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In this work, we consider a particle moving in front of a dielectric plate and study two of the most
relevant effects of the vacuum field fluctuations: the dissipation and the decoherence of the particle’s
internal degrees of freedom. We consider the particle to follow a classical, macroscopically fixed trajectory.
To study the dissipative effects, we calculate the in-out effective action by functionally integrating over the
vacuum field and the microscopic degrees of freedom of both the plate and the particle. This in-out effective
action develops an imaginary part and, hence, a nonvanishing probability for the decay (because of friction)
of the initial vacuum state. We analyze how the dissipation is affected by the relative velocity between the
particle and the plate and the properties of the microscopic degrees of freedom. In order to study the effects
of decoherence over the internal degrees of freedom of the particle, we calculate the closed time path or
Schwinger-Keldysh influence action, by functionally integrating over the vacuum field and the microscopic
degrees of freedom of the plate. We estimate the decoherence time as the time needed by two different
quantum configurations (of the internal degree of freedom of the particle) to be possible to differentiate
from one another. We analyze the way in which the presence of the mirror affects the decoherence and the
possible ways to maximize or reduce its effects.

DOI: 10.1103/PhysRevD.93.065035

I. INTRODUCTION

Over the past few years, increasing attention has been
paid to the interaction between a particle and a (perfect or
imperfect) mirror or any dielectric surface [1–7]. One of the
main interests has been to calculate the frictional force
exerted over the particle by the plate, mediated by the
vacuum field fluctuations. As in the case of the quantum
friction between two plates [8–10], there is still no general
agreement about the nature of this frictional force. These
frictional effects are interesting, macroscopically observ-
able consequences of the quantum nature of microscopic
systems. However, frictional and normal (Casimir) forces
are not the only effects of the vacuum quantum fluctuations.
Any quantum system that interacts with an environment
will suffer the process of decoherence, which is one of the
main ingredients necessary to understand the quantum-
classical transition. The vacuum field is, clearly, an envi-
ronment that cannot be switched off, since any particle
(charged or with a nonvanishing dipole moment) will
unavoidably interact with the electromagnetic field fluctu-
ations. The effects of the electromagnetic field over the
coherence of the quantum state of a particle, and the way in
which this effect is modified by the presence of a
conducting plate, has already been studied for interference
experiments [11,12]. However, in the many studies of the
quantum friction over a moving particle in front of a

dielectric plate, the effects of decoherence have not yet
been taken into consideration. In this work, we will study
the decoherence of the internal degree of freedom of the
particle. The loss of coherence of the particle’s dipolar
moment becomes relevant in any Ramsey interferometry
experiment, where the depolarization of the atom could be
macroscopically observed by means of the Ramsey fringes.
In the case of a Rydberg atom, this phenomenon could be
also observed as a decay of the Raby oscillations [13,14].
In this work, we consider a neutral particle moving in

front of an imperfect mirror. The trajectory of the particle
will be, in this paper, kept as an externally fixed variable.
This accounts for many of the cases of interest, for example,
when the particle is the tip of an atomic force microscope.
When we specify the system, we will have the particle
moving at a constant velocity v, as in the most popular
scenario in the literature [1,2]. We are interested in the
dynamics of the internal degree of freedom of the particle,
that wewill model as a quantum harmonic oscillator, being a
simple model for the particle’s electric dipole, and that will
be coupled in position to the vacuum field.Wewill also use a
simple model for the microscopic degrees of freedom of the
mirror, as we have done in a previous work [15]: a set of
uncoupled harmonic oscillators, each of them also interact-
ing locally with the vacuum field. Even though this is a
simple model, it allows us to calculate some relevant
quantities without much further assumption.
We will study the effects both of friction and of
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of the quantum field theory. In order to do so,wewill use two
different but similar approaches. To study the friction,wewill
follow the procedure presented in our previous work [15],
where we studied the friction generated by the relative
motion of two dielectric plates. We will calculate the
imaginary part of the in-out effective action, that will account
for the dissipative effects. To study the decoherence,
we will switch to the closed time path (CTP) formalism,
calculate the action of influence of the environment
(vacuum fieldþ plate) over the particle, and use it to obtain
an estimationof thedecoherence time, following an approach
similar to the one in a previous work by some of us [16].
The structure of this paper is as follows: In Sec. II, we

define the system we study and present the formalism in
Minkowski space. We then calculate the in-out effective
action for a specific microscopic model and obtain an
expression for the imaginary part of the effective action
(and hence the dissipative effects over the system) as a
function of the relative velocity. In Sec. III, we review the
Schwinger-Keldysh formalism, obtain a general expression
for the CTP influence action for the internal degree of
freedom of the particle, and use it to obtain the stochastic
equations of motion for the particle’s internal degree of
freedom. In Sec. IV, we present a way to estimate the
decoherence time and then analyze the way in which it is
modified by the presence of the plate. Finally, in Sec. V, we
show our conclusions.

II. IN-OUT EFFECTIVE ACTION AND FRICTION

A. The system

Let us consider a specific system, even though the
formalism that is going to be developed among the next
sections is general and could be used to study different
problems. In the current work, we are interested in the
dissipative effects over a particle that moves parallel to a
flat, dielectric surface. The vacuum field shall be a non-
massive scalar field ϕðxÞ obeying the Klein-Gordon equa-
tion, interacting with both the particle and the internal
degrees of freedom of the plate ψðxÞ. The particle moves in
a macroscopic, externally fixed, unidimensional trajectory,
in a plane parallel to the plate. The distance a between the
particle and the plate is also kept constant by an external
source. We shall call x1 the direction of movement of the
particle and x3 the direction perpendicular to the plate. The
particle also has an internal degree of freedom that we shall
call q. A scheme of the system under consideration is
shown in Fig. 1. We may write the classical action for the
system as

S½ϕ;ψ ; q� ¼ Svac0 ½ϕ� þ Spl0 ½ψ � þ Spart0 ½q� þ Splint½ϕ;ψ �
þ Spartint ½ϕ; q�; ð1Þ

where the Klein-Gordon action for the vacuum field,
neglecting boundary terms, is given by

Svac0 ½ϕ� ¼ −
1

2

Z
dxϕðxÞ½∂μ∂μ − iϵ�ϕðxÞ: ð2Þ

The generating functional for the system will be given by

Z ¼
Z

DϕDψDqeiS½ϕ;ψ ;q�: ð3Þ

The internal degrees of freedom of the plates can be
integrated out, resulting in an effective interaction potential
Vðx; x0Þ for the vacuum field. This procedure has already
been performed in Ref. [17], and the resulting classical
action is

S½ϕ; q� ¼ Seff ½ϕ� þ Spart0 ½q� þ Spartint ½ϕ; q�; ð4Þ

with

Seff ½ϕ� ¼ S0½ϕ� þ
Z

dxdx0ϕðxÞVðx; x0Þϕðx0Þ: ð5Þ

The internal degree of freedom of the particle interacts
with the vacuum field through a current that we shall call
jðxÞ. This current contains the information about the
position and trajectory of the particle and the strength of
the coupling. The interaction term is, then,

Spartint ½ϕ; q� ¼ i
Z

dxϕðxÞjðxÞ: ð6Þ

It is worth noticing that, at this point, the current jðxÞ could
make the vacuum field interact with any system of any
given geometry: We have not yet specified that we are
studying a moving, punctual particle.

