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In this articlewe provide amultitrace analysis of the theory of noncommutativeΦ4 in twodimensions on the
fuzzy sphere S2

N;Ω, and on the Moyal-Weyl planeR2
θ;Ω, with a nonzero harmonic oscillator term added. The

double-trace matrix model symmetric underM → −M is solved in closed form. An analytical prediction for
the disordered-to-nonuniform-ordered phase transition and an estimation of the triple point, from the
termination point of the critical boundary, are derived and comparedwith previousMonteCarlomeasurement.
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I. INTRODUCTION

A scalar phi-four theory on a nondegenerate noncom-
mutative Euclidean spacetime is a matrix model of the form

S ¼ TrHðaΦΔΦþ bΦ2 þ cΦ4Þ: ð1:1Þ
The Laplacian Δ defines the underlying geometry, i.e. the
metric, of the noncommutative Euclidean spacetime in
the sense of [1,2]. This is a three-parameter model with the
following three known phases:

(i) The usual second order Ising phase transition between
disordered hΦi ¼ 0 and uniform ordered hΦi ∼ 1
phases. This appears for small values of c. This is
the only transition observed in commutative phi-four,
and thus it can be accessed in a small noncommuta-
tivity parameter expansion, using the conventional
Wilson renormalization group equation [3]. See [4]
for an analysis along this line applied to the OðNÞ
version of the noncommutative phi-four theory.

(ii) A matrix transition between disordered hΦi ¼ 0 and
nonuniform ordered hΦi ∼ Γ phases with Γ2 ¼ 1H.
For a finite dimensionalHilbert spaceH, this transition
coincides, for very large values of c, with the third
order transition of the real quarticmatrixmodel, i.e. the
model with a ¼ 0, which occurs at b ¼ −2

ffiffiffiffiffiffi
Nc

p
. In

terms of ~b ¼ bN−3=2 and ~c ¼ cN−2 this reads

~b ¼ −2
ffiffiffi
~c

p
: ð1:2Þ

This is therefore a transition from a one-cut (disk)
phase to a two-cut (annulus) phase [5,6].

(iii) A transition between uniform ordered hΦi ∼ 1H
and nonuniform ordered hΦi ∼ Γ phases. The non-
uniform phase, in which translational/rotational
invariance is spontaneously broken, is absent in
the commutative theory. The nonuniform phase is
essentially the stripe phase observed originally on
Moyal-Weyl spaces in [7,8].

Let us discuss a little further the phase structure of the pure
potential modelV ¼ TrHðbΦ2 þ cΦ4Þ, in the casewhen the
Hilbert spaceH isN-dimensional, in some more detail. The
ground state configurations are given by the matrices

Φ0 ¼ 0; ð1:3Þ

Φγ ¼
ffiffiffiffiffiffiffiffiffi
−

b
2c

r
UγUþ; γ2 ¼ 1N;

UUþ ¼ UþU ¼ 1N: ð1:4Þ

We compute V½Φ0� ¼ 0 and V½Φγ� ¼ −b2=4c. The first
configuration corresponds to the disordered phase charac-
terized by hΦi ¼ 0. The second solution makes sense
only for b < 0, and it corresponds to the ordered phase
characterized by hΦi ≠ 0. As mentioned above, there is a
nonperturbative transition between the two phases which
occurs quantum mechanically, not at b ¼ 0, but at
b ¼ b� ¼ −2

ffiffiffiffiffiffi
Nc

p
, which is known as the one-cut to

two-cut transition. The idempotent γ can always be chosen
such that γ ¼ γk ¼ diagð1k;−1N−kÞ. The orbit of γk is the
Grassmannian manifold UðNÞ=ðUðkÞ ×UðN − kÞÞ which
is dk-dimensional where dk ¼ 2kN − 2k2. It is not difficult
to show that this dimension is maximum at k ¼ N=2,
assuming that N is even, and hence from entropy argument,
the most important two-cut solution is the so-called stripe
configuration given by γ ¼ diagð1N=2;−1N=2Þ. In this real
quartic matrix model, we have therefore three possible
phases characterized by the following order parameters:

hΦi ¼ 0 disordered phase: ð1:5Þ

hΦi ¼ �
ffiffiffiffiffiffiffiffiffi
−

b
2c

r
1N Ising ðuniformÞ phase: ð1:6Þ

hΦi ¼ �
ffiffiffiffiffiffiffiffiffi
−

b
2c

r
γ matrix ðnonuniform or stripeÞ phase:

ð1:7Þ*ydri@stp.dias.ie
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However, as one can explicitly check by calculating the
free energies of the respective phases, the uniform ordered
phase is not stable in the real quartic matrix model
V ¼ TrHðbΦ2 þ cΦ4Þ.
The above picture is expected to hold for noncommu-

tative/fuzzy phi-four theory in any dimension, and the three
phases are all stable and are expected to meet at a triple
point. This structure was confirmed in two dimensions by
means of Monte Carlo simulations on the fuzzy sphere in
[9,10]. The phase diagram is shown in Fig. 1. Both parts of
Fig. 1 were generated using the Metropolis algorithm on
the fuzzy sphere. In the first part coupling of the scalar field
Φ to a U(1) gauge field on the fuzzy sphere is included, and
as a consequence, we can employ the U(N) gauge sym-
metry to reduce the scalar sector to only its eigenvalues.
The problem of the phase structure of fuzzy scalar phi-

four was also studied in [12–15]. The analytic derivation of
the phase diagram of noncommutative phi-four on the
fuzzy sphere was attempted in [16–19]. The related
problem of Monte Carlo simulation of noncommutative
phi-four on the fuzzy torus and the fuzzy disk was
considered in [8,20], and [21], respectively. For a recent
study see [22].
In this paper, we are interested in studying, by means of

the multitrace approach initiated in [16], the theory of
noncommutative Φ4 in two dimensions on the fuzzy sphere
S2
N;Ω and the Moyal-Weyl plane R2

θ;Ω, with a nonzero
harmonic oscillator term. The construction of the harmonic
oscillator term on the Moyal-Weyl plane can be found in
[23], whereas the analogue construction on the fuzzy
sphere is done in [11]. The multitrace expansion is the
analogue of the Hopping parameter expansion on the lattice
in the sense that we perform a small kinetic term expansion,
i.e. expanding in the parameter a of (1.1), as opposed to the
small potential expansion of the usual perturbation theory
[24,25]. This technique is expected to capture the matrix

transition between disordered hΦi ¼ 0 and nonuniform
ordered hΦi ∼ γ phases with arbitrarily increasing accuracy
by including more and more terms in the expansion in a.
From this we can then infer and/or estimate the position of
the triple point. Capturing the Ising transition requires, in
our opinion, the whole expansion in a, or at least a very
large number of terms in the expansion. This is because it is
not obvious how a small number of terms in the expansion
in a approximates the geometry encoded in the kinetic
term, and as a consequence, the Ising phase hΦi ∼ 1 will
more likely be seen as metastable within this scheme. There
is, of course, the expectation that the uniform ordered phase
will become stable at some order of this approximation.
This article is organized as follows:
(1) Section 2: The Model and The Method.
(2) Section 3: The Real Multitrace Quartic Matrix

Model.
(3) Section 4: Matrix Model Solutions.
(4) Section 5: Monte Carlo Results

(a) Summary of models and algorithm.
(b) Monte Carlo tests of multitrace approximations.
(c) Phase diagrams and other physics.

(5) Section 6: The Nonperturbative Effective Potential
Approach.

(6) Section 7: Conclusion.
We also include three appendixes for the benefit of
interested readers.

II. THE MODEL AND THE METHOD

The model studied in this paper, on the fuzzy sphere
S2
N;Ω and on the regularized Moyal-Weyl plane R2

θ;Ω,
can be rewritten coherently as the following matrix
model:

S½M� ¼ r2K½M� þ Tr½bM2 þ cM4�; ð2:1Þ
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FIG. 1. The phase diagram of phi-four theory on the fuzzy sphere. In the first part the fits are reproduced from actual Monte Carlo data
[11]. The second part is reproduced from [9] with the gracious permission of D. O’Connor.
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K½M� ¼ Tr

� ffiffiffiffi
ω

p
ΓþMΓM −

ϵ

N þ 1
Γ3MΓ3M þ EM2

�
:

ð2:2Þ

The first term is precisely the kinetic term. The parameter ϵ
takes one of two possible values corresponding to the
topology/metric of the underlying geometry, viz.

