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We study the Higgs inflation model realized in the supersymmetric SUð5Þ grand unified theory (GUT),
focusing on its multifield dynamics and prediction of cosmological observables. The requirement for
GUT symmetry breaking during inflation imposes tight constraints on the model parameters. We find,
nevertheless, that with an appropriately chosen noncanonical Kähler potential the model is in excellent
agreement with the present cosmological observations. The effects from multifield dynamics are found to
be minor and thus, unlike other similar supersymmetric implementations of nonminimally coupled Higgs
inflation, the prediction of this model is robust against multifield ambiguities.
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I. INTRODUCTION

The quest for a concrete particle theory realization of
cosmological inflation continues to be a major theoretical
challenge. Current experiments put stringent bounds on
the amplitude of the tensor mode primordial fluctuations.
To quote the results of the BICEP2/Keck Array and Planck
collaborations [1], the primordial tensor-to-scalar fluc-
tuation ratio is constrained to be

r0.002 < 0.09 ð1Þ

(Planck TTþ lowPþ lensingþ extþ BKP) at 95% C.L.
The simple chaotic inflation models with a quadratic or
quartic inflaton potential are disfavored by the observation.
Instead, the R2-inflation model [2,3] and the nonminimally
coupled Higgs inflation model [4,5], among others, have
(re)surfaced as viable accounts of the early Universe. In
particular, the Bezrukov-Shaposhnikov scenario [5] of
nonminimally coupled Higgs inflation is an attractive
proposal. This scenario is economical as there is no need
to introduce a new field of unknown origin; the Higgs field
that already exists in the Standard Model (SM) is respon-
sible for inflation. The model also has strong predictive
power as the physics at the inflationary scale is related to
that of the collider scale through the renormalization group
flow [6]. There is a controversy on the unitarity problem
associated with the large nonminimal coupling required in
this type of scenario [7–9]. This danger may be avoided,
e.g. by considering the cutoff scale as field dependent [10].
The Bezrukov-Shaposhnikov scenario of Higgs inflation

assumes that the SM is valid all the way up to the energy
scale of inflation. However, it is widely believed that the
grand unification takes place at the energy scale ofMGUT ∼
1016 GeV and there the physics is supposed to be described
by grand unified theory (GUT). The tensor-to-scalar ratio

of r ≈ 0.05, for example,1 implies that the Hubble param-
eter during inflation can be as large as H ∼ 1014 GeV;
this is closer to the GUT scale than to the electroweak scale,
and thus inflation may be more appropriately discussed
in the framework of GUT than in the SM. In view of
the elegant gauge coupling unification in the presence of
supersymmetry, a natural beyond-the-SM extension of the
Bezrukov-Shaposhnikov scenario would be in supersym-
metric GUT.
The implementation of the nonminimally coupled infla-

tionary scenario in supersymmetric GUT has been dis-
cussed e.g. in the supersymmetric SUð5Þ model2 [13–15]
and the supersymmetric Pati-Salam model [16]. By con-
struction, these nonminimally coupled models employ a
noncanonical Kähler potential to circumvent the super-
gravity η problem and at the same time to suppress the
tensor mode fluctuations to be compatible with the obser-
vation (1). This type of model involves multiple scalars and
in principle, the prediction for cosmological observables
depends on the trajectory of the inflaton in the multidi-
mensional field space. As pointed out in Refs. [14,17,18],
there is a danger of tachyonic instabilities in undesired
directions of the field space, but the instabilities may be
removed and the inflaton trajectory can be controlled by
further noncanonical terms in the Kähler potential [19] (see
also Refs. [20–23]). Thus the trajectory of the inflaton is in
general sensitive to the noncanonical terms, and naturally
the prediction for the cosmological observables depends on
the Kähler potential. Conversely, the current observational
constraints may be used to restrict the parameter space of
the Kähler potential [24].
In this paper we study the multifield dynamics of

supersymmetric GUT-embedded nonminimally coupled
Higgs inflation. Our main focus is on the model based
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1The BICEP2/Keck Array/Planck joint analysis [11] gives
r ¼ 0.048þ0.035

−0.032 at 68% C.L.
2Nonminimally coupled SUð5Þ GUT Higgs inflation without

supersymmetry was discussed in Ref. [12].
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on the minimal supersymmetric SUð5Þ GUT; this is the
simplest Higgs inflation model in supersymmetric GUT
that involves symmetry breaking of a GUT group, and
hence it serves as a prototype of GUT-based Higgs inflation
models. The scenario was discussed in Ref. [13] using a
crude single-field approximation. The purpose of the
present paper is to analyze it appropriately as a multifield
inflationary model and reinvestigate its predictions. This
model differs from the similar supersymmetric Higgs
inflation models implemented in the next-to-minimal
supersymmetric Standard Model (NMSSM) [18] or the
supersymmetric seesaw model [20–22], by the form of the
Kähler metric, which is essential for the phenomenological
consistency of the GUTmodel as the GUT symmetry needs
to be broken. We investigate cosmological consequences of
this feature.
In the next section we start by reviewing the super-

symmetric Higgs inflation model based on the SUð5Þ GUT
[13]. For the sake of concreteness we focus on the two-field
case arising from the supersymmetric minimal SUð5ÞGUT,
and describe its construction in detail. We analyze the
model in Sec. III and present the numerical results. In
Sec. IV we conclude, with brief discussions on our results.
The technicalities of the multifield inflationary dynamics
are summarized in the Appendix.

