
Majorana neutrino mass structure induced by rigid instantons
on toroidal orbifold

Tatsuo Kobayashi,1 Yoshiyuki Tatsuta,2 and Shohei Uemura3
1Department of Physics, Hokkaido University, Sapporo 060-0810 Japan

2Department of Physics, Waseda University, Tokyo 169-8555, Japan
3Department of Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 10 December 2015; published 15 March 2016)

We study the effects of D-brane instantons wrapping rigid cycles on the Z2 × Z0
2 toroidal orbifold.

We compute Majorana masses induced by rigid D-brane instantons and realize bimaximal mixing
matrices in certain models. We can also derive more generic mass matrices in other models. The
bimaximal mixing Majorana mass matrix provides a possibility for explaining observed mixing angles. We
also compute the μ-term matrix among more than one pair of Higgs fields induced by rigid D-brane
instantons.
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I. INTRODUCTION

The Standard Model (SM) is the most successful theory
in particle physics. However, a lot of mysteries still remain
there. Quantum gravity theory is the biggest one, and
superstring theory is the most promising (and almost only)
candidate for quantum gravity theory. In addition, super-
string theory may be able to unify all interactions and
matters, too. Therefore, much effort has been made to
understand particle physics within the framework of super-
string theory. Superstring theory has no dimensionless
parameters but numerous perturbative vacua. The D-brane
model building is one of the interesting methods for
constructing explicit vacua because one can simply realize
the gauge symmetry and chiral structure of the SM [1–4] as
well as other aspects. (See [5,6] for reviews.) We can
construct many semirealistic models—for example, models
with the SM gauge symmetry, a chiral spectrum, and the
Higgs sector and no other exotics [7,8]. Our first step is to
realize the SM gauge symmetry and the chiral generation
spectrum. The next issue for realizing the SM would be an
explanation about more detailed and quantitative aspects,
e.g., the origin of hierarchy between the electroweek scale
and the string scale, the flavor structure, etc.
One obstruction for D-brane models to constructing

realistic models is that extra Uð1Þ symmetries of D-branes
forbid some phenomenologically required terms. For in-
stance, D-brane models often have right-handed neutrinos
in order to cancel Ramond-Ramond tadpoles. From a
phenomenological standpoint, heavy Majorana mass terms
of right-handed neutrinos such as Oð1010 − 1015Þ GeV are
favored. However, extra Uð1Þ symmetries on D-branes
often forbid Majorana masses of right-handed neutrinos
perturbatively. In D-brane models, such perturbative sym-
metries can be violated by nonperturbative effects, i.e.,
Dp-brane instantons (or E-branes), which are Dp-branes
localized at points in four-dimensional Minkowski space

and are wrapping (pþ 1)-cycles on the compact space
[9–13].1
Our purpose in this paper is to study explicitly instanton-

induced Majorana masses of right-handed neutrinos as well
as μ-term matrices within the framework of type IIA
orientifold models, in particular, intersecting D6-brane
models on toroidal orbifolds. Here, we concentrate on
D2-brane instantons (or E2-branes) in IIA orientifold
models compactified on the Z2 × Z0

2 toroidal orbifold.
On the Z2 × Z0

2 toroidal orbifold, E2-branes can wrap rigid
cycles whose position moduli in the compact space are
frozen, and the positions are fixed [15]. Such a D-brane
instanton can induce superpotential terms nonperturba-
tively, i.e., Majorana masses of right-handed neutrinos
and the Higgs μ term. We will compute them explicitly
and show that, for the Majorana neutrino mass matrix, there
is a typical Z2 symmetry inherited from the geometrical
symmetry of the Z2 × Z0

2 orbifold in certain models. For
the Higgs μ-term matrix among more than one pair of
Higgs fields, one D-brane instanton can make only the
rank-one μ-term matrix. However, there are more than ten
rigid cycles on the Z2 × Z0

2 orbifold, and it may be possible
to make the full rank μ-term matrix.
This paper is organized as follows. In Sec. II, we review

D2-brane instantons and rigid cycles on toroidal orbifolds.
In Sec. III, we compute a generic form of the Majorana
neutrino mass matrix induced by D-brane instantons and
compute explicitly some illustrating examples. As a result,
we obtain a bimaximal mixing matrix for the Majorana
neutrino mass matrix in certain models. This symmetry is
inherited from the geometric symmetry of the Z2 × Z0

2

orbifold. In Sec. IV, we also compute the Higgs μ-term
matrix for more than one pair of Higgs supermultiplets.
Section V is the conclusion.

1See also [14].
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II. D-BRANE INSTANTON AND
TOROIDAL ORBIFOLDS

In this section, we briefly review D-brane instanton (or
E-brane) effects and rigid cycles on toroidal orbifolds. For a
more detailed review of E-branes, see [6,12,13].

