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We study analytically the effect of a weak random chemical potential of zero average in an Einstein-
Maxwell background. For uncorrelated disorder this perturbation is relevant; however we show that it can
become marginal or even irrelevant by tuning disorder correlations. At zero temperature we find that, to
leading order in the disorder strength, the correction to the conductivity for irrelevant perturbations
vanishes. In the marginal case, in order to renormalize a logarithmic divergence, we carry out a
resummation of the perturbative expansion of the metric that leads to a Lifshitz-like geometry in the
infrared. Disorder in this case also induces a positive correction to the conductivity. At finite temperature
the black hole acquires an effective charge and the thermal conductivity has the expected Drude peak that
signals the breaking of translational invariance. However the electric conductivity is not affected by the
random chemical potential to leading order in the disorder strength.
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I. INTRODUCTION

Disorder plays an important role in the transport proper-
ties of interacting electrons in solids. A small amount
of disorder in systems with translational symmetry makes
the direct current conductivity finite. Similarly, disorder
slows down the classically diffusive dynamics of electrons
in solids at finite temperature. In real materials disorder
is typically introduced by chemical doping which in some
cases obscures its effect: the conductivity may increase
because the slow down of the motion caused by disorder is
counterbalanced by the addition of new carriers.
By contrast, in the limit of vanishing temperature

and interactions quantum coherence phenomena enhance
dramatically the effect of disorder. According to the one
parameter scaling theory of localization [1], classical
diffusion in two and lower dimensions is completely
arrested for any disorder and sufficiently long times.
This quantum coherence phenomenon, usually referred
to as Anderson localization [2], also occurs in higher
dimensions [3] for sufficiently strong disorder. The
metal-insulator transition at finite disorder is characterized
by universal critical exponents [4–6]. Overwhelming
numerical [7–9], analytical [3,10], and more recently
experimental [11,12] evidence, from cold atom physics
where interactions can be tuned to be negligible, have all
but confirmed the predictions of the scaling theory of
localization in the noninteracting limit. However in real
materials there are always interactions that may potentially
weaken or completely destroy Anderson localization.
For two spatial dimensions a diagrammatic resummation
showed [13] that constructive interference between clock-
wise and counterclockwise loops, the so-called weak-
localization corrections, induces a logarithmic increase
of the resistivity for sufficiently low temperatures [13].

Interestingly the effect of weak interactions in a weakly
disordered potential, neglecting coherence effects, causes a
similar log increase though with a different prefactor [14].
Therefore, in this limit at least, it seems that interactions do
not destroy weak localization which is in full agreement
with experimental results. More recently, interest has
shifted to the stability of full Anderson localization in
the presence of interactions. Qualitative calculations
[15,16] in the physics literature and more rigorous (but
restricted to mean-field interactions) mathematical results
[17] agree that Anderson localization for sufficiently strong
disorder still persists in the presence of weak interactions.
This novel state of quantum matter, usually referred to
as many-body localized, is strictly an insulator since the
conductivity vanishes in the limit of zero frequency and
temperature. However it still has some distinctive dynami-
cal properties like logarithmic, instead of linear, growth
[18] of the entanglement entropy after a quench, vanishing
of the AC conductivity as a power law, σ ∝ ωα with
0 < α ≤ 2 without logarithmic corrections [19] or glassy
features like the possibility of slow logarithmic diffusion
[17]. A detailed understanding of the interplay between
disorder and interactions is seriously hampered by compu-
tational limitations and the lack of analytical tools to tackle
strong interactions.
Holographic dualities [20], that propose that certain

strongly coupled field theories in d dimensions are dual
to classical theories of gravity in dþ 1 dimensions, offer a
promising framework to tackle this problem.
Indeed there are already several studies of the role of

disorder in a strongly coupled field theory with a gravity
dual. Originally disorder was introduced [21–23] as a
deformation of the boundary field theory that coupled
the random potential to an operator of the conformal
field theory. The addition of this perturbation breaks
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translational invariance so effectively the role of disorder
was to induce momentum relaxation which alters substan-
tially the transport properties of the dual field theory.
In the context of holographic superconductors the effect

of a random chemical potential has been studied numeri-
cally but only in the probe limit where disorder does not
backreact in the metric [24,25]. Disorder has also been
considered in hyperscaling violating backgrounds, also in
the probe limit [26–28]. Backreaction effects of a weak but
marginally disordered scalar at zero temperature leads to
logarithmic divergences in the infrared that suggest an
instability of the perturbation theory [29,30]. However it
was later proposed [31] that these divergences were an
artifact of the perturbation theory in nonlinear problems
that could be cured by the Poincaré-Lindstedt method. The
resulting metric in the infrared, after an effective resum-
mation of logarithmic corrections, becomes Lifshitz-like
with a dynamical critical exponent that depends on the
strength of disorder. In the infinite-temperature case [32,33]
it seems that the presence of a horizon prevents any Lifshitz
scaling in the infrared. Numerical simulations for stronger
disorder [31,33], still for a disordered scalar at zero and
finite temperature, have not shown any qualitative change
to these results.
In the context of Einstein-Maxwell theories a general

expression for the averaged conductivity in gravity duals
has been recently proposed [34,35], modified by disorder
or any other source of inhomogeneity, in terms of the
solution of the Einstein equations for the metric. The study
of these solutions has just started: the effect of weak
disorder in the Einstein-Maxwell theory induced by a
random chemical potential including backreaction effects,
recently studied in Ref. [36], reveals surprising features like
a conductivity that increases with disorder. We note that the
disorder investigated in Ref. [36] is a relevant perturbation
that leads to linear, instead of logarithmic, divergences
in the metric. Although the Poincaré-Lindstedt method is
technically applicable in this case it is less clear that these
divergences are really an artifact of the perturbation theory.
Here we revisit this problem by studying an Einstein-

Maxwell background with a random, but in general
correlated, chemical potential of zero average at zero
and finite temperature. By modifying the correlations of
the disordered chemical potential we tune the conformal
dimension of the gauge field so that we can also investigate
irrelevant and marginal perturbations. In the limit of zero
temperature we find that, to leading order, irrelevant
perturbations do not modify the conductivity in the limit
of zero temperature. By contrast, for marginal disorder the
corrections to the conductivity are positive. In this case the
metric develops perturbative logarithmic singularities in
the infrared that can be resummed by using the Poincaré-
Lindstedt method [31]. The resulting geometry is Lifshitz-
like in the infrared with a dynamical critical exponent that
depends on the disorder strength. In the finite-temperature

case the effect of perturbative disorder is weaker. The
electrical conductivity does not get corrections in the
disorder strength to leading order though the black hole
becomes charged even in this limit.
We start by introducing the Einstein-Maxwell theory

with a random but correlated chemical potential.