II. HIGGS INFLATION IN SUð5Þ GUT

We recall that the Georgi-Glashow SUð5Þ GUT [25]
consists of the gauge field in 24, the GUT Higgs field in 24,
the SM Higgs field in 5, NF (the flavor multiplicity)
fermion fields in 10 and NF fermion fields in 5̄, in the
representations of SUð5ÞGUT. The gauge and the SM Higgs
fields decompose into the representations of the SM gauge
group SUð3Þc × SUð2ÞL ×Uð1ÞY as

24¼ð8;1;0Þ|fflfflffl{zfflfflffl}
gluon

þð1;3;0Þ|fflfflffl{zfflfflffl}
Aa
μ

þð1;1;0Þ|fflfflffl{zfflfflffl}
Bμ

þ
�
3;2;

5

6

�
|fflfflfflfflffl{zfflfflfflfflffl}

Xα
μ ;Yα

μ

þ
�
3̄;2;−

5

6

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

X̄α
μ;Ȳα

μ

;

5¼
�
3;1;−

1

3

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ΦT

þ
�
1;2;

1

2

�
|fflfflfflfflffl{zfflfflfflfflffl}

ΦD

: ð2Þ

Here, μ ¼ 0, 1, 2, 3 is the spacetime index, a ¼ 1, 2, 3 is the
SUð2ÞL index, α ¼ 1, 2, 3 is the color index, ΦT is the
colored (triplet) Higgs and ΦD is the SM (doublet) Higgs.
Since the color symmetry is unbroken in the SM vacuum,
hΦTi ¼ 0. The SM Higgs vacuum expectation value (VEV)
is hΦDi ¼ 246 GeV. The GUT Higgs field breaks the GUT
symmetry down to the SM symmetry by giving GUT scale
masses to the X, Y, X̄, Ȳ fields. In the representations of
SUð3Þc × SUð2ÞL, the fermion fields are

10 ¼ ð1; 1Þ|fflffl{zfflffl}
ec

þ ð3̄; 1Þ|fflffl{zfflffl}
uc

þ ð3; 2Þ|fflffl{zfflffl}
Q¼ðu;dÞL

;

5̄ ¼ ð3̄; 1Þ|fflffl{zfflffl}
dc

þ ð1; 2Þ|fflffl{zfflffl}
L¼ðe;νeÞL

: ð3Þ

In the supersymmetric SUð5Þ GUT, there are two Higgs
doublets H1 ≡Hd and H2 ≡Hu ⊃ ΦD. The field contents
of the minimal SUð5Þ model are one vector supermultiplet
in 24 and five kinds of chiral supermultiplets:

(i) Σ in 24 (GUT Higgs),
(ii) H in 5 (including Hu),
(iii) H̄ in 5̄ (including Hd),
(iv) NF families of χij in 10 (includingQ, uc and ec), and
(v) NF families of ηi in 5̄ (including L and dc).

The inflationary model we discuss involves only Σ, H, and
H̄; we will neglect the vector multiplet 24 and the chiral
multiplets χij (10) and ηi (5̄) below.

A. Superpotential for SUð5Þ GUT Higgs inflation

We consider the GUT superpotential given by

W ¼ H̄ðμþ ρΣÞH þm
2
TrðΣ2Þ þ λ

3
TrðΣ3Þ; ð4Þ

where μ, ρ, m, λ are real constant parameters. The scalar
component of Σ is a traceless 5 × 5 matrix Σi

j. For the
(almost) canonical Kähler metric the potential constructed
from the second and the third terms of Eq. (4) has three
distinct vacua:

Σi
j ¼ 0;

Σi
j ¼

m
3λ

diagð1; 1; 1; 1;−4Þ;

Σi
j ¼

m
λ
diagð2; 2; 2;−3;−3Þ: ð5Þ

The first vacuum corresponds to the unbroken SUð5Þ, the
second corresponds to the spontaneous symmetry breaking
SUð5Þ → SUð4Þ ×Uð1Þ, and the third one to SUð5Þ →
SUð3Þ × SUð2Þ ×Uð1Þ. Obviously, for the SM particle
physics to be realized after inflation we need the last
configuration of the Σ field. We use a singlet chiral
superfield S to write

Σ ¼
ffiffiffiffiffi
2

15

r
S diag

�
1; 1; 1;−

3

2
;−

3

2

�
: ð6Þ

It can be easily verified that TrðΣ2Þ¼ S2, TrðΣ3Þ¼− 1ffiffiffiffi
30

p S3,

TrðΣ†ΣÞ¼ jSj2, etc. Writing the 5 and 5̄Higgs multiplets as

H ¼
�
Hc

Hu

�
; H̄ ¼

�
H̄c

Hd

�
; ð7Þ
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in which the bosonic parts of Hc and Hu are ΦT and ΦD in
Eq. (2), the superpotential becomes

