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Recently, it was realized that nonperturbative instanton effects can be generated to all orders by
perturbation theory around a degenerate minima via the Dunne-Unsal relation in several quantum
mechanical systems. In this work we verify the Dunne-Unsal relation for resonance energy levels of one-
dimensional polynomial anharmonic oscillators. We show that the relation is applicable to cubic and
quartic anharmonic oscillators which are genus-one potentials. However for higher order (higher genus)
anharmonic potentials the relation is not satisfied and is subject to a certain extension.
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I. INTRODUCTION

It is well known that in quantum mechanical systems
perturbation theory around a degenerate minima has energy
expansion of the form

Eg) =S Eg. (1)

which often diverges asymptotically [1-3]. One way to
resolve this issue is to apply Borel summation and give a
physical meaning to these divergent series. However, in the
process of analytic continuation of the Borel transform,
singularities arise on the integration contour, and hence the
Borel sum includes imaginary terms due to the deformation
of the contour (see, e.g., Refs. [4-10]). Moreover, the
choice of the contour also affects the imaginary contribu-
tion and hence gives rise to ambiguities on the energy
eigenvalue [10,11]. Another ambiguity arises from the
fluctuations around the n-instanton sector which again
asymptotically diverges and leads to ambiguous imaginary
terms. So by the inclusion of these nonperturbative effects,
we confront ambiguous imaginary terms coming from both
perturbative and nonperturbative sectors which, at first,
make the problem even more subtle. Since any physical
observable must be real and ambiguity free, a further
analysis is needed to resolve these issues.

Recently, important progress has been made in studying
the question of the relation between the pertubative and
nonperturbative contributions in quantum theories [12-17]
(see also earlier works [3,18-21]). Much of this progress is
due to resurgence theory, developed by Ecalle in the early
1980s [22] (see also Refs. [23,24]). Rather than the usual
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perturbative expansion (1) for the energy eigenvalue,
resurgence analysis connects perturbative contributions
with nonperturbative effects through “resurgent trans-
series,” where the imaginary terms with ambiguities com-
ing from the Borel summation systematically cancel each
other to all orders' [28,29]. For instance, imaginary terms
arising from the perturbative vacuum cancels the imaginary
term arising from the 2-instanton sector, the imaginary term
from the 1-instanton sector is canceled by an imaginary
term in the 3-instanton sector, and so on. Hence, this leaves
us with a real and unambiguous result for our observable (in
this paper, energy). This cancellation has been carried out
to all orders by using the following resurgent expansion
form of the Nth energy level [12,13,28,29]:

S
—ng 2 l
M(g) =" e 1) g
(2)

which takes into account the n-instanton contributions,

generated by e_g, where S is the coefficient of the instanton
action, with the fluctuations around them as well as the
quasi-zero modes generated by the logarithmic term. One
should note that for n = 0 the term in the sum is the usual
perturbative expansion of the form (1), and the logarithmic
terms start to appear at the 2-instanton sector. So the
expansion (1) is actually not the complete expansion of a
real unambiguous eigenvalue; one needs to extend it by
adding nonperturbative effects. On the other hand, the
expansion (2) handles these nonperturbative effects with
the right coefficients c,f 1.m Such that the total sum is real and

1 . . . .
For an introduction to resurgence in physics, see recent
reviews on the topic [25-27].
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ambiguity free. These cancellations imply a deep relation-
ship between perturbative and nonperturbative sectors,
and this relationship lies behind the resurgence analysis
[12,13,29].

In recent years resurgence techniques have also been
applied to different branches of physics and mathematics,
including quantum mechanics [12,13,15,28-32], quantum
field theory [11,33-37], string theory [38—45], hydrody-
namic gradient expansion [46—48], and supersymmetric
theories [49-52].