ϵ ¼ 1; sphere; ϵ ¼ 0; plane: ð2:3Þ

The parameters b, c, r2, and
ffiffiffiffi
ω

p
are related to the mass

parameter m2, the quartic coupling constant λ, the non-
commutativity parameter θ, and the harmonic oscillator
parameter Ω, of the original model, by the equations

b ¼ 1

2
m2; c ¼ λ

4!

1

2πθ
;

r2 ¼ 2ðΩ2 þ 1Þ
θ

;
ffiffiffiffi
ω

p ¼ Ω2 − 1

Ω2 þ 1
: ð2:4Þ

The matrices Γ, Γ3, and E are given by

ðΓ3Þlm ¼ lδlm; ðΓÞlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm − 1Þ

�
1 − ϵ

m
N þ 1

�s
δlm−1;

ðEÞlm ¼
�
l −

1

2

�
δlm: ð2:5Þ

Let us discuss the connection between the actions (1.1) and
(2.1). We note first that the original action (1.1) on the
fuzzy sphere, with a nonzero harmonic oscillator term, is
defined by the Laplacian [11]

Δ ¼ ½La; ½La;…�� þ Ω2½L3; ½L3;…�� þΩ2fLi; fLi;…gg:
ð2:6Þ

Explicitly we have

S ¼ 4πR2

N þ 1
Tr

�
1

2R2
ΦΔΦþ 1

2
m2Φ2 þ λ

4!
Φ4

�
: ð2:7Þ

Equivalently this action with the substitution Φ ¼ M=ffiffiffiffiffiffiffiffi
2πθ

p
, where M ¼ P

N
i;j¼1Mijjiihjj, reads

S ¼ TrðaMΔN;ΩMþ bM2 þ cM4Þ: ð2:8Þ

This is identical to (2.1). The relationship between
the parameters1 a ¼ 1=ð2R2Þ and r2 is given by
r2 ¼ 2aðΩ2 þ 1ÞN.

We start from the path integral

Z ¼
Z

dM expð−S½M�Þ: ð2:9Þ

First, we will diagonalize the scalar matrix asM ¼ UΛU−1.
The measure becomes dM ¼ dΛdUΔ2ðΛÞ, where dU is
the usual Haar measure over the group SU(N) which is
normalized such that

R
dU ¼ 1, whereas the Jacobian

Δ2ðΛÞ is precisely the so-called Vandermonde determinant
defined by Δ2ðΛÞ ¼ Q

i>jðλi − λjÞ2. The path integral
becomes the eigenvalues problem

Z ¼
Z

dΛΔ2ðΛÞ expð−TrðbΛ2 þ cΛ4ÞÞ

×
Z

dU expð−aK½UΛU−1�Þ: ð2:10Þ

The fundamental question we want to answer is, can we
integrate the unitary group completely?
The answer, which is the straightforward and obvious

one, is to expand the kinetic term in powers of a ¼ r2,
perform the integral over U, and then resume the sum
back into an exponential to obtain an effective potential.
This is very reminiscent of the hopping parameter
expansion on the lattice. This approximation will clearly
work if, for whatever reason, the kinetic term is indeed
small compared to the potential term which, as it turns
out, is true in the matrix phase of noncommutative phi-
four theory.
Toward this end, we will take the following steps:
(i) We expand the scalar field M in the basis formed by

the Gell-Mann matrices ta and the identity matrix
t0 ¼ 1N=

ffiffiffiffiffiffiffi
2N

p
as M ¼ P

AM
AtA. The path integral

becomes

Z ¼
Z

dΛΔ2ðΛÞ expð−TrðbΛ2 þ cΛ4ÞÞ

×
Z

dU expð−aKABðTrUΛU−1tAÞ

× ðTrUΛU−1tBÞÞ: ð2:11Þ

The kinetic matrix K is given explicitly by

KAB ¼ 2
ffiffiffiffi
ω

p
TrΓþtAΓtB þ 2

ffiffiffiffi
ω

p
TrΓþtBΓtA

−
4ϵ

N þ 1
TrΓ3tAΓ3tB þ 2TrEftA; tBg:

ð2:12Þ

(ii) We expand in powers of a. In this paper we only go
up to the second order in a. This can be extended to
any order in an obvious way as we will see.

1The noncommutativity parameter on the fuzzy sphere is
related to the radius of the sphere by θ ¼ 2R2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − 1

p
.
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(iii) We use ðTrAÞðTrBÞ ¼ TrN2ðA ⊗ BÞ and ðA ⊗ CÞ×
ðB ⊗ DÞ ¼ AB ⊗ CD.

(iv) We decompose the N2-dimensional and the N4-
dimensional Hilbert spaces, under the SU(N) action,
into the direct sums of subspaces corresponding
to the irreducible representations ρ contained in

N ⊗ N and N ⊗ N ⊗ N ⊗ N, respectively. The
tensor products of interest are

ð2:13Þ

ð2:14Þ

(v) We use the orthogonality relationZ
dUρðUÞijρðU−1Þkl ¼

1

dimðρÞ δilδjk: ð2:15Þ

We obtain (see [16,17] and [26] for more detail)Z
dU expð−aK½UΛU−1�Þ

¼ 1 − aKAB

X
ρ

1

dimðρÞTrρΛ ⊗ Λ:TrρtA ⊗ tB

þ 1

2!
a2KABKCD

X
ρ

1

dimðρÞTrρΛ ⊗ Λ:TrρtA

⊗ � � � ⊗ tD þ � � � : ð2:16Þ

Thus, the calculation of the first and second order
corrections reduces to the calculation of the traces

TrρtA ⊗ tB and TrρtA ⊗ tB ⊗ tC ⊗ tD, respectively.
It is then obvious that generalization to higher order
corrections will involve the traces TrρtA1

⊗ � � � ⊗
tAn

and TrρΛ ⊗ � � � ⊗ Λ. Explicitly the nth order
correction should read

nth order ¼ 1

n!
KA1A2

� � �KA2n−1A2n

×
X
ρ

1

dimðρÞTrρΛ ⊗ � � � ⊗ Λ:TrρtA1

⊗ tA2
⊗ � � � ⊗ tA2n−1

⊗ tA2n
: ð2:17Þ

(vi) By substituting the dimensions of the various
irreducible representations and the relevant
SU(N) characters we arrive at the formula
(with ti ¼ TrΛi)

Z
dU expð−aK½UΛU−1�Þ ¼ 1 −

a
2
½ðs1;2 þ s2;1Þt21 þ ðs1;2 − s2;1Þt2� þ

a2

2

�
1

4
ðs1;4 − s4;1 − s2;3 þ s3;2Þt4

þ 1

3
ðs1;4 þ s4;1 − s2;2Þt1t3 þ

1

8
ðs1;4 þ s4;1 − s2;3 − s3;2 þ 2s2;2Þt22

þ 1

4
ðs1;4 − s4;1 þ s2;3 − s3;2Þt2t21 þ

1

24
ðs1;4 þ s4;1 þ 3s2;3 þ 3s3;2 þ 2s2;2Þt41

�
þ � � � : ð2:18Þ

(vii) There remains the explicit calculation of the coef-
ficients s, taking the large N limit, and finally
reexponentiating the series back to obtain the effec-
tive potential. This is a considerably long calculation
that is done originally on the fuzzy sphere in [16]
and extended to the current case, which includes a

harmonic oscillator term, in [26]. We will skip here
the lengthy detail.