A. D-brane instanton

A Dp-brane instanton is a D-brane localized at a point in
four-dimensional spacetime and wrapping a (pþ 1)-cycle
on the six-dimensional compact space. It is similar to an
instanton in gauge theory and it is called the D-brane
instanton. In IIA superstring theory, there are E2-branes
and we concentrate on them.
Similar to the gauge instanton, a D2-brane instanton has

zero modes αi and nonperturbative effects of the D-brane
instanton are computed by integrating these zero modes,

Z Y
i

Dαie−SDBI−SCSe−Sinteract ; ð2:1Þ

where SDBI, SCS, and Sinteract denote the Dirac-Born-Infeld
action, the Chern-Simons term, and the interaction among
zero modes of D2-brane instanton and visible matters on
D6-branes, respectively. The Chern-Simons term can be
written as

SCS ¼ iNE

Z
ΠE

C3; ð2:2Þ

where NE is the multiplicity of the E-branes. Here, ΠE
denotes the homology class of the cycle which the E-brane
wraps. We introduce ½αk� as the basis of 3-cycles and its
dual basis ½βl�, where ½αk�∘½βl� ¼ δkl. Also, we define the
axion,

ak ¼
Z
βk

C3: ð2:3Þ

Then, we can write

SCS ¼ i
X
k

NEqE;kak; ð2:4Þ

where qE;k ¼ ½ΠE�∘½βk�.
As mentioned in the previous section, the Uð1Þa sym-

metry of UðNaÞ ¼ Uð1Þa × SUðNaÞ on the D6a-brane
forbids perturbatively gauge variant operators Oc, which
transform

Oc → eiqcΛaOc; ð2:5Þ

under the Uð1Þa transformation Aa
μ → Aa

μ þ ∂μΛa.
However, the axion shifts

ak → ak þ NaQa;kΛa; ð2:6Þ

under the Uð1Þa transformation, where Qa;k ¼ ½αk�∘½Πa�.
That leads to the following extra Uð1Þa transformation of
instanton effects:

e−SCS → e−SCS exp

�
−i
X
k

NaNEQa;kqE;kΛa

�
: ð2:7Þ

Thus, the E-brane effect can cancel the Uð1Þ phase in
Eq. (2.5) for certain gauge variant operators, and it can
generate interactions which are perturbatively forbidden by
extra Uð1Þ symmetries.
The zero modes αis are classified into two classes:

neutral zero modes and charged zero modes. Neutral zero
modes are not charged under gauge groups of other
D-branes. Neutral zero modes are zero modes of open
string stretching between a D-brane instanton. These zero
modes correspond to position moduli of the D-brane
instanton and their superpartners. Charged zero modes
are charged under gauge groups of other D-branes. These
zero modes are zero modes of open string stretching
between a D-brane instanton and another D-brane. These
zero modes are similar to chiral superfields.
In order to generate superpotential terms by the D-brane

instanton, we need two fermionic neutral zero modes θ,
which correspond to the D-brane instanton position on the
superspace, and also the Goldstinos of supersymmetry
broken by the D-brane instanton. Then, nonperturbative
effects are expressed as

Z
d2θd4x

Y
i

Dαie−SDBI−SCSe−Sinteract ; ð2:8Þ

where the αi’s are charged zero modes. Finally, we can
generate the nonperturbative superpotential term,

W ¼
Y
i

ðψ iÞnie−SDBI : ð2:9Þ

If extra neutral zero modes appear and those are not lifted
up, the nonperturbatively induced superpotential term
vanishes. If the E-brane can move freely in compact space,
it has extra neutral zero modes. Then, we should consider
the E-brane wrapping the rigid cycles.2

2In addition, to get rid of extra Goldstinos which come
from N ¼ 1 supersymmetry (SUSY) broken by an E-brane,
an E-brane has to wrap a cycle which is invariant under the
orientifold projection. Such a D-brane instanton is called the
OðNÞ [or Spð2NÞ] instanton [12]. From now on, we consider
rigid Oð1Þ instantons more precisely.
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B. Rigid cycles on toroidal orbifolds

The toroidal orbifolds are the simple examples having
rigid cycles. In Table I, we list toroidal supersymmetric
orbifolds and the Hodge number of them. In this paper, we
follow the notations in [15]. The orbifold twist is denoted
by Γ.
For type IIA intersecting D6-brane models, nonpertu-

bative effects originate from the D2-brane instanton wrap-
ping the 3-cycles on compact space. The number of
independent 3-cycles is given by the Betti number,
b3 ¼ 2þ 2hunt21 þ 2htwt21 . The bulk 3-cycles are inherited
from 3-cycles on the covering torus T6,

ΠB
a ¼

X
g∈Γ

Rg · ΠT6

a ; ð2:10Þ

where ΠT6

a is the ath 3-cycle on T6 and Rg is the
geometrical action of g ∈ Γ. The number of these cycles
is 2þ 2hunt21 , and these cycles have position moduli.
The number of fractional (or twisted) 3-cycles is given

by 2htwt21 . These cycles originate from orbifold fixed points
and cannot move away from the fixed points. Then, they
have no position moduli or zero modes.
There are five toroidal orbifolds having rigid cycles, as

shown in Table I. Here, we concentrate on the Z2 × Z0
2

orbifold model among these five torodal orbifolds because
it has the most rigid cycles, and rigid cycles on the other
orbifolds have self-intersection numbers. Hence, the other
rigid cycles have extra neutral zero modes. At any rate, the
Z2 × Z0

2 orbifold is the most simple example.

C. Z2 × Z0
2 toroidal orbifold

Homology classes of rigid 3-cycles on the Z2 × Z0
2

orbifold are given by

ΠF
a ¼ 1

4
ΠB

a þ 1

4

� X
i;j∈SaΘ

ϵΘa;ijΠΘ
ij;a

�
þ 1

4

� X
j;k∈Sa

Θ0

ϵΘ
0

a;jkΠΘ0
jk;a

�

þ 1

4

� X
i;k∈Sa

ΘΘ0

ϵΘΘ
0

a;ikΠΘΘ0
ik;a

�
: ð2:11Þ

Here, Θ and Θ0 are the generators of Z2 and Z0
2,

respectively. That is, Θ acts on the complex coordinates
zi on the ith T2 as ðz1; z2; z3Þ → ð−z1;−z2; z3Þ, while Θ0

