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The light-cone gauge is used frequently in string theory as well as gauge theories and gravitation. Loop
integrals, however, have to be infrared regulated to remove spurious poles. The most popular and consistent
of these infrared regulators is the Mandelstam-Leibbrandt prescription (ML). The calculations with the
ML are rather cumbersome, though. In this work, we show that the ML can be replaced by a symmetry
of the regulator. This symmetry simplifies the calculations, reducing them to conventional dimensional

regularization integrals.
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I. INTRODUCTION

Computations in superstring theory as well as gauge
theories, supersymmetry, gravitation, and Chern-Simons
theories are often simplified by recurring to the light-cone
gauge. The light-cone gauge is termed one of the physical
gauges because ghosts decouple in these gauges.'
Computing loop corrections in the light-cone gauge has
some peculiarities, though: spurious infrared poles appear,
nonlocal terms are present, and Lorentz invariance is
explicitly broken. To deal with these problems, an infrared
regulator is needed. The most popular and internally
consistent regulator used at present is the Mandelstam-
Leibbrandt regulator (ML) [2,3]. The ML has very nice
properties: the poles in the k, complex plane are situated
such that the Wick rotation from Euclidean to Minkowsky
space is justified; it preserves naive power counting of loop
integrals; and in gauge theories, it maintains the Ward
identities of the gauge symmetry [1,4]. Explicit computa-
tions with the ML are long and cumbersome, though.

Here, we present a method to evaluate the loop integrals
that appear in the light-cone gauge based on a scale
symmetry of the regulator. No new integrals are required,
aside from the standard dimensionally regularized inte-
grals. In fact, the ML prescription can be safely replaced by
the scale symmetry and a regularity condition. We do not
have to specify the exact value of the two null vectors of the
ML, but merely its mutual relations. The results coincide
with the answer given by the ML for the same integral.

II. NEW PRESCRIPTION

Let us compute the simple integral

2
Aﬂ = dp f((np )pI;# s
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There are some subtleties related to this point. Please see
Ref. [1], chapter 4.4.
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where f is an arbitrary function, dp is the integration
measure in d dimensional space, and n, is a fixed null
vector [(n-n)=0]. This integral is infrared divergent
when (n - p) = 0.

The ML is
, (p- 1)
= lim - — 1
(7))o ) +ie W
where 7, is a new null vector with the property

(n-n)=1.
To compute A,, we have to know the specific form of f,
provide a specific form of n, and 7,, and evaluate the

residues of all poles of Z,(l—p;; in the p, complex plane, a
rather formidable task for an arbitrary f.
Instead, we want to point out

symmetry:

the following

n, = An,, i, — /1_11'1”, A#0, AeR.  (2)

It preserves the definitions of n, and 71,
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We see from Eq. (1) that

1 1

N -1
(n-p) (n-p)

Now, we compute A,, based on its symmetries. It is a
Lorentz vector which scales under Eq. (2) as A~'. The only
Lorentz vectors we have available in this case are n, and 71,,.
But Eq. (2) forbids n,. That is,

A

u = Cli’lﬂ.
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Multiply by n, to find (A - n) = a. Thus, a = [dpf(p?).

Finally,
fP)py )
d = d .
P ) nﬂ/ pf(p?)

By the same token, we find

f P7)PuPul
(7;)2 (n/,tgui>5 =+ b(n n ni)S

where ()¢ means symmetric in all Lorentz indices.
We get:

1
A;u//lnjL = Zlyg;w / dpf(pz)pz
Therefore

1
a=y [ defo?)p =—b,

The integrals on p, are dimensionally regularized.
That is,

/ f(p pﬂpvpl d/dpf(pz)pz{(ﬁﬂgwl)s

- (ﬁﬂﬁunﬂ)s}’

A. Generic integrals

We consider now a more general integral. We will
see here that regularity of the answer will determine it

uniquely.
Consider
2 5.
a= [ap™ L8 gy )aea).

g, is an external momentum, a Lorentz vector. F' is an
arbitrary function. The last relation follows from Eq. (2),
for a certain f we will find in the following.

We get
Fupy

n_fa
0q" P )

=n,f(x,y) —l—2(ﬁ~q)qMaa f(x.y)

+ (7 qPn, + (n- @) g, (fy Fey).
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We defined u=p-q, x= qz, y= (” : Q)(ﬁ : 4)- ()u
means a derivative with respect to u,

OA
8—qﬂnﬂ = /dpF,u = g(X)
0 )
:f(x,y)+2yaf(x,y)+ya—yf(x,y)- (4)

Assuming that the solution and its partial derivatives are
finite in the neighborhood of y = 0, it follows from the
equation that f(x,0) = g(x). That is the partial differential
equation has a unique regular solution.

We will find the solution of Eq. (4) using the method of
characteristics [5],

X =2y y=y

f+f=g(x(1)

y = Cé' x =2Ceé', x =2Ce' + D
x—2y=D

The most general solution of the system is

t
e"/ dt'e
—00

for b arbitrary corresponding to the solution of Eq. (4) with
g =0 (homogeneous solution). The regular solution of
Eq. 4), fy, is obtained imposing that b = 0, the reason
being that the homogeneous solution is f = II(x — 2y)y~!,
with IT an arbitrary function. We readily see that f will
diverge at y = 0, unless II(x) = 0, for all x.