The definition of the coefficients s in terms of the
kinetic matrix K and characters and dimensions of
various SU(N)/U(N) representations, the explicit
calculation of these coefficients, as well as extraction
of the large N behavior are sketched in Appendix A.
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III. THE REAL MULTITRACE QUARTIC
MATRIX MODEL

The end result of the above steps is the effective potential
[26]

ΔV ¼ r2

4

�
v2;1T2 þ

2N
3

w1t2

�
þ r4

24

�
v4;1T4 −

4

N2
v2;2T2

2

þ 4w2ðt1t3 − t22Þ þ
4

N
w3t2T2

�
þOðr6Þ: ð3:1Þ

The complete effective action in terms of the eigenvalues is
the sum of the classical potential, the Vadermonde deter-
minant, and the above effective potential. The operators T2

and T4 are defined below. The coefficients v and w are
given by [26]

v2;1 ¼ 2 − ϵ −
2

3
ð ffiffiffiffi

ω
p þ 1Þð3 − 2ϵÞ; ð3:2Þ

v4;1 ¼ −ð1 − ϵÞ; ð3:3Þ

v2;2 ¼ w3 þ ð ffiffiffiffi
ω

p þ 1Þð1 − ϵÞ

þ 1

12
ðω − 1Þð9 − 8ϵÞ − 1

8
ð2 − 3ϵÞ; ð3:4Þ

w1 ¼ ð ffiffiffiffi
ω

p þ 1Þð3 − 2ϵÞ; ð3:5Þ

w2 ¼ −ð ffiffiffiffi
ω

p þ 1Þð1 − ϵÞ; ð3:6Þ

w3 ¼ ð ffiffiffiffi
ω

p þ 1Þð1 − ϵÞ − 1

15
ð ffiffiffiffi

ω
p þ 1Þ2ð15 − 14ϵÞ:

ð3:7Þ

Three important remarks are now in order:
(i) Zero mode: We know that, in the limit Ω2 → 0

(
ffiffiffiffi
ω

p
→ −1), the trace part of the scalar field

drops from the kinetic action, and as a consequence,
the effective potential can be rewritten solely in
terms of the differences λi − λj of the eigenvalues.
Furthermore, in this limit, the effective potential
must also be invariant under any permutation of the
eigenvalues, as well as under the parity λi → −λi,
and hence it can only depend on the following
functions [16]:

T4 ¼ Nt4 − 4t1t3 þ 3t22 ¼
1

2

X
i≠j

ðλi − λjÞ4; ð3:8Þ

T2
2 ¼

�
1

2

X
i≠j

ðλi − λjÞ2
�
2

¼ t41 − 2Nt21t2 þ N2t22;

ð3:9Þ

Tm
n ¼

�
1

2

X
i≠j

ðλi − λjÞn
�
m
: ð3:10Þ

It is clear that only the functions T2 and T4 can
appear at the second order in a ¼ r2. We also
observe that the quadratic part of the resulting
effective potential can be expressed, modulo a term
that vanishes as

ffiffiffiffi
ω

p þ 1 in the limit
ffiffiffiffi
ω

p
→ −1, in

terms of the function

T2 ¼ Nt2 − t21 ¼
1

2

X
i≠j

ðλi − λjÞ2: ð3:11Þ

In general, it is expected that for generic values offfiffiffiffi
ω

p
, away from the zero harmonic oscillator caseffiffiffiffi

ω
p ¼ −1, the effective potential will contain terms
proportional to

ffiffiffiffi
ω

p þ 1 that cannot be expressed
solely in terms of the functions T2, T4, etc. This is
obvious from the result (3.1).

(ii) The case ϵ ¼ 1, Ω2 ¼ 0: In this case v2;1 ¼ 1,
v4;1 ¼ 0, v2;2 ¼ 1=8 while all the w coefficients
vanish. We get then the effective potential

ΔV ¼ r2

4
T2 −

r4

48N2
T2
2 þOðr6Þ: ð3:12Þ

This result is very different from the one obtained in
[16]2 in which the coefficient v4;1 was found to be
nonzero, more precisely v4;1 ¼ 3=2, while the cor-
rection associated with the coefficient v2;2 was
suppressed, i.e. they set v2;2 ¼ 0, and hence the
effective potential, in their case, is given by

ΔV ¼ r2

4
T2 þ

r4

16
T4 þOðr6Þ: ð3:13Þ

A detailed discussion of this point can be found in
[26], while a concise description of the discrepancy
is included in Appendix B. However, we should note
that although these two results are quantitatively
different, the resulting physics is qualitatively
the same.

(iii) Scaling: From the Monte Carlo results of [9,10] on
the fuzzy sphere, we know that the scaling behavior
of the parameters a, b, and c appearing in the action
(2.8) is given by

ā ¼ a
Nδa

; b̄ ¼ bN2δλ

aN3=2 ; c̄ ¼ cN4δλ

a2N2
: ð3:14Þ

In the above equation we have also included a
possible scaling of the field/matrix M, which is

2Compare with Eq. (4.4) of [16].
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not included in [9,10], given by δλ. The scaling
of the parameter a encodes the scaling of the
radius R2 or equivalently the noncommutativity
parameter θ. There is, of course, an extra parameter
in the current case given by d ¼ aΩ2, or equivalentlyffiffiffiffi
ω

p ¼ ðΩ2 − 1Þ=ðΩ2 þ 1Þ, which comes with an-
other scaling δd not discussed altogether in
Monte Carlo simulations.
Wewill assume, in most of this paper, that the four

parameters b, c, r2, and
ffiffiffiffi
ω

p
of the matrix model

(2.1) scale as

~b ¼ b
Nδb

; ~c ¼ c
Nδc

;

~r2 ¼ r2

Nδr
;

ffiffiffiffi
~ω

p
¼

ffiffiffiffi
ω

p
Nδω

: ð3:15Þ

Obviously δr ¼ δa þ 1. Further, we will assume a
scaling δλ of the eigenvalues λ, viz.

~λ ¼ λ

Nδλ
: ð3:16Þ

Hence, in order for the effective action to come out
of order N2, we must have the following values:

δb ¼ 1 − 2δλ; δc ¼ 1 − 4δλ;

δr ¼ −2δλ; δω ¼ 0: ð3:17Þ

By substituting in (3.14) we obtain the collapsed
exponents

δλ ¼ −
1

4
; δa ¼ −

1

2
;

δb ¼
3

2
; δc ¼ 2;

δd ¼ −
1

2
; δr ¼

1

2
: ð3:18Þ

In simulations, it is found that the scaling behavior
of the mass parameter b and the quartic coupling c is
precisely given by 3=2 and 2, respectively. We will
assume, for simplicity, the same scaling on the
Moyal-Weyl plane.

IV. MATRIX MODEL SOLUTIONS

The saddle point equation corresponding to the sum
Vr2;Ω of the classical potential and the effective potential
(3.1), which also includes the appropriate scaling,3 takes
the form

1

N
S0eff ¼ V 0

r2;Ω −
2

N

X
i

1

λ − λi
¼ 0: ð4:1Þ

Next, we will assume a symmetric support of the
eigenvalues distributions, and as a consequence, all
odd moments vanish identically [16]. This is motivated
by the fact that the expansion of the effective action
employed in the current paper, i.e. the multitrace tech-
nique, is expected to probe, very well, the transition
between the disordered phase and the nonuniform or-
dered phase.
We will, therefore, assume here that across the transition

line between disordered phase and nonuniform ordered
phase, the matrix M remains massless, the eigenvalues
distribution ρðλÞ is always symmetric, and hence all odd
moments mq vanish identically, viz.

mq ¼
Z

b

a
dλρðλÞλq ¼ 0; q ¼ odd: ð4:2Þ

The derivative of the generalized potential V 0
r2;Ω is therefore

given by

V 0
r2;ΩðλÞ ¼ 2~bλþ 4~cλ3 þ ~r2

�
v2;1
2

þ w1

3

�
λ

þ ~r4
�
1

6
v4;1ðλ3 þ 3m2λÞ −

2

3
w2m2λ

−
2

3
v2;2m2λþ

1

3
w3m2λ

�
þ � � � : ð4:3Þ

The corresponding matrix model potential and effective
action are given, respectively, by the following

Vr2;Ω ¼ N
Z

dλρðλÞ
��

~bþ ~r2

2

�
v2;1
2

þ w1

3

��
λ2

þ
�
~cþ ~r4

24
v4;1

�
λ4
�
−
~r4N
6

η

�Z
dλρðλÞλ2

�
2

;

ð4:4Þ

Seff ¼ NVr2;Ω −
N2

2

Z
dλdλ0ρðλÞρðλ0Þ lnðλ − λ0Þ2: ð4:5Þ

The coefficient η is defined by

η ¼ v2;2 −
3

4
v4;1 þ w2 −

1

2
w3

¼ 1

8
ð4 − 3ϵÞ − 1

6
ð ffiffiffiffi

ω
p þ 1Þð6 − 5ϵÞ

þ 1

20
ð ffiffiffiffi

ω
p þ 1Þ2ð5 − 4ϵÞ: ð4:6Þ

These can be derived from the matrix model given by
3The eigenvalues here are also scaled only we suppress the

tilde for ease of notation.
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Vr2;Ω ¼ μ0TrM2 þ g0TrM4 −
~r4