acts as ðz1; z2; z3Þ → ðz1;−z2;−z3Þ. Also, Sag denotes the
set of the fixed points ofRg which the D6a-brane wraps. In
addition, i, j, k are the index numbers corresponding to the
fixed points on the first, second, and third T2, respectively.
i, j, k all vary from 1 to 4 and one of them represents one of
four fixed points on each torus. ϵga;ij corresponds to the two
possible orientations of the collapsed 2-cycles on the fixed
point of Rg, i.e., ϵ

g
a;ij ¼ �1. Πg

ij is the collapsed 3-cycle
which can be given by

½Πg
ij� ¼ n

Ig
a ½αgij;n� þ ~m

Ig
a ½αgij;m�; ð2:12Þ

where ½αgij;n� is the product of the collapsed 2-cycle on
the ith and jth fixed points of Rg and the 1-cycle on the
other torus. The number of chiral zero modes between the
Dp-branes wrappingΠF

a andΠF
b is given by the intersection

number of rigid 3-cycles. The intersection number of rigid
3-cycles is obtained as [15]

IFab¼ΠF
a ·ΠF

b ;

¼1

4
IT

6

abþ
1

4

X
g∈G

X
i;j∈Sag

X
k;l∈Sbg

ϵga;ijϵ
g
b;klδikδjlðn

Ig
a ~m

Ig
b − ~m

Ig
a n

Ig
b Þ;

¼1

4
IT

6

abþ
1

4

X
g∈G

X
i;j∈Sag

X
k;l∈Sbg

ϵga;ijϵ
g
b;klδikδjlI

Ig
ab: ð2:13Þ

We need to know the physical states on the Z2 × Z0
2

orbifold, but not the total intersection number, in order
to compute explicitly couplings of the states and the
mass terms. The above number of these zero modes is
interpreted as the result of a projection of zero modes on the
covering space T6. The number is equal to the number of
zero modes invariant under the action of Z2 × Z0

2. We can
write Z2 × Z0

2 invariant states as follows:

ψorbifold;i ¼
1

Cψ i

ðψ i þ Δψ
ΘψΘi þ Δψ

Θ0ψΘ0i þ Δψ
ΘΘ0ψΘΘ0iÞ;

ð2:14Þ

where ψ i is the state localized at the ith intersection point
and Cψ i

is the normalization factor of the state. For
instance, if ψ i is invariant under Θ and Θ0, Cψ i

¼ 4. g ∈
Z2 × Z0

2 transforms an ith intersection point to another
point, gðiÞ. Δψ

g is the phase of the action of g ∈ Z2 × Z0
2

determined by the sign of intersecting numbers.3 Similar
ZN eigenstates are discussed in magnetized brane models

[20,21]. For instance, if ϵga;ij and I
Ig
ab are all positive, these

TABLE I. The Hodge numbers of the fractional toroidal
orbifold ðT2 × T2 × T2Þ=Γ having N ¼ 1 SUSY.

Γ Z3 Z4 Z6 Z0
6 Z2 × Z2 Z2 × Z0

2 Z2 × Z4 Z3 × Z3 Z3 × Z6

hunt11 9 5 5 3 3 3 3 3 3

htwt11 27 26 24 32 48 0 58 81 70

hunt21 0 1 0 1 3 3 1 0 0

htwt21 0 6 5 10 0 48 0 0 1

3Δψ
g corresponds to the generalized Gliozzi-Scherk-Olive

(GSO) phase in heterotic orbifold models. By the GSO projec-
tion, we can obtain the twist invariant states [16,17], and also the
total number of massless modes, by inserting it into the partition
function [18,19].
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phases Δψ
g are equal to Δψ

g ¼ 1. Then, we obtain IFab zero
modes as

IFab ¼
1

4
IT

6

ab þ
1

4

X
g∈G

X
i;j∈Sag

X
k;l∈Sbg

δikδjlI
Ig
ab: ð2:15Þ

III. RIGHT-HANDED NEUTRINO
MAJORANA MASSES

Here, we study right-handed neutrino Majorana masses
on the Z2 × Z0

2 toroidal orbifold. We concentrate on three
generations of right-handed neutrinos Ni

R. They are local-
ized at the intersection points between the D6a-brane and
the D6b-brane wrapping the rigid cycles. The Majorana
masses are perturbatively forbidden by the Uð1Þ sym-
metries of the D6-branes. However, they can be generated
by D2-brane instanton effects. A D2-brane instanton
intersects with a D6a-brane and a D6b-brane. Open strings
at these intersection points have zero modes αi and βj,
respectively. If there are two zero modes and they have
couplings such as dija αiNa

Rβj with the three-point coupling

dija , Majorana neutrino masses are generated as

M
Z

d2αd2βe−d
ij
a αiNa

Rβj ¼
X
a;b

MNa
RN

b
Rcab;

cab ¼ ϵijϵkldika d
jl
b ; ð3:1Þ

where M is determined by the string scale Ms and the
volume of E-branes V, like M ¼ Mse−V .
The three-point coupling daij is given by the linear

combination of three-point couplings on the covering
torus. Because Z2 × Z0

2 invariant states are given by

Eq. (2.14), the three-point coupling of these states is
computed as

dija ¼ 1

CNa
R
CαiCβj

X
f;g;h∈Z2×Z0

2

ΔNR
f Δα

gΔ
β
hy

gðiÞhðjÞ
fðaÞ ; ð3:2Þ

where yija is the three-point coupling on the covering T6.
The three-point coupling on T6 is obtained by a world
sheet instanton. The intersection number on covering T6