II. CORRELATED DISORDER IN THE
EINSTEIN-MAXWELL BACKGROUND

We investigate the interplay of disorder and interactions
in field theories with a gravity dual. For that purpose we
study an asymptotic anti–de Sitter (AdS) Einstein-Maxwell
theory in dþ 1 ¼ 4 space-time dimensions with a random
chemical potential given by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ 6 −

1

4
F2

�
; ð1Þ

where F is the Maxwell tensor, and R the scalar
curvature. For convenience we have set lAdS4 ¼ 2κ24 ¼ 1.
We choose to work in Fefferman-Graham coordinates
ds2 ¼ 1

z2 ðdz2 þ gμνðxμ; zÞdxμdxνÞ which we suppose are
globally defined. Here z ¼ 0 is the AdS boundary, with
coordinates xμ ¼ ðt; x; yÞ. The equations of motion are
given by

Rab þ 3gab ¼
1

4
Fc

aFbc −
1

8
gabF2; ð2aÞ

∂að
ffiffiffiffiffiffi
−g

p
FabÞ ¼ 0: ð2bÞ

We are only interested in spatially inhomogeneous sol-
utions of the equations above, for which neither the metric
components nor the gauge field depend on time. Therefore
the Uð1Þ gauge field A ¼ atðx; zÞdt, which we assume
is the only nonzero component, and the metric gμνðx; zÞ
depends explicitly on the bulk (z) and the boundary spatial
coordinates (x). This system of equations support both
zero- and finite-temperature solutions, which are specified
by the infrared (IR) and ultraviolet (UV) boundary con-
ditions. For the zero-temperature case, we require all metric
components and the gauge field to be regular at the
Poincaré horizon z → ∞. For the finite-temperature case,
we require the existence of a horizon, i.e. a point z0 ∈
ð0;∞Þ such that gttðx; zÞ ∼ γttðxÞðz − z0Þ þOððz − z0Þ2Þ
and gzzðx; zÞ ∼ γzzðxÞ

z−z0
þOð1Þ for jz − z0j ≪ 1, with all other

components gij regular. Similarly, close to the boundary
we impose,

lim
z→0

gabdxadxb ¼
1

z2
ðdz2 − dt2 þ dx2 þ dy2Þ; ð3aÞ

lim
z→0

atðx; zÞ ¼ μðxÞ: ð3bÞ

According to the holographic dictionary the bulk action (1),
with the above boundary conditions, is dual to a d ¼ 3
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conformal field theory at finite chemical potential
μðxÞ ¼ limz→0atðx; zÞ. Disorder is introduced, in one or
both boundary directions, through a random chemical
potential in the boundary μðxÞ. Next we give a detailed
account of the properties of this random chemical potential
so that we can use it to model irrelevant and marginal
perturbations in the dual field theory.

A. Correlated disorder and relevance of perturbations

We introduce disorder in the holographic setting by
imposing that the chemical potential μðxÞ is a stochastic
field depending on the spacelike boundary coordinates.
This random boundary condition promotes the vector pot-
ential A ¼ atðz;xÞdt and the metric components to sto-
chastic processes indexed by x. Similarly the equations of
motion (2a) and (2b) becomes stochastic equations.
We specify the distribution of μðxÞ by a spectral

decomposition

μðxÞ ¼ V̄
Z
Rn

dnk
ð2πÞn e

ik·xμk; ð4Þ

where n ¼ 1 if disorder is only in one direction or n ¼ 2 if
disorder is in both directions and the parameter V̄ measures
the amplitude of the source [μ ∼OðV̄Þ]. Further, we assume
μk is a spectral stochastic process taking values in a
Gaussian distribution of zero average E½μk� ¼ 0 and
variance σ2k where E½…� denotes the average with respect
to the probability distribution. From now on we will restrict
ourselves to isotropic disorder μk ¼ μk so that Eq. (4)
can be written effectively as a one-dimensional integralR
Rn dnk ¼ VolðSnÞ R∞

0þ dkk
n−1. We stress that even though

μk is Gaussian, this does not imply μðxÞ is Gaussian itself
unless σ2k is k independent. It was shown recently [36] that
precisely in this case even a weakly disordered chemical
potential V̄ ≪ 1 induces a relevant perturbation in the
geometry which casts some doubts on the reliability of the
perturbation theory.
Interestingly the relevance (or irrelevance) of the

perturbation depends on the disorder correlations as the
mass dimension of V̄ is controlled by the mass dimension
of σ2k. Specifically, we have ½μ� ¼ ½V̄� þ nþ ½μk� ¼
½V̄� þ 1

2
ðnþ ½σ2k�Þ. Therefore introducing powers of k in

σk makes disorder more and more irrelevant. For instance
assuming σ2k ∝ ks

½V̄� ¼ 1 −
nþ s
2

: ð5Þ

Therefore disorder is relevant (V̄ > 0) ifnþ s < 2, marginal
(V̄ ¼ 0) if nþ s ¼ 2 and irrelevant (V̄ < 0) if nþ s > 2. In
the following we will restrict to marginal and irrelevant
perturbations by employing correlated potentials such that
nþ s ≥ 2. Surprisingly, we shall see that this a priori naive
power counting actually determines the perturbative flow of

the renormalization group (RG) in the Einstein-Maxwell
system. Finally we note that for a fixed s, increasing the
number of dimensions inwhichwe introduce disordermakes
disorder less relevant. The fact that translation invariance is
left unbroken in a bulk direction constrains the dynamics
of the fields to the orthogonal directions. It is therefore no
surprise that disorder is more relevant in this case. Indeed
it is a well-known result in condensed matter systems that
disorder is more relevant in lower-dimensional systems [1].

B. Explicit implementation of disorder

We now have all the ingredients to define the correlated
disordered potential to be employed in the rest of the paper.
For most of the analytical calculations we shall employ
Eq. (4) assuming isotropic disorder [37] and a Gaussian μk
with zero average E½μk� ¼ 0 and variance

σ2k ¼ 2sþ1kse−2ka: ð6Þ
Note that the exponential factor assures convergence
of the boundary deformation by smoothly suppressing
high-momenta modes. This introduces a UV length scale
a ¼ 1=k0, necessary to cure divergences for irrelevant
perturbations, which can be interpreted as a lattice constant
that effectively suppresses modes with wavelengths smaller
than the lattice spacing. We stress that since we are
interested in averaged quantities that are computed ana-
lytically an explicit expression for μðxÞ is not necessary.
However in the finite-temperature case we shall find it

more convenient at times to employ the following explicit
representation of the random chemical potential commonly
used in the holography literature [24,25,31–33,36,38,39]:

μðxÞ ¼ V̄
XN−1

fmig¼1

Afmig
Yn
i¼1

cosðkmi
xi þ γmÞ ð7Þ

where Afmig ¼ V̄ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δkσfmig

p Þn with Δk ¼ k0=N and
kmi

¼ miΔk. Here γm ∈ ½0; 2πÞ are independent and iden-
tically distributed (i.i.d.) random variables. Further, we
define Δk ¼ k0=N and kmi

¼ miΔk. Averages E½…� in this
representation are taken with respect to the i.i.d distribution
of phases γm, and the variance is given by Eq. (6) though
the UV cutoff k0 ¼ 1=a is sharp and applied directly to the
sum. Note that in this representation there is also a natural
IR scale k� ¼ 1=L ¼ 1=Na which is only taken to zero in
the averaging procedure.
Both the discrete and the continuous representations are

equivalent in the limit a → 0 and L → ∞. For finite values
of the cutoffs we still expect qualitatively similar results.

