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We compute Green’s functions with a bilinear quark operator inserted at nonzero momentum for a
generalized momentum configuration to two loops. These are required to assist lattice gauge theory
measurements of the same quantity in matching to the high energy behavior. The flavor nonsinglet
operators considered are the scalar, vector and tensor currents as well as the second moment of the twist-2
Wilson operator used in deep inelastic scattering for the measurement of nucleon structure functions.
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I. INTRODUCTION

The protons and neutrons of the atomic nucleus are
known nowadays to be comprised of fundamental pointlike
particles called quarks. These are held in the nucleon bound
states by the strong color force whose quanta are gluons.
Neither quarks nor gluons have been seen in isolation in
nature due to confinement, which is sometimes called
infrared slavery. This term originates in part from the fact
that when protons and neutrons are probed experimentally
at high energies, they behave as free fundamental entities in
that asymptotic regime. This manifestation as apparently
free particles is an apparition since it is not the picture at all
energy scales. At low energies the color glue restricts the
release of isolated quarks. While high energy experiments
have demonstrated that our theoretical understanding at a
Lagrangian level is essentially correct, via the non-Abelian
gauge theory known as quantum chromodynamics (QCD),
how protons and neutrons actually form and become the
observed degrees of freedom is still not fully resolved. One
way of studying properties of the nucleon substructure is to
model the internal quark behavior numerically. This goes
well beyond the perturbative region of QCD and requires
the technique known as lattice gauge theory. The proton
and neutron structure functions can be constructed from
models of the nonperturbative behavior with lattice gauge
theory input data, and in the main, this has progressed our
understanding of nucleon structure.
Given this overview there is a technical side to actually

extracting the information required for the nucleon struc-
ture functions. Based on the operator product expansion,
one computes moments of the structure functions which are
related to Green’s functions involving twist-2 operators [1].
For the flavor nonsinglet sector of the structure functions,
the nth moments of these operators are quark-antiquark
operators involving (n − 1) covariant derivatives. Their
renormalization properties have been known for many
years with the provision of the one-, two- and three-loop
MS anomalous dimensions [1–3]. However, the depend-
ence of the Green’s function itself on momenta and the

strong coupling constant is what is necessary for proton and
neutron structure analysis. As noted, this is the quantity
computed on the lattice nonperturbatively. However, these
calculations are intensely numerical, and the measurement
of a central value at a particular momentum is only part of
the work. The second aspect is to refine the error bounds so
that they are small. One aspect of that analysis is that, in
addition, the behavior of the measured Green’s function
should match onto the high energy piece. The latter is
determined in perturbation theory [1–3]. Indeed, this has
been the modus operandi for the last decade or so.
Multiloop evaluation of the same Green’s function can
be determined to two and three loops. For the most part the
latter order is for the momentum configuration where the
operator is at zero momentum insertion in a quark 2-point
function. However, more recently the focus has switched to
forward matrix elements which requires a nonzero momen-
tum flowing through the inserted operator. This relates to
generalized parton distribution functions.
In this instance the supporting perturbative computations

have been carried out at the fully symmetric momentum
configuration but only to two loops. Such results [4–8]
have proved important in lattice analyses. For example, see
[9–30] for a nonexhaustive representation. While this has
provided a useful start for such forward matrix element
analyses, it is slightly restrictive. In computing at the fully
symmetric point, the squares of all incoming external
momenta are equal [4,5,7,8]. That value for the operator
insertion is no different from that of the external quark legs
on the Green’s function. Instead, a more general configu-
ration would be preferable where the momenta flowing into
the operator itself are not tied to those of the other legs.
Therefore, it is the purpose of this article to address this
problem. We compute the Green’s function of the relevant
quark operators, which are twist-2 flavor nonsinglet oper-
ators. The particular momentum configuration considered
will be called the interpolating momentum (IMOM) sub-
traction point. This is in contradistinction to the symmetric
momentum (SMOM) subtraction point of [4,5,7,8]. The
origin of our IMOM nomenclature is due to the appearance
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of a parameter ω, which will be free. It parametrizes the
momentum transfer at the operator insertion. Our results
will all be functions of ω and will provide a freedom for the
lattice to tune their analysis. For instance, it may transpire
that for certain values of ω the error bounds are tighter than
for others. Our choice of IMOM configuration, which is a
nonexceptional one, is not original in that it was considered
in [6] for the renormalization of the quark mass operator.
As a first stage we reconstruct that computation [6] partly as
a check on our computational setup but also because we
give the full decomposition of the Green’s function into its
Lorentz basis. We repeat the process for both the vector
current and tensor quark bilinear. The former is considered
because of its later relation to the second moment of the
twist-2 flavor nonsinglet operator of deep inelastic scatter-
ing. The tensor operator is evaluated because of its relation
to the vector meson decay constant (see [31], for instance).
Our analysis is completed by the calculation which is that
of the full set of second moment twist-2 operators. With the
increase in Lorentz indices in the case of this set of
operators, the basis of tensors for the Green’s function
itself enlarges. However, we compute the full result. This is
necessary as lattice regularized QCD makes measurements
in different directions in order to decipher the signal which
contributes to the matrix element for the structure function.
Throughout, we work in the MS scheme and do not
consider any of the hybrid renormalization schemes which
were introduced in earlier work such as the modified
regularization invariant (RI0) [32,33] or momentum sub-
traction (MOM) schemes [34,35]. This is partly because
lattice motivated schemes can readily be converted to the
reference MS scheme but also because there is a large
degree of freedom in defining a nonminimal momentum
subtraction scheme which derives from RI0.
The paper is organized as follows. The definition of the

operators we consider and the quantum field theoretic
formalism used is introduced in Sec. II. This includes a
discussion on the technical details of the computation. The
subsequent two sections contain the main results, with
Sec. III concentrating on the basic bilinear quark operators
while Sec. IV focuses on the twist-2Wilson operator second
moment. We provide concluding remarks in Sec. V. The
Appendix records the tensor basis for theGreen’s function of
each operator together with the explicit projection matrices
which are ω dependent. The latter are required to extract the
coefficient of each basis tensor as a function of ω.