B. The in-out effective action

We would now like to obtain the effective action for the
particle. That is, we are going to functionally integrate over
the vacuum field, to obtain the generating functional

Z½q� ¼
Z

DϕeiS½ϕ;q� ¼ eiS0½q�
Z

DϕeiSeff ½ϕ�þiSint½ϕ;q�: ð7Þ

FIG. 1. A simple scheme of the system under consideration,
where ϕðxÞ is the vacuum field, ψðxÞ are the internal degrees of
freedom of the plate, and qðtÞ are the internal degrees of freedom
of the particle, which follows a macroscopic trajectory zðtÞ in the
x1 direction.
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This functional integral can be written as

Z½q� ¼
Z

Dϕ exp

�
−
1

2

Z
dxdx0ϕðxÞAðx; x0Þϕðx0Þ

−
Z

dxϕðxÞjðxÞ
�

¼ ðdetAÞ−1
2 exp

�
1

2

Z
dxdx0jðxÞA−1ðx; x0Þjðx0Þ

�
; ð8Þ

where

Aðx; x0Þ ¼ i½∂μ∂μ − iϵ�δðx − x0Þ − iVðx − x0Þ: ð9Þ

We need to obtain an operator A−1 such that

A−1ðx; x0ÞAðx; x0Þ ¼ Aðx; x0Þ ¼ A−1ðx; x0Þ ¼ δðx − x0Þ:
ð10Þ

In order to do so, we may write Aðx; x0Þ ¼ iA0ðx; x0Þ þ
A1ðx; x0Þ, where

A0ðx; x0Þ ¼ δðx − x0Þð∂μ∂μ − iϵÞ;
A1ðx; x0Þ ¼ −iVðx; x0Þ:

Now, the effective potential Vðx; x0Þ is proportional to the
coupling constant λ between the vacuum field and the
internal degrees of freedom of the plates. If this coupling is
weak, then we can assume A1 ≪ A0 and obtain A−1 as an
expansion in powers of λ. Keeping up to first order in λ, we
write

A−1ðx; xÞ ≈ −iðIþ iA−1
0 A1ÞA−1

0 : ð11Þ

And it is easy to prove that the operator from Eq. (11)
satisfies

A−1A ¼ AA−1 ¼ IþOðλ2Þ: ð12Þ

Now, recalling the definition of A0, it is clear that A−1
0 is a

Green function of the Klein-Gordon equation. We take it to
be the Feynman propagator A−1

0 ðx; x0Þ ¼ GFðx; x0Þ:

GFðx; x0Þ ¼
Z

dp
ð2πÞ4 e

−ipμðxμ−x0μÞ 1

pμpμ þ iϵ
: ð13Þ

The desired operator can be written as

A−1ðx; x0Þ ¼ −i
�
GFðx; x0Þ

þ
Z

dydy0GFðx; yÞVðy; y0ÞGFðy0; x0Þ
�
:

ð14Þ

The only part of Eq. (8) remaining to be calculated is the
normalization factor ðdetAÞ1=2. However, this factor does
not contribute to the connected diagrams: It involves only
the interaction between the plate and the vacuum and has no
effect on the physics of the moving particle [or any other
system we might be interested in that could be introduced
through the current jðxÞ]. That being said, we might write
the generating functional for the particle

Z½q� ¼ exp

�
iS0½q� −

i
2

Z
dxdx0jðxÞGFðx; x0Þjðx0Þ

−
i
2

Z
dxdydy0dx0jðxÞGFðx; yÞVðy; y0Þ

×GFðy0; x0Þjðx0Þ
�
: ð15Þ

The effective action for the particle can be written as

Γ½q� ¼ S0½q� þ S1½q� þ S2½q�; ð16Þ

where S1 is the action that contains the influence of the
vacuum over the particle, as if there were no dielectric plate,
and is defined by

S1½q� ¼ −
1

2

Z
dxdx0jðxÞGFðx; x0Þjðx0Þ: ð17Þ

The term S2 accounts for the influence of the plate over the
particle, mediated by the vacuum field, and is defined by

S2½q� ¼ −
1

2

Z
dxdydy0dx0jðxÞGFðx; yÞVðy; y0Þ

×GFðy0; x0Þjðx0Þ: ð18Þ

Wemight think of the effect of the plate on the particle as
if mediated by a new effective propagator ~Gðx; x0Þ:

~Gðx; x0Þ≡
Z

dydy0GFðx; yÞVðy; y0ÞGFðy0; x0Þ; ð19Þ

and then S2 can be written as

S2½q� ¼ −
1

2

Z
dxdx0jðxÞ ~Gðx; x0Þjðx0Þ: ð20Þ

But we are also interested in calculating the imaginary
part of the in-out effective action for the whole system,
since this quantity accounts for the dissipative effects over
the system. The following calculations will be completely
analogous to the ones we have performed in Ref. [15] for
the case of two plates in relative parallel motion.
To obtain the in-out effective action for the whole

system, we need to integrate out the internal degree of
freedom of the particle q; that is, we need to functionally
integrate Eq. (15) over q:
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Zsys ¼
Z

DqZ½q�: ð21Þ

But, instead of performing the functional integrations in this
order (first overψ, then overϕ, and last over q), we go back a
few steps and integrate over q before we integrate over the
vacuum field ϕ. The reason for doing this is purely of
mathematical simplicity, and it does not affect the final
expression for the effective action. We then obtain an
expression with two effective potentials: one accounting
for the interaction of the plate with the vacuum field and
another accounting for the interaction of the particlewith the
vacuum field. If we take into consideration only the terms
involving both the plate and the particle, then the effective
action for small values of the coupling constants is [15]

ΓI≈
−i
2

Z
dp

ð2πÞ4
dq

ð2πÞ4GFðpÞVplateðp;qÞGFðqÞVparticleðq;pÞ:

ð22Þ

C. Specific model and results

Nowwewould like to specify a concrete system of study.
As we have already said in Sec. II A, even though, for the
sake of clarity, through this work we have talked about a
particle and a plate, this situation has not yet been specified.
We have, so far, a complex, massless scalar field ϕ that
interacts with another field ψ , that we call the internal
degrees of freedom of a plate but could be associated to any
other system that we might be interested in. When we
integrate those degrees of freedom out, we obtain a non-
local effective potential Vðx; x0Þ that contains the informa-
tion about the characteristics of the other system. It could
be a thin plate, a half-space, or any other geometry, with
any kind of internal degrees of freedom. But if we do
consider a thin, infinitesimal plate, occupying the x3 ¼ 0
plate, with internal degrees of freedom that interact locally
in space with the vacuum field, then the effective potential
will have the form [17]