III. RANDOM CHEMICAL POTENTIAL
AT ZERO TEMPERATURE

In this section we study the dþ 1 ¼ 4 Einstein-Maxwell
action at zero temperature in the presence of a weak and
correlated random chemical potential. We investigate the
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cases of disorder acting in one and two boundary space
dimensions. Although both cases are quantitatively differ-
ent, they have a similar IR behavior as long as correlations
are chosen so that disorder is marginal. For marginal
disorder we find logarithmic IR divergences in the metric
that can be resummed by the Poincaré-Lindstedt method
leading to a Lifshitz-like metric. We proceed with the
calculation of the DC conductivity for both irrelevant and
marginal disorder. We find the perturbative correction
vanishes for irrelevant disorder and is positive for marginal
disorder. The divergence of the marginal flow signals an
instability of the system possibly towards a charged ground
state at finite-temperature.

A. Metric corrections for disorder in one dimension

Consider the action (1) with boundary conditions (A3)
at zero temperature. We fix coordinates xμ ¼ ðt; x; yÞ in the
boundary and restrict disorder to act only in the x direction.
Following the discussion in Sec. II A, we introduce dis-
order by requiring μðxÞ to be a homogeneous random field
with spectral decomposition

μðxÞ ¼ V̄
Z
R

dk
2π

eikxμk;

where μk is a Gaussian spectral process with zero mean.
Finding exact solutions of the system (A2) is a hard task so
we restrict ourselves to a perturbative analysis in disorder
strength V̄. According to Eq. (5), for σk ¼ 1 we have
½V̄� ¼ 1=2 > 0 and therefore disorder is relevant in this
case. A perturbative analysis is therefore inadequate, as
disorder can drive the theory to a new fixed point far from
AdS4. This leads us to consider correlated disorder with
σk ¼ 2sþ1jkjse−2jkja. It is easy to see that by choosing s ¼ 1
disorder will be marginal. Therefore we might be able to
find new disordered fixed points close to AdS4 by adapting
the analysis of Ref. [31] for a scalar coupled to gravity to
the case of Einstein-Maxwell theory.
To set up the perturbation theory, we write the most

general static line element in Fefferman-Graham coordi-
nates compatible with our boundary conditions

ds2 ¼ 1

z2
½−Aðx; zÞdt2 þ dz2 þ Bðx; zÞdx2 þDðx; zÞdy2�;

and proceed with a perturbative expansion in V̄ ≪ 1

Aðx; zÞ ¼ 1þ V̄2αðx; zÞ þOðV̄2Þ;
Bðx; zÞ ¼ 1þ V̄2βðx; zÞ þOðV̄2Þ;
Dðx; zÞ ¼ 1þ V̄2δðx; zÞ þOðV̄2Þ;
atðx; zÞ ¼ V̄φðx; zÞ þOðV̄3Þ;

where all α; β; δ;φ have been lifted to stationary stochastic
processes via the boundary conditions and Einstein’s
equations. Note that to order V̄0 the background is pure

AdS4. To order V̄1, Maxwell’s equation (2b) is a Laplace
equation

∂2
zφþ ∂2

xφ ¼ 0;

which can be solved by decomposing φðxÞ ¼ R
dk
2π e

ikxφkðzÞ
and imposing the boundary conditions (4) together with
regularity at z → ∞:

φðx; zÞ ¼
Z

dk
2π

e−jkjzþikxμk: ð8Þ

We now need to insert this into the OðV̄2Þ Einstein’s
equations, that can be reorganized to give

∂z½z−2∂zðαþ δÞ� ¼ 1

2
½ð∂zφÞ2 − ð∂xφÞ2�; ð9aÞ

z2∂zðz−1∂zβÞ ¼ −∂zðαþ δÞ; ð9bÞ

∂z∂xðαþ δÞ ¼ z2∂zφ∂xφ; ð9cÞ

2z3∂z½z−2∂zðα− δÞ�þ 2z∂2
xðα− δÞ ¼ 2z3½ð∂zφÞ2þð∂xφÞ2�:

ð9dÞ
In practice this can be solved explicitly by inserting Eq. (8)
in the right-hand side of the above equation, developing α,
β, γ in harmonics and integrating the resulting equations of
motion. However, since we are not interested in the specific
realizations of the random geometry but rather in the
possible IR averaged fixed points, we take the average
of the above equations:

E½ð∂zφÞ2 − ð∂xφÞ2� ¼ 0; ð10aÞ

E½ð∂zφÞ2 þ ð∂xφÞ2� ¼
Z

∞

0þ

dk
2π

2sþ2ksþ2e−2kðzþaÞ

¼ Γðsþ 3Þ
4πðzþ aÞsþ3

ð10bÞ

where we assumed s > −3 [40]. From the above it is clear
that the solutions of Eqs. (9a) and (9b) are regular for all
z ≥ 0 while solutions of Eq. (9d) can develop divergences
depending on the value of s. Explicitly we have

E½αþ δ� ¼ η; ð11aÞ

E½β� ¼ η; ð11bÞ

E½α − δ� ¼ −
Γðsþ 3Þ
4πðsþ 2Þ

Z
dz

ðzþ aÞs

∝
�
logðzþ aÞ for s ¼ 1;

ðzþ aÞ1−s for s ≠ 1
ð11cÞ

where we have imposed regularity at z → ∞ and the
boundary conditionsE½ðα − δÞðx; 0Þ� ¼ const. Note that this
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result reproduces exactly what we naively expect from the
power-counting analysis: for s < 1, disorder is relevant and
therefore the perturbation scheme breaks down with the
appearance of power-law divergences in the deep IR z → ∞.
For s > 1, disorder is irrelevant, and indeed the background
flows to pureAdS4 in the IR. For s ¼ 1 disorder ismarginally
relevant, as signaled by a log divergence as we flow towards
the IR. This log behavior was first observed in Ref. [30] and
later reproduced in Refs. [31,32] in the case of a disordered
scalar. Our analysis for the charged case suggests that
the log divergences for marginal deformations are a quite
general feature of holographic disorder.

1. Resummation of the metric for marginal disorder

In a perturbative RG analysis, one is interested in how
the deformation of a given action can change the IR
behavior of the theory. Divergences signal an instability
of the flow towards new fixed points. In particular,
logarithmic divergences are usually associated with mar-
ginal deformations which can sometimes be resummed,
to all orders, to give the explicit IR effective action [41]. A
similar procedure to resum log divergences in holography
was first proposed by Hartnoll and Santos in Ref. [31].