II. BACKGROUND

We begin by briefly reviewing the formalism we use,
which is based on earlier articles [5–8]. We focus on the
main differences due to the more general external momen-
tum configuration. We refer the interested reader to these
articles for more detail, but our notation will be the same as
[7,8]. First, for shorthand and for labeling purposes, the
operators we consider are

S≡ ψ̄ψ ; V ≡ ψ̄γμψ ; T ≡ ψ̄σμνψ ;

W2 ≡ Sψ̄γμDνψ ; ∂W2 ≡ S∂μðψ̄γνψÞ ð2:1Þ

where σμν ¼ 1
2
½γμ; γν�. The letters S, V, T, W2 and ∂W2

denote scalar, vector, tensor, twist-2 flavor nonsinglet
second moment Wilson operator and total derivative of
the latter, respectively. In the case of W2 and ∂W2 each
operator is symmetrized with respect to the Lorentz indices
and is also traceless in d dimensions. The operator for this
latter procedure is denoted by S, and if

OW2
μν ¼ ψ̄γμDνψ ð2:2Þ

for instance, then [1,2]

SOW2
μν ¼ OW2

μν þOW2
νμ −

2

d
ημνO

W2σ
σ ð2:3Þ

in d dimensions. For each of the operators in (2.1) we
evaluate the Green’s function

hψðpÞOL
μ1…μnL

ðrÞψ̄ðqÞij
ω

ð2:4Þ

where L ¼ S, V, T, W2 or ∂W2 and

pþ qþ r ¼ 0 ð2:5Þ

by conservation of momentum. The restriction here is
shorthand notation for the evaluation of the squares of
the three external momenta at the interpolating momentum
subtraction point we are interested in. In particular, the
squared momentum flowing into the operator will always
be the one which is distinct from the quark leg momenta
given that we take [6]

p2 ¼ q2 ¼ −μ2; r2 ¼ −ωμ2 ð2:6Þ

which imply

pq ¼
�
1 −

ω

2

�
μ2; pr ¼ qr ¼ ω

2
μ2: ð2:7Þ

The ω → 1 limit will correspond to the symmetric point
used in SMOM. On a note of caution the ω → 0 limit will
be infrared unsafe and will not be considered in any
analysis. Equally, the value of ω ¼ 4 corresponds to a
collinear singularity. Therefore, we only allow ω to be in
the range 0 < ω < 4. The number of free Lorentz indices
nL for each operator is indicated in (2.1).
In order to provide the structure of the Green’s function

which lattice gauge theory requires for the measurements
and matching, we decompose (2.4) into its Lorentz basis at
the IMOM subtraction point which we sometimes refer to
as an asymmetric point. Specifically, we write [7,8]
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hψðpÞOL
μ1…μnL

ðrÞψ̄ðqÞij
ω
¼
XNL

k¼1

PL
ðkÞμ1…μnL

ðp;qÞΣL
ðkÞðp;qÞjω

ð2:8Þ

where ΣL
ðkÞðp; qÞjω are the scalar amplitudes at the IMOM

point associated with each respective Lorentz tensor basis
element, PL

ðkÞμ1…μnL
ðp; qÞ. The number of tensors in the

basis, NL, is given in Table 1, and the basis for each of
the operators considered here is given explicitly in the
Appendix. To determine the scalar amplitudes we extend
the projection method used in previous articles to the
specific momentum configuration of interest. In particular,
the kth amplitude can be extracted by applying the
projection matrix ML

kl to the Green’s function (2.4) itself.
In other words,

ΣL
ðkÞðp; qÞjω ¼ ML

klP
Lμ1…μnL
ðlÞ ðp; qÞ

× ðhψðpÞOL
μ1…μnL

ð−p − qÞψ̄ðqÞiÞj
ω

ð2:9Þ

where there is a sum over the amplitude label l. The
projection matrix is deduced from the basis tensors and is
defined as the inverse of the matrix given by [7,8]

N L
kl ¼ PL

ðkÞμ1…μnL
ðp; qÞPLμ1…μnL

ðlÞ ðp; qÞj
ω
: ð2:10Þ

The entries in ML
kl and N L

kl are polynomials in d and
recorded in the former case for each operator in the
Appendix. Due to the asymmetry of the momentum
configuration, both matrices are ω dependent. As is
evident, several elements are singular at ω ¼ 0 reflecting
the infrared issue at a nullified operator insertion.
Having discussed the quantum field theory formalism

underlying the problem, we now summarize the practical-
ities behind determining the amplitudes. We have evaluated
all the one- and two-loop Feynman integrals using an
automatic symbolic manipulation program written in the
language FORM [36,37]. This is the most efficient tool to
handle the large amounts of intermediate algebra. The
algorithm is initiated from the electronic representation of
the Feynman graphs generated with the QGRAF package
[38]. These graphs are adapted by automatically labeling
with color, spinor, Lorentz and flavor indices in a FORM
module prior to applying the projection matrix to isolate
the individual scalar amplitudes within several other