Vplateðq; pÞ ¼ð2πÞ3λðp0Þδðp0 − q0Þδð2Þðp∥ − q∥Þ: ð23Þ

And if the particle is considered to be punctual, moving
along the x1 axis with a constant velocity v, at a fixed
distance x3 ¼ a above the plate, and interacting locally in
position with the vacuum field, then the effective potential
results in

Vparticleðq; pÞ
¼ 2πgðp0 − vp1Þδðp0 − q0 − vðp1 − q1ÞÞe−iaðq3−p3Þ:

ð24Þ

These potentials take into account the geometry of the
plate and the particle, but the information about their

internal degrees of freedom and the nature of their
interaction with the vacuum field are yet to be specified
by the λ and g functions. The difference between a moving
particle and a moving plate becomes clearer in position
space, where the potential is localized in position by means
of three Dirac δ functions: one indicating that the particle is
always on x3 ¼ a (this δ function was also present for the
moving plate), another that the particle is always at x2 ¼ 0,
and the third one indicating that it is always at x1 ¼ vt.
By using the explicit shape of the potentials and

integrating over q0, q1 and q2, we find

ΓI ≈
iT

2ð2πÞ4
Z

d4pd3Gðp0; p1; p2; p3Þλðp0Þ

×Gðp0; p1; p2; q3Þgðp0 − vp1Þe−iðq3−p3Þa; ð25Þ
where T is the total time of flight of the particle. We
consider the internal degrees of freedom of the plate to be
uncoupled harmonic oscillators of frequency Ω, each of
them interacting locally in position with the vacuum field
with a coupling constant λ; and the internal degree of
freedom of the particle will also be a harmonic oscillator of
frequency ω0, also interacting linearly and locally in
position with the vacuum field, with a coupling constant
g. This results [15] in

λðωÞ ¼ −λ2

ω2 − Ω2 þ iϵ
;

gðωÞ ¼ −g2

ω2 − ω2
0 þ iϵ

: ð26Þ

The remaining integrations are performed in the exact
same way as the integrations in Ref. [15]. The analytic
result in 2þ 1 dimensions is

ImΓI ≈
Tvπλ2g2

32 ~Ω ~ω0

e−
2
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~ω0þ ~ΩÞ2−v2 ~Ω2

p

ð ~ω0 þ ~ΩÞ2 − v2 ~Ω2
; ð27Þ

where ~Ω ¼ Ωa and ~ω0 ¼ ω0a are the dimensionless
frequencies (a is the distance between the particle and
the plate). We show in Fig. 2 the imaginary part of the
effective action as a function of the relative velocity v.
As we mentioned before, the imaginary part of the

effective action implies the excitation of internal degrees of
freedom on the mirror that influence the particle through
the vacuum field. This signals a noncontact frictional effect.
We can see that the dissipative effects are strongly sup-
pressed as v → 0. This exponential vanishing of the
dissipation effects has already been found, using different
approaches, in previous works [1,2]. It is worth noticing
that our coupling constant g is the analog to the electric
dipole moment d appearing in the models used by other
authors, since it accounts for the interaction between the
particle’s polarizability and the electromagnetic (vacuum)
field. This means that the results presented here correspond

M. BELÉN FARÍAS and FERNANDO C. LOMBARDO PHYSICAL REVIEW D 93, 065035 (2016)

065035-4



to the d2 contribution to the friction, and we will calculate
the d4 contribution within this approach in a future work.
Last, let us recall that the λ2 factor accounts for the
interaction between the internal degrees of freedom of
the plate, and this information is usually contained in the
dielectric permittivity of the material, so there is no analog
to our λ factor appearing in the literature.
It is possible to see, from the general expression of

Eq. (27), that the case of resonance, for Ω ¼ ω0, coincides
exactly with the expression of the imaginary part of the
effective action per unit of area, for the case of two plates of
frequency Ω, studied in Ref. [15]. This is not that surprising,
since in ourmodel the plate and the particle or other plate only
interact locally and the harmonic oscillators of the plate(s) are
uncoupled. In that work, we had set the coupling constant
between the two plates to be equal, and that is the reason why
our result was of the order of λ4. It is important to notice that it
does not mean that our result is to be compared with the g4

results appearing in the literature, since a factor λ2 is to be
considered part of the dielectric permittivity of the material.

III. CTP ACTION OF INFLUENCE
AND DECOHERENCE

A. The Schwinger-Keldysh or closed
time path formalism

Up to this section, we have considered the effective
action for the system (the particle) and the influence action
that mainly describes the dynamics of the particle after
integration of the quantum fields. This in-out effective
action cannot be applied in a straightforward way to the
derivation of the equations of motion, since they would
become neither real nor causal. As is well known, in order
to get the correct effective equations of motion, one should
compute the in-in, Schwinger-Keldysh, or closed time path
effective action (CTPEA) [18], which also has information
on the stochastic dynamics. The CTPEA is defined as

e−iΓCTP ½qþ; q−� ¼
Z

DϕþDϕ−eiS½qþ;ϕþ�−iS½q−;ϕ−�

≡
Z

DϕeiS
C ½q;ϕ�; ð28Þ

where in the last step we have introduced the CTP complex
temporal path C, going from minus to plus infinity Cþ and
backwards C−, with a decreasing (infinitesimal) imaginary
part. Time integration over the contour C is defined byR
C dt ¼

R
Cþ

dt
R
C−
dt. The field in the last step is defined by

ϕðx; tÞ ¼ ϕ�ðx; tÞ if t ∈ C�. The equation above is useful,
because it has the structure of the usual in-out or the
Euclidean effective action, and we are able to use the results
of the last section but properly changing the contour of
integration. This would lead to the appearance of the CTP
propagators Gαβðx; t;x0; t0Þ, where α (β) ¼ � indicates that
t (t0) is on C�. For the free scalar field, the CTP propagators
are

Gþþðx; x0Þ ¼ ΔFðx; x0Þ ¼ −ihTϕðxÞϕðx0Þi;
G−−ðx; x0Þ ¼ ΔDðx; x0Þ ¼ ihT̂ϕðxÞϕðx0Þi;
Gþ−ðx; x0Þ ¼ Δ−ðx; x0Þ ¼ −ihϕðx0ÞϕðxÞi;
G−þðx; x0Þ ¼ Δþðx; x0Þ ¼ þihϕðxÞϕðx0Þi:

These CTP propagators satisfy the following properties
that will prove to be useful below: ðGþþÞ� ¼ G−−,
ðGþ−Þ� ¼ G−þ, and Gþþ −G−− ¼ Gþ− − G−þ.
We are now in a position to write the actions describing

the influence of the environment on the particle within this
formalism. We will do this in a general way, and later we
will come back to our specific model. By performing the
change in the contour of integration, S1 results [see
Eq. (17)]:

SIF1 ½qþ; q−� ¼ −
1

2

Z
dxdy½jþðxÞGþþðx; yÞjþðyÞ

− j−ðxÞG−−ðx; yÞj−ðyÞ
− jþðxÞGþ−ðx; yÞj−ðyÞ
þ j−ðxÞG−þðx; yÞjþðyÞ�; ð29Þ

where j�ðxÞ is evaluated over C�. It is useful to define

ΔjðxÞ ¼ jþðxÞ − j−ðxÞ
2

;

ΣjðxÞ ¼ jþðxÞ þ j−ðxÞ
2

:

By writing Eq. (29) in terms of Δj and Σj, one obtains
four different terms. However, by recalling the definition
and properties of the different CTP propagators, it is easy to
see that one of the terms vanishes, and two of the remaining
terms are identical, with the result

FIG. 2. The imaginary part of the in-out effective action as a
function of v, for ~Ω ¼ Ωa ¼ 0.01 and λ ¼ 0.01, in units of g2.
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SIF1 ½qþ; q−� ¼ −
1

2

Z
dxdyfΔjðxÞ½Gþþðx; yÞ −G−−ðx; yÞ

− G−þðx; yÞ þGþ−ðx; yÞ�ΔjðyÞ
þ 2ΔjðxÞ½Gþþðx; yÞ þG−−ðx; yÞ
þ G−þðx; yÞ þ Gþ−ðx; yÞ�ΣjðyÞg:

With some further considerations concerning the properties
of the propagators mentioned above, it is possible to define
the noise (diffusion) kernel

N1ðx; yÞ≡ −iðGþþðx; yÞ −G−−ðx; yÞÞ ¼ 2ImGþþðx; yÞ;
ð30Þ

associated with fluctuations, the source of decoherence
effects; and the dissipation kernel

D1ðx; yÞ≡ 1

2
½Gþþðx; yÞ þ G−−ðx; yÞ þGþ−ðx; yÞ

þ G−þðx; yÞ�
¼ 2Θðx0 − y0ÞReGþþðx − yÞ: ð31Þ

Both kernels are real, and the dissipation kernel is explicitly
causal. The influence action results, then, in

SIF1 ½qþ; q−� ¼ −
Z

dxdy½iΔjðxÞN1ðx; yÞΔjðyÞ

þ 2ΔjðxÞD1ðx; yÞΣjðyÞ�: ð32Þ

This action accounts for the interaction of the particle
with the vacuum, and all the propagators involved in the
calculations correspond to free, scalar fields. Furthermore,
in order to take the dielectric plate into consideration, we
have to look at the S2 term from Eq. (20), which contains
the effect of the plate over the particle up to first order in the
coupling constant λ. By changing the contour of integra-
tion, we obtain an expression analogous to Eq. (29) but
changing the free CTP propagator Gαβ for an effective CTP

propagator ~Gαβ, defined by

~Gα;βðx; yÞ≡
Z

dx0dy0½Gαþðx; x0ÞVþþðx0; y0ÞGþβðy0; yÞ

− Gα−ðx; x0ÞV−−ðx0; y0ÞG−βðy0; yÞ
− Gαþðx; x0ÞVþ−ðx0; y0ÞG−βðy0; yÞ
þ Gα−ðx; x0ÞV−þðx0; y0ÞGþβðy0; yÞ�; ð33Þ

where Gαβ is the free CTP propagator and Vαβ is the CTP
expression for the effective potential. Both G and V, being
CTP Green functions, fulfill the relation Gþþ − G−− ¼
Gþ− −G−þ and Vþþ − V−− ¼ Vþ− − V−þ, which allows
us to prove that ~Gþþ − ~G−− ¼ ~Gþ− − ~G−þ, and thus

SIF2 ½qþ; q−� ¼
Z

dxdy½iΔjðxÞN2ðx; yÞΔjðyÞ

þ 2ΔjðxÞD2ðx; yÞΣjðyÞ�; ð34Þ

with

N2ðx; yÞ≡ ~Gþþðx; yÞ þ ~G−−ðx; yÞ ¼ 2Re ~Gþþðx; yÞ;
ð35Þ

where we also used that ~Gþþ ¼ ð ~G−−Þ�. The dissipation
kernel

D2ðx; yÞ≡ −i
2
½ ~Gþþðx; yÞ − ~G−−ðx; yÞ

− ~Gþ−ðx; yÞ þ ~G−þðx; yÞ�: ð36Þ

On general grounds, the real and imaginary parts of the
influence action can be associated with the dissipation and
noise, respectively, and can be related by some integral
equation known as the fluctuation-dissipation relation. As
we shall see, the dissipation will be present in the
generalized Langevin-like equation of motion for the
internal degrees of freedom of the particle, and the noise
kernel will be relevant in defining the correlation function
for the noise source.

B. Our model

We will now consider, as we have done in Sec. II C, an
infinitesimally thin plate occupying the plane x3 ¼ 0,
formed by a set of uncoupled harmonic oscillators of
frequency Ω, each of them interacting locally in position
with the vacuum field with a coupling constant λ. We have
already found the CTP expression for the effective potential
in a previous work [15]:

VCTPðx − yÞ ¼
Z

dp
ð2πÞ4 e

−ipμðxμ−yμÞλ2

×

 1
p2
0
−Ω2þiϵ

iπδðp0þΩÞ
Ω

iπδðp0−ΩÞ
Ω

1
p2
0
−Ω2−iϵ

!
: ð37Þ

The same kind of reasoning applies to the current jðxÞ.
We now want it to describe a particle moving in the
direction x1, describing a trajectory zðtÞ, at a fixed distance
a from the plate. That is, its macroscopic coordinates are
given by xμðtÞ ¼ ðzðtÞ; 0; a; tÞ and are kept fixed by an
external source. On the other hand, we describe its internal
degree of freedom as a unidimensional harmonic oscillator
qðtÞ of frequency ω0. This is the variable whose dynamics
we now wish to study. So we have

jðxÞ ¼ gqðtÞδðx1 − zðtÞÞδðx2Þδðx3 − aÞ; ð38Þ
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where g is the coupling constant between thevacuumand the
internal degree of freedomof the particle. Now, as the classic
trajectory zðtÞ is macroscopic and externally fixed, wemight
assume that it remains the same in the different branches of
the CTP integral. That is, we will from now on assume that
zþðtÞ ¼ z−ðtÞ, where z�ðtÞ is the classical function zðtÞ
integrated over the contour C�. This means that