The organization of the paper is as follows. In order to
put the results into context, in Sec. II we briefly discuss
some aspects of [28] and [15], focusing, in particular, on
the Dunne-Unsal relation. In Secs. Il and IV we verify the
relation for cubic and quartic anharmonic oscillators,
respectively. While the present work is mainly devoted
to the verification of the Dunne-Unsal relation, we also
briefly recall some properties of the cubic and quartic
potentials. In Sec. V we discuss the fact that the formula is
not satisfied in its current form for higher degree poly-
nomial oscillators; in particular, we show the calculations
for the quintic potential. For the sake of completeness, in
Appendixes A, B and C, we write down the related data for
sextic, septic and octic potentials, although they will not be
discussed here. In this paper the generalized quantization
conditions and expressions for the functions B and A in
terms of E and g are collected from Ref. [15].

II. CONNECTING PERTURBATIVE AND
NONPERTURBATIVE SECTORS

Zinn-Justin et al. obtained the resurgent expansion (2)
by a small systematic g expansion of an exact quantization
condition [3,12,13,15] in a given system. In their approach,
this quantization condition includes two functions, B(E, g)
and A(E, g), which are related to the perturbative expansion
of the energy eigenvalues and instanton contributions to the
system, respectively [5,6]. Schematically, this generalized
quantization condition has the following form:

I S (%) B(E’g)e—A<E»g). (3)
F(1-B(E.g) \yg

One can compute the perturbative expansions of A(E, g)
and B(E, g) functions by using the WKB approximation
[6,12,13]. Alternatively, if one knows the energy in the one-
instanton approximation to all orders, then from the one-
instanton approximation of the quantization condition? (3),
it is easy to determine the function A(E, g) [5].

In order to calculate exact energy eigenvalues of a
quantum-mechanical system as in the form of (2), one
has to calculate the B(E,g) and A(E,g) functions

Note that in the case of locally harmonic oscillators, taking
B(E,g) = % + N gives the usual perturbative expansion of the
energy.
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separately and then expand this quantization condition
for a small coupling parameter g.

Recently, Dunne and Unsal have revealed a remarkable
simple relation between these two functions. For given
B(E, g) and A(E, g) functions of several physical systems
[like double-well, sine-Gordon, Fokker-Planck, O(d) sym-
metric potential], it was shown that by converting the
functions B(E,g) and A(E,g) into E(B,g) and A(B,g),
they satisfy the following relation [28]:

OE(B, g) _ 9 GA(B,g))’ ()

_9 (2
OB 2S< T,

where § is the instanton action coefficient.

The relation (4) provides a powerful computational tool:
By knowing the perturbative expansion about a degenerate
minima with a global boundary condition, one can derive
the function A rather than calculating them separately. In
other words, resurgent trans-series for the energy can
actually be generated only from the perturbative expansion
of E with a global boundary condition. The Dunne-Unsal
relation (4) shows a close connection between perturbative
and nonperturbative sectors which is not very obvious in
the Zinn-Justin et al. approach [3,12,13,15].

Although the Dunne-Unsal relation (4) is a powerful
equation, under which conditions this equation holds is still
unclear [53,54].

In this paper, we consider a set of one-dimensional
anharmonic  oscillators with polynomial potentials
[14,18,19,55,56] and verify the Dunne-Unsal relation for
cubic and quartic anharmonic potentials which correspond
to genus-one potentials. However, as we go into higher
order (higher genus) anharmonic potentials we observe that
the relation is not satisfied.

We use the notations of [15] and denote the Hamiltonian
of an even oscillator by

10> 1
_58—q2+§q2+gqN’ (5)

Hy(g) =
and we use the convention H,, for the Hamiltonian of an
odd oscillator®

1 0%

1
Hy(9) :—Ea—qz+§q2+\/§q’”. (6)

For N even, instanton configurations exist for g < 0, and
the generalized Bohr-Sommerfeld quantization condition
for each potential has the following form:

3There are several reasons for choosing the coupling constant
as /g for odd oscillators. We will not stress these aspects in this
paper, referring the reader to [15] for complete details.
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N
2N

1 R (_
FA—By(E.g) 2z \ (—g)¥N2

By(E.9)
)) e_AN (E’g) .