FORM modules. The bulk of the evaluation centers on
the integration of the large set of Feynman integrals
contributing to a graph after scalar products of internal
and external momenta are written in terms of the propa-
gators, respecting the relations (2.6) and (2.7). In arranging
the scalar products in this way some integrals are produced
with irreducible numerators. By this we mean that there
was either no propagator of that form in the original
topology or a propagator has a negative power. To proceed,
we need to use integration by parts enshrined in the Laporta
algorithm [39]. This is a technique which systematically
constructs algebraic relations between scalar integrals with
or without irreducible propagators. The resulting tower of
relations, while over-redundant, can then be solved in terms
of a minimal number of basic scalar integrals. Termed
masters, their ϵ expansion can only be deduced by non-
integration by parts methods. All our calculations are
carried out using dimensional regularization in d¼ 4−2ϵ
dimensions. However, for the asymmetric momentum
configuration we are considering, it transpires that the
various master integrals are known to the required order in ϵ
from various sources [6,40–43]. The various polylogarithm
functions which appear in the finite part of (2.4) are noted
in the next section. For our automatic evaluation we have
generated a database of integrals using the REDUZE [44]
implementation of the Laporta algorithm. The output is
readily converted into FORM syntax and thence into a FORM
module. Once each contributing graph has passed through
the integration algorithm, they are summed and the Green’s
function rendered finite. This is carried out automatically
using the process provided in [45]. We work with a bare
coupling constant and gauge parameter α in the evaluation
of all Feynman diagrams, and their renormalized counter-
parts are introduced by the usual rescaling. This introduces
the counterterms without having to perform subtractions,
which would be difficult to implement in a symbolic
manipulation program. There are various checks on the
final expression for the Green’s function for each operator.
First, we use an arbitrary linear covariant gauge. Therefore,
as each operator is gauge invariant, its MS renormalization
constant will be independent of the gauge fixing parameter
α. Moreover, it cannot depend on ω, and we note that each
operator passed this test as well as agreeing with the known
two-loop renormalization constants. The other main check
was that we recovered the known results [4–8] for each
Green’s function in the ω → 1 limit, and therefore we are
confident that our results are not incorrect.

III. BASIC OPERATORS

We now turn to the discussion of our results. As a check
on our FORM code we have reproduced the asymmetric
point results of [6] for the scalar current S. In particular,
we found agreement with the conversion function for the
anomalous dimension of the mass operator from the MS
scheme to the scheme defined in [6]. This scheme was

TABLE I. Number of Lorentz basis elements, NL, for each
operator insertion L.

L S V T W2

NL 2 6 8 10
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termed the IMOM scheme [6] to distinguish it from the
MOM or SMOM schemes. We use the same nomenclature
here. However, as we used a different point of view for the
renormalization of α in the RI0 scheme aspect of the IMOM
scheme, the results will only tally in the Landau gauge,
which is the only gauge of interest for lattice matching

anyway. In Ref. [46] we record the second channel
amplitude in addition to that for channel 1 for complete-
ness. One of the main results of [6] was the conversion
function. Although this was presented in [6] we record the
same quantity here in order to compare the different gauge
parameter dependence. We found

Cψ̄ψ ða; αÞ ¼ 1þ ½Φð1Þω;ωαþ 3Φð1Þω;ω − 2α − 8�CFa
2

þ ½−36 lnðωÞΦð1Þω;ωαωCF − 12 lnðωÞΦð1Þω;ωωCA

− 60 lnðωÞΦð1Þω;ωωCF þ 12Ωð2Þω;ωωCA − 24Ωð2Þω;ωωCF − 24Ωð2Þ1;ωωCA þ 48Ωð2Þ1;ωωCF

þ 6Φ2
ð1Þω;ωα

2ωCF þ 36Φ2
ð1Þω;ωαωCF þ 12Φ2

ð1Þω;ωωCA − 24Φ2
ð1Þω;ωCA þ 30Φ2

ð1Þω;ωωCF þ 48Φ2
ð1Þω;ωCF

þ 9Φð1Þω;ωα2ωCA − 24Φð1Þω;ωα2ωCF þ 42Φð1Þω;ωαωCA − 48Φð1Þω;ωαωCF þ 385Φð1Þω;ωωCA

− 168Φð1Þω;ωωCF − 80Φð1Þω;ωωTFNf − 24Φð2Þω;ωαωCF − 24Φð2Þω;ωωCA − 24Φð2Þω;ωωCF

þ 24Φð2Þ1;ωω2CA − 18α2ωCA þ 24α2ωCF − 84αωCA þ 96αωCF þ 288ωζ3CA − 1285ωCA

þ 57ωCF þ 332ωTFNf�
CFa2

24ω
þOða3Þ ð3:1Þ

where a and α are MS variables and a ¼ g2=ð16π2Þ in
terms of the gauge coupling constant g. Also CF, CA and
TF are the usual group theoretic quantities for a Lie group
and ζz is the Riemann zeta function. Our shorthand notation
for various functions is

ΦðnÞ1;ω ¼ ΦðnÞð1;ωÞ; ΦðnÞω;ω ¼ ΦðnÞ

�
1

ω
;
1

ω

�
;

ΩðnÞ1;ω ¼ ΩðnÞð1;ωÞ; ΩðnÞω;ω ¼ ΩðnÞ

�
1

ω
;
1

ω

�
: ð3:2Þ

These arise from the various underlying master integrals
and were evaluated explicitly in terms of polylogarithm
functions in [40–43]. As we will be representing
the results for the other operators of interest in graphical
form within the article, for completeness we have
plotted the channel 1 scalar operator amplitude in Fig. 1.
There we show the one- and two-loop corrections as a
function of ω for values of Nf with 3 ≤ Nf ≤ 6 at a
specific value of αs. This is for illustration as the full results
are available for the interested reader in Ref. [46]. In
Fig. 1 and subsequent figures we note that we use the
notation Lmnl in the legend to denote the amplitude of the
operator L. The subscript mnl labels the Lorentz channel
number, the number of quark flavors and the loop order,
respectively.
The renormalization of the vector operator requires

care due to its underlying significance as a conserved
physical current. In other words, due to charge conservation
in the quantum theory, ∂μðψ̄γμψÞ ¼ 0. So to extract
the correct renormalization constant for V one has to
express this condition, which equates effectively to
the Slavnov-Taylor identity, in the context of the