W ¼
�
μþ

ffiffiffiffiffi
2

15

r
ρS

�
H̄cHc þ

�
μ −

ffiffiffiffiffi
3

10

r
ρS

�
HuHd

þ 1

2
mS2 −

λ

3
ffiffiffiffiffi
30

p S3: ð8Þ

In the GUT scale the SM Higgs field is almost massless,
requiring

μ −
ffiffiffiffiffi
3

10

r
ρhSi ¼ 0: ð9Þ

The color Higgs fields must have vanishing VEVs, hH̄ci ¼
hHci ¼ 0 since the color symmetry is unbroken throughout
the history. They are expected to have GUT scale masses
and hence

μþ
ffiffiffiffiffi
2

15

r
ρhSi≃MGUT ¼ 2 × 1016 GeV: ð10Þ

The conditions (9) and (10) lead to μ≃ ρhSi≃MGUT.
Near the SM vacuum (Hc ¼ H̄c ¼ 0, Hu, Hd ≪ MGUT)

we further impose a stationarity condition

δW
δS

¼ S

�
m −

λffiffiffiffiffi
30

p S

�
¼ 0: ð11Þ

Since hSi ≠ 0, we must have

m −
λffiffiffiffiffi
30

p hSi ¼ 0: ð12Þ

Denoting ~v≡ hSi, the conditions (9) and (12) give

μ ¼
ffiffiffiffiffi
3

10

r
ρ ~v; m ¼ λ ~vffiffiffiffiffi

30
p : ð13Þ

In the Higgs doublets the charged components can be
consistently set to zero,

Hu ¼
�

0

H0
u

�
; Hd ¼

�
H0

d

0

�
: ð14Þ

Recalling that the contraction of the SUð2Þ doublets uses
the SUð2Þ invariant

iσ2 ¼
�

0 1

−1 0

�
;

we have HuHd ¼HT
uiσ2Hd ¼−H0

uH0
d. With Hc ¼ H̄c ¼ 0,

the superpotential (8) now reads

W ¼
ffiffiffiffiffi
3

10

r
ρðS − ~vÞH0

uH0
d þ

1

2
mS2 −

m
3~v

S3: ð15Þ

This is the superpotential we shall use for the inflation-
ary model.

B. The cubic Kähler model

For successful cosmological inflation the inflaton poten-
tial needs to satisfy at least the following three conditions:
(i) it is sufficiently flat so that slow roll takes place;
(ii) it exhibits no tachyonic instabilities in the directions
orthogonal to the desired trajectory; (iii) the inflaton
trajectory settles at the SM vacuum after the slow roll.
The difficulty to achieve (i) within supergravity is known as
the η problem. One way to circumvent the η problem is to
use a noncanonical Kähler potential,3 and here we use,
following Ref. [13], the Kähler potential K ¼ −3 lnΦ,
where

Φ ¼ 1 −
1

3
ðTrΣ†Σþ jHj2 þ jH̄j2 þ � � �Þ

−
γ

2
ðH̄H þH†H̄†Þ þ ~ω

3
ðTrΣ†Σ2 þ TrΣ†2ΣÞ

þ ζ

3
ðTrΣ†ΣÞ2: ð16Þ

The reduced Planck mass MP ¼ 2.44 × 1018 GeV is set to
unity. As we shall see, the conditions (ii) and (iii) abovewill
also be fulfilled if the real parameters ~ω and ζ are chosen
appropriately. The ellipsis in the first line of Eq. (16)
represents the canonical terms for the superfields other than
Σ ¼ 24, H ¼ 5, H̄ ¼ 5̄. Canonical here is in the sense
of the superconformal framework [27–34], in which the
Kähler metric constructed from the superconformal Kähler
potential K≡ −3Φ becomes trivial. The terms in the
second and the third lines are noncanonical. The term
proportional to γ renders the potential to be flat, in a manner
analogous to the nonminimal coupling in the SM Higgs
inflation model. The quartic term (proportional to ζ)
controls the tachyonic instability, and the cubic terms
(proportional to ~ω) control the symmetry of the potential
so that the SM vacuum can be reached after the slow roll.
The function Φ can be written using the component
fields as

3The η problem states that assuming the canonical Kähler
potential, a generic superpotential and F-term supersymmetry
breaking, the slow-roll parameter η can never be ≪ Oð1Þ.
Therefore it may be avoided also by considering D-term
supersymmetry breaking or using a specially engineered form
of the superpotential. See Ref. [26] for a review.
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Φ ¼ 1 −
1

3
ðjSj2 þ jH0

uj2 þ jH0
dj2Þ þ

γ

2
ðH0

uH0
d þ c:c:Þ

−
~ω

3
ffiffiffiffiffi
30

p ðS̄S2 þ S̄2SÞ þ ζ

3
jSj4: ð17Þ

1. Jordan frame

To proceed, we consider the D-flat direction along
Hu-Hd and parametrize it by a superfield φ as

H0
u ¼

1ffiffiffi
2

p φ; H0
d ¼

1ffiffiffi
2

p φ: ð18Þ

Further, it is convenient to rescale the scalar components of
S and φ as4

S ¼ 1ffiffiffi
2

p s; φ ¼ 1ffiffiffi
2

p h: ð19Þ

We consider only the real directions of s and h, as the
potential [VðϕaÞ below] is stable along the real directions
of these complex fields [13]. With this normalization, the
scalar-gravity part of the Lagrangian density takes the
following form:

LJ ¼ ffiffiffiffiffiffiffiffi
−gJ

p �
ΦRJ

2
−
1

2
gμνJ ∂μh∂νh −

κ

2
gμνJ ∂μs∂νs − VJ

�
;