(7)

For M odd, instantons exist for g > 0, and the quantization
condition reads

M By (E,
1 1 _ 1 (_ 2= >M< 9>6_AM<E'9)‘
L(G—Byu(E.g) 8z \ g/™M=2

(8)

Here I'(z) is the Euler gamma function.

In [15-17], Zinn-Justin et al. discuss contributions of
instanton related effects in one-dimensional anharmonic
oscillators of arbitrary even and odd degrees; in particular,
they present expressions for B(E, g) and A(E, g) for the
anharmonic oscillators with polynomial potentials of
degrees M =3, 5, 7 and N =4, 6, 8. In this work we
check the Dunne-Unsal relation for those potentials by
using their generalized quantization conditions.

III. HARMONIC OSCILLATOR WITH
CUBIC POTENTIAL

In this section we consider an anharmonic oscillator with
cubic potential. The Hamiltonian of the cubic anharmonic
oscillator has the following form:

10> 1
H3(g):—§a—qz+§q2+\/§q3. )
Note that for a positive and real coupling parameter g the
one-dimensional cubic oscillator possesses resonances
[15,57].
First we calculate the instanton action of the system (9).
The instanton action for odd anharmonic oscillators can be
computed using the following general formula [15,56]:

1\ 1/(M=2) [o=m
SM[Q]—<§> /0 2v/q* —2¢Mdq, (10)
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where M stands for the degree of the polynomial. In the
case of the cubic potential, i.e., for M = 3, we have

1 1
s3:—/22q«/1—2qdq. (11)
9Jo
By defining u = 1 — 2¢, we obtain
1 [1(1-u)
=— [ —=+Vudu. 12
s[5 i (12)

Now one can easily compute the integral and get the final
result

2

— 1
15g° (13)

§3 =

which is positive for g > 0. This quantity determines the
leading contribution to the ground-state energy of order
exp(— %g) The generalized Bohr-Sommerfeld quantization

condition for the cubic potential reads

1 1 _ 1 (_8)33(E'g)e—A3(E.g)’ (14)
I(G-B3(E,9) 8z \ ¢

with the following characteristic functions:

ByE.) =E+ " gbeni(E) (15)
i—1

2 -
As(E. g) :Fg'i'zglai-s—l(E)? (16)
P

where b; and a; are polynomials of degree i in E and the

term ILS_(/ is the instanton action (13). The expression (14) is a

relation for the resonance energies of the anharmonic
oscillator with the cubic potential for g > 0. It is worth
mentioning here that for g < 0 the right-hand side of the
expression (14) is equal to zero.

The expressions for B(E, g) and A(E, g) for the cubic
anharmonic oscillator were calculated in [15,56,57]. The
expansion of the perturbative function B;(E,g) in g is
given by

B 7 15 ,\ . L,[1365 1155 .\ (119119 285285 , 255255
B3(E’g)_E+g<16+4E>+g<64 Ere B )9\ 20as "6 P s
L (156165009 121246125 66927861
g E
16384 2048 1024
L (10775385621 67931778915
T\ 262144 65536
51869092275 , 9704539845 7
16384 4096 ’

and the nonperturbative function A3(E, g) has the following expansion:
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2 77 141 15911 11947
AyE.q) = —+g( LB 4 ¢ E B
+(E.9) 159+g<32+ 8 >+9<128 T3 )
(49415863 | 6724683 , 5481929
122880 ' 1024 512
L (2072342055 | 44826677 , 733569789
+ E
32768 128 2048
4 (404096853629 1100811938280 , 307346388279 , 134713909947 (18)
I\ 71310720 163840 16384 10240

In order to verify the Dunne-Unsal relation, we need to rewrite expansions of the function A and the energy E in terms of B
and g. We use an ansatz E(B,g) = B — ) %, pj+1(B)g/, where p; ;(B) are polynomials of degree (j + 1) in B. By
inserting the ansatz into (17) and by comparison of coefficients in each order of g, we get