6N
η½TrM2�2: ð4:7Þ

The parameters μ0 and g0 are defined by

μ0 ¼ ~bþ ~r2

2

�
v2;1
2

þ w1

3

�
¼ ~bþ ~r2

4
ð2 − ϵÞ;

g0 ¼ ~cþ ~r4

24
v4;1 ¼ ~c −

~r4

24
ð1 − ϵÞ: ð4:8Þ

This matrix model was studied originally in [27] within the
context of c > 1 string theories. The dependence of this
result on the harmonic oscillator potential is fully encoded
in the parameter η, which is the strength of the double-trace
term since μ0 and g0 are independent of

ffiffiffiffi
ω

p
. For later

purposes we rewrite the derivative of the generalized
potential V 0

r2;Ω in the suggestive form

V 0
r2;ΩðλÞ ¼ 2μλþ 4gλ3; ð4:9Þ

μ ¼ μ0 −
~r4

3
ηm2; g ¼ g0: ð4:10Þ

The above saddle point equation (4.1) can be solved using
the approach outlined in [28] for real single trace quartic
matrix models. We only need to account here for the fact
that the mass parameter μ depends on the eigenvalues
through the second momentm2. In other words, besides the
normalization condition that the eigenvalues distribution
must satisfy, we must also satisfy the requirement that the
computed second moment m2, using this eigenvalues
density, will depend on the mass parameter μ that itself
is a function of the second moment m2.
The phase structure of the real quartic matrix model is

described concisely in [6]. The two stable phases of the
theory are the one-cut (disk) and the two-cut (annulus)
phases that are separated by the critical line (1.2).4 There
exists also an asymmetric (uniform) one-cut solution that
corresponds to a metastable phase. Here, for our real
multitrace quartic matrix model (4.7), the phase diagram
will consist of the same stable phases, separated by a
deformation of the critical line (1.2), as well as an
analogous metastable asymmetric one-cut phase.
In the remainder, we discuss further the two stable

phases of the real multitrace quartic matrix model (4.7),
the critical boundary between them, as well as a lower
estimation of the triple point. More detail can be found
in [26].
The disordered phase: The one-cut (disk) solution is

given by the equation

ρðλÞ ¼ 1

π

�
2g0λ2 þ

2

δ2
−
g0δ2

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − λ2

p
: ð4:11Þ

The radius δ2 ¼ x is the solution of a depressed quartic
equation given by

~r4ηg0x4 − 72

�
g0 −

~r4

18
η

�
x2 − 48μ0xþ 96 ¼ 0: ð4:12Þ

This eigenvalues distribution is always positive definite for

x2 ≤ x2� ¼
4

g0
: ð4:13Þ

Obviously, x� must also be a solution of the quartic
equation (4.12). By substitution, we get the solution

μ0� ¼ −2
ffiffiffiffiffi
g0

p þ η~r4

3
ffiffiffiffiffi
g0

p : ð4:14Þ

This critical value μ0� is negative for g0 ≥ η~r4=6. As
expected this line is a deformation of the real quartic
matrix model critical line μ0� ¼ −2 ffiffiffiffiffi

g0
p

. In terms of the
original parameters, we have

~b� ¼ −
~r2

4
ð2 − ϵÞ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c −

~r4

24
ð1 − ϵÞ

r
þ η~r4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c − ~r4

24
ð1 − ϵÞ

q :

ð4:15Þ

This result, to our knowledge, is completely new. By
assuming that the parameter η is positive, the range of
this solution is found to be μ0 ≥ μ0�. The second moment
m2 corresponding to this solution is given by the equation

m2 ¼
9g0
2~r4ηx

ðx − xþÞðx − x−Þ; ð4:16Þ

x� ¼ 1

3g0
ð−μ0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ20 þ 12g0

q
Þ: ð4:17Þ

This is always positive since x > xþ > 0 > x−.
The nonuniform ordered phase: The two-cut (annulus)

solution is given by

ρðλÞ ¼ 2g0
π

jλj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 − δ21Þðδ22 − λ2Þ

q
: ð4:18Þ

The radii δ1 and δ2 are given by

δ21 ¼
3

6g0 − ~r4η

�
−μ0 − 2

ffiffiffiffiffi
g0

p þ ~r4η
3

ffiffiffiffiffi
g0

p
�
;

δ22 ¼
3

6g0 − ~r4η

�
−μ0 þ 2

ffiffiffiffiffi
g0

p
−

~r4η
3

ffiffiffiffiffi
g0

p
�
: ð4:19Þ

4At ~b ¼ −2
ffiffiffi
~c

p
, the eigenvalues density approaches the same

behavior from both sides of the transition. This is the sense in
which this phase transition is termed critical although it is
actually third order as seen from the behavior of the specific heat.
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We have δ21 ≥ 0, and by construction then δ22 ≥ δ21, iff

g0 ≥
~r4η
6

; μ0 ≤ μ0�: ð4:20Þ

The critical value μ0� is still given by (4.14), i.e. the range
of μ of this phase meshes exactly with the range of μ of the
previous phase.
The triple point: In the rest of this paper, we will

concentrate only on the case of the fuzzy sphere, while we
will leave the case of the Moyal-Weyl plane as an exercise.
In the case of the fuzzy sphere, i.e. ϵ ¼ 1, we have the

following critical line:

~b� ¼ −
~r2

4
− 2

ffiffiffi
~c

p
þ η~r4

3
ffiffiffi
~c

p : ð4:21Þ

We recall that r2 ¼ 2aðΩ2 þ 1ÞN or equivalently
~r2 ¼ 2~aðΩ2 þ 1Þ. The above critical line in terms of the
scaled parameters (3.14) reads then

b̄� ¼ −
Ω2 þ 1

2
− 2

ffiffiffī
c

p þ 4ηðΩ2 þ 1Þ2
3

ffiffiffī
c

p : ð4:22Þ

This should be compared with (1.2). The range g0 ≥ ~r4η=6
of this critical line reads now

c̄ ≥
2ηðΩ2 þ 1Þ2

3
: ð4:23Þ

The termination point of this line provides a lower estimate
of the triple point, and it is located at

ðb̄; c̄ÞT ¼
�
−
Ω2 þ 1

2
;
2ηðΩ2 þ 1Þ2

3

�
: ð4:24Þ

We have verified numerically the consistency of the above
analytic solution extensively. The starting point is the
quartic equation (4.12). We have checked, among other
things, that for all b̄ ≥ b̄� there exists a positive solution x
of (4.12) that satisfies x ≤ x� and x > xþ, i.e. with positive
second moment m2. From the other side, i.e. for b̄ < b̄�,
there ceases to exist any solution of (4.12) with these
properties. This behavior extends down until around
c̄T . The basics of the algorithm used are explained in
Appendix C.
Recall that in the case of the fuzzy sphere with a

harmonic oscillator term the coefficient η is given by

η ¼ 1

8
−
1

6
ð ffiffiffiffi

ω
p þ 1Þ þ 1

20
ð ffiffiffiffi

ω
p þ 1Þ2: ð4:25Þ

For the zero harmonic oscillator, i.e. for the ordinary
noncommutative phi-four theory on the fuzzy sphere with
Ω2 ¼ 0 and

ffiffiffiffi
ω

p ¼ −1, we have then the results

b̄� ¼ −
1

2
− 2

ffiffiffī
c

p þ 1

6
ffiffiffī
c

p ; ð4:26Þ

c̄ ≥
1

12
: ð4:27Þ

This line is shown in Fig. 2. The limit for large c̄ is
essentially given by (1.2). As discussed above, the termi-
nation point of this line, which is located at

ðb̄; c̄ÞT ¼ ð−1=2; 1=12Þ; ð4:28Þ

yields a lower estimation of the triple point. This is quite far
from the actual value of the triple point found in [16] to lie
at ∼ð−2.3; 0.5Þ, but it provides an explicit and robust
indication that the disordered to nonuniform-ordered tran-
sition line does not extend to zero as in the case of the real
quartic matrix model.
In any event, the above prediction hinges on the

calculated value of the parameter η, which is expected to
increase in value if we include higher order corrections.
Furthermore, the inclusion of other multitrace terms, which
will arise in higher order calculations, will also affect this
result.
It is obvious that the above behavior should hold,

essentially unchanged, on the regularized Moyal-
Weyl plane.