can be decomposed as Iab ¼ I1abI
2
abI

3
ab, where I

n
ab denotes

the intersection number on the nth T2. The three-point
coupling is also decomposed as

yija ¼ yija;1y
ij
a;2y

ij
a;3; ð3:3Þ

where yija;n is the three-point couplings on the nth T2. By
using the ϑ function, the three-point coupling yija;n is given
as follows [22]4:

yija;n ¼ Cϑ

� a
Inab

þ i
Inbc

þ j
Inca

þ Inbcε
n
aþIncaεnbþInabε

n
c

InabI
n
bcI

n
ca

0

�

×

�
0;
iAnjInabInbcIncaj

4π2α0

�
; ð3:4Þ

where An is the area of the nth T2, and εnx with x ¼ a, b, c is
the position moduli of the D6x-brane on the nth torus.
In our computations, these moduli are discretized because
D-branes wrap rigid cycles. Since we consider D-branes
wrapping rigid cycles, the configuration of branes on the
covering T6 is invariant under the action of Z2 × Z0

2 and
three-point couplings are also invariant, which means

yija ¼ ygðiÞgðjÞgðaÞ . Then, we obtain

dija ¼ 1

CNa
R
CαiCβj

X
f;g;h∈Z2×Z0

2

ΔNR
f Δα

gΔ
β
hy

f−1·gðiÞf−1·hðjÞ
a ;

¼
( 4

CNa
R
Cαi

Cβj

P
g;h∈Z2×Z0

2

Δα
gΔ

β
hy

gðiÞhðjÞ
a ðΔNR

f Δα
fΔ

β
f ¼ 1 for ∀ fÞ;

0 ðotherwiseÞ:
ð3:5Þ

As a result we can derive the Majorana masses by one instanton configuration,

cab ¼
8<
:

ϵijϵkl
16

CNa
R
CNb

R
Cαi

Cβk
Cαj

Cβl

P
g;h;g0;h0∈Z2×Z0

2

Δα
g·g0Δ

β
h·hy

gðiÞhðkÞ
a yg

0ðjÞh0ðlÞ
b ðΔNR

f Δα
fΔ

β
f ¼ 1 for ∀ fÞ;

0 ðotherwiseÞ:
ð3:6Þ

4Similar results for three-point couplings and higher order couplings are obtained in magnetized brane models and heterotic orbifold
models [23–26].
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If there is another D2-brane instanton, Majorana masses
are the sum of these instantons effects, i.e.,

Mab ¼
X
m

Mmϵijϵkld
ik;m
a djl;mb : ð3:7Þ

Wemust take into account all of the possible configurations
of E-branes.
The three-point couplings on covering torus (3.4) are

determined by the intersection numbers on the torus.
Although we assume the generation number of neutrinos
to be equal to 3 and determine the number of zero modes,
the intersection number on the covering torus is not
uniquely determined because the intersection number on
orbifold (2.13) depends on the choice of fixed points. It is
difficult to consider all of the possibilities, although we
would study them systematically elsewhere. In this paper,
we compute some explicit examples to conjecture about the
general form of the Majorana masses.
In toroidal orientifolds, there are two types of T2: the

rectangular torus whose complex structure Reτ ¼ 0 and the
tilted torus with Reτ ¼ 1=2. In our analysis, we concentrate
on the rectangular torus for simplicity, but this limitation
dose not affect our results.
We use the notation ðl; m; nÞxy as the abbreviation for the

number of fixed points shared by the D6x-brane and the
D6y-brane, where l represents the number of fixed points
shared by the D6x-brane and the D6y-brane on the first T2,
and m and n are those on the second and third T2’s. For
example, ðl; m; nÞxx is always ð2; 2; 2Þxx.

A. Explicit model 1

In this section, we compute Majorana neutrino masses in
an explicit example.5 We consider only D6-branes relating
to the right-handed neutrinos and the E-brane, but we do
not study complete model building. We compute the model
with ð1; 0; 0Þab; ð1; 1; 1ÞEa, and ð1; 1; 1ÞEb because this is
the simplest model with three generations of neutrinos. In
this model, the intersection number is

IFab ¼
1

4
I1abI

2
abI

3
ab: ð3:8Þ

There are only two independent solutions in this model,

�
I1ab ¼ 1; I2ab ¼ 6; I3ab ¼ 2. ðIÞ
I1ab ¼ 3; I2ab ¼ 2; I3ab ¼ 2; ðIIÞ ð3:9Þ

In these models, there are 12 (would-be neutrino) states on
the covering torus. We name these (would-be neutrino)
states jijkiν, where i, j, and k represent the index number
of fixed points on the first, second, and third torus,
respectively.
For model 1-(I), we have i ¼ 0.j ¼ 0; � � � 5 and k ¼ 0, 1.

These states transform under Z2 and Z0
2 as

Z2∶j0jkiν → j0ð5 − jÞkiν;
Z0

2∶j0jkiν → j0ð5 − jÞð1 − kÞiν: ð3:10Þ

Then, we can write three invariant neutrino states,

N0 ¼
1ffiffiffi
4

p ðj000iν þ j050iν þ j051iν þ j001iνÞ;

N1 ¼
1ffiffiffi
4

p ðj010iν þ j040iν þ j041iν þ j011iνÞ;

N2 ¼
1ffiffiffi
4

p ðj020iν þ j030iν þ j031iν þ j021iνÞ: ð3:11Þ

For model 1-(II), we can write three invariant neutrino
states similarly:

N0 ¼
1ffiffiffi
4

p ðj000iν þ j010iν þ j011iν þ j001iνÞ;

N1 ¼
1ffiffiffi
4

p ðj100iν þ j210iν þ j111iν þ j201iνÞ;