-1 ) (0 ) (2P 1T
~ 4<129443349 77300685 . 23968161 5)_ 5 <2375536317 26541790065 _,
16384 2048 1024 65536 32768
3601649205 , 1412410545 6) (19)
2048 2048

One can verify this result for the nonalternating perturbation series for the ground-state energy without instanton effects,

i.e., by inserting By = 3 in (19),

111
o)

ground(g) = 5_ ?g_gg

465 , 39709 ; 19250805 ,

128 7 2048 (20)

This is exactly the result obtained by the Rayleigh-Schrodinger perturbation theory. Similarly writing A3 in terms of B

and g will yield

2 77 141 13937
Ax(B.q) = — o g, 2 (12720 g
3(B.9) =15, 9(32“L 8 >+g ( 28 " T3

7717 s

) 3(43147783 5153379 266312934)

122880 1024 512

4 (1769452671 240109947 . 282482109 B 7 724731745353 3555387349941
32768 1024 2048 2621440 655360
359377601583 , 168844301703 (21)
32768 40960
After these conversions, the new series obey the following JE(B, g) _ 9 B 8_A 23
- —n = +95- - (23)
relation: OB S dg

_g 28A3(ng)
dB 279759

5 (@

This means that the Dunne-Unsal relation [28,29]
is satisfied for the cubic potential in the following
form*:

*The § stands for the coefficient of (13).

From the relation (23) it is obvious that the nonperturbative
function A3(E,g) could actually be determined by the
perturbative function B;(E, g).

Note that the relationship between the A and B functions
in the quantization conditions provided by [12,13] may
differ from each other. In particular, the function A in
quantization conditions (7) and (8) appears as exp(—A)
rather than exp(—A/2), which is the case for double-well
and sine-Gordon potentials. This is the reason why we have
the factor —g?/S instead of —g?/2S in front of g—?.
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REMARK ON THE DUNNE-UNSAL RELATION IN EXACT ...

IV. QUARTIC POTENTIAL CASE

In this section we consider the anharmonic oscillator
with a quartic potential. The Hamiltonian for the quartic
potential is

10 1

Hy(g9) = - 394 2215 7> + 99" (24)

Note that for g < 0 the system has resonances.

The instanton action for even anharmonic oscillators has
a slightly different formula than the expression (10) for odd
potentials [15,56]:

1\2/(N-2) [2mw T
Snlg] = -5 | 24/q>—2q"dq.  (25)

Here the label N stands for the degree of the polynomial. In
the case of a quartic potential, i.e., for N = 4, we have

1 1
S, = ——/ﬁ2q\/1 —24%dg. (26)
gJo
By defining u = 1 — 2%, we get
1 /l Vi
Sy =—— —du 27
==, ), 2 (27)
Then the instanton action is
1
Sy=—=— (28)

3g°

The generalized Bohr-Sommerfeld quantization condi-
tion in the case of the quartic potential reads [15]

<i> B4(E’.q>€_A4(E,Q), (29)
9

with the following perturbative B and nonperturbative A
functions:

1 1
rG-Bi(Eg) oz

BiEg)=E+Y dbu(E).  (0)
M(Bg) = =5+ Y dapa(B. G

The coefficients b; and a; are odd or even polynomials in £
of degree j. The evaluation of B, and A, in terms of a series
in variables E and ¢ has been described in [15]. The first
five orders of the B and A functions are given by

PHYSICAL REVIEW D 93, 065037 (2016)

33, 85 35 £
By(E,g)=E-g §+§E +4 16E+

1995 2625 1155
- B2 o
(256 TP T )
(400785 165165 45045
9\ o024 128 64
4+ (32)
1 67 17 671 227
AE.q) = ———g[ 2L+ L p2 2o s
(E.9) =3, g<48+4 >+g<32 3 >
(372101125333, 47431,
9216 ' 384 192
3839943 82315 . 317629
4 E3 ES
(2048 A TR DT )
. (33)

