, we consider the processes involving neutrons, protons
and electrons; the EOS chosen for numerical simulations
is purely nucleonic for all relevant densities, and there is
no need to consider other degrees of freedom, such as
hyperons or quarks. Axions will be emitted in the nucleon
collisions via bremsstrahlung process (irrespective of
the pairing of nucleons). The emissivity of the process
N þ N → N þ N þ a, N ∈ n or p, is given by [25,26]

ϵaN ¼ 31

945
αaNN

�
fπ
mπ

�
4

m2
NpFNT6F

�
mπ

2pFN

�
R; ð28Þ

where αaN is the axion fine-structure constant (see Sec. II A),
FðxÞ≡ 1 − ð3=2Þx arctanð1=xÞ þ x2=2ð1þ x2Þ. We do not
reproduce the expression for the nþ p → nþ pþ a reac-
tion, which is more complicated due to two different Fermi
surfaces involved, see Eq. (2.13) of Ref. [26]. The factor R
stands for reduction of the axion emissivity by the super-
fluidity of nucleons, and we have implemented the same
factors as has been done for the neutrino bremsstrahlung in
the code. (For discussion, see Ref. [52].) The emissivity (28)
should be viewed as an upper limit because of the approxi-
mate treatment of the nuclear interaction in the N − N
collisions which only include the one-pion exchange con-
tribution to the nuclear scattering [hence the proportionality
of ϵaNN to ðfπ=mπÞ4]. The inclusion of other (repulsive)
channels of interaction reduces the rate by a factor of 0.2.
This argument applies also to the neutrino-pair bremsstrah-
lung process in nuclear collisions; therefore the relative
importance of these processes in cooling neutron stars is
unaffected (i.e., the ratio of the axion and neutrino emissiv-
ities is independent of the nuclear matrix element, which can
be factorized if the radiation is soft).

III. COOLING SIMULATIONS

We recall that the specific purpose of this work is to
(a) consider a conservative model of neutron stars without
fast cooling agents which is almost certainly guaranteed for
light- to medium-mass neutron stars; (b) choose observa-
tional data which are not potentially contaminated by the
heating by strong magnetic fields at intermediate stages of
cooling and other sources at late times; and (c) use a well-
tested code with standard EOS input in order to benchmark
the axion cooling of neutron stars and render the results
easily reproducible.

A. Physics input

The cooling code solves the energy balance and transport
equation, which can be reduced to a parabolic differential
equation for the temperature of the core. The transport in
the low-density blanket of the star comprising matter below
the density ρb ¼ 1010 g cm−3 is decoupled from evolution

0 2 4 6 8 10
z

0

0,1

0,2

0,3

0,4

0,5

I a(z
)

S
P

A

P
B

FIG. 1. Dependence of the integrals (11) and (16) on
z ¼ ΔðTÞ=T. The exact results are shown by symbols, whereas
the fits are shown by lines.
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and is treated separately in terms of a relation between
temperature at its base T and the surface of the star Ts. This
relation has the generic form T4

s ¼ gshðTÞ, where gs is the
surface gravity, and h is some function which depends on
T, the opacity of crustal material, and its equation of state.
The amount of the light material in the envelope is
regulated by the parameter η, which takes on the value
η¼ 0 for a purely iron surface and η → 1 for a light-element
surface. For a detailed discussion of the input physics, the
reader is referred to Ref. [38] and references therein.
After the initial nonisothermal phase, the models settle

into an equilibrium state which is characterized by an
isothermal core and gradient-featuring envelope. In this
case, the time evolution is characterized by the ordinary
differential equation