As was mentioned in the Introduction, the upshot is that log
divergences in holography are associated with IR geom-
etries that can be characterized by their scaling properties.
In the case of scalar deformations, they found an emergent
Lifshitz scaling with dynamical critical exponent z̄ðV̄Þ
which is an increasing function of disorder.
The general idea is to modify the metric ansatz by

including a function that regularizes the divergences order
by order in perturbation theory, similar to the Poincaré-
Lindstedt method used in the study of nonlinear oscillators.
Our ansatz is

ds2 ¼ 1

z2

�
−

Aðx; zÞ
F1ðzÞpðV̄Þ

dt2 þ dz2 þ Bðx; zÞdx2

þ Dðx; zÞ
F2ðzÞqðV̄Þ

dy2
�
; ð12Þ

and consists of corrections only to the IR diverging
components of the metric. Since divergences appear in
the second order of perturbation theory, we can expand
pðV̄Þ ¼ p2V̄2 þOðV̄4Þ and qðV̄Þ ¼ q2V̄2 þOðV̄4Þ and
require limz→0F1;2 ¼ 1 in order to preserve the UV physics.
The equations of motion (11) now read

∂z½z−2∂zðαþ δ − logFp2

1 Fq2
2 Þ� ¼ 1

2
½ð∂zφÞ2 − ð∂xφÞ2�;

z2∂zðz−1∂zβÞ ¼ −∂zðαþ δ − logFp2

1 Fq2
2 Þ;

∂z∂xðαþ δÞ ¼ z2∂zφ∂xφ;

z2∂z

�
z−2∂z

�
α − δ − log

Fp2

1

Fq2
2

��
þ ∂2

xðα − δÞ ¼ z2½ð∂zφÞ2 þ ð∂xφÞ2�:

From the above it is clear that choosing F1 ¼ F2 ¼ F
and tuning p ¼ 1=4 ¼ −q leaves αþ δ and β unchanged
while shifting α − δ → α − δ − logFðzÞ1=2 by the log of an
arbitrary function FðzÞ. Any choice of FðzÞ satisfying the
constraint Fð0Þ ¼ 1 and such that FðzÞ ∼ z2 as z → ∞ will
regularize the IR log divergence previously found [e.g.
FðzÞ ¼ 1þ ðz=aÞ2]. Up to a rescaling of the coordinates by
a constant, the averaged IR metric can then be written as

E½ds2IR� ∼ −
dt2

z2b1
þ dz2 þ dx2

z2
þ dy2

z2b2
;

for b1 ¼ 1þ V̄2=4þOðV̄Þ4 and b2 ¼ 1 − V̄2=4þOðV̄Þ4.
The emergent IR metric has an anisotropic scaling sym-
metry in the bulk directions. This should not be a surprise
since isotropy is broken by disorder. Next we show that
isotropy is recovered by considering disorder in both
boundary space directions.

B. Metric corrections for disorder in two dimensions

In the previous section, we found that working with the
averaged geometry is enough to determine the instability of

the RG flow. The way the metric diverges is intimately
connected to the emergent scaling behavior of the IR
disordered fixed points. In this section we show that a
similar log divergence emerges when disorder is considered
in all space boundary directions. The advantage is that
isotropy is recovered, making it easier to generalize to
higher dimensions and finite temperature. As expected, the
resulting metric has an emergent Lifshitz scaling in the IR.
The framework used above can be generalized to include

disorder in both bulk directions ðx; yÞ with the changes

k → k ¼ ðkx; kyÞ; x → x ¼ ðx; yÞ;
Z

dk →
Z

d2k:

The power counting (5) now gives us ½V̄� ¼ −s=2, and
disorder is marginal for s ¼ 0. This is not surprising, since
by performing the above changes in Eq. (10b), it is clear
that the double integral contributes with an additional
power of k.
The only difference in the averaged equation of motion is

the appearance of nontrivial y dependence in the gauge field
A components. They can be conveniently rearranged as [42]
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4∂z½z−2∂zα� ¼ E½3ð∂zφÞ2 þ ð∇φÞ2� ¼ 3

2π
ðzþ aÞ−4;

ð13aÞ

2∂z½z−2∂zðβþ δÞ� ¼−E½ð∂zφÞ2þð∇φÞ2� ¼−
3

4π
ðzþaÞ−4;

ð13bÞ

∂z½z−2∂zðβ − δÞ� ¼ E½ð∂xφÞ2 − ð∂yφÞ2� ¼ 0; ð13cÞ

2∂z½z−2∂zðαþ β þ δÞ� ¼ zE½ð∂zφÞ2 − ð∇φÞ2� ¼ 0; ð13dÞ

where we introduced the bulk gradient ∇ ¼ ð∂x; ∂yÞ. As
advertised, now disorder does not break isotropy in the bulk,
and this is reflected in the equations of motion (13b). In the
one-dimensional case E½∂yφ� ¼ 0 and the average on the
right-hand side does not vanish. The equations above can
be easily solved to give

α ¼ −ðβ þ δÞ ¼ −
1

8π
logðzþ aÞ;

which is in agreement with marginally relevant deforma-
tions. In analogy with the one-dimensional case, it is again
possible to resum these logarithmic corrections. Up to a
coordinate redefinition, the IR geometry will take the form

E½ds2IR� ∼ −
dt2

z2z̄
þ dz2

z2
þ dx2 þ dy2

z2

with z̄ ¼ 1þ V̄2=2þOðV̄2Þ. This IR fixed point corre-
sponds to a quantum field theory with Lifshitz scaling, since
it is invariant under ðt; x; yÞ → ðλz̄t; λx; λyÞ. The emergence
of Lifshitz scaling in the context of disordered holography
was first observed in Ref. [31]. It is an interesting fact
that Lifshitz-like scaling emerges in different dimensions and
for different random sources. This suggests that Lifshitz
geometries in the IR are a robust feature of marginal disorder
in holography.

C. Conductivity of the dual field theory

We now turn our attention to how disorder affects the
transport of the dual theory. In condensed matter, the effect
of weak disorder in a metal is to decrease the conductivity
[43]. This is the first sign that for strong enough disorder
the system undergoes a metal-insulator transition.
According to the scaling theory of localization [1,44]
(or Ref. [43] for a review) the knowledge of the scaling
of the conductance with the system size allows one to
derive a real-space RG equation and eventually to establish
the existence of the metal-insulator transition.
In holography, it was established that a range of theories

in both zero and finite temperature have a finite and
constant incoherent contribution to the conductivity in
addition to the usual coherent contribution coming from

a finite charge density [45]. In particular this contribution
is also present at zero temperature and charge density
[46,47]. Our aim is to understand how disorder affects
this contribution. For simplicity, we work with disorder in
one dimension and compute the DC conductivity in this
direction. We will show that an irrelevant disordered
chemical potential does not contribute to the conductivity,
while a marginal deformation has the effect of increasing it.
In both cases disorder does not suppress the incoherent
contribution to the conductivity. It is an open question
why those degrees of freedom seem to be protected from
relaxation. In principle this is different from the behavior
expected in condensed matter systems where disorder
always suppresses the conductivity. We note that a direct
comparison is difficult as our perturbation may also induce
a net increase of carriers that enhance the conductivity.
Computing transport coefficients in inhomogeneous

backgrounds is an involved task. Since we are only
interested in the DC conductivity, we are going to take a
shortcut first proposed by Donos and Gauntlett in Ref. [34]
which consists in applying a constant electric field Ex ≡ E
in the disordered direction at the dual boundary theory.
In the bulk, this is implemented by a fluctuation in the
vector potential that solves the time dependence of
Maxwell’s equations,