ð20Þ

where gμνJ is the inverse of the Jordan frame spacetime
metric gJμν, RJ is the scalar curvature in the Jordan frame
and

Φ ¼ 1 −
1

6
s2 þ 1

6
ωs3 þ ζ

12
s4 þ

�
γ

4
−
1

6

�
h2; ð21Þ

κ ≡ 1 − 2ωs − 2ζs2; ð22Þ

ω≡ −
~ωffiffiffiffiffi
15

p : ð23Þ

The scalar potential VJ in the Jordan frame is identified as
the F-term potential

VF ¼
WiðKW̄j̄ − 3Kj̄W̄Þ − 3WðKiW̄j̄ − 3Kij̄W̄Þ

KKij̄ −KiKj̄
;

ð24Þ

where the subscripts i and j̄ denote differentiation with
respect to the chiral and antichiral superfields. In terms of
the component fields its explicit form is

VJ ¼
3

40

�
ρ2ðs − vÞ2h2 þ 1

κ

�
ρh2

2
−
λ

3
sðs − vÞ

�
2
	
−
f2ζsþω

κ ½ρ
2
h2 − λ

3
sðs − vÞ�s2 þ ρvh2 − λ

3
vs2 − 3γρh2ðs − vÞg2

80½4þ γð3
2
γ − 1Þh2 þ 2ζþω2

6κ s4�
; ð25Þ

where we have introduced v≡ ffiffiffi
2

p
~v.

2. Einstein frame

To discuss cosmology it is convenient to bring the
Lagrangian (20) to the Einstein frame in which the fields
are minimally coupled to the gravity. By a Weyl rescaling
of the metric gEμν ¼ ΦgJμν the Lagrangian in the Einstein
frame reads

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
Gabgμν∂μϕ

a∂νϕ
b − VðϕaÞ

�
; ð26Þ

where ϕa ¼ ðs; hÞ and a ¼ 1, 2. The scalar potential
is V ¼ Φ−2VJ. In the Einstein frame the kinetic term
for the scalar fields involves a nontrivial field space
metric

Gss ¼
ð1þ ξh2Þκ þ 1

24
ðω2 þ 2ζÞs4

Φ2
;

Gsh ¼ Ghs ¼ −
ξhsð1 − 3

2
ωs − ζs2Þ

Φ2
;

Ghh ¼
6ξ2h2 þ Φ

Φ2
: ð27Þ

The Christoffel symbol for the field space is computed from
the metric Gab as

4The normalization of s, ω, v differs from Ref. [13] by a factor
of

ffiffiffi
2

p
: sthere ¼ shere=

ffiffiffi
2

p
, ωthere ¼ ωhere=

ffiffiffi
2

p
, vthere ¼ ~vhere ¼

vhere=
ffiffiffi
2

p
. The superconformal Kähler potential K is written in

Ref. [13] as K. Note that K ¼ −3 lnð−K=3Þ in this paper.
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Γs
ss ¼

ðωþ 2ζsÞ½s2 − 12ð1þ ξh2 þ 6ξ2h2Þ�− ð1−ωsÞωs2
12C

þ sð1− 3
2
ωs− ζs2Þ
3Φ

;

Γs
sh ¼ −

ξh
Φ
;

Γs
hh ¼ −

ð1þ 6ξÞð1− 3
2
ωs− ζs2Þs

6C
;

Γh
ss ¼ −

ðζþ 1
2
ω2Þξhs2
C

;

Γh
sh ¼

ð1− 3
2
ωs− ζs2Þs
6Φ

;

Γh
hh ¼

12ð1− ξh2Þ− 2ð1−ωsÞs2 þ ζs4

12hΦ

þ 12ð2ωs− 1Þ þ ð24− s2Þζs2 − 1
2
ω2s4

12hC
; ð28Þ

where

ξ≡ γ

4
−
1

6
; ð29Þ

and

C≡ Φ3 detGab

¼ ð1þ ξh2 þ 6ξ2h2Þκ þ ð2ζ þ ω2Þs4
24

: ð30Þ

The scalar curvature of the field space is

R ¼ −
1

3
−

Φ2

6C2
ð1þ 6ξÞð2ζ þ ω2Þs2: ð31Þ

In two dimensions the Riemann and the Ricci curvature
tensors are written using the scalar curvature as Ra

bcd ¼
1
2
RðδacGbd − δadGbcÞ and Rab ¼ 1

2
RGab.

C. The sextic Kähler model

In the above setup we included the noncanonical term
proportional to ~ω in the Kähler potential (16). The effect of

this term is to enlarge the parameter space so that the
inflaton trajectory is allowed to terminate at the SM
vacuum ðs; hÞ ¼ ðv; 0Þ [13]. For the same purpose we
may alternatively consider the following Kähler potential:

Φ ¼ 1 −
1

3
ðTrΣ†Σþ jHj2 þ jH̄j2 þ � � �Þ

−
γ

2
ðH̄H þH†H̄†Þ

þ ζ

3
ðTrΣ†ΣÞ2 þ ~ω

3
ðTrΣ†ΣÞ3: ð32Þ

The term proportional to ~ω gives a sextic term in S,

Φ ¼ 1 −
1

3
ðjSj2 þ jH0

uj2 þ jH0
dj2Þ þ

γ

2
ðH0

uH0
d þ c:c:Þ

þ ζ

3
jSj4 þ ~ω

3
jSj6: ð33Þ

We take this as our second option for the Kähler potential
that will be used in the supergravity embedding of the
SUð5Þ GUT model.