Green’s function with the operator inserted at nonzero
momentum. A decomposition into the full Lorentz tensor
basis is necessary for this. Once the combination of
amplitudes is constructed which corresponds to the diver-
gence-free current condition; then the vector current
renormalization constant can be set. Specifically, we require
the combination

ΣV
ð1Þðp; qÞjMS

−
1

2
ΣV
ð2Þðp; qÞjMS

−
1

2
ΣV
ð5Þðp; qÞjMS

ð3:3Þ

to be finite in the MS scheme. This is in contrast to the
renormalization of the other operators we consider here. In
those cases we ensure that the channel in the Lorentz
decomposition of the Green’s function containing the tree is
finite in the MS scheme. However, since the vector current
is a physical operator, then its renormalization is trivial in
all renormalization schemes. In other words, ZV ¼ 1 and
consequently γVðaÞ ¼ 0 to all orders. For our interpolating
subtraction point computation we have checked that this is
indeed the case to two loops, which plays an important
check on the calculation. However, we have summarized
the renormalization process for this specific operator to
ensure that if others choose to renormalize in a scheme
other than MS, then the Slavnov-Taylor identity is
respected. Another check on the results is that the general
relations [7]

ΣV
ð2Þðp; qÞjω¼1

¼ ΣV
ð5Þðp; qÞjω¼1

;

ΣV
ð3Þðp; qÞjω¼1

¼ ΣV
ð4Þðp; qÞjω¼1

ð3:4Þ
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have to be satisfied in the MS scheme. These relations
follow from the fact that the Green’s function is symmetric
under the interchange of p and q in the external legs. Their
forms were not assumed at the outset but emerged naturally
within the computation and act as a useful check. Given
that our amplitudes fulfill the general criterion, we have
checked that in the ω → 1 limit the fully symmetric point
results correctly emerge. With these considerations we have
plotted the channel 1 amplitudes in Fig. 2 for αs ¼ 0.125. It
is evident that for the value of αs the variation from one to
two loops across the ranges of ω andNf is not large. In fact,
for these ranges it is no more than 0.5%. This is not
unexpected since for this particular value of the coupling
constant, perturbation theory is expected to be a solid
approximation.
Finally, we complete this section by considering the

tensor current. For its renormalization we have checked
that the correct ω-independent two-loop MS renormaliza-
tion constant [47] first emerges at the ω-dependent

subtraction point, with the actual divergence in ϵ being
present only in channel 1 as expected from renormaliz-
ability. The emergence of the known MS renormalization
constant is a useful check on the FORM setup. Concerning
the other channels a similar left-right symmetry in the
original Green’s function to the vector case is present,
corresponding to [7]

ΣT
ð3Þðp; qÞjω¼1

¼ ΣT
ð6Þðp; qÞjω¼1

;

ΣT
ð4Þðp; qÞjω¼1

¼ ΣT
ð5Þðp; qÞjω¼1

ð3:5Þ

in general. We have checked that these amplitudes satisfy
the relations at two loops in the MS scheme. An illustration
of the behavior of the channel 1 amplitude is given in
Fig. 3. While the form of the plots appears different from
the previous two cases, it should be noted that the vertical
scale is more finely grained in the tensor case. So the
behavior close to ω ¼ 0 is amplified.

FIG. 1. Channel 1 amplitude for the scalar operator for different Nf values and αs ¼ 0.125.

BILINEAR QUARK OPERATOR RENORMALIZATION AT … PHYSICAL REVIEW D 93, 065031 (2016)

065031-5



IV. WILSON OPERATOR

We devote this section to the results for the second
moment of the Wilson operator, W2. This is because the
renormalization of the two basic operators with the same
quantum numbers is not multiplicative unlike the operators
of the previous section. Instead W2 and ∂W2 mix under
renormalization and lead to a mixing matrix of anomalous
dimensions which we will denote by γW2

ij ðaÞ [8]. It is
derived from the set of associated renormalization constants
ZW2

ij which are defined by

Ooi ¼ ZW2

ij Oj ð4:1Þ

where the subscript o indicates a bare quantity. For
the two independent operators in the basis we have
chosen, it transpires that ZW2

ij is upper triangular.
Specifically [8],

ZW2

ij ¼
0
@ZW2

11 ZW2

12

0 ZW2

22

1
A ð4:2Þ

which not only simplifies the renormalization process but
also allows us to make contact with the usual way the
renormalization of the operatorW2 is derived. For instance,
W2 is ordinarily regarded as being a multiplicatively
renormalizable operator, and γW2

11 ðaÞ is known to three
loops in the MS scheme [1–3]. However, this multiplicative
renormalization is due to the fact that when one renorm-
alizes the operator, it is invariably in the situation where it is
inserted in a quark 2-point function at zero momentum.
This is not the momentum configuration we use here.
Therefore, in the zero momentum operator insertion setup,
the mixing with the total derivative operator is not
accessible. This is because momentum conservation would
render the Feynman rule for ∂W2 zero. Another way of
putting this is that the full content of the renormalization of

FIG. 2. Channel 1 amplitude for vector current for different Nf values and αs ¼ 0.125.