ΔjðxÞ ¼ gΔqðtÞδðx1 − zðtÞÞδðx2Þδðx3Þ;
ΣjðxÞ ¼ gΣqðtÞδðx1 − zðtÞÞδðx2Þδðx3Þ:

With these specific considerations, we can define, for
N ≡ N1 þ N2,

Nðt − t0Þ≡ g2
Z

dxdx0δðx1 − zðtÞÞδðx2Þδðx3 − aÞN

× ðx − x0Þδðx01 − zðt0ÞÞδðx02Þδðx03Þ; ð39Þ
and an analogous expression is obtained for D≡D1 þD2.
Within this model, we can write explicit expressions for

D1, D2, N1 and N2 as integrals in momentum space. If the
trajectory is zðtÞ ¼ vt for constant v, then

D1ðt − t0Þ ¼ 2g2Θðt − t0ÞRe

×
Z

d4p
ð2πÞ4

ie−iðp0−vp1Þðt−t0Þ

p2
0 − p2

1 − p2
2 − p2

3 þ iϵ
; ð40Þ

N1ðt − t0Þ ¼ 2g2Im
Z

d4p
ð2πÞ4

ie−iðp0−vp1Þðt−t0Þ

p2
0 − p2

1 − p2
2 − p2

3 þ iϵ
;

ð41Þ

D2ðt − t0Þ ¼ λ2g2

2
Θðt − t0ÞRe

Z
d3p
ð2πÞ3

1

p2
0 −Ω2 þ iϵ

×
e−iðp0−vp1Þðt−t0Þþiia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0
−p2

1
−p2

2
þiϵ

p

p2
0 − p2

1 − p2
2 þ iϵ

; ð42Þ

N2ðt − t0Þ ¼ λ2g2

2
Im
Z

d3p
ð2πÞ3

1

p2
0 −Ω2 þ iϵ

×
eiðp0−vp1Þðt−t0Þþ2ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0
−p2

1
−p2

2
þiϵ

p

p2
0 − p2

1 − p2
2 þ iϵ

: ð43Þ

Therefore, the influence action for the moving particle in
front of a dielectric plate is given, formally, by

SIF½qþ; q−� ¼
Z

dtdt0½iΔqðtÞNðt; t0ÞΔqðt0Þ

þ 2ΔqðtÞDðt; t0ÞΣqðt0Þ�: ð44Þ

C. Real and causal equations of motion

From Secs. III and III B, it is easy to see that the (CTP)
influence action has a real part, generated by the dissipation
kernelsD1 andD2, and an imaginary part, generated by the
noise kernels N1 and N2. In order to obtain the real and

causal equations of motion for qðtÞ, we must functionally
derive S½qþ; q−� ¼ S0½qþ� − S0½q−� þ SIF½qþ; q−� with
respect to qþ and set qþ ¼ q− ¼ q. However, this pro-
cedure would lead us to the equations for the mean value of
qðtÞ, and the stochastic effect of the noise would not appear.
In order to see the influence of the noise on the equations

of motion, it is necessary to consider a realization of the
noise over the system, considering an stochastic source of
noise ξðtÞ. Following the well-known procedure for open
quantum systems, we consider this stochastic force to have
a Gaussian probability distribution given by

P½ξðtÞ� ¼ Nξ exp

�
−
1

2

Z
dtdt0ξðtÞN−1ðt; t0Þξðt0Þ

�
: ð45Þ

It is easy to see that the inclusion of this stochastic source
can be performed by adding to the generating functional the
factorZ

DξP½ξ�e−i
R

dtΔqðtÞξðtÞ ¼ ei
R

dtdt0ΔqðtÞNðt;t0ÞΔqðt0Þ; ð46Þ

which, as is shown in the right-hand side of the last
equation, leaves the generating functional unaltered. The
modified influence action is, then,

ŜIF½qþ; q−; ξ� ¼ 2

Z
dtdt0ΔqðtÞDðt; t0ÞΣqðt0Þ

−
Z

dtΔqðtÞξðtÞ: ð47Þ

And the equation of motion will be given by

δðS0½qþ� − S0½q−� þ ŜIF½qþ; q−; ξ�Þ
δqþ

				
qþ¼q−¼q

¼ 0: ð48Þ

The result is

q̈ðtÞ þ ω2
0qðtÞ þ

Z
dt0Dðt; t0Þqðt0Þ ¼ ξðtÞ; ð49Þ

where it is easy to see that the dissipation on the system
comes from the kernel Dðt; t0Þ, and the fluctuations are
generated by the stochastic force ξðtÞ, that must fulfill,
according to Eq. (45),

hξðtÞi ¼ 0;

hξðtÞξðt0Þi ¼ Nðt; t0Þ:

This is a generalized Langevin equation, with classical
noise ξ and dissipation, that satisfies the fluctuation-
dissipation theorem. Each part of the environment that
we include leads to a further dissipative term on the left-
hand side of Eq. (49) (i.e., D1 and D2 as we named before)
with a countervailing noise term on the right-hand side. Of
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course it is very difficult to solve this stochastic equation
analytically. It is difficult to imagine an ab initio derivation
of the dissipative and noise terms from the full quantum
theory. In this sense, a reasonable alternative is to analyze
phenomenological stochastic equations numerically and
check the robustness of the predictions against different
choices of the dissipative kernels and of the type of noise.

IV. DECOHERENCE OF THE PARTICLE’S
INTERNAL DEGREES OF FREEDOM

The absence of quantum interference between the sta-
tionary phase solutions to the classical stochastic equations,
qðtÞ, is manifested through the increasing decay of the
nondiagonal terms of the reduced density matrix
ρ½qþ; q−; t�. This leads to the crucial notion of a
decoherence time tD, after which ρ (or, more exactly, its
real part) is effectively diagonal. Equation (49) is the
classical stochastic equation that we are looking for but,
as it stands, is guaranteed only to describe classical degrees
of freedom qclassðtÞ after decoherence (see in another
context Refs. [19,20]).
The notion of consistent histories provides an alternative

approach to classicality, opposed to trying to solve the
master equation, and it is normally used in open quantum
systems. Quantum evolution can be considered as a
coherent superposition of fine-grained histories. Since
we need to be able to distinguish different classical system
configurations evolving in time, we work in the basis of
amplitudes qðtÞ. If one defines the c number qðtÞ as
specifying a fine-grained history, the quantum amplitude
for that history is Ψ ∼ eS½q� (we work in units in which
ℏ ¼ 1) [21]. In the quantum open system approach that we
have adopted here, we are concerned with coarse-grained
histories

Ψ½α� ¼
Z

DqeS½q�α½q�; ð50Þ

where α½q� is the filter function that defines the coarse-
graining. In the first instance this filtering corresponds to
tracing over all the degrees of freedom of the composite
environment. From this we define the decoherence func-
tional for two coarse-grained histories as