1. Jordan frame

Using the same parametrization of the D-flat direction
along Hu-Hd and the same normalization of the S-field, we
find that the Lagrangian in the Jordan frame takes the same
form (20), but now with

Φ ¼ 1 −
1

6
s2 þ ζ

12
s4 þ ω

6
s6 þ ξh2; ð34Þ

κ ≡ 1–2ζs2 − 9ωs4; ð35Þ

where we have used

ω≡ ~ω

4
; v≡ ffiffiffi

2
p

~v: ð36Þ

Again, we consider s and h to be real since the potential is
stable along the real directions of s and h. The scalar
potential in the Jordan frame reads

VJ ¼
3

40

�
ρ2ðs − vÞ2h2 þ 1

κ

�
ρ

2
h2 −

λ

3
sðs − vÞ

�
2
	
−
f2ðζþ6ωs2Þ

κ ½ρ
2
h2 − λ

3
sðs − vÞ�s3 þ ρvh2 − λ

3
vs2 − 3γρh2ðs − vÞg2

80½4þ γð3
2
γ − 1Þh2 þ ζþ8ωs2−ζωs4

3κ s4�
:

ð37Þ

2. Einstein frame

After the Weyl transformation of the spacetime metric gEμν ¼ ΦgJμν the Lagrangian in the Einstein frame is written in the
form of Eq. (26), with the scalar potential

V ¼ Φ−2VJ ð38Þ
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using Eq. (37) and the metric of the field space

Gss ¼
ð1þ ξh2Þκ þ 1

12
ðζ þ 8ωs2 − ζωs4Þs4
Φ2

;

Gsh ¼ Ghs ¼ −
ξhsð1 − ζs2 − 3ωs4Þ

Φ2
;

Ghh ¼
6ξ2h2 þ Φ

Φ2
: ð39Þ

The Christoffel symbol of the field space is

Γs
ss ¼

ð1 − ζs2 − 3ωs4Þs
3Φ

þ ðζ þ 12ωs2 − 2ωζs4Þs3 − 12sð1þ ξh2 þ 6ξ2h2Þðζ þ 9ωs2Þ
6C

;

Γs
sh ¼ −

ξh
Φ

;

Γs
hh ¼ −

ð1þ 6ξÞð1 − ζs2 − 3ωs4Þs
6C

;

Γh
ss ¼ −

ξhs2ðζ þ 12ωs2 − 3ζωs4Þ
C

;

Γh
sh ¼

ð1 − ζs2 − 3ωs4Þs
6Φ

;

Γh
hh ¼

12ð1 − ξh2Þ − 2s2 þ ζs4 þ 2ωs6

12hΦ
þ −12þ ð24 − s2Þζs2 þ ωs4ð108 − 8s2 þ ζs4Þ

12hC
; ð40Þ

where

C≡ Φ3 detGab ¼ ð1þ ξh2 þ 6ξ2h2Þκ þ ðζ þ 8ωs2 − ωζs4Þs4
12

: ð41Þ

The scalar curvature of the field space is

R ¼ −
1

3
−

Φ2

3C2
ð1þ 6ξÞðζ þ 12ωs2 − 3ωζs4Þs2: ð42Þ

D. Higgs inflation in SUð5Þ GUT

We have seen above that assuming supergravity embed-
ding with the Kähler potential either in the form of Eq. (16)
or Eq. (32), the SUð5Þ GUT model with the superpotential
(4) leads to a system of two scalar fields described by the
Lagrangian (26). Note that in the limit of trivial s-field
dynamics, that is, if we set s ¼ v ¼ 0, the Jordan frame
Lagrangian (20) becomes

LJ ¼ ffiffiffiffiffiffiffiffi
−gJ

p �
1

2
ΦRJ −

1

2
gμνJ ∂μh∂νh −

3

160
ρ2h4

�
; ð43Þ

with Φ ¼ 1þ ξh2. This is the Lagrangian of the non-
minimally coupled single-field inflation model with a
quartic self-coupling, which has attracted much attention
recently. This model predicts a small tensor-to-scalar ratio
compatible with the Planck and the WMAP observations;

see e.g. Ref. [35]. Since the field h above is identified as
(the D-flat component of) the SM Higgs field, the model
(26) is considered as a realization of the Bezrukov-
Shaposhnikov scenario of SM Higgs inflation [4,5] within
supersymmetric SUð5Þ grand unification. The s field is a
component of the GUT Higgs field and, since the GUT
symmetry is broken in our world, phenomenological
consistency does not allow the single-field limit
s ¼ v ¼ 0. Hence an honest multifield analysis is man-
datory if we are to make a prediction based on this model.
In the next section we present the results of the numerical
study of the multifield inflationary dynamics. The techni-
calities of the formalism we use are summarized in the
Appendix.