J. M. BELL and J. A. GRACEY PHYSICAL REVIEW D 93, 065031 (2016)

065031-6



the W2 sector can only be fully appreciated at a nonexcep-
tional point. An alternative basis to the one chosen here,
such as that with the flavor nonsinglet operator SðDμψ̄Þγνψ
instead, would lead to a different form of the mixing matrix.
So proceeding with our basis choice [8] and following the
projection method given earlier, we have constructed all the
amplitudes for both operators W2 and ∂W2 to two loops in
the MS scheme. As the first stage, we have verified that the
correct two-loop MS renormalization constants emerge in
both cases. For the former operator the tally is with [1,2].
For ∂W2 we have verified that [8]

γW2

22 ðaÞjMS ¼ Oða3Þ ð4:3Þ

which is the same as γVðaÞ. This is not unconnected, as
∂W2 is the total derivative of the nonsinglet vector current.
So it is reassuring that this emerges consistently. Partly
related to this is that the amplitudes for this operator obey
relations similar to (3.4). In particular, we have checked to
two loops that [8]

Σ∂W2

ð1Þ ðp; qÞj
ω¼1

¼ Σ∂W2

ð2Þ ðp; qÞj
ω¼1

;

Σ∂W2

ð3Þ ðp; qÞj
ω¼1

¼ Σ∂W2

ð8Þ ðp; qÞj
ω¼1

;

Σ∂W2

ð4Þ ðp; qÞj
ω¼1

¼ Σ∂W2

ð7Þ ðp; qÞj
ω¼1

;

Σ∂W2

ð5Þ ðp; qÞj
ω¼1

¼ Σ∂W2

ð6Þ ðp; qÞj
ω¼1

;

Σ∂W2

ð9Þ ðp; qÞj
ω¼1

¼ Σ∂W2

ð10Þ ðp; qÞjω¼1
ð4:4Þ

which are established from the left-right symmetry of the
underlying Green’s function for arbitrary ω. For the
operator W2 itself there are no similar relations. This is
because the covariant derivative in the operator definition
only acts on the quark and not the antiquark field.
Since we have presented results for other operators

graphically, we will do so for W2 too. However, as a guide
to the form of what lies behind such a representation, we
provide the channel 2 amplitude in analytic form in the MS
scheme. We have

FIG. 3. Channel 1 amplitude for the tensor operator for different Nf values and αs ¼ 0.125.
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ΣW2