Moreover,

f=be+ "g(x(1))

t
hm fo= 11m e ’/ dt'e’ g(x(1')) = g(D).
That is fo(x,0) = g(x). fo is the unique regular solution
of Eq. (4).

What we have developed up to here shows that the scale
transformation (2) plus the regularity condition determines
uniquely the value of the integral (3).

B. Application to loop integrals

We consider now integrals that appear in gauge theory
loops:

/dp[ R 1 L - g)fy)

p*+2p-g—m’“(n-p)
In this case

g(x) = —Za/dp[ 2 : 2+l

pT—x—m
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Therefore
t /
f= et/ dre" g(x(1))
1

= /dpe"[p2 —2Ce" — D — m?]™° e

——;{/dp[pz—x—mz]“—/dp[pz—X+2y—m2]”}-

F(x.0) = —2a / dplp? — x — m?] 1 = g(x).

t

We readily verify that

In the same way, we get

fdp [[7 +2pq mz]“ 1 2 - (l’l q>2f(x y)
with

1
flxy) = y—z/ dp{[p* —x —m*|7* = [p* —x + 2y — m?]™* = 2ay[p* — x + 2y — m*] 7"~}

Following the same procedure, we can get an answer for the whole family of loop integrals:

! U ay(eap D@t t) [t — n.q)(ii.q)t — m?=a~
Jarost = e [ [N [l - 2 4 2 gy -

Using dimensional regularization, we obtain

/ s L1 (CpenimpapTat o) g

p°+2p-q—m’*((n-p)) [(a)l'(D)
1
b—1
XA T 20 ) )
w=d/2. 5)
We sketch the proof of Eq. (5):
/d ! L fbaxy)
PP apg—mJ (- pyyr W OTERY
with
0 0
—2af(b—1,a+1,x,y):bf(b,a,x,y)+2yaf(b,a,x,y)—l—ya—yf(b,a,x,y), (6)
2a
f(b,a,x,O):—?f(b—l,a—l-l,x,O). (7)

It is easy to check that Eq. (5) satisfies the partial differential equation (6) and the boundary condition (7), so it is the unique
regular solution and thus determines the value of the integral.
Other integrals can be obtained computing partial derivatives with respect to g,:

a+b: W —1 I'a+b—w) (= J —
Pu 1 (1) H)l(ﬂ') <_2)b l—r(i,ﬁ)r(,,)) (7-q) b lb” fl dit IW—F
/d [P +2p-q—m]*H! ((fl-P))h: atbi( o bF(a+b+l—w = 1 g b—1 Gu—t(n-gi, +i-qn,) ®
(=1)*i(x)"(=2) T@rrG) (- q)" [y drr a2y T-w
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and

/dp PuPy -
[p?+2p-q—m?""((n-p))

_ (_l)aeri(ﬂ)w(_z)bZ{
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0 (m2 +x— 2yt>a+h+1—a) F(a + Z)F(b) q

% /1 dttb1 [qll B [(I’l i qﬁﬂ +2ﬁ ) qnﬂ)”qu - 5(27 qn, +n - qnv)] ] (9)
0 (m* + x — 2yp)@tbri-o

The right-hand sides of Egs. (5), (8), and (9) are analytic in
the parameters a, b, and @ almost everywhere in their
respective complex planes, so they provide the analytic
extension of the integral to these wider domains.

III. COMPARISON WITH THE ML

The simpler integral A,, A,,,; of Sec. II, agrees with the
ML prescriptions [1]. But in this section, we want to
compute a more involved integral, in order to compare both
finite and divergent results with the MLs.

We want to compute

2\o—1

A(o:q)z/dp ()

(p—q)*((n-p))?*

I'd—o—w)

Alo,q) =47 aP (=i —r—

This coincides with Ref. [7], Eq. (C4), by the change of
variable t =1 —y and ¢ = w.

Notice that we have considered > # ¢> and taken the
limit g> = g¢? after evaluating the integral. This is justified
because the integral is a regular function of ¢*. If we
expand A(c, g) in powers of g2, each term of the series can
be evaluated using Eq. (5). The summation of the series is
equivalent to the procedure we followed above.

IV. CONCLUSIONS

We have developed a way of evaluating the light-cone
loop integrals based on the scale symmetry (2) and the
condition of regularity of the solution. We do not have to
specify the exact value of the two null vectors of the ML but

|
We introduce Feynman parameters [6]

1 /1 M1 —x)m=t T(my + my)
A A x
AV'AY Jo XA+ (1= x)AyM T D (my )T (my)

to get

A(a,q):(l—a)Aldx

—0

x / ap [P?+(1=x)(=2p-q+g*)]*°((n-p))*

Using Eq. (5), we finally get

/l dxx_g(l _ x)a+w—2 /l dtt[qzx + 2t(l’l . q)(ﬁ . q)(l _ x)]0'+a)—4‘
0 0

|

merely its mutual relations. The answer is the same as in
the ML prescription, but a significant simplification of the
calculation is available now.

For future work, we want to mention that the scale
transformation (2) is also a symmetry of the uniform
prescription introduced by Leibbrandt [1] to treat the
spurious infrared poles in light-cone, axial, planar, and
temporal gauges. The application of the method presented
here to these more general gauges will be done elsewhere.
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