III. NUMERICAL RESULTS

In this section we discuss the multifield dynamics of
the inflationary model introduced in the previous section.
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We first comment on the shape of the inflaton potential
when ω ¼ ~ω ¼ 0 in Eq. (16) or Eq. (32) (in the ω ¼ 0 limit
these two models are identical). The potential in this case is
not phenomenologically viable as the SM vacuum cannot
be reached after inflation. We then investigate the cases for
nonzero ω, first in the presence of the cubic term (16) and
then the sextic term (32) of S in the Kähler potential; we
will see that phenomenologically viable inflaton trajecto-
ries are allowed in both cases. Next, cosmological
parameters, including the scalar spectral index, the
tensor-to-scalar ratio, the isocurvature fraction and non-
Gaussianity are computed. The formalism we use in our
numerical code5 is summarized in the Appendix. For
computation of the non-Gaussianities we use another set
of numerical code developed in Refs. [24,38].

A. Inflaton potential of the SUð5Þ GUT model

The inflationary model we study here includes five
tunable parameters: ρ, λ, ξ, ω, and ζ. The first two of
them concern the physics of grand unification and are
Oð1Þ. For the sake of concreteness we shall set them to
ρ ¼ λ ¼ 0.5 in the following analysis. The inflationary
dynamics is not very sensitive to the values of ρ and λ [13].
The parameter ξ corresponds to the nonminimal coupling in
the case of the SM Higgs inflation model and is crucial for
the slow-roll dynamics. We fix this parameter by the Planck
normalization of the fluctuation amplitude [1,39]

As ¼ 2.207 × 10−9 ðTT;TE;EEþ lowPÞ: ð44Þ

The number of e-folds between the horizon crossing of the
cosmic microwave background (CMB) scale and the end of
inflation is chosen to be Ne ¼ 60. For a given inflaton
trajectory, the end of inflation is characterized by the
condition ϵ ¼ 1, with the slow-roll parameter ϵ defined
in Eq. (A27). Integrating the Hubble parameter backward in

time from there along the inflaton trajectory for Ne ¼ 60
we locate the horizon crossing of the CMB scale. Solving
the evolution of the fluctuations forward in time from there
we fix the ξ parameter by the condition that the adiabatic
mode at the end of inflation is normalized by the Planck
observation (44). Note that in multifield inflation the
amplitude of the adiabatic mode at the end of inflation
may differ from the value at the horizon crossing, due to the
isocurvature effects.
To see the effects of the remaining two parameters ζ and

ω, let us look at the shape of the potential (Fig. 1, the left
panel) when ζ ¼ ω ¼ 0. As our focus is on Higgs inflation
realized in supersymmetric GUT, we are interested in the
inflaton trajectory that lies along the direction of h.
However, the potential is seen to exhibit tachyonic insta-
bility in the direction of the s field and hence slow roll in
the h direction will not take place. The instability is
removed by including a quartic term ζjSj4 in the Kähler
potential (Fig. 1, the center and the right panels). In general,
such higher terms can exist in supergravity. While a larger
value of ζ renders the inflaton potential more stable, there
exists an upper bound of ζ in our context, as the zeros of the
Kähler metric κ ¼ 1–2ζs2 introduce singularities of the
potential at s ¼ �1=

ffiffiffiffiffi
2ζ

p
, beyond which the supergravity

Lagrangian is unreliable. As the SM vacuum lies at s ¼
v ∼MGUT in our model, a scenario of inflation that ends up
in the SM vacuum requires ζ < 1=2v2 (≃7 × 103, assum-
ing v≃ 2 × 1016 GeV). Within this range of ζ, no inflaton
trajectories terminating in the SM vacuum can be found.
This problem may be solved by modifying the Kähler
potential further, with the terms parametrized by ω [13]. In
the following we study the two cases explained in Sec. II,
namely the model (16) with an additional cubic S term, and
the one (32) with an additional sextic S term.

B. The cubic Kähler model

In this case the nontrivial component of the Kähler
metric κ is modified as in Eq. (22). Its zeros are shifted to
s ¼ s� ≡ ð−ω�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ζ þ ω2

p
Þ=2ζ. These are the locations

FIG. 1. The shape of the potential for ζ ¼ 0 (left), ζ ¼ 103 (center), and ζ ¼ 104 (right) when the ω parameter is fixed to zero. The
black square and the red circle are respectively the GUT vacuum and the SM vacuum. The ξ parameter is chosen to be ξ ¼ 5285, which
yields the Planck-normalized scalar power spectrum when ω ¼ −116 and ζ ¼ 104.

5To cross-check and debug our numerical code we used
TRANSPORTMETHOD [36] and MULTIMODECODE [37].
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of the singularity walls that are used to tame the tachyonic
instabilities. It is easy to see that s� are real when
ζ > −ω2=2. As the GUT vacuum and the SM vacuum
must be both between the walls, we impose
s− < 0 < v < sþ, leading to ζ > 0 and ω < 1

2v − ζv. The
purpose of introducing the ω parameter has been to shift the
walls so that the SM vacuum is favored over the GUT
vacuum; this implies ω < 0. Finally, sþ − s− ≪ 1 to cure
the tachyonic instabilities, which leads to ζ ≫ 1.