CV
dT
dt

¼ −LνðTÞ − LaðTÞ − LγðTsÞ þHðTÞ; ð29Þ

where Lν and La are the neutrino and axion luminosities
from the bulk of the star (recall that the neutrino and axion
mean free paths are larger than the star radius) and Lγ is
the luminosity of photons radiated from the star’s surface.
Here CV is the specific heat of the core, and HðtÞ accounts
for heating processes, which could be important in the
late-time evolution of neutron stars. We assume below
that HðTÞ ¼ 0 in the neutrino cooling era. The photon
luminosity is given simply by the Stefan-Boltzmann law
Lγ ¼ 4πσR2T4

s , where σ is the Stefan-Boltzmann constant,
and R is the radius of the star.
We have computed 24 models of cooling neutron stars by

choosing three different massesm ¼ 1.0, 1.4, 1.8, where m
is the object mass normalized to the solar mass, light-
element η ¼ 1 and iron η ¼ 0 envelopes, as well as four
values of the axion decay constant fa7 ¼ ∞; 10; 5; 2, where
we use the units of fa7 ¼ fa=107 GeV. Throughout most
of the computation, the PQ charges of neutrons and protons
were fixed at jCnj ¼ 0.04 and jCpj ¼ 0.4, which reflect the
asymmetry in the couplings of neutrons and protons to
axions according to Eq. (8). Note that these quantities enter
the axion emission rate in the combination ðf�aÞ−1 ¼
ðCN=2Þf−1a ; therefore cooling simulations put constraints
on f�a rather than on fa and CN separately. From now on,
we will also assume that Ce ¼ 0—a conservative
assumption which allows us to focus on PBF processes.
We will return to the role of electrons in a separate study.
All simulations employ the APR EOS with only nucleonic
degrees of freedom, which guarantees that fast cooling
processes do not act. Before presenting the results, we turn
to the observational data.

B. Selecting objects

As argued previously in KS, it is sufficient to carry out
fits to selected objects rather than a global fit to the
population of all known thermally emitting neutron stars.

Here we use a handful of objects to mark up the early
∼0.1 kyr and intermediate ∼100 kyr evolution of neutron
stars. For the early stages, excellent candidates are the
CCOs in supernova remnants (SNRs), which comprise a
family of around ten pointlike, thermally emitting x-ray
sources located close to the geometrical centers of non-
plerionic SNRs [53]. They do not show counterparts at any
other wavelength than x rays and have low magnetic fields,
which exclude heating processes at this stage of evolution.
As a representative for CCOs we take the CXO

J232327.9þ 584842 in Cassiopea A SNR. It has received
much attention because of its putative transient cooling
claimed to occur during the past ten years. In the current
context these variations are irrelevant, and we shall adopt a
constant temperature T ¼ 2.0� 0.18 × 106 K at the age
320 yr [54]. As representatives for late time-cooling we
choose a group of three neutron stars which form a class
of nearby objects that allows spectral fits to their x-ray
emission [55]. Typically the spectra do not allow a single-
component blackbody fit, but two-component fits are
sufficient. The first object is PSR B0656þ 14, which is
a rotation-powered pulsar. The two inferred temperatures
for this object are Tw ¼ ð6.5� 0.1Þ × 105 K and Th ¼
ð1.25� 0.03Þ × 106 K. The characteristic age of this pulsar
is 1.1 × 105 yr. The second object is PSR B1055-52, which
is again a rotation-powered pulsar [55]. The two blackbody
temperature fits give Tw ¼ 7.9� 0.3 × 105 K and
Th ¼ ð1.79� 0.06Þ × 106 K. The characteristic age of this
pulsar is 5.37 × 105 yr. The third object is Geminga, which
is a radio-quiet nearby x-ray-emitting neutron star [55].
The two-blackbody temperature fit gives Tw ¼ 5.0� 0.1 ×
105 K and Th ¼ ð1.9� 0.3Þ × 106 K. The characteristic
age of Geminga is 3.4 × 105 yr. In confronting the neutron
stars’ blackbody temperatures with the theoretical models,
we will adopt the lower of the two values inferred. The ages
of these three neutron stars are known only on the basis of a
spin-down model, which is uncertain. We quantify this
uncertainty by assigning a factor of 3 error to the spin-down
age of each of these objects. The data on PSR B1055-52 are
marginally (in)consistent with the cooling curves we find,
but the uncertainties in the physics of cooling tolerate such
discrepancy: first, in contrast to CCO in Cas A, only the
spin-down age is known, which can have larger error than
we assumed; second, at the later stages of thermal evolu-
tion, heating processes (even for weakly magnetized stars)
can become a factor. Finally, the discrepancy may lie in the
modeling of the pairing gaps, which can be tuned to fit the
inferred temperature of PSR B1055-52.