D½αþ; α−� ¼
Z

DqþDq−eiðS½qþ�−S½q−�Þαþ½qþ�α−½q−�: ð51Þ

D½αþ; α?� does not factorize because the histories q� are
not independent. Decoherence means physically that the
different coarse-graining histories making up the full
quantum evolution acquire individual reality and may
therefore be assigned definite probabilities in the classical
sense. A necessary and sufficient condition for the validity
of the sum rules of probability theory (i.e., no quantum
interference terms) is [22]

ReD½αþ; α−� ≈ 0; ð52Þ

when αþ ≠ α− (although in most cases the stronger con-
dition D½αþ; α−� ≈ 0 holds) [23]. Such histories are con-
sistent [24].
For our particular application, we wish to consider

as a single coarse-grained history all those fine-
grained ones where the solution qðtÞ remains close to a
prescribed classical configuration qcl. The filter function

takes the form αcl½q� ¼
R
DJei

R
Jðq−qclαcl½J�. Using Jq ¼R

dxJðxÞq½x�, we may write the decoherence functional
between two classical histories in terms of the closed path
time generating functional. In principle, we can examine
adjacent general classical solutions for their consistency
but, in practice, it is simpler to restrict ourselves to
particular solutions q�, according to the nature of the
decoherence that we are studying. All in all, the
decoherence functional results in

D½qþcl ; q−cl� ≈ F½qþcl ; q−cl�; ð53Þ

where F½qþcl ; q−cl� is the Feynman-Vernon influence func-
tional (IF) [25]. The influence functional is written in terms
of the influence action SIF½qþ; q−� as F ¼ exp½−iSIF�. As a
result,

jD½qþcl ; q−cl�j ∼ expfiImSIF½qþcl ; q−cl�g; ð54Þ

where SIF is the contribution to the action due to the, in our
case, composite environment. From this viewpoint, once
we have chosen the classical solutions of interest, adjacent
histories become consistent at the time tD, for which 1 ≈
ImSIFjt¼tD [21]. This decoherence time will become rel-
evant in any Ramsey interferometry experiment [13]. For
times larger than tD, the Ramsey fringes will no longer be
distinguishable, expressing the depolarization of the atom.

A. Imaginary part of SIF1
Let us recall the expression forN1ðt; t0Þ given by Eq. (30)

and consider two classical trajectories qclðtÞ with different
amplitudes but the same frequency:

ΔqclðtÞ ¼ Δq0 cosðω0tÞ: ð55Þ

So we can write an expression for the imaginary part of
the influence action for the particle in the presence of the
vacuum field (ignoring the plate) as
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ImSIF1 ¼ −g2Δq20
4

Im
Z

dp0dp
ð2πÞ4

1

p2
0 − p2 þ iϵ

×

�Z
dtdt0eiðp0−vp1þω0Þðt−t0Þ

þ
Z

dtdt0eiðp0−vp1−ω0Þðt−t0Þ

þ
Z

dtdt0eiðp0−vp1þω0Þðtþt0Þ

þ
Z

dtdt0eiðp0−vp1−ω0Þðtþt0Þ
�
:

All the temporal integrations result in Dirac delta functions.
The last two terms vanish because the resulting deltas
cannot be fulfilled simultaneously. From each nonvanish-
ing term, an infinite δð0Þ is obtained, accounting for the
total time of integration T (time of flight of the particle).
Thus the integrals over p0 can trivially be performed, and
the remaining terms are

ImSIF1 ¼−g2Δq20T
4

×Im
Z

dp0dp
ð2πÞ2

δðp0þvp1−ω9Þδðp0þvp1þω0Þ
p2
0−p2þ iϵ

:

ð56Þ

Now, if we take the limit ϵ → 0, then

1

p2
0 − p2

∥ þ iϵ
→ pv

�
1

p2
0 − p2

�
− iπδðp2

0 − p2Þ; ð57Þ

where pv denotes the Cauchy principal value. So we have

ImSIF1 ¼ −g2Δq20T
4

Z
dp0dp
ð2πÞ2 ½δðp0 þ vp1 − ω0Þ

þ δðp0 þ vp1 þ ω0Þ�δðp2
0 − p2Þ: ð58Þ

Let us now consider the case in 2þ 1 dimensions, setting
p2 ≡ 0 (x2 is the direction with translational symmetry);
then, integrating over p0, we have

ImSIF1 ¼ πg2Δq20T
4

Z
dp1dp3

2π
½δðð−vp1 þ ω0Þ2

− ðp2
1 þ p2

3ÞÞ þ δððvp1 þ ω0Þ2 − ðp2
1 þ p2

3ÞÞ�;
ð59Þ

and, assuming the δ functions as functions of p3, we have
four terms:

ImSIF1 ¼ πg2Δq20T
4

Z
dp1dp3

2π

×

�
δðp3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 − 1Þp2

1 � 2ω0vp1 þ ω2
0

p
Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 − 1Þp2

1 � 2ω0vp1 þ ω2
0

p
þ δðp3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv2 − 1Þp2
1 � 2ω0vp1 þ ω2

0

p Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 − 1Þp2

1 � 2ω0vp1 þ ω2
0

p �
: ð60Þ

Since the integration is over the real values of p3, the
integral of these δ functions can be nonvanishing only if the
squared root is a real number. It is easy to see, by looking
carefully at the argument of the squared root, that the “þ”
terms can be nonzero only if

−ω0

1þ v
< p1 <

ω0

1 − v
ð61Þ

and the “−” terms are nonvanishing only if

−ω0

1 − v
< p1 <

ω0

1þ v
: ð62Þ

So we can write the remaining integral over a bounded set
of p1:

ImSIF1 ¼ g2Δq20T
32π

�Z ω0
1−v

− ω0
1þv

dp1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 − 1Þp2

1 þ 2ω0vp1 þ ω2
0

p
þ
Z ω0

1þv

− ω0
1−v

dp1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv2 − 1Þp2
1 − 2ω0vp1 þ ω2

0

p �
:

ð63Þ

Now the integrands are of the form
ð−aðp1 � bÞ2Þ−1=2 þ c, with a ¼ ð1 − v2Þ, b ¼ ω0v

1−v2 and

c ¼ ω2
0

1−v2. Thus, we have to take carefully the limit when p1

tends to the integration boundaries, and we find that the
result of each integral is πffiffiffiffiffiffiffiffi

1−v2
p , which means that

ImSIF1 ¼ g2Δq20T
16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ð64Þ

B. Imaginary part of SIF2
Let us recall the expression forN2ðt; t0Þ given by Eq. (35)

and consider two classical trajectories qðtÞ with different
amplitudes but the same frequency:

ΔqclðtÞ ¼ Δq0 cosðω0tÞ: ð65Þ

By inserting these results in Eq. (16), we are able to write an
expression for the imaginary part of the action of influence,
given by
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ImSIF2 ¼ g2λ2π2Δq20
2