1. Background solutions

As our interest is in the Higgs inflation model realized in
GUT, we focus on inflaton trajectories which are suffi-
ciently straight along the SM Higgs h direction in the large-
field region. For this a large value of ζ is needed, and as an
example of large enough ζ we choose ζ ¼ 10 000. As
mentioned earlier, we fix the value of ξ using the Planck
normalization of the density fluctuations. In doing so we
solve the background equation fully numerically without
using the slow-roll approximation. See Appendixes A 1
and A 3 for the details of the procedure. For ζ ¼ 10 000 and
ω ¼ −116 (the reason for choosing this value of ω is
explained below), we find that the Planck normalization
(44) gives ξ ¼ 5285. We use this trajectory as a reference
case for the cubic Kähler model.

To study the behavior of background solutions in the
vicinity of this reference trajectory, we first vary the value
of ω, keeping the values of ζ and ξ fixed. We find four types
of numerical solutions for the inflaton trajectories, as
shown in Fig. 2. In the figure, the initial value of h is
chosen to be h ¼ hinit ¼ 0.12 (which yields more than 60
e-folds in the reference case). The first type of trajectory,
which we call the LW-type solutions, makes a turn after the
slow roll and escapes through a hole in the s ¼ s− wall, as
depicted in Fig. 2(a). The second type (the GUT type)
reaches the GUT vacuum after the slow roll, as shown in
Fig. 2(b). The third type, which we call the SM type, is the
phenomenologically viable one that reaches the SM vac-
uum s ¼ v after the slow roll, as shown in Fig. 2(c). The
last one, the RW type, is similar to the first but escapes
through the wall at s ¼ sþ, as shown in Fig. 2(d).
We next change the value of the ζ parameter. The left

panel of Fig. 3 shows how the four types of numerical
solutions above are distributed when both ζ and ω are
varied. For the ξ parameter we use the reference value ξ ¼
5285 throughout. The initial value for h is the same as
above, hinit ¼ 0.12, and the initial value of s is chosen at a
local minimum of the potential along the h ¼ hinit line. The
solutions of the LW type and the GUT type are seen to be
mixed, and so are the solutions of the SM type and the
RW type. In contrast, there is a clear line separating the

FIG. 2. Four types of inflaton trajectories in the cubic Kähler model found numerically: (a) escape through the left wall, (b) settle in the
GUT vacuum, (c) settle in the SM vacuum, (d) escape through the right wall from the left. The ω parameters for (a), (b), (c) and (d) are
respectively ω ¼ −100, −114, −116 and −200. The parameter ζ is chosen to be ζ ¼ 104 for all cases.

FIG. 3. The four types of numerical solutions with different fates (left) and the e-folding number (right) for numerical solutions in the
parameter range 2000 ≤ ζ ≤ 10000 and −200 ≤ ω ≤ 0. These parameters are changed with the step size Δζ ¼ 100, Δω ¼ 1.
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solutions LWþ GUT and the solutions SMþ RW, which
is found to be

ω ≈ −0.0115ζ − 1.00: ð45Þ

The right panel of Fig. 3 shows the number of e-folds
between h ¼ hinit ¼ 0.12 and h ¼ hend at the end of the
slow roll, characterized by ϵ ¼ 1. Away from the separatrix
(45), the number of e-folds is seen to decrease; for such a
trajectory, a larger value of hinit is required to solve the
horizon problem. The escape solutions LW and RW are
numerical artifacts and should not be considered as
(classical) physical solutions. At the holes in the walls,
the factor

½1
2
ρh2 − 1

3
λsðs − vÞ�2
κ

ð46Þ

in the Jordan-frame potential VJ [Eq. (25)] becomes
indefinite. These holes are thus located at the points
ðs; hÞ ¼ ðs�;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λs�ðs� − vÞ=3ρp Þ. The walls are infinitely

high except exactly at these points, and as these points are
measure zero, the LW and RW solutions should respec-
tively become the GUTand the SM solutions if the step size
is made infinitesimal. Besides, the supergravity effective
Lagrangian is unreliable near the singularity walls.
As emphasized, phenomenologically viable inflaton

trajectories are those reaching the SM vacuum after the
slow roll. Since the trajectories that approach very close to
the singularity walls are unreliable, we take solutions in the
vicinity of the line (45) as benchmark cases of the cubic
Kähler model. The left panel of Fig. 3 shows that the GUT
and SM solutions become sparse as ζ becomes small,
indicating that obtaining a reliable numerical solution
becomes increasingly difficult in this parameter region.
The parameter values for the reference trajectory ξ ¼ 5285
and ðζ;ωÞ ¼ ð10000;−116Þ are chosen so that it is a SM
solution near the separatrix (45) that does not approach too
close to the singularity walls. Note that away from this
reference point, the ξ parameter for the solutions in Fig. 3 is
not strictly Planck normalized.