δA ¼ ðaxðx; zÞ − EtÞdx:
This fluctuation generates a nontrivial boundary current
obtained via the usual holographic dictionary
jx ¼ limz→0∂zax. The conductivity is then defined as

σ ¼ E½jx�
E

����
z¼0

: ð14Þ

The fluctuation above also couples to the metric via
Einstein’s equations, and consistency requires turning
on metric fluctuations. In a radial gauge hza ¼ 0 for
a ∈ fz; t; x; yg, Einstein’s equations decouple in two
sectors, and it is sufficient to consider only the metric
fluctuation htx.
As in the previous section, we proceed with a perturba-

tive analysis. An inspection of the equations of motion to
first order in E and second order in V̄ requires

axðx; zÞ ¼ að0Þx ðx; zÞ þ V̄2að2Þx ðx; zÞ þOðV̄4Þ;
htxðx; zÞ ¼ V̄hð1Þtx þOðV̄3Þ:

Note in particular that we need to expand the fluctuation ax
to OðV̄2Þ in order to respect the holographic dictionary
and match the boundary current jx ¼ limz→0∂zax to the
bulk current

ffiffiffiffiffiffi−gp
Fxz. To compute conductivity (14) we

need to solve the Einstein-Maxwell order by order for

fað0Þx ; að2Þx ; hð1Þtx g and take the relevant average over disorder.
As boundary conditions for the fluctuations, we require δAx
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to be ingoing and the dual field theory Minkowski metric to
be fixed, or in other words limz→0z2htx ¼ 0.
To order V̄0, the ðzÞ and ðxÞ Maxwell’s equations give

∂z∂xa
ð0Þ
x ðx; zÞ ¼ 0;

∂2
za

ð0Þ
x ðx; zÞ ¼ 0;

which implies ∂za
ð0Þ
x ¼ constant. To fix this constant,

we need to apply ingoing boundary conditions. Note that
u¼t−z and v ¼ tþ z are the two null coordinates in AdS4.
Therefore for the fluctuation to be ingoing, we require

δAxðx; z; tÞ ¼ δAxðx; vÞ which fixes ∂za
ð0Þ
x ¼ −E. This

gives the order OðV̄0Þ contribution to the DC conductivity
σ ¼ 1þOðV̄2Þ, which agrees with the pure AdS4 value.
To order OðV̄2Þ, the ðzÞ and ðxÞ Maxwell’s equations

read

∂z½Eðα − β þ δÞ − 2z2hð1Þtx ∂zφ − 2∂za
ð2Þ
x � ¼ 0; ð15Þ

∂x½Eðα − β þ δÞ − 2z2hð1Þtx ∂zφ − 2∂za
ð2Þ
x � ¼ 0: ð16Þ

Note that these are exactly the equations for the conserva-
tion of the bulk current to OðV̄2Þ. They fix

∂za
ð2Þ
x ¼ c − 2z2hð1Þtx ∂zφþ E

2
ðα − β þ δÞ; ð17Þ

for an arbitrary constant c. Note that the average of the
above is exactly the numerator in Eq. (14). Since
E½α − β þ δ� ¼ 0 everywhere in the bulk from Eqs. (11a)

and (11b) and limz→0E½z2hð1Þtx ∂zφ� ¼ 0 to avoid deforma-
tions of the dual field theory Minkowski metric, c is exactly
the correction to the conductivity we are after. To fix c,
we need to impose ingoing boundary conditions in the
Poincaré horizon z ¼ ∞, or in other words δAxðt; z; xÞ ¼
δAxðv; xÞ for v ¼ tþ z. This fixes limz→∞∂za

ð2Þ
x ðx; zÞ ¼ 0,

and we can formally write

c ¼ lim
z→∞

2E½z2hð1Þtx ∂zφ�: ð18Þ

As we mentioned before, Einstein’s equations for hð1Þtx
decouple from the background

∂z∂xðz2hð1Þtx Þ ¼ z2E∂xφ;

∂zðz−2∂zðz2hð1Þtx ÞÞ ¼ E∂zφ;

and can be readily solved by inserting the source (8) and
integrating,

z2hð1Þtx ðx;zÞ¼E
Z

dk
2π

μk
k3
2sþ1e−kzþikxð2þ2kzþk2z2ÞþCðxÞ;

where CðxÞ is a (random) integration constant. We suppose
CðxÞ admits a spectral representation with Gaussian mea-
sure and write CðxÞ ¼ R

dk
2π e

ikxμkck for a deterministic
constant ck. The boundary condition limz→0z2htx ¼ 0 then
fixes ck ¼ −2k−3. Note that with this choice we have in

particular limz→0E½z2hð1Þtx ∂zφ� ¼ 0 as claimed before. We
can now explicitly fix c by computing the average in
Eq. (18)

c ¼
�
0 for s > 1;
8 log 2−5

π for s ¼ 1.

Therefore for irrelevant disorder there are no corrections
to the background conductivity to second order,
σ ¼ 1þOðV̄2Þ, while for marginal disorder we have

σ ¼ 1þ V̄2γ þOðV̄4Þ;
for γ ¼ π−1ð8 log 2 − 5Þ > 0. This result is consistent
with the previously discussed fact that for irrelevant
deformations the background AdS4 remains the IR fixed
point of the system, while for marginal deformations the
background geometry receives logarithmic corrections.
Note that for s < 1 the deformation is relevant. In this
case c diverges polynomially and perturbation theory
breaks down.
One might ask if the resummation carried out in the last

sections alters the computation of the conductivity. This is
not the case since as we argued before the metric fluctua-
tions decouple from the background equations of motion.
Resumming the background IR divergence for marginal
deformations therefore does not change the conductivity,
which is finite in the IR.

IV. RANDOM CHEMICAL POTENTIAL
AT FINITE TEMPERATURE

A natural generalization of the previous discussion is
to include the effects of temperature. In practice, this is
equivalent to imposing an AdS black brane boundary
condition to the vacuum, around which we carry out a
perturbative calculation. From the field theory perspective,
we will be studying the perturbative effect of a random
chemical potential in a quantum field theory at finite
temperature. In practice, the presence of a horizon spoils
the symmetry between the boundary coordinates ðt; x; yÞ,
which makes the calculations more involved. Following
some previous ideas [32], we will see that the problem can
be analyzed in two opposite limits: high- and low-momenta
modes. The high-momenta modes will be exactly those that
will contribute to the leading divergences of the metric
components, therefore determining the emerging IR scal-
ing. On the other hand, low-momenta modes are constant
along the bulk and will have the effect of renormalizing the
temperature and charge of the black brane. We shall see that
the initially uncharged black brane geometry develops an
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effective net charge proportional to the strength of the
perturbation. Moreover to leading order in the disorder
strength the thermal conductivity, but not the electrical
conductivity, develops a Drude peak consistent with the
breaking of translational symmetry by the random chemical
potential.