C. Results of simulations

The results of extensive simulations are summarized in
Fig. 2, where we show cooling tracks for 16 models of
light- and intermediate- (m ¼ 1 andm ¼ 1.4) mass neutron
stars for cases of a nonaccreted iron envelope (η ¼ 0) and a
light-element envelope (η ¼ 1). For each of these cases the
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axion coupling has been assigned the following values:
fa ¼ ∞ (negligible coupling), fa7 ¼ 10, fa7 ¼ 5 and
fa7 ¼ 2, where fa7 ¼ fa=107 GeV, in combination with
charges jCnj ¼ 0.04 and jCpj ¼ 0.4.
The observational temperatures of the four objects

discussed are shown by dots with error bars. The temper-
ature of CCO in Cas A is consistent with the cooling of
m ¼ 1 and 1.4 mass stars assuming that the compact object
in Cas A has a light-element envelope and axion cooling is
absent. Switching on the axion cooling decreases the
temperatures of models with the age of CCO in Cas A
because of the additional losses caused by the axion PBF
process. It is seen that for small enough values of fa, the
cooling curves become inconsistent with the Cas A data.

Quantitatively, the lowest value of axion coupling fa7 ¼ 2
is inconsistent with bothm ¼ 1 andm ¼ 1.4mass cooling;
the value fa7 ¼ 5 is inconsistent with m ¼ 1 but not with
m ¼ 1.4 mass star cooling.
The temperatures of the remaining middle-aged neutron

stars from our collection are consistent with the cooling of
m ¼ 1 and 1.4 mass star models if we make the natural
assumption that these neutron stars have nonaccreted iron
envelopes. Axion cooling with fa7 ≤ 5 is clearly incon-
sistent with the data on these objects. For fa7 ¼ 10 and
m ¼ 1.4, the cooling tracks are marginally consistent with
the data. Physically, the inconsistency arises from the
PBF axion cooling of the models prior to the actual age
of these objects, which according to simulations are
currently cooling predominantly via crust bremsstrahlung
and surface photon emission.
Figure 3 focuses on the cooling behaviour at the early

stages of evolution and on CCO in Cas A. Here we have
added also cooling tracks for massive m ¼ 1.8 stars to
quantify the variations in the mass of the objects. It is seen
that significant variations in the mass do not change the
cooling tracks; this would, of course, change if the EoS of
dense matter admits fast cooling processes—i.e., if in more
massive stars the threshold densities for the onset of rapid
cooling processes are attained. Our computations show that
fa7 ¼ 10 cooling is still consistent with the data form ¼ 1.4
stars, but for fa7 ¼ 5 cooling tracks are inconsistent with the
data independent of the mass of the star, as shown in Fig. 3.
Figure 4 focuses on the cooling of the three intermediate-