N2 ¼
1ffiffiffi
4

p ðj200iν þ j110iν þ j211iν þ j101iνÞ: ð3:12Þ

The intersection number between the D2-brane instanton
and the D6a-brane must satisfy the following condition:

IFEa ¼
1

4
I1EaI

2
EaI

3
Ea þ

1

4
I3Ea þ

1

4
I1Ea þ

1

4
I2Ea ¼ 2: ð3:13Þ

There is only one independent solution, ðI1Ea; I2Ea; I3EaÞ ¼
ð3; 1; 1Þ, where the underline denotes all of the possible
permutations. The physically invariant zero-mode states αi
can be written as

α0 ¼ j000iα;

α1 ¼
1ffiffiffi
2

p ðj100iα þ j200iαÞ; ð3:14Þ

for the model with ðI1Ea; I2Ea; I3EaÞ ¼ ð3; 1; 1Þ by using
(would-be zero-mode) states jijkiα. Similarly, we can write
the invariant states βi, i.e.,

5In the following examples, we consider only the intersection
numbers. To construct more concrete models, we should set the
winding numbers and ensure the stability of branes, too. In
principle, there may be no solutions for realizing the desired
intersection in some cases. However, we have three complex
structures as free parameters. It is often possible to tune them to
stabilize the branes. In Appendix B, we show it in model 1-(I).
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β0 ¼ j000iβ;

β1 ¼
1ffiffiffi
2

p ðj100iβ þ j200iβÞ: ð3:15Þ

When the three generations of neutrinos (3.11) or (3.12)
and instanton zero modes (3.14) appear from different tori,
induced Majorana masses vanish [14]. Therefore, there are
only two solutions leading to nonvanishing Majorana
masses. One is the model with ðI1ab; I2ab; I3abÞ ¼ ð1; 6; 2Þ
and ðI1Ea; I2Ea; I3EaÞ ¼ ðI1Eb; I2Eb; I3EbÞ ¼ ð1; 3; 1Þ. The other
is ðI1ab; I2ab; I3abÞ ¼ ð3; 2; 2Þ and ðI1Ea; I2Ea; I3EaÞ ¼
ðI1Eb; I2Eb; I3EbÞ ¼ ð3; 1; 1Þ. Other solutions have vanishing
Majorana masses because they are canceled by the com-
pletely antisymmetric tensor ϵab.
The interaction term of model 1-(I) is written as follows6:

Sinteract ¼
ffiffiffi
2

p
y1y22y

3α0β1N0 þ
ffiffiffi
2

p
y1y20y

3α1β0N0

þ y1y21y
3α1β1N0 þ

ffiffiffi
2

p
y1y20y

3α0β1N2

þ
ffiffiffi
2

p
y1y22y

3α1β0N2 þ y1y21y
3α1β1N2

þ 2y1y21y
3α0β0N1 þ y1ðy20 þ y22Þy3α1β1N1;

ð3:16Þ
where yji is the three-point coupling on the jth torus written
as (3.4). These interactions are determined by Z3 sym-
metries of the second torus. We can derive the following
Majorana masses:

MR;ij∝ ðy1y3Þ2

×

0
B@

2y20y
2
2 −ðy21Þ2 ðy20Þ2þðy22Þ2

−ðy21Þ2 −2y21ðy20þy22Þ −ðy21Þ2
ðy20Þ2þðy22Þ2 −ðy21Þ2 2y20y

2
2

1
CA

ð3:17Þ

¼

0
B@ A B C

B D B
C B A

1
CA: ð3:18Þ

Similarly, the Majorana masses of model 1-(II) are com-
puted as

MR;ij ∝ ðy2y3Þ2

0
BB@

y10y
1
1 − 1

4
ðy10Þ2 − 1

4
ðy10Þ2

− 1
4
ðy10Þ2 1

2
ðy11Þ2 1

2
ðy11Þ2

− 1
4
ðy10Þ2 1

2
ðy11Þ2 1

2
ðy11Þ2

1
CCA

¼

0
B@

A B B

B C C

B C C

1
CA: ð3:19Þ

In these models, apparent Z2 symmetric (or bimaximal
mixing) Majorana mass matrices appear.

B. Explicit model 2

We now study another model. We consider the model
with ð1; 1; 0Þab; ð1; 1; 1ÞEa, and ð0; 1; 1ÞEb. In this model,
since the E-a intersection number and the shared fixed
points are the same as the last model, the physical state αi’s
are the same as in Eq. (3.14). The a–b intersection and E–b
intersection conditions have a solution

I1ab ¼ 5; I2ab ¼ 1; I3ab ¼ 2;

I1Eb ¼ 4; I2Eb ¼ I3Eb ¼ 1; ð3:20Þ

and the physical states of neutrinos are written as

N0 ¼
1ffiffiffi
2

p ðj000iν þ j001iνÞ;

N1 ¼
1ffiffiffi
4

p ðj100iν þ j400iν þ j101iν þ j401iνÞ;

N2 ¼
1ffiffiffi
4

p ðj200iν þ j300iν þ j201iν þ j301iνÞ: ð3:21Þ

The zero mode βi’s are

β0 ¼
1ffiffiffi
2

p ðj000iβ þ j300iβÞ;

β1 ¼
1ffiffiffi
2

p ðj100iβ þ j200iβÞ: ð3:22Þ

Then, we can obtain nonvanishing Majorana masses. In this
model, the Majorana mass matrix has no apparent sym-
metry without fine-tunings but corresponds to general
symmetric Majorana masses with the full rank.