A. Equations of motion

Consider again the action (1). If A ¼ 0, this action
supports a finite-temperature vacuum given by a
dþ 1 ¼ 4 AdS Schwarzschild black brane. Introducing
a random chemical potential (4) in the boundary can be
seen as a perturbation around this vacuum as long as
T ≫ V̄. However, in order for disorder to still be relevant
we need k0 ¼ 1=a ≫ T. Therefore we are working with
the hierarchy k0 ≫ T ≫ V̄. In analogy with the zero-
temperature case, we can set up a perturbative calculation
around this background by looking at solutions of the
system (A2) with the ansatz

ds2 ¼ 1

z2

�
−fðzÞAðzÞdt2 þ dz2

fðzÞ þ BðzÞðdx2 þ dy2Þ
�
;

ð19aÞ

A ¼ atðz;xÞdt: ð19bÞ

Following our previous discussion we are working directly
with the averaged metric AðzÞ ¼ E½Aðz;xÞ�, BðzÞ ¼
E½Bðz;xÞ� and with disorder in both boundary directions
ðx; yÞ, for which we can impose isotropy. We also suppose
that f is a function of the holographic coordinate z with a
first-order pole at a point z0. It will be convenient to
consider the rescaling u ¼ z=z0, such that fðu ¼ 1Þ ¼ 0.
As before, we set up our perturbation theory by letting

AðuÞ ¼ 1þ V̄2αðuÞ þOðV̄2Þ;
BðuÞ ¼ 1þ V̄2βðuÞ þOðV̄2Þ;

atðx; uÞ ¼ V̄φðx; uÞ þOðV̄3Þ:

The task is to solve the system (11) together with the
boundary conditions αð0Þ ¼ βð0Þ and limu→0φðx; uÞ ¼R

d2k
2π e

ik·xμk. Further, we impose regularity and ingoing
boundary conditions at the horizon u ¼ 1.
To order V̄0, the equations of motion are those for the

AdS Schwarzschild background,

−6þ 6f − 4uf0 þ u2f00 ¼ 0; ð20aÞ
3 − 3f þ uf0 ¼ 0; ð20bÞ

which are trivially satisfied by f ¼ 1 − u3. To order V̄, we
have Maxwell’s equations for the vector potential, while
no further metric equations are sourced:

f∂2
uφþ z20∂2

xφ ¼ 0:

Again, we decompose φ ¼ R
d2k
ð2πÞ2 e

ik·xφkðuÞ to get

fφ00
κ − κ2φk ¼ 0; ð21Þ

where we have defined the dimensionless momentum
κ ¼ z0jkj. Unfortunately we cannot solve the above equa-
tion explicitly. However we will be interested in two
limits, the low (or zero) κ ≪ 1 and high κ ≫ 1 momentum
modes. In the first limit, we have φ0

0 ¼ η which is constant,
while in the second limit κ ≫ 1 we can rely on the WKB
approximation

φkðuÞ ¼ μkf−1=4e
−κ
R

f−1=2 :

To order V̄2, Einstein’s equations give

fα00 þ ðuf0 − 2fÞ
2u

ð3α0 þ β0Þ ¼ −
u2z20
2f

E½fð∂uφÞ2 þ z20ð∇φÞ2�;

fα00 þ 2fβ00 þ 3uf0 − 2f
2u

α0 þ uf0 − 2f
2u

β0 ¼ u2z20
2f

E½−fð∂uφÞ2 þ z20ð∇φÞ2�;

fβ00 −
f
u
α0 −

uf0 − 4f
u

¼ u2z20
2f

E½fð∂uφÞ2 − z20ð∂xφÞ2 þ z20ð∂yφÞ2�;

fβ00 −
f
u
α0 −

uf0 − 4f
u

¼ u2z20
2f

E½fð∂uφÞ2 þ z20ð∂xφÞ2 − z20ð∂yφÞ2�

where we made use of the zeroth-order equations. These can be explicitly decoupled in two second-order equations

ð3þ fÞ2f−1=2∂u

�
f3=2

u2ð3þ fÞ ∂uα

�
¼ z20E½3ð∂uφÞ2 þ z20ð∇φÞ2�; ð22aÞ

4f3=2∂u

�
f1=2

u2
∂uβ

�
¼ −z20E½fð∂uφÞ2 þ z20ð∇φÞ2�: ð22bÞ
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B. High-momenta modes

The effect of modes with κ ≫ 1 was first discussed in
Ref. [32] in the context of a random scalar deformation.
Since the calculations for the high-momenta modes for the
charged deformation are similar, we only review the results
and direct the reader to Ref. [32] for the technical details.
An explicit calculation shows that for κ ≫ 1 the main

contribution to integrating Eqs. (22a) and (22b) comes
from the near boundary region u ¼ 0. Note that in this
region these equations reduce to Eqs. (13b) and (13a),
giving logarithmic corrections to the metric coefficient
α ∼ log z0=a. The important remark is that the second-order
correction to the surface gravity of the background
is proportional to α. In particular, this implies that the
temperature of the black hole receives second-order log-
arithmic corrections from the high-momenta modes. If we
further assume that these corrections can be resummed as in
the zero-temperature setting, the temperature will develop
a Lifshitz scaling T ∼ z−z̄0 with the horizon. The upshot is
that all other thermodynamic quantities are affected by the
way they scale with temperature. It is important to note that
this is a direct consequence of the logarithmic corrections
for the metric coefficient α. Since we find a similar
correction, the results of Ref. [32] should apply here.
What about lower momenta modes? From Eq. (21), it is

clear that for κ ≪ 1 the source is approximately constant in
the bulk, and therefore does not contribute to the singular
behavior of the metric. From the RG point of view, these
modes are irrelevant and can only possibly renormalize
the background geometry. As we will discuss below, this is
indeed the case.

C. Low-momenta modes

We will show that low-momenta modes play the role of
renormalizing the background by introducing a charge
Q ∼ V̄ in the originally neutral black brane.
Consider the renormalized emblackening factor f ¼

f̄ þ V̄2δf where f̄ðuÞ¼ 1−u3 with the ansatz (21). This
shift has no effect in the zeroth- and first-order equations.
However, it introduces an extra factor in Eq. (22b):

ðu−3δfÞ0 − f̄1=2∂u

�
f̄1=2

u2
∂uβ

�
¼ z20

4f̄
E½f̄ðφ0

κÞ2 þ κ2φ2
κ �:

In particular, for κ ≪ 1 the left-hand side is constant, since
by Maxwell’s equations (21) ðφ0

κ≪1Þ2 ¼ μ20. This is pre-
cisely the statement that low-momenta modes are constant
along the bulk. Close to the horizon u ¼ 1 the first term
on the right-hand side drops out, giving

ðu−3δfÞ0 ¼ z20
4
μ20;

which can be easily solved by δfðuÞ ¼ z2
0

4
μ20ðu4 − u3Þ

and requiring δfð0Þ ¼ δfð1Þ ¼ 0. This correction gives

precisely the emblackening factor fðuÞ¼ 1− ð1þQ2Þu3þ
Q2u4 expected for an AdS Reissner-Nordstrom black
brane with charge,

Q2 ¼ z20
4
μ20V̄

2:

Therefore the constant low-momenta modes have the effect
of renormalizing the near-horizon geometry of the initially
uncharged black brane, adding a charge proportional to the
sourced disorder. However note that this only contributes to
the previous discussion at order OðV̄4Þ. This explains why
to leading order it is justified to look only at high-momenta
modes when analyzing the divergences of the metric under
the flow of the renormalization group. We expect the full
nonlinear solution to be a charged black brane with a
temperature reflecting both contributions discussed above.