aged neutron stars discussed above with and without axion
cooling. The variation in the mass range 1 ≤ m ≤ 1.8 does
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FIG. 3. Cooling tracks of neutron star models with masses
m ¼ 1 (dash-dotted) 1.4 (solid) and 1.8 (dashed) for the case
of an accreted light-element envelope (η ¼ 1) along with the
measured temperature of CCO in Cas A. For each value of mass,
the upper curve corresponds to the cooling without axions,
and the lower curve corresponds to axion cooling with
fa7 ¼ 5. Note the weak dependence on the surface temperature
of models on the star mass.
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FIG. 2. Cooling tracks (redshifted surface temperature vs age)
for neutron star models with masses m ¼ 1 and m ¼ 1.4 (in solar
units) for the cases of nonaccreted iron envelope (η ¼ 0) and
accreted light-element envelope (η ¼ 1). The representative ob-
servational data includes (from left to right) the CCO in Cas A,
PSR B0656þ 14, Geminga, and PSR B1055-52. Each panel
contains cooling tracks for various values of the axion coupling
constant; the case fa ¼ ∞ (solid line) corresponds to vanishing
axion coupling—i.e., purely neutrino cooling. The axion cooling
models are shown for the values fa7 ¼ 10 (dashed), fa7 ¼ 5
(dash-dotted), and fa7 ¼ 2 (double-dash-dotted).
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not induce significant changes in the cooling tracks,
provided that fast cooling processes do not operate in
the massive m ¼ 1.8 model. The data are consistent with
neutrino-only cooling, assuming that some minor adjust-
ment can improve the agreement with PSR B1055-52 data.
(We recall that the spin-down age may have larger error
than assumed, or some heating processes may already
operate in this object.) Turning on the axion cooling, it is
seen that fa7 ¼ 10 cooling tracks are clearly inconsistent
with the data independent of the mass of the star.
To conclude, the combination of observational data and

simulations including cases with nonaccreted (η ¼ 0) and
accreted (η ¼ 1) envelopes suggests that the range of axion
coupling constant for which axion cooling is inconsistent
with data lies within 5 ≤ fa7 ≤ 10, independent of the mass
of the star.
So far, we have fixed the values of PQ charges of the

neutron and proton to some characteristic values taken from
the range defined by the inequalities (8). The proton PQ
charge is constrained in this class of theories to a narrow
range of values, while the neutron PQ charge changes the
sign, thus allowing for zero coupling of the axion to the
neutron. Furthermore, the PQ charge of neutron is at least a
factor of 4 smaller than the proton charge. For the value of
jCnj ¼ 0.04 we adopted and for our choice of pairing gaps,
the axion emission is dominated by proton condensate,
and the emission from neutron condensates is negligible.
To see the possible effect of the neutron condensate on the
cooling evolution, in particular on the range of the temper-
atures and the time span where it may play a role, we have
simulated the cooling with a model where jCnj¼jCpj¼0.4.
Figure 5 shows the cooling models in the case of

nonaccreted envelops (η ¼ 0) for light neutron star models
and the value of axion coupling fa7 ¼ 10. For each mass
we show two cooling curves with jCnj ¼ 0.04 and jCnj ¼
0.4 (where the upper curve always corresponds to the small
value of jCnj). The same, but in the case of accreted
envelopes (η ¼ 1), is shown in Fig. 6. Axion emission by
neutron condensate lowers the surface temperatures of the
models by a factor of the order of unity; therefore, the cases
where jCnj ∼ jCpj will have qualitatively similar bounds to
those obtained above. It is seen that the neutron condensate
affects cooling during the time span 102 ≤ t ≤ 103 yr,
which corresponds to interior temperatures in the range
0.5Tc ≤ T < Tc. The role of the neutron condensate can
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FIG. 4. Cooling tracks of neutron star models with masses
m ¼ 1 (dashed) 1.4 (solid), and 1.8 (dash-dotted) for the case of a
nonaccreted iron envelope (η ¼ 0). The measured temperatures
of PSR B0656þ 14, Geminga are consistent with neutrino
cooling tracks; the uncertainty in the spin-down age of PSR
B1055-52 and internal heating may account for marginal incon-
sistency. The axion cooling tracks are shown for fa7 ¼ 10.
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envelope (η ¼ 0) and for fa7 ¼ 10. For each mass, the two tracks
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FIG. 6. Same as in Fig. 5, but in the case of an accreted
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become important if fine-tuning of the cooling curves to
data will be required, as is possibly the case for the CCO in
Cas A (see Ref. [46] and references therein).