C. Flavor structure of the Majorana mass matrix

We computed Majorana masses in explicit models [27].
In model 1, we derived the bimaximal mixing mass matrix,
and the other model does not have such a symmetry. This
difference originates from the geometric symmetry of
D-brane configurations on the torus.
There are two geometric symmetries in models 1-(I) and

1-(II). In model 1-(I), the flavor structure originates from
the second torus. On the second torus, there isZ2 symmetry
acting on the branes by exchanging the a-brane and the
b-brane and exchanging two fixed points simultaneously.
This symmetry exchanges N0, αi and N2, βi but does not
change the areas of world sheet instantons. Then, the three-
point couplings are the same (see Fig. 1). In model 1-(II),
the flavor structure originates from the first torus. However,
there are no differences between N1 and N2 and the system
is invariant under exchanging N1 and N2. Thus, we realize
the Z2 permutation symmetry and bimaximal mixing mass
matrix.6For more details, see Appendix A.
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On the other hand, in model 2, such Z2 symmetries no
longer remain. The flavor structure originates from the
second torus. We cannot exchange N1 and N2 or fixed
points (see Fig. 2). The only symmetry is Z2∶ z → −z,
which is orbifold projection. We can distinguish each state
from the others. Thus, we get general symmetric mass
matrix.
It is phenomenologically interesting that the Z2 sym-

metry remains in Majorana masses of right-handed neu-
trinos. Such a symmetry would be favorable for deriving a
large mixing angle in the lepton sector. Indeed, many
studies have been done for realization of the observed
lepton mixing angles by assuming non-Abelian discrete
flavor symmetries. (See [28–30] for reviews.)7

D. Numerical analysis

In this subsection, we analyze the lepton flavor structure
numerically for illustration. To compute the mixing angles
of leptons and mass splittings, we have to determine the
Dirac mass matrix of leptons, the number of Higgs fields
and vacuum expectation values (VEVs) of Higgs fields. In
our analysis, left-handed lepton Li’s are localized at the
intersection points of the D6a-brane and the D6c-brane.
The up-type Higgs field Hu’s are localized at the inter-
section points of the D6b-brane and the D6c-brane. All of
the branes are wrapping rigid cycles. Indeed, there are
many possibilities for the charged lepton sector.8 Results
depend on its choice. To illustrate the numerical study, we
assume that the Dirac masses of the charged leptons are
diagonal and that they are equal to the observed charged
lepton masses, and the mixing angles of leptons are

determined by the Dirac and Majorana masses of neutrinos.
They are determined by the area of the torus, and the VEVs
of the Higgs fields. We do not compute the Higgs potential
in this analysis, and we use their VEVs as free parameters.
In Table II, we show two examples of mixing angles and

neutrino mass splittings given by D-brane instanton effects.
In these examples, there are two Higgs doublets in the
models. Then, there are three parameters: the area of torus
A1=α0, the ratio of Higgs VEVs hHu1i=hHu0i, and the scale
of Majorana masses Mse−SE .

9

In example 1, the Majorana mass matrix is the same as in
model 1-(I) in the previous subsection (3.18). We set the
winding numbers as

I1ac ¼ 1; I2ac ¼ 5; I3ac ¼ 1;

I1bc ¼ 1; I2bc ¼ 2; I3bc ¼ 1: ð3:23Þ

The numbers of shared fixed points are ð1; 1; 1Þac and
ð1; 2; 1Þbc. In example 1, we set the area of torus A2=α0 ¼
0.6 and the Higgs VEV ratio hHu1i=hHu0i ¼ 0.2.
In example 2, the Majorana mass matrix is the same as

the explicit model 2 in the previous subsection. We set the
winding numbers as

I1ac ¼ 4; I2ac ¼ 1; I3ac ¼ 1;

I1bc ¼ 2; I2bc ¼ 1; I3bc ¼ 1: ð3:24Þ

The numbers of shared fixed points are ð2; 1; 1Þac and
ð1; 2; 1Þbc. In example 2, we set the area of torus A1=α0 ¼
2.3 and the Higgs VEV ratio hHu1i=hHu0i ¼ 0.3.
Table II shows that we can realize the approximate values

of the mixing angles and the mass splitting of neutrinos by
E-branes, but there are the small deviations between
theoretical and observed values. These deviations may

FIG. 1. The brane configuration on the second torus of model
1-(I). We omit the index number of other tori; e.g., j0iα denotes
j000iα. The others are similar.

FIG. 2. The brane configuration on the first torus of model 2.
We omit the index number of other tori; e.g., j0iα denotes j000iα
The others are similar.

7Moreover, it is found that non-Abelian discrete flavor
symmetries appear at perturbative level in heterotic orbifold
models [17,31] and intersecting/magnetized brane models
[32,33].

8For three-generation models on magnetized orbifold models,
see, e.g., [26,34], and those would correspond to T-duals of
intersecting D-brane models.

9More precisely, there is one more parameter, the overall scales
of Higgs VEVs. However, we can absorb it in the scale of
Majorana masses and it does not affect our analysis.
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be caused by the assumptions of the diagonal charged
lepton mass matrix. Small deviations from the diagonal
charged lepton mass matrix could explain the observed
data. At any rate, our purpose in this subsection is just an
illustration of numerical study.