Im
Z

dp0dp∥

ð2πÞ3
e2ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0
−p2

∥þiϵ
p

ðp2
0 − p2

∥ þ iϵÞðp2
0 −Ω2 þ iϵÞ

�Z
dtdt0eiðp0−vp1þω0Þðt−t0Þ þ

Z
dtdt0eiðp0−vp1−ω0Þðt−t0Þ

þ
Z

dtdt0eiðp0−vp1þω0Þðtþt0Þ þ
Z

dtdt0eiðp0−vp1−ω0Þðtþt0Þ
�
:

Following the same procedure as before, we find

ImSIF2 ¼ g2π2Δq20λ2T
2

Im
Z

dp∥

ð2πÞ2
e2ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvp1−ω0Þ2−p2

∥þiϵ
p

ððvp1 − ω0Þ2 − p2
∥ þ iϵÞððvp1 − ω0Þ2 −Ω2 þ iϵÞ þ ω0 ↔ −ω0: ð66Þ

We will now consider, again, the case of 2þ 1 dimensions, setting p2 ¼ 0. By changing variables k≡ vp1, we have

ImSIF2 ¼ g2π2Δq20λ2T
2

Im
Z

dk
ð2πÞ

e
2ia
v

ffiffiffiffiffiffiffiffiffiffiffiffi
PðkÞþiϵ

p

ðPðkÞ þ iϵÞðAðkÞ þ iϵÞ þ ω0 ↔ −ω0: ð67Þ

Here PðkÞ ¼ ðk − ω0Þ2v2 − k2 and AðkÞ ¼ ðk − ω0Þ2−
Ω2. We will begin by considering the first term. If PðkÞ
had a definite sign, we could get rid of the iϵ accompanying
it. Since PðkÞ has two real roots, located at kþ ¼ vω0

1þv and
k− ¼ − vω0

1−v, we will consider three different regions:

ðIÞ → vω0

1þ v
< k PðkÞ < 0;

ðIIÞ → −
vω0

1 − v
k <

vω0

1þ v
PðkÞ > 0;

ðIIIÞ → k < −
vω0

1 − v
PðkÞ < 0:

Now, within each region, PðkÞ has a definite sign, and
the limit ϵ → 0 can be taken on the terms involving PðkÞ.
On the other hand, the integrand will have two poles

associated with the zeros of AðkÞ, which are located at k1 ¼
ω0 þΩ and k2 ¼ ω0 − Ω. It is easy to see that k1 is always
located in region III and that k2 could be in any region,
depending on the values of the external parameters of the
problem: v, ω0 and Ω. With a little algebra, we find that k2
is in region II if and only if

ω0

1þ v
< Ω <

ω0

1 − v
: ð68Þ

This condition is important in order to explicitly calculate
the integrals.
Let us start computing the integral over region II. In

order to do so, we will have in mind that, when ϵ → 0,

1

AðkÞ þ iϵ
→ pv

�
1

AðkÞ
�
− iπδðAðkÞÞ; ð69Þ

and, since PðkÞ > 0 in this region, we may write

exp

�
2ia
v

ffiffiffiffiffiffiffiffiffiffi
PðkÞ

p �

¼ cos

�
2a
v

ffiffiffiffiffiffiffiffiffiffi
PðkÞ

p �
þ i sin

�
2a
v

ffiffiffiffiffiffiffiffiffiffi
PðkÞ

p �
:

If the condition (68) is fulfilled, then AðkÞ will have a
zero in the integration region, and δðAðkÞÞ will be nonzero.
We will have two terms contributing to the imaginary part
of the effective action. The first one will be

Z
kþ

k−

dk
2π

ð−vπÞ cos ½
2a
v

ffiffiffiffiffiffiffiffiffiffi
PðkÞp �

PðkÞ δðAðkÞÞ

¼ −
v
4Ω

cos ½2av
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2v2 − ðω0 − ΩÞ2

p
�

Ω2v2 − ðω0 −ΩÞ2 ; ð70Þ

where we have inserted the explicit expressions for Pðk2Þ
and jA0ðk2Þj. The other term is

v
2π

Z
kþ

k−

dk
sin ð2iav

ffiffiffiffiffiffiffiffiffiffi
PðkÞp Þ

PðkÞ pv

�
1

AðkÞ
�
: ð71Þ

Now, if the condition (68) is not satisfied, then there the
integrand has no poles on the integration region, and we can
take ϵ → 0 everywhere. This results in one term contrib-
uting to the imaginary part of the effective action:

v
2π

Z
kþ

k−

dk
sin ð2iav

ffiffiffiffiffiffiffiffiffiffi
PðkÞp Þ

PðkÞAðkÞ : ð72Þ

Let us now compute the integral over regions I and III.
Since in this region PðkÞ < 0, we may write
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Im

(�Z
k−

−∞
dkþ

Z þ∞

kþ

�
e−

2a
v

ffiffiffiffiffiffiffiffiffi
−PðkÞ

p

PðkÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
∈R

)
v

1

AðkÞ þ iϵ
; ð73Þ

and, when we take ϵ → 0, the only contributions to the
imaginary part will come from the −iπδ term. The only
remaining question is how many zeros AðkÞ has in the
integration region. As we already said, k1 is always in
region III, so we will always have a contribution coming
from k1, that is,

v
4Ω

e−
2a
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0þΩÞ2−Ω2v2

p

ðω0 þ ΩÞ2 −Ω2v2
: ð74Þ

And, when the condition (68) is not fulfilled, then k2 is also
in region I or in region III, so we will have an extra
contribution of the form

v
4Ω

e−
2a
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−ΩÞ2−Ω2v2

p

ðω0 −ΩÞ2 −Ω2v2
: ð75Þ

So far, we have computed the result of the first term on
Eq. (66). The procedure for computing the second term is
completely analogous, so we are now in a position to write
the result for the imaginary part of the action of influence.
We define

S1 ¼
1

2π

Z vω0
1þv

−vω0
1−v

dk
sin½2av

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − ω0Þ2v2 − k2

p
�

ððk − ω0Þ2v2 − k2Þððk − ω0Þ2 − Ω2Þ

þ 1

2π

Z vω0
1−v

−vω0
1þv

dk
sin½2av

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ ω0Þ2v2 − k2

p
�

ððkþ ω0Þ2v2 − k2Þððkþ ω0Þ2 −Ω2Þ

þ 1

2Ω
e
2a
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0þΩÞ2−v2Ω2

p

ðω0 þΩÞ2 − v2Ω2
þ 1

2Ω
e
2a
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−ΩÞ2−v2Ω2

p

ðω0 −ΩÞ2 − v2Ω2

ð76Þ
and

S2¼
1

2π

Z vω0
1þv

−vω0
1−v

dk
sin½2av

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−ω0Þ2v2−k2

p
�

ðk−ω0Þ2v2−k2
pv

×

�
1

ðk−ω0Þ2−Ω2

�
−

1

2Ω
cos½2av

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Ω2− ðω0−ΩÞ2

p
�

v2Ω2− ðω0−ΩÞ2

þ 1

2π

Z vω0
1−v

−vω0
1þv

dk
sin½2av

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþω0Þ2v2−k2

p
�

ðkþω0Þ2v2−k2
pv

×

�
1

ðk−ω0Þ2þΩ2

�
þ 1

2Ω
e
2a
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0þΩÞ2−v2Ω2

p

ðω0þΩÞ2−v2Ω2
;