D. Conductivity and momentum dissipation

Recent works by Donos and Gauntlett [34,48–50],
built upon previous membrane paradigm ideas [47], have
simplified enormously the task of computing averaged
DC conductivities in inhomogeneous backgrounds at finite
temperature. Specifically, in Ref. [34] they provided an
explicit formula for the DC conductivity of the Einstein-
Maxwell system sourced by a periodic potential in terms
of near-horizon data. The generalization of their results to
our model read

σ ¼ 1þ V̄2X−1E

�
φð0Þ
Að0Þ

�
2

; ð23Þ

where X ¼ E½ðφð0Þ
Að0Þ

Þ2� − E½B−3
ð0Þ∂xBð0Þ� − E½φð0Þ

Að0Þ
�2 and the met-

ric and gauge field are evaluated at the horizon u ¼ 1. In
order to compute the corrections to the conductivity it is
necessary to take averages of fractions, which is usually a
hard task. However we can still get a qualitative picture
without having to compute the averages explicitly. First,
it is clear that generically X ≠ 0 since the first term is an
average over a second moment. The same is a priori not
clear for the numerator, which is an average over a first
moment.
In perturbation theory, A ¼ 1þ V̄2α, and we can

expand the denominator for small V̄: E½φð0Þ=Að0Þ�∼
E½φð0Þ� − V̄2E½αð0Þφð0Þ� þOðV̄4Þ. By construction we have
E½φð0Þ� ¼ 0, and the problem simplifies to computing
E½αð0Þϕð0Þ�. In principle to compute this average explicitly
one needs the exact background to second order. However
by looking at the most general spectral decomposition of α
that solves the equations of motion one can compute the
average (23) as a function of the coefficients αk. Without
loss of generality we can write α ¼ αhomðuÞ þ αinhðx; uÞ.
It is clear that only αinh contributes to the perturbative
corrections of the conductivity, since any homogeneous

MARGINAL AND IRRELEVANT DISORDER IN EINSTEIN- … PHYSICAL REVIEW D 93, 065025 (2016)

065025-9



part (which is a constant at the horizon) vanishes when
averaged with the source ϕð0Þ. From the equations of
motion we can write (cf. the Appendix for further details)

αinhðx;uÞ ¼
X
k

α0kðuÞ
Y
i

cos2θi;kþ
X
k≠l

αþk;lðuÞ
Y
i

cosθþi;k;l

þ
X
k≠l

α−k;lðuÞ
Y
i

cosθ−i;k;l;

where we used a discrete representation for simplicity
[cf. Eq. (7)], and defined θ�i;ki;li ¼ θi;ki � θi;li . Letting
φ ¼ P

kφkðuÞ
Q

i cos θi;k and evaluating at u ¼ 1, one
can check that E½αinhð0Þϕð0Þ� ¼ 0 and therefore

σ ¼ 1þOðV̄4Þ:
One could be tempted to extend this argument to fourth or
higher orders in V̄. However this is a really hard task as it
would also require the computation of at least the third-
order contribution to the vector potential as well as the
fourth-order contribution to the metric.
It is intriguing that the random chemical potential does

not contribute, to leading order at least, to the background
electric conductivity. The likely physical reason for that
behavior is a peculiar feature of this realization of disorder:
charge carriers, whose average charge vanishes, and that
naturally contribute to the electrical conductivity, are at the
same time the source of disorder in the system. This dual
role is rather unusual in condensed matter systems where
scatterers are typically uncharged and quenched and there-
fore do not contribute to the electrical conductivity.
We confirm that this unexpected result is a peculiarity of

the electrical conductivity in this model of disorder by
computing the thermal conductivity κ [51], which describes
transport of energy instead of charge. Following again the
results of Ref. [34], κ is given by,

κ ¼ ð4πÞ2T
X þ E

h
φð0Þ
Að0Þ

i
2
:

It is straightforward to check that now the thermal con-
ductivity depends on disorder, even to leading order, since
we have an average over a second moment of the source φ
inside X, which gives a nonzero contribution to second
order. We can estimate this in the high-temperature limit
T ≫ k0 where the main contribution to the geometry is

φκ≪1 ¼ ð1 − uÞμðx; yÞ. Therefore κ ¼ ð4πÞ4T3

9
1

E½μ2� which

leads to,

κ ¼ ð4πÞ3
9

T3

k0V̄2
: ð24Þ

As was expected, in the absence of disorder V̄ → 0, κ
diverges as 1=V̄2 since for no disorder translational
invariance is recovered. The expression (24) also suggests

that the relaxation scale of momentum is given by
τ−1 ∼ k0V̄2. This is in full agreement with recent results
in a setup similar to ours where disorder is introduced by a
random scalar field in the boundary [33].
Finally, it is important to stress that all these results are

restricted to averaged conductivities. It would be interesting
to know higher moments and the full probability distribu-
tion of the relevant observables. That for instance could
provide additional information on the effect of a random
chemical potential on the electrical conductivity for which
we have clearly observed that a simple average misses
important features.

V. CONCLUSIONS

We have studied analytically the role of weak disorder in
Einstein-Maxwell theory and its relation, by holography,
with the transport properties of the dual field theory.
Disorder was introduced through a random correlated
chemical potential whose conformal dimension can be
tuned by modifying the strength of the correlations. In
that way we can investigate, within the Einstein-Maxwell
theory, irrelevant, marginal or relevant perturbations. We
have focused on the first two cases where we have found
that, to leading order, irrelevant perturbations do not alter
the conductivity while marginal perturbations induce a
positive correction. Both results are in agreement with the
recently proposed bound [26–28] for the DC conductivity
at finite temperature. Curiously disorder does not seem to
suppress incoherent transport even at zero temperature. It
would be interesting to understand why these field theory
degrees of freedom are protected from disorder. In the
marginal case at zero temperature we also found infrared
logarithmic singularities in the metric that, after resumma-
tion as in Ref. [31], lead to a Lifshitz-like geometry.
At finite temperature we have shown that despite the fact
that the chemical potential has zero average the black
hole develops some net charge. The thermal conductivity
is consistent with a disordered potential that induces
relaxation of momentum. However the average electrical
conductivity, as in the zero-temperature case, is still not
affected by disorder to leading order in perturbation theory.
It would be interesting to study the conditions to observe a
transition from a neutral to a charged infrared background
as disorder is increased in the limit of a chemical potential
with zero average. Another interesting question is to
clarify the conditions for a correction to the conductivity
at finite temperature due to disorder. We plan to address
these problems in the near future.
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APPENDIX: CONDUCTIVITY AT FINITE
TEMPERATURE