Note that the leading term of the nonperturbative function
A(E, g) contains the instanton action as given in (28). In
order to check the Dunne-Unsal relation, we convert the
series B(E, g) into E(B, g) as

3 3 67 17
E4(B,g):B+g<§+§Bz)—g (16B+ 33)

1539 1707 , 375
3 BZ B4
T (256 LSV IEARITS )
(305141 89165 , 10689 5)
B3+ B

B
1024 * 128 64
o (34)

The usual alternating perturbation series for the ground
state can be derived by taking B, = 5 in (34),

21

w _1.3 , 333 5 30885

3
gound =5 T I TGS TS T g T
(35)

which agrees with results in [3,18].
By converting A(E, g) into A(B, g) we get

1 67 17 569 125
A4(B,g) = —— —B? B+—B
4(B.9) 39~ (48+ )+g (32 T )
305141 89165 , 17815
3 2 B
<9216 T35 P e )
(0174 133505, 3595
256 64 2
. (36)

One can then see that these series satisfy the following
equation:
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OE,(B, g) , 0A4(B, g)
=9 3B el A el 1
5B 3Bg +3g 99 (37)
which is in the form of
JEB.g) g 0A
— = =-Z(B — . 38
OB S +g dg (38)

Thus, we verify the Dunne-Unsal relation for the quartic
potential.

V. COMMENT ON HIGHER
DEGREE POTENTIALS

The problem arises when we consider higher power
polynomial potentials, which correspond to genus > 1. So
far, only genus-one potentials have been approved to satisfy
the Dunne-Unsal relation.’ However, in this section we
observe that for a higher genus case, the Dunne-Unsal
relation is not satisfied in its current form.

As an example, let us consider the anharmonic oscillator
with the polynomial potential of degree five (quintic). The
Hamiltonian in this case is

PHYSICAL REVIEW D 93, 065037 (2016)

1 o2

Hi(o) = ~35 5@ Vi (39)

and the generalized quantization condition reads

1 1 25/3\ Bs(E.9)
( —) e (B9 (40)
FG-Bs(E.g) VBz\ g7

The instanton action for the ground state of the quintic
potential can be calculated from the expression (10), and
one gets the following result:

ssla] = @);KW 2qmdq

B 3V3r3(3)

e (41)

The perturbative function B(E,g) has the following
expansion:

1107 = 1085 315 118165905 96201105 15570555 692835
Bs(E.9) = E+g<256 +TE2+FE4> 2( 8192 2048~ T 512 128 E7>
5 (36358712597025 ~ 142306775756145 30926063193025 _,
g ( 4194304 1048576 131072
4140194663605 456782651325 9704539845 E10> b (42)
32768 16384 4096
By converting E as a function of B and g for the first three terms, we find that
1107 =~ 1085 315 115763715 90794795 13519905 494385
E(B.9) =5~ g<256 T B 1_634>_92< si2 Pt oo Pt s Pt g 37)
5 <36099752507685 140162880546045 , 29646883011725 ,
4194304 1048576 131072
3708489756265 351124790625 . 5590822545 Blo) (43)
32768 16384 4096

The first few terms of the perturbative expansion of the function A(E, g) for the quintic potential are given by [15]

e _WACG) VAR

sl ’g)_7n(2g)1/3 N YTEr 54 27
L (271 132245 10865
I\ 1024 " 1152 192

@)
21/3\/_

2) + P13

72

E4> +oeee (44)

The function A can be written in terms of variables B and ¢ as follows:

5This issue has been discussed by several authors [53,54]. For instance, in [54] it was claimed that for genus = 1 potentials, the
Dunne-Unsal relation coincides with the equation of motion in the Whitham dynamics.
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3(2 3/1 32

Ag(B.g) = 3\6r3(§)_91/3 338 () 1 14, +g2/3ﬂ 35,935
21171 132245 , 10865

B* 45

+g<1024 152 192 >+ (45)

One can easily see that this example differs from the preceding ones since the expansion includes Euler gamma functions

and fractional orders of the coupling parameter g.