V. MONTE CARLO RESULTS

A. Summary of models and algorithm

We start by rewriting the effective action on the fuzzy
sphere without a harmonic oscillator term in a form suited
for Monte Carlo results. The multitrace matrix models of
interest are of the form

V ¼ V0 þ ΔV ¼ V0 þ V2 þ V4: ð5:1Þ

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5

  a∼-
2  c∼

-a∼-1 b∼

disordered phase

non-uniform-ordered phase

matrix critical line of multitrace matrix model
termination point

critical line of quartic matrix model

FIG. 2. The disordered-to-nonuniform-ordered (matrix) transi-
tion of phi-four theory on the fuzzy sphere.
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The quartic matrix model V0 and the quadratic and quartic
corrections V2 and V4 are given explicitly by

V0 ¼ bTrM2 þ cTrM4; ð5:2Þ

V2 ¼ F0TrM2 þ B0ðTrMÞ2; ð5:3Þ

V4 ¼ E0TrM4 þ C0TrMTrM3 þD0ðTrMÞ4
þ A0TrM2ðTrMÞ2 þDðTrM2Þ2: ð5:4Þ

The primed parameters of the model are

F0 ¼ aN2v2;1
2

; B0 ¼ −
aN
2

v2;1;

E0 ¼ a2N3v4;1
6

; C0 ¼ −
2a2N2

3
v4;1;

D0 ¼ −
2a2

3
v2;2; A0 ¼ 4a2N

3
v2;2: ð5:5Þ

The remaining parameter D is given by

D ¼ −
2a2N2

3
η; η ¼ v2;2 −

3

4
v4;1: ð5:6Þ

The parameters F0 and E0 can be reabsorbed into b and c as

B ¼ bþ aN2v2;1
2

; C ¼ cþ a2N3v4;1
6

: ð5:7Þ

The effective action we want to study becomes

V ¼ TrðBM2 þ CM4Þ þDðTrM2Þ2
þ B0ðTrMÞ2 þ C0TrMTrM3 þD0ðTrMÞ4
þ A0TrM2ðTrMÞ2: ð5:8Þ

As we have shown in this article, the coefficients v2;1, v4;1,
and v2;2 are given by the following two competing
calculations found in Eqs. (3.13) (Model I) and (3.12)
(Model II):

v2;1 ¼ −1; v4;1 ¼
3

2
; v2;2 ¼ 0; Model I

v2;1 ¼ þ1; v4;1 ¼ 0; v2;2 ¼
1

8
; Model II:

ð5:9Þ

Explicitly we have

Model I∶

V ¼ TrðBM2 þ CM4Þ þDðTrM2Þ2
þ B0ðTrMÞ2 þ C0TrMTrM3;

B ¼ b −
aN2

2
; C ¼ cþ a2N3

4
;

B0 ¼ aN
2

; C0 ¼ −a2N2; D ¼ 3a2N2

4
: ð5:10Þ

Model II∶

V ¼ TrðBM2 þ CM4Þ þDðTrM2Þ2 þ B0ðTrMÞ2
þD0ðTrMÞ4 þ A0TrM2ðTrMÞ2;

B ¼ bþ aN2

2
; C ¼ c; B0 ¼ −

aN
2

;

D0 ¼ −
a2

12
; A0 ¼ a2N

6
; D ¼ −

a2N2

12
:

ð5:11Þ

There are two independent parameters in these models that
we take to be the usual ones B and C. It is found that the
scaling of the parameters in Monte Carlo simulation is
given approximately by

~B ¼ BN−3=2; ~C ¼ CN−2; ~D ¼ DN−1; etc: ð5:12Þ

Since only two of these parameters are independent, we
must choose ~a, for the consistency of the large N limit, to
be any fixed number. We then choose for simplicity ~a ¼ 1
or equivalently D ¼ −2ηN=3.
These models can be simulated using the ordinary

Metropolis algorithm applied to the eigenvalues of
the matrix M; i.e. we diagonalize the matrix M, add to
the above action the contribution coming from the
Vandermonde determinant, and then simulate the resulting
effective action. This method is free from ergodic
problems.
Our first test for the validity of this algorithm, or any

other algorithm for that matter, is to look at the Schwinger-
Dyson identity given for the above multitrace matrix
models by

hð2bTrM2 þ 4cTrM4 þ 2V2 þ 4V4Þi ¼ N2: ð5:13Þ

The second powerful test is to look at the conventional
quartic matrix model with a ¼ 0, viz. V ¼ V0. The
eigenvalues distributions in the two stable phases [disorder
(one-cut) and nonuniform order (two-cut)] as well as the
demarcation of their boundary and the behavior of the
specific heat across the transition are all well known
analytically given, respectively, by the formulas (5.14),
(5.15), (5.16), and (5.17) and (5.18) below.
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ρðλÞ ¼ 1

Nπ
ð2Cλ2 þ Bþ Cr2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − λ2

p
;

r2 ¼ 1

3C
ð−Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 12NC

p
Þ; ð5:14Þ

ρðλÞ ¼ 2Cjλj
Nπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 − r2−Þðr2þ − λ2Þ

q
;

r2∓ ¼ 1

2C
ð−B ∓ 2

ffiffiffiffiffiffiffi
NC

p
Þ; ð5:15Þ

B2
c ¼ 4NC ↔ Bc ¼ −2

ffiffiffiffiffiffiffi
NC

p
; ð5:16Þ

Cv

N2
¼ 1

4
; B̄ ¼ B

Bc
< −1; ð5:17Þ

Cv

N2
¼ 1

4
þ 2B̄4

27
−

B̄
27

ð2B̄2 − 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̄2 þ 3

p
;

B̄ > −1: ð5:18Þ

B. Monte Carlo tests of multitrace approximations

The quartic multitrace approximations can be tested and
verified directly in Monte Carlo simulations in order to
resolve the ambiguity in the coefficients v given in
Eq. (5.9). We must have as the identity the two equations

ha
Z

dUTr½La;UΛU−1�2iV0
¼ h−V2ðΛÞiV0

; ð5:19Þ
�
1

2
ða

Z
dUTr½La;UΛU−1�2Þ2

�
V0

¼
�
−V4ðΛÞ þ

1

2
V2
2ðΛÞ

�
V0

: ð5:20Þ

The coefficients v appear in the potentials V2 and V4. The
expectation values are computed with respect to the
conventional quartic matrix model V0 ¼ V0ðΛÞ.
This test clearly requires the computation of the kinetic

term and its square, which means in particular that we need
to numerically perform the integral over U in the termR
dUTr½La;UΛU−1�2, which is not obvious how to do in

any direct way. Equivalently, we can undo the diagonal-
ization in the terms involving the kinetic term to obtain
instead the equations

haTr½La;M�2iV0
¼ h−V2iV0

; ð5:21Þ
�
1

2
ðaTr½La;M�2Þ2

�
V0

¼
�
−V4 þ

1

2
V2
2

�
: ð5:22Þ

Now the expectation values in the left hand side must
be computed with respect to the conventional quartic
matrix model V0 ¼ V0ðMÞ with the full matrix M ¼
UΛU−1 instead of the eigenvalues matrix Λ, i.e. the

eigenvaluesþ angles. The expectation values in the right
hand side can be computed either way.
In other words, the eigenvalues Metropolis algorithm

discussed above, which can compute terms such as
h−V2iV0

and h−V4 þ V2
2=2iV0

, cannot be used to compute
the terms haTr½La;M�2iV0

and haTr½La;M�2Þ2=2iV0
. We

use instead the hybrid Monte Carlo algorithm to compute
these terms as well as the terms h−V2iV0

and h−V4 þ
V2
2=2iV0

in order to verify the above equations. This also
should be viewed as a countercheck for the hybrid
Monte Carlo algorithm since we can compare the values
of h−V2iV0

and h−V4 þ V2
2=2iV0

obtained using the hybrid
Monte Carlo algorithm with those obtained using our
eigenvalues Metropolis algorithm. We note, in passing,
that the Metropolis algorithm employed for the eigenvalues
problem here is far more efficient than the hybrid
Monte Carlo algorithm applied to the same problem
without diagonalization.
In summary, we need to show that Eqs. (5.21) and (5.22)

hold as identities in the correct calculation. To solve this
problem we need to Monte Carlo sample both the eigen-
values and the angles of the matrix M, using the quartic
matrix model.