IV. HIGGS μ-TERM MATRIX

We can also obtain Higgs μ terms by E2-branes. We
consider g pairs of Higgs fieldsHu andHd. We assume that
the Hu’s are localized at the intersection points of the D6a-
brane and the D6b-brane, and the Hd’s are localized at the
intersection points of the D6a-brane and the D6c-brane.
The multiplicity of the D6a-brane is 2, and the others are 1.
To generate μ terms, the E-brane intersects other branes
once, and there are three kinds of zero modes: α, β, γ. α is
localized at the E-a intersection point, β is localized at the
E-b intersection point, and γ is at the E-c intersection point.
Then, we obtain the μ term,Z

D2αDγDβMse−SEe
yui α·H

i
uβþydjα·H

j
dγ

¼ Mse−SEyui y
d
jH

i
u ·H

j
d: ð4:1Þ

This matrix shows that one instanton configuration can
generate only a rank-one μ-term matrix. Let us consider the
model with two-pair Higgs fields, for instance. We study
the model with ð1; 1; 1Þab;c; ð0; 0; 0Þbc; ð1; 1; 1ÞEa;b;c. In this
model, the intersection number can have the following
solution:

I1ab ¼ I1ac ¼ 3; I2ab ¼ I2ac ¼ 1; I3ab ¼ I3ac ¼ 1;

Iibc ¼ 0 ðfor ∀ i ∈ f1; 2; 3gÞ;
I1Ex ¼ I2Ex ¼ I3Ex ¼ 1 ðfor ∀ x ∈ fa; b; cgÞ: ð4:2Þ

Then, we obtain the rank-one μ-term matrix similarly:

μij ∝
�
yu0y

d
0 yu0y

d
1

yu1y
d
0 yu1y

d
1

�
; ð4:3Þ

where yuðdÞi is the three-point coupling of the ith Higgs field
Hi

uðdÞ and zero modes on the first torus. Because those on

the other torus are common, we omit the indices of the
torus. If there is nothing to obstruct, we also take into
account the contribution of the E-brane (the E0-brane in
Fig. 3) wrapping the other fixed points on the first torus
and having the same winding number. Thus, we get the
rank-two symmetric μ-term matrix

μij ∝
�

2yu0y
d
0 yu0y

d
1 þ yu1y

d
0

yu0y
d
1 þ yu1y

d
0 2yu1y

d
1

�
: ð4:4Þ

This expression is inherited from the symmetry of the
configurations of D-branes, too. The configuration is
invariant under exchanging the fixed points and b,c-branes
simultaneously. Then, such an expression appears. The
rank of the μ-term matrix depends on the number of
allowed configurations of E-branes. In this example, there
are two configurations and we get a rank-two matrix. If the
number of Higgs pairs is larger than two, we cannot realize
the full rank μ term by one type of E-branes. However, there
are some possibilities that the configuration of rigid
E-branes wrapping another bulk cycle can also induce
some corrections for μ terms. The suppression factor of the
E-brane is e−SDBI . Although the leading order E-brane
induces high-scale μ terms, e.g., Oð1010−15Þ GeV, the next
to leading order term may be more suppressed. In addition
to that, the μ terms induced by E-branes is a product of the

TABLE II. Sample values of a numerical analysis of the lepton flavor structure. The observed values are quoted from [35,36]. In our
analysis, we assume the normal hierarchy.

Observables Example 1 Example 2 Observed values

ðmν1 ; mν2 ; mν3Þ [eV] (0.017,0.018,0.052) (0.000026,0.00011,0.051) < 2.0

jm2
ν2 −m2

ν1 j [eV2] 4.8 × 10−5 1.2 × 10−8 7.62 × 10−5

jm2
ν3 −m2

ν2 j [eV2] 2.4 × 10−3 2.6 × 10−3 2.55 × 10−3

sin2 θ12 0.341 0.253 0.259–0.359
sin2 θ23 0.758 0.827 0.380–0.628
sin2 θ13 0.0212 0.0603 0.0176–0.0295

FIG. 3. The brane configuration on the first torus. The inter-
section numbers of the E0-brane and other branes are the same as
those of the E-brane and other branes.
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three-point couplings. The three-point couplings are sup-
pressed by the world sheet area. If the compactification
scale is large enough, the Yukawa couplings are sup-
pressed. We may realize the low scale μ term naturally
like this and solve the “μ-problem.”

V. CONCLUSION AND DISCUSSION

We have studied the effects of E-branes on the Z2 × Z0
2

toroidal orbifold. On this orbifold, there are rigid cycles
which cannot move away from the fixed points and have no
position moduli. The D-brane instanton wrapping such
cycles can induce a nonperturbative superpotential.
In this paper, we have concentrated on the Majorana

masses of right-handed neutrinos as well as Higgs μ terms.
We have computed the general form of Majorana neutrino
masses and computed them explicitly in concrete models.
As a result, we have realized the bimaximal mixing
Majorana mass matrix, although we have also been able
to obtain a not so symmetric one. This symmetry originates
from geometric configurations of branes. From a phenom-
enological point of view, such a Majorana mass matrix is
interesting because one could derive the observed large
mixing angles by using such a symmetry. In fact, we find
some examples roughly fitting the mixing angles and the
neutrino mass splittings.
We also computed the Higgs μ-term matrix in an explicit

model and have obtained rank-one and rank-two μ-term
matrices. This is because one D-brane instanton can only
make a rank-one matrix and the rigid E-brane wrapping the
same bulk cycle has, at most, two configurations. However,
we can consider another E-brane configuration and may
derive the full rank μ-term matrix. Such a configuration
may induce a suppressed term and may explain the
electroweak scale. We will study this elsewhere.
It is important to study other compactifications. If

D-brane configurations including D-brane instantons have
geometrical symmetries such as Z2 symmetry, Majorana
neutrino masses would respect such symmetries and would
lead to phenomenologically interesting results even in more
complicated compactifications.