ð2Þðp;qÞjα¼0

ω
¼ −1þ

�
79

18
þ 5

3

1

½ω− 4�−
17

6
lnðωÞ− 10 lnðωÞ 1

½ω− 4�2 −
28

3
lnðωÞ 1

½ω− 4�

þΦð1Þω;ω −
9

8
Φð1Þω;ω

1

ω
þ 5

2
Φð1Þω;ω

1

½ω− 4�2 þ
17

8
Φð1Þω;ω

1

½ω− 4�
�
CFa

þ
��

−
2261

162
− 6

1

½ω− 4� þ
92

9
lnðωÞ þ 36 lnðωÞ 1

½ω− 4�2 þ
310

9
lnðωÞ 1

½ω− 4�−
31

9
Φð1Þω;ω þ 139

36
Φð1Þω;ω

1

ω

− 9Φð1Þω;ω
1

½ω− 4�2 −
283

36
Φð1Þω;ω

1

½ω− 4�
�
CFTFNf þ

�
24337

648
þ 241

18

1

½ω− 4� þ 18ζ3
1

½ω− 4�2

þ 21ζ3
1

½ω− 4� þ ζ3 −
2209

72
lnðωÞ− 241

3
lnðωÞ 1

½ω− 4�2 −
1141

12
lnðωÞ 1

½ω− 4�−
29

8
ln2ðωÞ

−
143

2
ln2ðωÞ 1

½ω− 4�2 −
61

2
ln2ðωÞ 1

½ω− 4� þ
1

4
lnðωÞΦð1Þω;ω −

15

32
lnðωÞΦð1Þω;ω

1

ω

þ 143

8
lnðωÞΦð1Þω;ω

1

½ω− 4�2 þ
271

32
lnðωÞΦð1Þω;ω

1

½ω− 4�−
31

12
Ωð2Þω;ω −

25

32
Ωð2Þω;ω

1

ω
−
41

8
Ωð2Þω;ω

1

½ω− 4�2

−
737

96
Ωð2Þω;ω

1

½ω− 4�−
17

3
Ωð2Þ1;ω − 59Ωð2Þ1;ω

1

½ω− 4�2 −
205

6
Ωð2Þ1;ω

1

½ω− 4� þ
551

36
Φð1Þω;ω

−
1039

72
Φð1Þω;ω

1

ω
þ 241

12
Φð1Þω;ω

1

½ω− 4�2 þ
2683

72
Φð1Þω;ω

1

½ω− 4� þ
1

2
Φ2

ð1Þω;ω −
1

2
Φ2

ð1Þω;ω
1

ω
− 2Φð2Þω;ω

þ 25

16
Φð2Þω;ω

1

ω2
þ 29

16
Φð2Þω;ω

1

ω
−
29

16
Φð2Þω;ω

1

½ω− 4�2 −
45

16
Φð2Þω;ω

1

½ω− 4� þ 26Φð2Þ1;ω þ 224Φð2Þ1;ω
1

½ω− 4�2

þ 160Φð2Þ1;ω
1

½ω− 4� þ 3Φð2Þ1;ωω�CFCA þ
�
−
10861

648
−
44

9

1

½ω− 4�− 120ζ3
1

½ω− 4�2 − 112ζ3
1

½ω− 4�− 34ζ3

þ 221

12
lnðωÞ þ 88

3
lnðωÞ 1

½ω− 4�2 þ
1001

18
lnðωÞ 1

½ω− 4� þ
65

18
lnðωÞ2 þ 454

3
ln2ðωÞ 1

½ω− 4�2

þ 490

9
ln2ðωÞ 1

½ω− 4� þ
4

3
lnðωÞΦð1Þω;ω −

13

24
lnðωÞΦð1Þω;ω

1

ω
−
227

6
lnðωÞΦð1Þω;ω

1

½ω− 4�2

−
379

24
lnðωÞΦð1Þω;ω

1

½ω− 4� þ
8

3
Ωð2Þω;ω þ 3

4
Ωð2Þω;ω

1

ω
þΩð2Þω;ω

1

½ω− 4�2 þ
79

12
Ωð2Þω;ω

1

½ω− 4� þ
40

3
Ωð2Þ1;ω

þ 148Ωð2Þ1;ω
1

½ω− 4�2 þ
244

3
Ωð2Þ1;ω

1

½ω− 4�−
679

36
Φð1Þω;ω þ 487

72
Φð1Þω;ω

1

ω
−
22

3
Φð1Þω;ω

1

½ω− 4�2

−
4039

72
Φð1Þω;ω

1

½ω− 4�−Φ2
ð1Þω;ω þΦ2

ð1Þω;ω
1

ω
−
3

2
Φð2Þω;ω

1

ω2
þΦð2Þω;ω

1

ω
−
9

2
Φð2Þω;ω

1

½ω− 4�2

−Φð2Þω;ω
1

½ω− 4�− 52Φð2Þ1;ω − 512Φð2Þ1;ω
1

½ω− 4�2 − 336Φð2Þ1;ω
1

½ω− 4�− 4Φð2Þ1;ωω
�
C2
F

�
a2 þOða3Þ:

ð4:5Þ

The reason for concentrating on channel 2 is that this
channel corresponds to the Feynman rule for W2. By
contrast the channel 1 basis tensor involves the external
momentum p which would be associated with the
covariant derivative in the operator SðDμψ̄Þγνψ which
is not in our basis. Graphically, we have presented the
results for channel 2 in Fig. 4. Strictly, we have plotted
the negative of (4.5) in order to easily compare with the
figures of the previous section. In essence they are

formally similar to earlier representations. For instance,
as Nf increases there is less variation between the one-
and two-loop amplitudes as a function of ω for the value
of αs considered. Finally, we have checked that the
analogous plots for ∂W2 are the same as those for the
vector case of the previous section. This is not un-
expected given the structural similarity of the two
operators. Therefore, we have not produced parallel
graphs for ∂W2.
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V. DISCUSSION

We finish with brief observations. The inclusion of a
parameter, ω, which allows one to tune the momentum flow
through the operator inserted in the basic Green’s function
should prove useful for lattice analyses. For instance, it
provides a tool with which one can reduce the errors on
measurements of structure functions. However, from the
various graphs the variation on the highlighted amplitudes
over the range of ω plotted is not the same overall. For
instance, for the vector and tensor operators the two-loop
correction is virtually insignificant compared to the scalar
case. For the vector this is important in the context of W2

itself because the behavior of the vector current amplitudes
are effectively the same as those for ∂W2. The mixing
between these operators has to be disentangled to obtain a
clear signal for the basic operator underlying the nucleon
structure function measurements. That the variation
between one and two loops is small suggests that an error

estimate could be commensurate. The present computa-
tions complete the two-loop analysis of operator renorm-
alization which began in [4–8]. The next stage in any
program of this nature would be to go to the next loop order
to improve the precision even more. This is a major step as
one requires the underlying three-loop master integrals.
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APPENDIX: BASES AND PROJECTION
MATRICES

In this appendix we record the full forms of the basis
tensors for the Green’s function with the operator insertion

FIG. 4. Channel 2 amplitude for W2 operator for different Nf values and αs ¼ 0.125.
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as well as the projection matrices. As we are using quark
operators we have to be aware that the basis tensors not only
depend on ημν and the two independent external momenta p
and q but also on products of γ matrices. The latter can also
carry free Lorentz indices but are necessary in order to carry
the spinor indices. In order to achieve this we use the
generalized d-dimensional γ matrices defined by [48–52]

Γμ1…μn
ðnÞ ¼ γ½μ1…γμn�: ðA1Þ

Our convention is that the 1=n! factor is included in the
antisymmetrization. As these objects are totally antisym-
metric in the Lorentz indices, then the tensor bases for
various operators have natural partitions, which is mani-
fested in results such as

trðΓμ1…μm
ðmÞ Γν1…νn

ðnÞ Þ ∝ δmnIμ1…μmν1…νn ðA2Þ
where Iμ1…μmν1…νn is the generalized unit matrix [50–52].
Equipped with these structures the basic tensors are in
essence the same as those for the symmetric point, but the
projection matrices are ω dependent. In the ω → 1 limit we
have checked that the matrices of [7,8] are reproduced. For
the scalar, vector and tensor operators the bases are [7]

PS
ð1Þðp; qÞ ¼ Γð0Þ; PS

ð2Þðp; qÞ ¼
1

μ2
Γpq
ð2Þ; ðA3Þ

PV
ð1Þμðp; qÞ ¼ γμ; PV

ð2Þμðp; qÞ ¼
pμp
μ2

;

PV
ð3Þμðp; qÞ ¼

pμq

μ2
; PV

ð4Þμðp; qÞ ¼
qμp

μ2
;