IV. DISCUSSION AND CONCLUSIONS

This work explores how the emission of axions by
weakly magnetized neutron stars during their early
(t ∼ 0.1 kyr) and intermediate (t ∼ 102 kyr) evolution
alters their observable surface temperatures. As a bench-
mark, we modeled the purely neutrino cooling of neutron
stars within a slow cooling scenario where any fast cooling
processes, such as the direct Urca processes on nucleons
and quarks, are excluded. These purely neutrino cooling
models are consistent with the temperature of CCO in
Cas A if we assume this object has a light-element
envelope; these cooling tracks are also consistent with
the older pulsars and Geminga if we assume a nonaccreted,
iron envelope and account for errors in the age determi-
nations and possible changes due to internal heating. The
dependence of the cooling tracks on the mass of the models
is rather weak because of absence of fast cooling agents.
We further explored the influence of axion cooling brems-
strahlung processes on the cooling tracks of our models
by smoothly varying the axion coupling constant fa (the
strength of the coupling scales as 1=fa). In doing so, we
fixed the PQ charges of the neutron and proton at the values
jCnj ¼ 0.04 and jCpj ¼ 0.4 motivated by hadronic models
of axions [see Eq. (8)] and neglected the coupling of the
axion to electrons, Ce ¼ 0 (this would correspond to the
KVSZ class of models of axions). The latter conservative
assumption strengthens the limits, because the inclusion
of axion emission by electron bremsstrahlung processes
would have increased the discrepancy between the models
and purely neutrino cooling models. We find that the value
of fa7 ¼ 5 is clearly inconsistent with the combined
observational data, and fa7 ¼ 10 is inconsistent with the
surface temperatures of middle-aged neutron stars. Using
these bounds in the relation (9), we obtain the following
conservative limit on the axion mass:

fa=107 GeV ≥ ð5–10Þ; ma ≤ ð0.06–0.12Þ eV; ð30Þ

which can be contrasted with the bound given by KS (14)
for the value CN ¼ jCpj ¼ 0.4:

fa=107 GeV ≥ 15.2; ma ≤ 0.04 eV: ð31Þ

The obtained upper bound on the mass of the axion is
consistent with those obtained from the supernova [7–11]
and proton-neutron star [9] physics, ma ≤ 0.1 eV.
However, the limit (30) is based on a rather conservative
segment of physics of the cooling of neutron stars and
surface temperature data measured from nearby x-ray-
emitting neutron stars and is complementary to the one
quoted above. The bounds derived from proto–neutron
stars share the same type of uncertainties as the cold
neutron star model, while the supernova limits suffer from
the uncertainty in the basic mechanism that drives super-
nova explosions. Limits similar to ours were obtained by
Umeda et al. [29] in their pioneering study of the axion
cooling of neutron stars, although their study does not
include the key PBF processes; i.e., their axion cooling is
dominated by nucleon bremsstrahlung processes.
Looking ahead, it should be mentioned that the present

study selected only a single pair of values of PQ charges for
neutrons and protons from a range defined for hadronic
models of axions. In general, these charges may vary and
thus define a continuum of axion models. A broader
overview of the axion cooling of neutrons can be obtained
by varying independently these two parameters, as well as
by fixing their values to specific models such as the DVSZ
or the KVSZ models. A further point for a future study is
the role of the axion bremsstrahlung by electrons. Electron
bremsstrahlung of axions in the crust at later stages of
neutron star cooling (which we neglected in this study
assuming Ce ¼ 0, as in the KVSZ model) needs to be
included in the theoretical models of axion cooling. This
will allow us to improve the constraints on the axion mass,
as additional axion emission will lead to discrepancies
between the theory and observations at larger values of fa
than quoted above.
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