By using these data, the left-hand side of the Dunne-Unsal relation yields

L\, (115763715 272384385 , 67599525 , 3460695
2B - B BU =B

2048 512

OB 16 4 8192
5 (140162880546045 29646883011725 .
524288 32768
11125469268795 B 351124790625 .

16384 2048

and from the right-hand side, we again get fractional
powers of g as well as gamma functions which clearly
do not match the left-hand side of the Dunne-Unsal
relation (46).

Other higher order (higher genus) potentials have similar
fractional terms in the expansion of A(E, g) and they do not
match the left-hand side of the Dunne-Unsal relation (4).
We provide A and B functions of these potentials for
N =6, 8 and M =7 in the Appendices A, B and C for
convenience.

VI. CONCLUSIONS

To conclude, trans-series expansion of an energy eigen-
value gives us a real and unambiguous result due to the
cancellation of ambiguous imaginary terms arising from the
perturbative expansion around perturbative vacuum and
nonperturbative saddles. This cancellation mechanism
implies a close relationship between perturbative and
nonperturbative sectors. This cannot be easily seen in
the Zinn-Justin et al. approach where one needs to
separately calculate the functions A(E,g) and B(E,g).
However, this relationship can be seen by the Dunne-
Unsal relation [28,29], and the nonperturbative sector can
be generated purely from the perturbative sector. Rather
than calculating the functions A(E, g) and B(E, g) sepa-
rately, it is actually enough to generate the trans-series
expansion of energy using the knowledge of the perturba-
tive function B(E, g) with a global boundary condition. The
Dunne-Unsal relation has been shown to apply for several
genus-one potentials including double-well, periodic sine-
Gordon (periodic cosine), O(d) symmetric and Fokker-
Planck potentials.

In our current study we confirmed that the relation
also holds for resonance energy levels of unified even- and

27954112725 9) (46)

2048

|

odd-degree anharmonic complexified potentials. We veri-
fied the relation for cubic and quartic anharmonic poten-
tials, which are genus-one potentials. However, for higher
order (higher genus) potentials we observed that the
formula is not satisfied and needs to be generalized.
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APPENDIX A: SEXTIC POTENTIALS

Here we list expansions of the A and B functions in terms
of a series in variables £ and g, as well as generalized
quantization conditions for sextic, septic and octic poten-
tials. All the expressions for B(E, g) and A(E, g) listed in
the appendixes were taken from [15].

The sextic anharmonic oscillator is described by the
following Hamiltonian:

1 0?

1
He(9) = =75+ 54>+ 94°.

204> 2 (A1)

The generalized Bohr-Sommerfeld quantization condition
in this case reads

1 1 /23/2\ Bs(Eg)
- = <W) e (B9 (A2)
I(G=Bs(E.g9)) 2z \g

The first few terms of the perturbative expansions of the
functions A and B for the sextic potential are given by
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25 5 21777 5145 , 693
Ba(E,g)=E—g<—E+—E3>+ (—E+—E3+—E5>

g 2 256 32 16
12746305 8703695 1096095 . 36465
3 3 5 7 .
( 2048 T 512 s T3 E)+ ’ (A3)
oz 221 17 .\ (2504899 45769 . 17527
A(,(E,g)—zs/z(_g)]/z <24E+3E>+g( 2630 Etog Bt g B )+ (A4)

where again the first term of the function A has fractional order of the coupling parameter g.
Here, we also present expansions of the energy E and the nonperturbative function A in terms of B and g for the sextic
anharmonic oscillator:

2 1822 114

2 2 256 32 32
12390905 6152155 789495 28605
3 B3 B’ B’ .. A
( 2048 * 512 + 128 + 32 ) L (A3)
T 221 17 1620899 23159 10727
A¢(B.g) =—=5—5—-9| = B+—-B ? B B} B’ A6
o(B-9) = 55m g g<24 3 > ( 7680 © 96 © TT160 >+ (A6)
From these expressions one can easily see that the Dunne-Unsal formula is not satisfied. By taking B = 5 in (AS), one
obtains the following perturbative series for the ground-state energy:
) 1 15 3495 , 1239675 ,
E =-+—=g- e A7
ground(g) 2+ ] g 64 g + 256 g+ ( )
APPENDIX B: SEPTIC POTENTIAL
The Hamiltonian of the septic anharmonic oscillator is
19 1
H —__Z Bl
19 ==3572"3 7+ /99’ (B1)

The generalized quantization condition has the following form:

1 1 27/5\ B:(E.9)
PR — e_A7(E'g) . (BZ)
rG-B:(E.g) VBa\ ¢7

The first terms of the expansions for B;(E, g) and A;(E, g) read as follows:

B;(E,g) = E E*
1(E-9) +g< 2048 512 8 “ T ;

, (182627818702875 +156916927352185 3+135133]2267455 5
2097152 524288 65536

824707412529 , 43689020375 , 456326325
E"+ + E
16384 8192 2048

180675 444381 , 82005 3003 6>
E- + E
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A7(E, g)

SUATrE) s SUTRNE) (s 9 )

= 4 R?
21/10(\/§+1)1/29ﬂgl/5 9 29/10(\/§+1)1/2ﬂ: 8+10

_92/551/4(ﬂ+1)1/2r2(g)r(g)<377 299 3>

E
23/10, 1600 + 2000

S5UATHM2(E) /59143 15351, 13209,
27/10(/5 — 1)1/27\ 9600 400 1000

+ 3/5

The expressions of E and A in terms of B and g are then

180675 =~ 444381 82005 3003
E;(B,g) =B - B2 B* B6
7(B.9) 9( 048 T sz D s P T )
, (182306664554175 | 156008499432541 ., 13291408081875
2097152 524288 65536
787132323285 38763800075 348110217
B7 B9 Bll
16384 LITS) 2088 ) ’
SUATRT(E ST R
ho(Brg) = — STOTD Are (§+332>
2/ (\/§+1)1/29ﬂgl/5 29/10(\/§+1)1/2ﬂ 8 10

B
23107 1600 * 2000

SUAT(H2(3) (59143 15351 ), 13209 .,
27/10(/5 - 1)1/27\ 9600 ' 400 1000

_ SVAS + )PP < 377 299 B3>

+ PS5

Taking B = % in (B5) gives rise to the following perturbative series for the ground-state energy:

) 1 44379 715842493569 ,
E === g +

wona(9) =3~ 758 97 g9

APPENDIX C: OCTIC POTENTIAL

The Hamiltonian of the octic anharmonic oscillator is

1 &

1
Hg(g) = —587124'5612 + 94°.

The generalized quantization condition is given by

1 1 24/3\ Bs(E.g)
; — <> e_AS (E»(I) .
I(3—Bs(E.g) 2z \g'?

The first few terms of the functions Bg(E, g) and Ag(E, g) are

Bg(E,g) = E — g(—+

128 ' 16 8 2048~ 512 128 32
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2587 _,
2560 576E+288E>+”" (C4)

The expressions of E and A in terms of B and g then become

315 245 , 35

B ——B4>

2947595 5 239841 B 4 3985 B

128 ' 16 8

E(B,g) :B+g<—+

_2 (5450499

2048 + 512

3(1
%mm=ﬁ%%%m+@w“

B3¢ /77 91
-9 7 (et 31¢
23 \/§ﬂ 96 216

ON 7 Sp
21337 \16 ' 4

28007 22669 2587
Bz>—g< + B>+ B4>+-~~

128 32 >+ (€5)

2560 576 288 (C6)

By taking B = % in (C5) we find the following perturbative series for the ground-state energy for the octic anharmonic

oscillator,

1 105

(8)
ground (g) - 2 16
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