V0 ¼ bTrM2 þ cTrM4: ð5:23Þ

Clearly, we can choose without any loss of generality c
such that ~c ¼ 1. Monte Carlo simulations of this model can
also be compared to the exact solution outlined in the
previous subsection so calibration in this case is easy. A
sample of this calculation including the eigenvalues dis-
tributions and the specific heat across the transition point
are shown in Fig. 3. We can be satisfied from these results
that the algorithm and simulations are working properly.
The two identities (5.21) and (5.22) are shown in Fig. 4

for N ¼ 10 and N ¼ 17 with ~c ¼ 1. It is decisively shown
that the calculation of the coefficients v reported in this
article (Model II) gives the correct approximation of
noncommutative scalar Φ4

2 on the fuzzy sphere. Indeed,
the data points for the expectation values h−V2iV0

and
h−V4 þ V2

2=2iV0
in Model II coincide, within the best

statistical errors, with the data points of the kinetic terms
haTr½La;M�2iV0

and haTr½La;M�2Þ2=2iV0
, respectively.

The discrepancy with Model II is obvious in Fig. 4.

C. Phase diagrams and other physics

We can now turn to the more serious study of the phase
diagrams, critical boundaries, triple point and critical
exponents of the multitrace matrix Models I and II using
Monte Carlo simulation. This is a long calculation that can
only be reported elsewhere [29,30]. Here we summarize
some of our results, which include:

(i) The phase diagram of Model I contains three stable
phases: (i) disordered (symmetric, one-cut, disk)
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phase; (ii) uniform ordered (Ising, broken, asym-
metric one-cut) phase; and (iii) nonuniform ordered
(matrix, stripe, two-cut, annulus) phase that meet
at a triple point. The nonuniform ordered phase is a

full blown nonperturbative manifestation of the
perturbative UV-IR mixing effect, which is due to
the underlying highly nonlocal matrix degrees of
freedom of the noncommutative scalar field. The
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critical boundaries are determined, and the triple
point is located.

(ii) The uniform ordered phase exists in the Model I
only with the odd terms included. If we assume the
symmetryM → −M, then all odd terms can be set to
zero and the uniform ordered phase disappears. This
is at least true in the domain studied in this article,
which includes the triple point of fuzzy Φ4 on the
fuzzy sphere and extends to all its phase diagram
probed in [9,10].

(iii) The delicate computation of the critical exponents of
the Ising transition is discussed, and our estimate
of the critical exponents ν, α, γ, β agrees very well
with the Onsager values.

(iv) The phase diagram of Model II, with or without
odd terms, does not contain the uniform or-
dered phase.

(v) The one-cut-to-two-cut transition line does not
extend to the origin in Model II, which gives us
an estimation of the triple point in this case.

(vi) As we have shown in this article, in Model II without
odd terms, the termination point can be computed
from the requirement that the critical point ~B�
remains always negative. The result is given in
Eq. (4.28), which agrees with what is obtained in
Monte Carlo simulation.

(vii) In Model II with odd terms the termination point
is found numerically to be located at ð ~B; ~CÞ ¼
ð−1.05; 0.4Þ. This is our measurement of the triple
point.

(viii) In all cases the one-cut-to-two-cut matrix transition
line agrees better with the double-trace matrix
theory, studied in this article, than with the quartic
matrix model. We recall that the double-trace matrix
theory is given by D ≠ 0 while all primed param-
eters are zero.

(ix) The model of Grosse-Wulkenhaar can also be
discussed along the same lines using a combination
of the multitrace approach and the Monte Carlo
approach.

We note in passing that other far more important physics
can also be obtained from these multitrace matrix models
[30]. More precisely, a novel scenario for the emergence of
geometry in generic random multitrace matrix models of a
single Hermitian matrix M with unitary UðNÞ invariance,
i.e. without a kinetic term, can be formulated as follows. If
the multitrace matrix model under consideration does not
sustain the uniform ordered phase, then there is no
emergent geometry. On the other hand, if the uniform
ordered phase is sustained, then there is an underlying or
emergent geometry with dimension determined from the
critical exponents of the uniform-to-disordered (Ising)
phase transition and a metric (Laplacian, propagator)
determined from the Wigner semicircle law behavior of
the eigenvalues distribution of the matrix M.

VI. THE NONPERTURBATIVE EFFECTIVE
POTENTIAL APPROACH

The formalism due to Nair, Polychronakos, and Tekel
[18,19,31,32] will allow us to compute the even part of the
nonperturbative effective potential, i.e. the part of the
potential symmetric underM → −M, as a multitrace matrix
model. This will also allow us to compare our multitrace
matrix models obtained here, at least in this special case, to
an independent exact result. We slightly change notation
and start with the action

S ¼ Tr

�
1

2
rM2 þ gM4

�
: ð6:1Þ

We define the momentsmn as usual bymn¼TrMn¼P
ix

n
i .

By assuming that the kinetic operator K satisfies Kð1Þ ¼ 0
and that odd moments are zero we get immediately

Z
dU exp

�
−
1

2
TrMKM

�
¼ expð−Seffðt2nÞÞ;

t2n ¼ Tr

�
M −

1

N
TrM

�
2n
: ð6:2Þ

Let us first consider the free theory g ¼ 0. In the limit
N → ∞ we know that planar diagrams dominates, and thus
the eigenvalues distribution of M, obtained via the calcu-
lation of TrMn, is a Wigner semicircle law [31,33]

ρðxÞ ¼ 2N
πR2

W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
W − x2

q
; R2

W ¼ 4fðrÞ
N

;

fðrÞ ¼
XN−1

l¼0

2lþ 1

KðlÞ þ r
: ð6:3Þ

We consider now g ≠ 0. The equation of motion of the
eigenvalue xi arising from the effective action Seff contains
a linear term in xiþ the Vandermonde contribution þ
higher order terms. Explicitly, we have

X
n

∂Seff
∂t2n 2nx2n−1i ¼ 2

X
i≠j

1

xi − xj
: ð6:4Þ

The semicircle distribution is a solution for g ≠ 0 since it is
a solution for g ¼ 0 [18]. The term n ¼ 1 alone will give
the semicircle law. Thus the terms n > 1 are cubic and
higher order terms that cause the deformation of the
semicircle law. These terms must vanish when evaluated
on the semicircle distribution in order to guarantee that the
semicircle distribution remains a solution. We rewrite the
action Seff as the following power series in the eigenvalues:

Seff ¼ a2t2 þ ða4t4 þ a22t22Þ þ ða6t6 þ a42t4t2 þ a222t32Þ
þ ða8 þ a62t6t2 þ a422a4t22 þ a2222t42Þ þ � � � : ð6:5Þ
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We impose then the condition

∂Seff
∂t2n

				
Wigner

¼ 0; n > 1; ð6:6Þ

and use the fact that the moments in the Wigner distribution
satisfy

t2n ¼ Cntn; Cn ¼
ð2nÞ!

n!ðnþ 1Þ! ; ð6:7Þ

to get immediately the conditions

a4 ¼ 0; a6 ¼ a42 ¼ 0;

a8 ¼ a62 ¼ 0; 4a44 þ a422 ¼ 0;…: ð6:8Þ

By plugging these values back into the effective action we
obtain the form

Seff ¼
1

2
Fðt2Þ þ ðb1 þ b2t2Þðt4 − 2t22Þ2

þ cðt6 − 5t32Þðt4 − 3t22Þ þ � � � : ð6:9Þ

Thus the effective action is still an arbitrary function Fðt2Þ
of t2, but it is fully fixed in the higher moments t4; t6;….
We note that the extra terms vanish for the Wigner semi-
circle law. The action up to sixth order in the eigenvalues
depends therefore only on t2, viz.