PV
ð5Þμðp; qÞ ¼

qμq

μ2
; PV

ð6Þμðp; qÞ ¼
1

μ2
Γð3Þμpq ðA4Þ

and

PT
ð1Þμνðp; qÞ ¼ Γð2Þμν;

PT
ð2Þμνðp; qÞ ¼

1

μ2
½pμqν − pνqμ�Γð0Þ;

PT
ð3Þμνðp; qÞ ¼

1

μ2
½Γð2Þμppν − Γð2Þνppμ�;

PT
ð4Þμνðp; qÞ ¼

1

μ2
½Γð2Þμpqν − Γð2Þνpqμ�;

PT
ð5Þμνðp; qÞ ¼

1

μ2
½Γð2Þμqpν − Γð2Þνqpμ�;

PT
ð6Þμνðp; qÞ ¼

1

μ2
½Γð2Þμqqν − Γð2Þνqqμ�;

PT
ð7Þμνðp; qÞ ¼

1

μ4
½Γð2Þpqpμqν − Γð2Þpqpνqμ�;

PT
ð8Þμνðp; qÞ ¼

1

μ2
Γð4Þμνpq; ðA5Þ

respectively, where the contraction of a Γ matrix with an
external momentum is represented by the momentum itself
replacing the contracting index. The situation for theWilson
operator is slightly different. As in [8] we choose a set of
tensors which have the same symmetry properties as the
operators themselves. However, in order to ensure trace-
lessness the associated contractions in certain tensors
involve pq and hence ω. So unlike S, V and T certain
tensors for theW2 and ∂W2 decomposition areω dependent.
In particular,

PW2

ð1Þμνðp; qÞ ¼ γμpν þ γνpμ −
2

d
pημν;

PW2

ð2Þμνðp; qÞ ¼ γμqν þ γνqμ −
2

d
qημν;

PW2

ð3Þμνðp; qÞ ¼ p

�
1

μ2
pμpν þ

1

d
ημν

�
;

PW2

ð4Þμνðp; qÞ ¼ p

�
1

μ2
pμqν þ

1

μ2
qμpν −

ð2 − ωÞ
d

ημν

�
;

PW2

ð5Þμνðp; qÞ ¼ p

�
1

μ2
qμqν þ

1

d
ημν

�
;

PW2

ð6Þμνðp; qÞ ¼ q

�
1

μ2
pμpν þ

1

d
ημν

�
;

PW2

ð7Þμνðp; qÞ ¼ q

�
1

μ2
pμqν þ

1

μ2
qμpν −

ð2 − ωÞ
d

ημν

�
;

PW2

ð8Þμνðp; qÞ ¼ q

�
1

μ2
qμqν þ

1

d
ημν

�
;

PW2

ð9Þμνðp; qÞ ¼
1

μ2
½Γð3Þμpqpν þ Γð3Þνpqpμ�;

PW2

ð10Þμνðp; qÞ ¼
1

μ2
½Γð3Þμpqqν þ Γð3Þνpqqμ�: ðA6Þ

We note that in the renormalization of the operator W2

the basis element corresponding to the tree term of
(2.4) is channel 2 and not 1. This is because the covariant
derivative acts on the quark field and not the antiquark.
For ∂W2 both channels 1 and 2 are relevant to the operator
renormalization.
Equipped with these the various projection matrices

are

MS ¼ 1

4ω½ω − 4�
�
ω½ω − 4� 0

0 4

�
ðA7Þ

for the scalar case. For the remaining operators since the
projection matrices are symmetric by construction, we list
the upper triangular elements only. For the vector operator,
if we factor off a common factor, which is not the
determinant of N V , via
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MV ¼ 1

4ðd − 2Þω2½ω − 4�2
~MV; ðA8Þ

then the elements are

~MV
11 ¼ ½ω − 4�2ω2; ~MV

12 ¼ −4½ω − 4�ω; ~MV
13 ¼ 2½ω − 2�½ω − 4�ω;

~MV
14 ¼ 2½ω − 2�½ω − 4�ω; ~MV

15 ¼ −4½ω − 4�ω; ~MV
16 ¼ 0; ~MV

22 ¼ 16½d − 1�;
~MV

23 ¼ −8½d − 1�½ω − 2�; ~MV
24 ¼ −8½d − 1�½ω − 2�;

~MV
25 ¼ −4½2½ω2 − 4ωþ 2� − ½ω − 2�2d�; ~MV

26 ¼ 0; ~MV
33 ¼ 4½ω2 − 4ω − 4þ 4d�;

~MV
34 ¼ 4½d − 1�½ω − 2�2; ~MV

35 ¼ −8½d − 1�½ω − 2�; ~MV
36 ¼ 0;

~MV
44 ¼ 4½ω2 − 4ω − 4þ 4d�; ~MV

45 ¼ −8½d − 1�½ω − 2�; ~MV
46 ¼ 0;

~MV
55 ¼ 16½d − 1�; ~MV

56 ¼ 0; ~MV
66 ¼ 4½ω − 4�ω: ðA9Þ

For such a simple spin-1 operator the ω dependence is quite involved. In the tensor case, with

MT ¼ 1

4ðd − 2Þðd − 3Þω2½ω − 4�2
~MT; ðA10Þ

then

~MT
11 ¼ −½ω − 4�2ω2; ~MT

12 ¼ 0; ~MT
13 ¼ 4½ω − 4�ω; ~MT

14 ¼ −2½ω − 2�½ω − 4�ω;
~MT

15 ¼ −2½ω − 2�½ω − 4�ω; ~MT
16 ¼ 4½ω − 4�ω; ~MT

17 ¼ 4½ω − 4�ω; ~MT
18 ¼ 0;