ð77Þ
where the remaining integrals over k can be performed
numerically. The imaginary part of the action of influence
is then given by

ImSIF2 ¼ g2π2Δq20λ2Tv
2

(
S1 if Ω < − ω0

1þv or ω0

1þv < Ω;

S2 if − ω0

1þv < Ω < ω0

1þv :

ð78Þ

C. Estimation of the decoherence time

We are now in a position to estimate the decoherence
time for the particle. The total imaginary part of the action
of influence (up to second order in λ) is

ImSIF ¼ g2Δq20T
2

�
1

8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

þ λ2v

�S1 if Ω < − ω0

1þv or ω0

1þv < Ω

S2 if − ω0

1þv < Ω < ω0

1þv

�
: ð79Þ

Now, as we have detailed in the beginning of this section,
the decoherence time can be estimated by the time of flight
of the particle when ImSIF ∼ 1, so that

tD∼
2

g2Δq20

1�
1

8
ffiffiffiffiffiffiffiffi
1−v2

p þλ2v

�S1 if Ω<− ω0

1þv or
ω0

1þv<Ω

S2 if − ω0

1þv<Ω< ω0

1þv

�;
ð80Þ

where S1 and S2 are defined in Eqs. (76) and (77),
respectively. After numerically performing these integrals,
we are in a position to plot, in Fig. 3(a), the estimation of
the decoherence time as a function of the velocity of the
particle, for different values of the coupling constant
between the plate and the vacuum, λ. There is a global
factor A ¼ 2

g2Δq2
0

that shows that the decoherence time is

reduced for larger values of the coupling constant between
the particle and the vacuum field and for larger difference
in the amplitudes of the classical trajectories under
consideration.
Now, as can be seen in Fig. 3(a), the presence of the plate

reduces the decoherence time but only for nonvanishing
relative velocity. For a particle that is at rest or moving at
very small velocities with respect to the plate, the
decoherence time is not reduced, even for greater values
of the coupling constant between the plate and the vacuum
field (and hence stronger interaction between the particle
and the plate, mediated by the vacuum field). Now, for
nonvanishing velocities, the decoherence of the particle is
greater the stronger the coupling between the plate and the
vacuum field.
In Fig. 3(b), tD is shown as a function of the plate’s

characteristic dimensionless frequency ~Ω, for different
values of its macroscopic velocity v. In the graphic, a clear
minimum appears for every value of v, and it is located in
~Ω ¼ 0.03 ¼ ~ω0. This means that the decoherence is maxi-
mal in the resonant case, hencemaking the decoherence time
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vanish. Far from the resonance, that is, for values ofΩ ≫ ω0

(or the opposite limit when possible), the decoherence time
tends to the limiting value that corresponds to the case λ ¼ 0
(the case with no plate).
From the results shown above, we can see that, in this

simple model, the presence of the plate enhances the
decoherence over the particle. The decoherence effects can
be maximized by an appropriate choice of the atom’s fine-
grained history (Δq0 the classical amplitude difference in our
example) and the plate’s material [for a relation between the
λðωÞ function of the material and its dielectric permittivity
ϵðωÞ, see Ref. [26]]. As has already been discussed [11], the
decoherence effects given solely by the vacuum field are
neglectable. The coupling between any neutral atom and the
vacuum field is very weak, resulting in an almost infinite
decoherence time. However, from our results it can be seen
that, by carefully choosing the plate’s material [i.e., close to
the resonance in Fig. 3(b)], the decoherence time could be
drastically reduced. We also show that the relative velocity
contributes to the enhancing of the decoherence effects.

V. CONCLUSIONS

In this paper, we have used a functional approach to study
the effects of quantum vacuum fluctuations on a particle
moving parallel to an imperfect mirror. We have presented a
simple model in which the vacuum field is a massless, real,
scalar field coupled to themicroscopic degrees of freedomof
the mirror and the internal degree of freedom of the particle.
In our simple model, the plate is formed by uncoupled
unidimensional harmonic oscillators, each of them interact-
ing locally in position with the vacuum field. The macro-
scopic trajectory of the particle was externally fixed, and its
internal degree of freedom was also a unidimensional
harmonic oscillator, also coupled in position with the scalar
field, resulting in a dipolelike interaction.
We first studied the dissipative effects over the system. In

order to do that, we followed the same approach we had
used in our previous work [15]: We calculate the in-out
effective action for the whole system, which presented an
imaginary part that accounted for the nonvanishing prob-
ability of decay of the system’s initial state due to friction.

We found that these dissipative effects depended on the
relative velocity between the particle and the mirror and on
the characteristic of the materials. We also found that,
within our simple model, the imaginary part of the effective
action for a particle moving in front of a mirror is the same
as the imaginary part of the effective action per unit of area
for two mirrors in parallel relative motion [15].
Then, we switched to the Schwinger-Keldysh or CTP

formalism in order to study the decoherence suffered by the
particle due to its interaction with the vacuum field fluctua-
tions and its effective (mediated by the vacuum field)
interaction with the mirror. We calculated the CTP effective
action describing the influence of the vacuum field and the
microscopic degrees of freedomof themirror over the internal
degree of freedom of the particle. This action of influence
allowed us to estimate the decoherence time, in which two
different quantum states for the particle could no longer be
distinguished from one another. We found the decoherence
time to decrease with the presence of the mirror and to be
minimized when the characteristic frequencies of the mirror
and the particle are the same (resonant case). We also found
that the relative velocity between the mirror and the plate
increases the decoherence, as does the increasingof any of the
coupling constants. We expect that, in a Ramsey-like inter-
ference experiment, the parameters of our model could be
chosen in a way that would maximize the decoherence
effects. As we have modeled the atom as the lowest energy
levels of a harmonic oscillator, it is possible to choose its
characteristic frequency close to the resonance with the
plate. In addition, with a nonvanishing relative velocity,
we expect decoherence effects to be observed by means of
the attenuation of the contrast in the Ramsey fringes.
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FIG. 3. Estimation of the decoherence time, in units of a global factor A ¼ 2
g2Δq2

0

, as a function of (a) the relative velocity v and (b) the
dimensionless material frequency ~Ω, for ~ω0 ¼ 0.03.
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