Seff ¼
1

2
Fðt2Þ þ � � � : ð6:10Þ

The equations of motion of the eigenvalues for g ¼ 0 read
now explicitly

ðF0ðt2Þ þ rÞxi ¼ 2
X
i≠j

1

xi − xj
: ð6:11Þ

The radius of the semicircle distribution is immediately
obtained by

R2
W ¼ 4N

F0ðt2Þ þ r
: ð6:12Þ

By comparing (6.3) and (6.12) we obtain the self-
consistency equation

4fðrÞ
N

¼ 4N
F0ðt2Þ þ r

: ð6:13Þ

Another self-consistency condition is the fact that t2
computed using the effective action Seff for g ¼ 0, i.e.
using the Wigner distribution, should give the same value,
viz.

t2 ¼ TrM2 ¼
Z

RW

−RW

dxx2ρðxÞ ¼ N
4
R2
W ¼ N2

F0ðt2Þ þ r
:

ð6:14Þ

We have then the two conditions

F0ðt2Þ þ r ¼ N2

t2
; t2 ¼ fðrÞ: ð6:15Þ

The solution is given by

Fðt2Þ ¼ N2

Z
dt2

�
1

t2
−

1

N2
gðt2Þ

�
: ð6:16Þ

gðt2Þ is the inverse function of fðrÞ, viz. fðgðt2ÞÞ ¼ t2.
For the case of the fuzzy sphere with a kinetic term given

by the canonical formula KðlÞ ¼ lðlþ 1Þ we have the
result

fðrÞ ¼ ln

�
1þ N2

r

�
: ð6:17Þ

Thus the corresponding solution is explicitly given by

Fðt2Þ ¼ N2 ln
t2

1 − expð−t2Þ
: ð6:18Þ

The full effective action on the sphere is then

Seff ¼
N2

2
ln

t2
1 − expð−t2Þ

þ Tr

�
1

2
rM2 þ gM4

�
þ � � �

¼ N2

2

�
t2
2
− ln

expðt=2Þ − expð−t=2Þ
t

�

þ Tr

�
1

2
rM2 þ gM4

�
þ � � �

¼ N2

2

�
t2
2
−

1

24
t22 þ

1

2880
t42 þ � � �

�

þ Tr

�
1

2
rM2 þ gM4

�
þ � � � : ð6:19Þ

This should be compared with our result in this article with
action given by aTrMKM þ bTrM2 þ cTrM4 and effec-
tive action given by our Eq. (3.12) or equivalently

V0 þ ΔV0 ¼
�
aN2

2
TrM2 −

a2N2

12
ðTrM2Þ2 þ � � �

�
þ TrðbM2 þ cM4Þ þ � � � : ð6:20Þ

It is very strange that the author of [18] notes that their
result (6.19) is in agreement with the result of [16], given by
Eq. (4.5), which involves the term T4 ¼

P
i≠jðxi − xjÞ4=2.

It is very clear that T4 is not present in the above Eq. (6.19),
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which depends instead on the term T2
2 where

T2 ¼
P

i≠jðxi − xjÞ2=2. The work [17] contains the correct
calculation, which agrees with both the results of [18] and
our result here.
The one-cut-to-two-cut phase transition derived from the

effective action Seff will be appropriately shifted. The
equation determining the critical point is still given, as
before, by the condition that the eigenvalues distribution
becomes negative. We get [18]

r ¼ −5
ffiffiffi
g

p
−

1

1 − expð1= ffiffiffi
g

p Þ : ð6:21Þ

For large g we obtain

r ¼ −
1

2
− 4

ffiffiffi
g

p þ 1

12
ffiffiffi
g

p þ � � � : ð6:22Þ

This is precisely the result obtained in this article given by
Eq. (4.26) with the identification a ¼ 1, b ¼ r, and c ¼ 4g.

VII. CONCLUSION

In this article we have extended the multitrace approach
of [16] to two-dimensional noncommutative phi-four
theory with a nonzero harmonic oscillator term on the
fuzzy sphere and on the Moyal-Weyl plane. We computed
the corresponding real multitrace quartic matrix model up
to the second order in the kinetic term parameter and then
derived explicitly, in the case of the even double-trace
matrix models, the critical transition line between the one-
cut (disordered,disk) phase with hΦi ¼ 0 and the two-cut

(nonuniform ordered, annulus) phase with hΦi ¼ γ. A
robust prediction of the triple point, identified as a
termination point of the matrix transition line, is derived
and compared with the previous Monte Carlo result of
[9,10]. Our estimation is improved considerably by includ-
ing odd moments in the effective multitrace action as
evidenced by Monte Carlo simulations of this multitrace
matrix model.
The multitrace matrix model of [16] as well as the one

obtained in this article are tested for their correctness using
Monte Carlo simulation where it is decisively shown that
our calculation here gives the correct approximation of
noncommutative scalar Φ4

2 on the fuzzy sphere to the
second order. This was also confirmed using the non-
perturbative multitrace approach of [18,19,31,32]. The rich
phase diagrams of both of these models, obtained in
Monte Carlo simulations, are also described in some detail
together with some unexpected physics, such as emergent
geometry, of generic multitrace matrix models.
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APPENDIX A: LARGE N BEHAVIOR

The coefficients s are defined, in terms of the kinetic
matrix K and characters and dimensions of various SU(N)/
U(N) representations, by the following equations:

s1;2 ¼
1

dimð1; 2ÞKABTrð1;2ÞtA ⊗ tB; s2;1 ¼
1

dimð2; 1ÞKABTrð2;1ÞtA ⊗ tB: ðA1Þ

s1;4 ¼
1

dimð1; 4ÞKABKCDTrð1;4ÞtA ⊗ tB ⊗ tC ⊗ tD; ðA2Þ

s4;1 ¼
1

dimð4; 1ÞKABKCDTrð4;1ÞtA ⊗ tB ⊗ tC ⊗ tD; ðA3Þ

s2;3 ¼
1

dimð2; 3Þ ð2KABKCD þ KADKBCÞTrð2;3ÞtA ⊗ tB ⊗ tC ⊗ tD; ðA4Þ

s3;2 ¼
1

dimð3; 2Þ ðKABKCD þ 2KACKBDÞTrð3;2ÞtA ⊗ tB ⊗ tC ⊗ tD; ðA5Þ

s2;2 ¼
1

dimð2; 2Þ ðKABKCD þ KACKBDÞTrð2;2ÞtA ⊗ tB ⊗ tC ⊗ tD: ðA6Þ

On the other hand, the combinations that appear in the quartic part of the effective potential are given by the following
expressions:
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1

8N
ðs1;4 − s4;1 − s2;3 þ s3;2Þ ¼

1

16N6

�
−2 −

25

N2
þO4

�
K2

ii;jj þ
1

8N5

�
1þ 15

N2
þO4

�
Kii;klKjj;lk; ðA7Þ

1

6
ðs1;4 þ s4;1 − s2;2Þ ¼

1

4N6

�
2þ 25

N2
þO4

�
K2

ii;jj −
1

2N5

�
1þ 15

N2
þO4

�
Kii;klKjj;lk

−
1

4N5

�
1þ 15

N2
þO4

�
Kii;jjKkl;lk þ

1

4N4

�
1þ 17

N2
þO4

�
Kij;jlKkk;li; ðA8Þ

1

8N
ðs1;4 − s4;1 þ s2;3 − s3;2 − 2ðs21;2 − s22;1ÞÞ

¼ 1

8N6
ð−1þO2ÞKij;klKji;lk þ

1

16N6

�
−
18

N2
þO4

�
K2

ii;jj þ
5

4N7
ð1þO2ÞKii;klKjj;lk þ

1

16N5

�
12

N2
þO4

�
Kii;jjKkl;lk

þ 1

8N5
ð1þO2ÞKij;kiKlk;jl −

3

4N6
ð1þO2ÞKij;jlKkk;li þ

1

8N6
ð−1þO2ÞK2

ij;ji; ðA9Þ

1

16N2
ðs1;4 þ s4;1 − s2;3 − s3;2 þ 2s2;2 − 2ðs1;2 − s2;1Þ2Þ

¼ 1

16N6
ð1þO2ÞKij;klKji;lk þ

1

32N6

�
6

N2
þO4

�
K2

ii;jj −
1

8N7
ð2þO2ÞKii;klKjj;lk; ðA10Þ

1

48
ðs1;4 þ s4;1 þ 3s2;3 þ 3s3;2 þ 2s2;2 − 6ðs1;2 þ s2;1Þ2Þ

¼ 1

16N6
ð1þO2ÞKij;klKji;lk þ

1

32N6

�
18

N2
þO4

�
K2

ii;jj −
5

8N7
ð1þO2ÞKii;klKjj;lk þ

1

16N5

�
−

8

N2
þO4

�
Kii;jjKkl;lk

−
1

8N5
ð1þO2ÞKij;kiKlk;jl þ

1

4N6
ð2þO2ÞKij;jlKkk;li þ

1

32N4

�
4

N2
þO4

�
K2

ij;ji: ðA11Þ

The kinetic matrix Kij;kl is defined in terms of the kinetic
matrix KAB, which is defined by Eq. (2.12), by