ACKNOWLEDGMENTS

T. K. and S. U. are supported in part by Grants-in-Aid
for Scientific Research No. 25400252 and No. 15J02107
from the Ministry of Education, Culture, Sports, Science
and Technology in Japan.

APPENDIX A: YUKAWA COUPLINGS OF
ZERO MODES AND NEUTRINOS

In this appendix, we compute the Yukawa couplings of
zero modes and neutrinos explicitly in a model. We study
model 1-(I) in Sec. III A. In this model, there are two
branes (the a-brane and the b-brane) and one E-brane. Their
intersection numbers are

ðI1ab; I2ab; I3abÞ ¼ ð1; 6; 2Þ;
ðI1Ea; I2Ea; I3EaÞ ¼ ðI1Eb; I2Eb; I3EbÞ ¼ ð1; 3; 1Þ: ðA1Þ

The flavor structure of neutrinos and zero modes originates
from the second torus, and we concentrate on that. The
brane configuration on the second torus is shown in Fig. 1.
Before computing Yukawa couplings, it is worth con-

sidering the geometrical symmetry of this configuration.
For example, since the area of the triangle whose vertices
are j0iν, j0iα, and j2iβ is the same as that of the triangle
surrounded by j1iν, j1iα, and j2iβ, y002 is equal to y112.
Similarly, we obtain three equations:

y001 ¼ y112 ¼ y210 ¼ y320 ¼ y421 ¼ y501 ¼ y0;

y011 ¼ y100 ¼ y222 ¼ y311 ¼ y400 ¼ y522 ¼ y1;

y020 ¼ y121 ¼ y201 ¼ y302 ¼ y412 ¼ y510 ¼ y2; ðA2Þ

and other couplings are forbidden. Each coupling is written
by a theta function:

y0 ¼ Cϑ

� 1
12

0

��
0;
i6πA
α0

�
; ðA3Þ

y1 ¼ Cϑ

� 3
12

0

��
0;
i6πA
α0

�
; ðA4Þ

y2 ¼ Cϑ

� 5
12

0

��
0;
i6πA
α0

�
; ðA5Þ

where C is the common factor of quantum corrections and
A is the area of the second torus. The Yukawa couplings of
the invariant states are the linear combinations of them. We
can express these couplings as

d000 ¼ 0; d010 ¼
ffiffiffi
2

p
y2; d100 ¼

ffiffiffi
2

p
y0; d110 ¼ y1;

d001 ¼ 2y1; d011 ¼ 0; d101 ¼ 0; d111 ¼ y0 þ y2;

d002 ¼ 0; d012 ¼
ffiffiffi
2

p
y0; d102 ¼

ffiffiffi
2

p
y2; d112 ¼ y1;

ðA6Þ

where dija denotes the Yukawa coupling of the neutrino Na
and the zero modes αi, βj.
Finally, we obtain the interaction terms of Eq. (3.16) and

the Majorana mass matrix of Eq. (3.18).

APPENDIX B: WINDING NUMBERS
OF MODEL 1-(I)

In this appendix, we show one solution of the winding
numbers of model 1-(I) in Sec. III A and provide some
more details. We study the rectangular torus model in this
appendix. One solution of the winding numbers is
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ðn1a;m1
aÞ¼ ð1;1Þ; ðn2a;m2

aÞ¼ ð1;−3Þ; ðn3a;m3
aÞ¼ ð1;1Þ;

ðn1b;m1
bÞ¼ ð1;2Þ; ðn2b;m2

bÞ¼ ð1;3Þ; ðn3b;m3
bÞ¼ ð1;3Þ;

ðn1E;m1
EÞ¼ ð0;1Þ; ðn2E;m2

EÞ¼ ð1;0Þ; ðn3E;m3
EÞ¼ ð0;1Þ;

ðB1Þ

where nia denotes the winding number of the x axis
on ith torus and mi

x denotes the winding number of the
y axis on the ith torus. In this model, the open string
spectrum stretching between the a-brane and the b-brane is
determined as

m2 ¼ θ1ab � θ2ab � θ3ab; ðB2Þ

where θiab is the angle between the a-brane and the b-brane
on the ith torus. If one of the equations (B2) is equal to
zero, a part of SUSY is conserved and the configuration is
stable. In fact, we can find solutions of them. For example,
if τ1 ¼ 4.05, τ2 ¼ 0.1, and τ3 ¼ 1, θ1ab − θ2ab þ θ3ab ≃ 0. As
the limit of τ infinity (or zero), the angle between a brane

and a horizontal axis approaches 0 or π=2. Then, one of the
equations (B2) could be zero unless some winding numbers
are 0.
In this model, there are two other E-branes having the

desired zero-mode structures. One is

ðn1E0 ; m1
E0 Þ ¼ ð0;−1Þ; ðn2E0 ; m2

E0 Þ ¼ ð−1; 0Þ;
ðn3E0 ; m3

E0 Þ ¼ ð1; 0Þ; ðB3Þ

and the other is

ðn1E00 ; m1
E00 Þ ¼ ð1; 0Þ; ðn2E00 ; m2

E00 Þ ¼ ð−1; 0Þ;
ðn3E00 ; m3

E00 Þ ¼ ð0;−1Þ: ðB4Þ

The fixed points are ð1; 1; 1ÞE0a; ð1; 1; 1ÞE0b and ð1; 1; 1ÞE00a;
ð2; 1; 1ÞE00b. Though these E-branes have the desired zero-
mode structures, their effect is canceled out by the sign
condition of Eq. (3.6) and cannot induce Majorana masses.
The Majorana mass matrix (3.18) is not affected by other
E-branes.
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