Consider the Einstein-Maxwell system at finite temper-
ature with an inhomogeneous chemical potential in both
boundary directions. We work in coordinates such that the
horizon is at u ¼ 1 and the boundary at u ¼ 0. To zeroth
order in perturbation theory, Einstein’s equations fix the
usual Schwarzschild emblackening factor as in Eq. (23).
We look for solutions of the type

ds2 ¼ z20
u2

�
−fðuÞð1þ V̄2αðu;xÞÞdt2 þ z20dz

2

fðuÞ

þ ð1þ V̄2βðu;xÞÞðdx2 þ dy2Þ
�
;

A ¼ V̄φðu;xÞdt:

The second-order equations read

2uf∂2
uαþ 2uz20∇2αþ ð3uf0 − 6fÞ∂uαþ 2ðuf0 − 4fÞ∂uβ

¼ −u3z20f−1½fð∂uφÞ2 þ z20ð∇φÞ2�; ðttÞ

2uf∂2
uαþ 4uf∂2

uβ þ ð3uf0 − 2fÞ∂uαþ 2ðuf0 − 2fÞ∂uβ

¼ u3z20f
−1½ðf∂uφÞ2 − z20ð∇φÞ2�; ðuuÞ

f0∂xαþ 2f∂x∂uðαþ βÞ ¼ −
1

2
u2z20f

−1∂xφ∂uφ; ðuxÞ

2uf∂2
uβþ 2uz20∇2βþ 2uz20∂2

xα− 2f∂uαþ 2ðuf0 − 4fÞ∂uβ

¼ u3z20f
−1½fð∂zφÞ2 − z20ðð∂xφÞ2 − ð∂yφÞ2Þ�; ðxxÞ

f0∂yαþ 2f∂y∂uðαþ βÞ ¼ −
1

2
u2z20f

−1∂yφ∂uφ; ðuyÞ

f∂y∂xα ¼ u2z20∂xφ∂yφ; ðxyÞ

2uf∂2
uβþ 2uz20∇2βþ 2uz20∂2

yα− 2f∂uαþ 2ðuf0 − 4fÞ∂uβ

¼ u3z20f
−1½fð∂zφÞ2 þ z20ðð∂xφÞ2 − ð∂yφÞ2Þ�; ðyyÞ

where we introduced ∇ ¼ ð∂x; ∂yÞ. It is convenient to look
at the following linear combinations:

4f1=2∂uðu−2f1=2∂uβÞ þ 2u−2∇2β

¼ −z20f−1½fð∂2
uφÞ2 þ z20ð∇φÞ2�; ðA1Þ

ð3þ fÞ2f−1=2∂u

�
f3=2

u2ð3þ fÞ ∂uα

�
þ 2u−2z20f∇2α

þ u−2z20ðf − 3Þ∇2β ¼ z20f
−1E½3fð∂uφÞ2 þ z20ð∇φÞ2�;

ðA2Þ

where we took −ttþ uuþ xxþ yy and 3=2ðf þ 1Þ þ
1=2ðf − 3Þðuu − xx − yyÞ respectively. Note in particular
that these equations reduce to Eqs. (22a) and (22b) over
averaging. The source can be expanded in the spectral
basis as

φðu;xÞ ¼
X
k

φkðuÞ
Y

i∈fx;yg
cos θi;k;

where k ¼ ðkx; kyÞ ¼ ðnx; nyÞk0=N with nx; ny ∈
f1; 2;…; N − 1g and θi;ki ¼ kixi þ γi for γi ∈ ½0; 2πÞ
i.i.d. random variables (cf. the discussion in Sec. II B).
We have opted for a discrete representation here for clarity,
but this should not change the result. Recall that φkðuÞ can
be obtained from Maxwell’s equations (21), but an explicit
solution is not needed for our purposes.
Further, we can write

ð∂uφÞ2 ¼
�X

k

φ0
k

Y
i

cos θi;k

��X
l

φ0
l

Y
i

cos θi;l

�
¼

X
k;l

φ0
kφ

0
l

Y
i

cos θi;k cos θi;l

¼ 1

2

X
k;l

φ0
kφ

0
l

Y
i

ðcos θ−i;k;l þ cos θþi;k;lÞ

¼ 1

2

X
k

ðφ0
kÞ2

Y
i

ð1þ cos 2θi;kÞ þ
1

2

X
k≠l

φ0
kφ

0
l

Y
i

ðcos θ−i;k;l þ cos θþi;k;lÞ;

ð∇φÞ2 ¼ 1

2

X
k;l

ðk · lÞφkφl

Y
i

ðcos θ−i;k;l − cos θþi;k;lÞ

¼ 1

2

X
k

k2ðφkÞ2
Y
i

ð1 − cos 2θi;kÞ þ
1

2

X
k≠l

ðk · lÞφkφl

Y
i

ðcos θ−i;k;l − cos θþi;k;lÞ;
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where we have defined θ�i;ki;li ¼ θi;ki � θi;li . This deter-
mines the spectral decomposition of the metric coefficients
in terms of the sources. For example, we can write
αðu;xÞ ¼ αhomðuÞ þ αinhðx; uÞ with
αinhðx;uÞ ¼

X
k

α0kðuÞ
Y
i

cos2θi;kþ
X
k≠l

αþk;lðuÞ
Y
i

cosθþi;k;l

þ
X
k≠l

α−k;lðuÞ
Y
i

cosθ−i;k;l; ðA3Þ

with a similar expression for β. By linearity, the task of
solving Eq. (A1) now reduces to solving coupled ordinary
differential equations for αhom; βhom, α0; β0 and α�; β�.
This is in principle doable but cumbersome, and does not
bring any insight. Examples of explicit solutions for zero-
and finite-temperature backgrounds in a similar context
were given in Refs. [31,32,36]. However for the purposes

of applying the formula (23) we do not need the full
solution.
By linearity of the mean, we just need to compute

terms like E½cos θk�,E½cos 2θn cos θk� and E½cos θ�nm cos θk�
for n ≠ m. The first is trivially zero since it is the
integral of one cosine over a full period. To compute
the other terms, we use the angle sum rule cos θ�nm ¼
cos θn cos θm∓ sin θn sin θm. In order to have a nonzero
integral we need all cosines and sines to group into a single
power, since any single cosine vanishes when integrated
over. For the second term, this will only happen when
k ¼ n, but in this case the integrals are over cos3 θ and
sin2 θ cos θ which vanish on a period. In the third term,
there will always be a cosine or sine left over since n ≠ m.
Thus E½cosαk� ¼E½cos2θn cosθk� ¼E½cosθ�nm cosθk� ¼ 0
generically. The result quoted in Sec. IV D follows.
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