KAB ¼ ðtAÞjkðtBÞliKij;kl: ðA12Þ

The large N behavior of the different operators is given by

1

N5
Kii;klKjj;lk ¼

r4

3
ð13 − 10ϵÞ þ � � � ; ðA13Þ

Kij;klKli;jk ¼ 16r4ð ffiffiffiffi
ω

p þ 1Þ2
�
1

3
N3 − ϵ

3

10
N3

�
þ � � � ;

ðA14Þ

Kij;jlKkk;li ¼ 8r4ð ffiffiffiffi
ω

p þ 1Þ
�
7

12
N4 − ϵ

1

2
N4

�
þ � � � ;

ðA15Þ

Kij;klKji;lk ¼
2r4N4

9
ð21 − 16ϵÞ þ 2r4ωN4

9
ð9 − 8ϵÞ þ � � � ;

ðA16Þ

1

4N6
K2

ii;jj ¼ r4
�
1 − 3

ϵ

4

�
þ � � � ; ðA17Þ

Kii;jjKkl;lk ¼ 4r4ð ffiffiffiffi
ω

p þ 1Þ
�
N5 − ϵ

5

6
N5

�
þ � � � ;

ðA18Þ

Kmj;kmKnk;jn ¼ 16r4ð ffiffiffiffi
ω

p þ 1Þ2
�
1

3
N3 − ϵ

3

10
N3

�
þ � � � ;

ðA19Þ

K2
ij;ji ¼ 16r4ð ffiffiffiffi

ω
p þ 1Þ2

�
1

4
N4 − ϵ

2

9
N4

�
þ � � � :

ðA20Þ

APPENDIX B: RESULT OF [16] REVISITED

The starting point is the result given by Eq. (3.25) of
[16], which in our notation reads [with a ¼ 2π=ðN þ 1Þ]
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Z
dU expðaTr½U−1LaU;Λ�2Þ

¼ 1þ 2a ·
T2

NðN2 − 1ÞKaa

þ 8a2 ·
T2
2 − 2T4

4N2ðN2 − 1ÞðN2 − 9ÞX1

þ 8a2 ·
−5T2

2 þ ðN2 þ 1ÞT4

2NðN2 − 1ÞðN2 − 4ÞðN2 − 9ÞX2 þ � � � :

ðB1Þ

In the above equation we have multiplied by the
appropriate factor and also included, for completeness,
the first and second order correction terms. We should
make the identification Ξ ¼ T between our notation and
the notation of [16]. The operators X1 and X2 are
defined by

X1 ¼ 2K2
ab þ K2

aa; ðB2Þ

X2 ¼ KabKcd

�
1

2
dabkdcdk þ dadkdbck

�
: ðB3Þ

In other words, X1 and X2 are essentially the operators
2trK2 þ ðtrKÞ2 and K⊥K of [16]. We must furthermore
take into account the different normalizations for the
Gell-Mann matrices employed in the two cases. The
kinetic matrix in this case is defined by

Kab ¼ Tr½Li; ta�½Li; tb�: ðB4Þ

The source of the discrepancy between our result (3.12)
and the result obtained in [16] was traced to the operator
K⊥K, i.e. X2, defined in Eq. (3.18) of [16], which was
neglected in the large N limit in their analysis. The
operators X1 and X2 can be computed in closed form.
We find

X1 ¼
N4ðN2 − 1Þ2

16
þ N2ðN2 − 1Þ2

6
; ðB5Þ

X2 ¼
N3ðN2 − 1Þ2

16
−
NðN2 − 1Þ2

6
−
NðN2 − 1Þ

4
: ðB6Þ

Clearly X1 is of order N8 while X2 is of order N7. As a
consequence the coefficient of T4 in (B1) comes out to be
subleading. This can be inferred quite easily from the exact
result5

Z
dU expðaTr½U−1LaU;Λ�2Þ

¼ 1 −
aN
2

T2 þ
a2

24
ðT2

2 − 2T4Þ
N2 − 1

N2 − 9
ð3N2 þ 8Þ

þ a2

12
ð−5T2

2 þ ðN2 þ 1ÞT4Þ
3N2 þ 1

N2 − 9
þ � � � : ðB7Þ

This leads to (3.12). Furthermore, it is obvious from this
result that although the subleading coefficient of the
operator T2

2 is of order N0, the contribution associated
with this term cannot be suppressed, since this operator is
actually of order N4.

APPENDIX C: QUARTIC EQUATION

The quartic equation (4.12) reads in terms of the scaled
parameters b̄, c̄, and x̄ ¼ ~aγ−1=4x as follows:

x̄4 þ αx̄2 þ βx̄þ 1 ¼ 0; ðC1Þ

α ¼ γ
1
2ᾱ; β ¼ γ

1
4β̄; ðC2Þ

γ ¼ 24

ðΩ2 þ 1Þ2ηc̄ ; ðC3Þ

ᾱ ¼ −
1

12
ð9c̄ − 2ηðΩ2 þ 1Þ2Þ; β̄ ¼ −

1

4
ð2b̄þΩ2 þ 1Þ:

ðC4Þ

The range (4.23) of c̄ translates to a range of ᾱ given by

ᾱ ≤ −
ηðΩ2 þ 1Þ2

3
: ðC5Þ

The four solutions of our depressed quartic equation can be
rewritten as

x̄ ¼ 1

2

�
�1

ffiffiffi
z

p �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
zþ 2α�1

2βffiffiffi
z

p
�s �

; ðC6Þ

where z is a solution of the cubic equation

z3 þ 2αz2 þ ðα2 − 4Þz − β2 ¼ 0: ðC7Þ

Define

z ¼ t −
2α

3
: ðC8Þ

The corresponding depressed cubic equation is

t3 þ 3Qt − 2R ¼ 0; ðC9Þ

Q ¼ −
α2

9
−
4

3
; R ¼ −

4α

3
þ α3

27
þ β2

2
: ðC10Þ5This can be derived directly for N ¼ 2.
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Next we reduce to a quadratic equation. We start from the
identity

ðt3 − B3Þ þ Cðt − BÞ ¼ ðt − BÞðt2 þ Btþ B2 þ CÞ:
ðC11Þ

By comparison we get

C ¼ 3Q; B3 þ CB ¼ 2R: ðC12Þ

In other words, B solves the cubic equation

B3 þ 3QB − 2R ¼ 0: ðC13Þ

The solution is immediately given by

B ¼ ½Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3 þ R2

p
�1=3 þ ½R −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3 þ R2

p
�1=3: ðC14Þ

We have then

t3 þ 3Qt − 2R ¼ ðt − BÞðt2 þ Btþ B2 þ 3QÞ: ðC15Þ

In other words, t ¼ B is a solution of the cubic equa-
tion (C9). The other two solutions solve the quadratic
equation t2 þ Btþ B2 þ 3Q ¼ 0, viz.

t ¼ −B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3B2 − 12Q

p
2

: ðC16Þ

This can be rewritten also as

t ¼ −B� i
ffiffiffi
3

p
A

2
; ðC17Þ

A ¼ ½Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3 þ R2

p
�1=3 − ½R −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3 þ R2

p
�1=3: ðC18Þ

Define

D ¼ Q3 þ R2; S ¼ ½Rþ
ffiffiffiffi
D

p
�1=3; T ¼ ½R −

ffiffiffiffi
D

p
�1=3:
ðC19Þ

In summary the real solutions of interest of our cubic
equation are given by

D > 0 ⇒ t ¼ fSþ Tg; ðC20Þ

D ≤ 0 ⇒ t ¼


Sþ T ¼ realð2SÞ; 1

2
ð−1� i

ffiffiffi
3

p
ÞS

þ 1

2
ð−1 ∓ i

ffiffiffi
3

p
ÞT ¼ realðð−1� i

ffiffiffi
3

p
ÞSÞ

�
:

ðC21Þ

Our numerical approach is based on the solutions (C6)–
(C8)–(C10) and (C19)–(C20)–(C21).
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