~MT
22 ¼ −2½d − 2�½d − 3�½ω − 4�ω; ~MT

23 ¼ 0; ~MT
24 ¼ 0; ~MT

25 ¼ 0; ~MT
26 ¼ 0;

~MT
27 ¼ 0; ~MT

28 ¼ 0; ~MT
33 ¼ −8½d − 1�; ~MT

34 ¼ 4½d − 1�½ω − 2�;
~MT

35 ¼ 4½d − 1�½ω − 2�; ~MT
36 ¼ −2½dω2 − 4dωþ 4d − 3ω2 þ 12ω − 4�;

~MT
37 ¼ −8½d − 1�; ~MT

38 ¼ 0; ~MT
44 ¼ −4½2dþ ω2 − 4ω − 2�;

~MT
45 ¼ −2½d − 1�½ω − 2�2; ~MT

46 ¼ 4½d − 1�½ω − 2�; ~MT
47 ¼ 4½d − 1�½ω − 2�;

~MT
48 ¼ 0; ~MT

55 ¼ −4½2dþ ω2 − 4ω − 2�; ~MT
56 ¼ 4½d − 1�½ω − 2�;

~MT
57 ¼ 4½d − 1�½ω − 2�; ~MT

58 ¼ 0; ~MT
66 ¼ −8½d − 1�; ~MT

67 ¼ −8½d − 1�;
~MT

68 ¼ 0; ~MT
77 ¼ −8½d − 1�½d − 2�; ~MT

78 ¼ 0; ~MT
88 ¼ −4½ω − 4�ω: ðA11Þ

Finally, for the twist-2 operator we set

MW2 ¼ 1

4ðd − 2Þω3½ω − 4�3
~MW2 ðA12Þ

to produce the elements
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~MW2

11 ¼ 2½ω − 4�2ω2; ~MW2

12 ¼ −½ω − 2�½ω − 4�2ω2; ~MW2

13 ¼ −16½ω − 4�ω;
~MW2

14 ¼ 8½ω − 2�½ω − 4�ω; ~MW2

15 ¼ −4½ω − 2�2½ω − 4�ω; ~MW2

16 ¼ 8½ω − 2�½ω − 4�ω;
~MW2

17 ¼ −2½ω2 − 4ωþ 8�½ω − 4�ω; ~MW2

18 ¼ 8½ω − 2�½ω − 4�ω; ~MW2

19 ¼ 0;

~MW2

110 ¼ 0; ~MW2

22 ¼ 2½ω − 4�2ω2; ~MW2

23 ¼ 8½ω − 2�½ω − 4�ω;
~MW2

24 ¼ −2½ω2 − 4ωþ 8�½ω − 4�ω; ~MW2

25 ¼ 8½ω − 2�½ω − 4�ω;
~MW2

26 ¼ −4½ω − 2�2½ω − 4�ω; ~MW2

27 ¼ 8½ω − 2�½ω − 4�ω; ~MW2

28 ¼ −16½ω − 4�ω;
~MW2

29 ¼ 0; ~MW2

210 ¼ 0; ~MW2

33 ¼ 64½dþ 1�; ~MW2

34 ¼ −32½dþ 1�½ω − 2�;
~MW2

35 ¼ 16½dω2 − 4dωþ 4dþ 4�; ~MW2

36 ¼ −32½dþ 1�½ω − 2�;
~MW2

37 ¼ 16½dω2 − 4dωþ 4dþ 4�; ~MW2

38 ¼ −8½dω2 − 4dωþ 4d − 2ω2 þ 8ωþ 4�½ω − 2�;
~MW2

39 ¼ 0; ~MW2

310 ¼ 0; ~MW2

44 − 8½dω2 − 4dωþ 8dþ 3ω2 − 12ωþ 8�;
~MW2

45 ¼ −8½4dþ ω2 − 4ωþ 4�½ω − 2�; ~MW2

46 ¼ 16½dþ 1�½ω − 2�2;
~MW2

47 ¼ −4½dþ 1�½ω2 − 4ωþ 8�½ω − 2�; ~MW2

48 ¼ 16½dω2 − 4dωþ 4dþ 4�;
~MW2

49 ¼ 0; ~MW2

410 ¼ 0; ~MW2

55 ¼ 32½2dþ ω2 − 4ωþ 2�;
~MW2

56 ¼ −8½dω2 − 4dωþ 4dþ 4�½ω − 2�; ~MW2

57 ¼ 16½dþ 1�½ω − 2�2;
~MW2

58 ¼ −32½dþ 1�½ω − 2�; ~MW2

59 ¼ 0; ~MW2

510 ¼ 0; ~MW2

66 ¼ 32½2dþ ω2 − 4ωþ 2�;
~MW2

67 ¼ −8½4dþ ω2 − 4ωþ 4�½ω − 2�; ~MW2

68 ¼ 16½dω2 − 4dωþ 4dþ 4�; ~MW2

69 ¼ 0;

~MW2

610 ¼ 0; ~MW2

77 ¼ 8½dω2 − 4dωþ 8dþ 3ω2 − 12ωþ 8�; ~MW2

78 ¼ −32½dþ 1�½ω − 2�;
~MW2

79 ¼ 0; ~MW2

710 ¼ 0; ~MW2

88 ¼ 64½dþ 1�; ~MW2

89 ¼ 0; ~MW2

810 ¼ 0;

~MW2

99 ¼ 8½ω − 4�ω; ~MW2

910 ¼ −4½ω − 2�½ω − 4�ω; ~MW2

1010 ¼ 8½ω − 4�ω: ðA13Þ

For each case the ω → 0 limit of the projection matrices is singular as expected since this is a point where there are infrared
singularities.
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