2. Cosmological observables

Let us now discuss the inflationary predictions for this
model. For the reasons mentioned above, we focus on the
benchmark inflaton trajectories that end up in the SM
vacuum and lie close to the separatrix line (45) in the
parameter space ðζ;ωÞ. Concretely, we choose
ω ¼ −0.0115ζ − 2.00, a line slightly below the separatrix
line (45),6 and 2000 ≤ ζ ≤ 10000. Table I shows the field
value h ¼ h� at the horizon crossing for the e-folding
Ne ¼ 60, h ¼ hend at the end of slow roll, the e-folding
number Ne between h ¼ hinit ¼ 0.12 and h ¼ hend, the
scalar and the tensor power spectra PR and PT , the scalar
spectral index ns, the tensor-to-scalar ratio r and the local-
type nonlinearity parameter flocalNL for ζ ¼ 2000, 4000,
6000, 8000, 10000. Figure 4 shows the scalar power
spectrum PR, the scalar spectral index ns, and the
tensor-to-scalar ratio r plotted against the parameter ζ. To
obtain these results, we have once again solved the back-
ground equation forward in time from the initial values,
identified the end point of inflation at which ϵ ¼ 1, solved
the background equation backward in time from the end
point of inflation to find the horizon crossing with the
Ne ¼ 60 condition, and then computed the cosmological
observables. See Appendixes A 2 and A 3 for the technical-
ities and relevant formulas. We have also computed the
power spectrum for the isocurvature mode PS, which is not
shown in the table as it is found to be exponentially
suppressed. This suppression is due to the relatively large
mass for the s field introduced by the Kähler metric; it is
found impossible to obtain a sensible inflaton trajectory
without introducing a large mass for s in this model. The
isocurvature fraction βiso is thus essentially zero for these
parameter values, which is consistent with observations [1].
As the parameter ζ is varied, the scalar power spectrum

PR changes somewhat; in view of the Planck 2015
(TTþ TEþ EEþ lowP) results [1,39]

2.133 × 10−9 ≤ PR ≤ 2.283 × 10−9ð68% C:L:Þ; ð47Þ

TABLE I. The values of the field h at the horizon crossing h� and at the end of slow roll hend, the e-folding number Ne, the scalar and
tensor power spectra PR and PT , the scalar spectral index ns, the tensor-to-scalar ratio r and the local-type nonlinearity parameter flocalNL
in the cubic Kähler model as the parameters ζ and ω are varied. The initial value of the h field is chosen to be hinit ¼ 0.12 and the
parameter ξ is fixed to 5285 using the Planck normalization of the scalar power spectrum when ðζ;ωÞ ¼ ð10000;−116Þ and e-foldings
60. The Ne in the table is the e-folding number between hinit and hend.

ζ ω h� hend Ne PR PT ns r flocalNL

10000 −117 0.1174 0.0093 63.06 2.134 × 10−9 6.570 × 10−12 0.9670 0.0031 −1.105
8000 −94 0.1174 0.0096 63.04 2.318 × 10−9 7.130 × 10−12 0.9670 0.0031 −1.271
6000 −71 0.1175 0.0102 63.00 2.537 × 10−9 7.793 × 10−12 0.9671 0.0031 −3.527
4000 −48 0.1176 0.0117 62.87 2.808 × 10−9 8.593 × 10−12 0.9671 0.0031 −5.341
2000 −25 0.1181 0.0155 62.35 3.180 × 10−9 9.574 × 10−12 0.9674 0.0030 −6.894

6In our grid search, the parameter values along the separatrix
line (45) do not always give rise to the SM-type solutions.
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only the range ζ ≳ 8356.9 is observationally consistent but
this certainly does not mean that smaller values of ζ are not
allowed in this model, as we have fixed the ξ parameter
using the Planck normalization of PR at ðζ;ωÞ ¼
ð10000;−116Þ. The spectral index ns and the tensor-to-
scalar ratio r are, in contrast, found to be extremely
insensitive to the change of ζ. These values of ns and r
are well inside the Planck constraints [1,39],

ns ¼ 0.9652� 0.0047 ð68% C:L:Þ; ð48Þ

as well as the BICEP2/Keck Array/Planck results (1).
The nonlinearity parameter flocalNL (the local-type non-
Gaussianity; see Ref. [24] for the details of our numerical
code based on the backward δN formalism) is found to be
flocalNL ∼Oð1Þ, in the parameter region of interest. For
ζ ≲ 6.3 × 103, the nonlinearity parameter is outside the
Planck constraints [40],7

flocalNL ¼ 2.5� 5.7 ð68% C:L:Þ: ð49Þ

3. Results for adjusted ξ

In the computation above we used ξ ¼ 5285 fixed by the
Planck normalization of the scalar power spectrum (44) at
the reference point ðζ;ωÞ ¼ ð10000;−116Þ. To see the
prediction of the model with adjusted values of ξ for which
the scalar power spectrum is Planck-normalized at every
point in the ðζ;ωÞ parameter space, we solve the back-
ground and perturbation equations iteratively in the range
of 2000 ≤ ζ ≤ 10000, −200 ≤ ω ≤ 0, for different values
of ξ until the condition (44) is satisfied. The separatrix line
(45) is found to be nearly unchanged by this adjustment of
ξ; the model is insensitive to a small change of the
nonminimal coupling parameter ξ once the potential is
flattened by a sufficiently large ξ.
The prediction for ns, r and flocalNL as well as the values of

ξ along ω ¼ −0.0115ζ − 2.00, a line slightly below the
separatrix line (45), are shown in Table II for different
values of ζ. In Fig. 5 the scalar spectral index ns and the

tensor-to-scalar ratio r are shown as a function of ζ.
Interestingly, the cosmological observables in the adjusted
ξ case are almost indistinguishable from those in the fixed ξ
case; compare Fig. 4 and Fig. 5. This feature may be
understood as a consequence of the attractor behavior of the
Higgs inflation type model (see also Refs. [41–43]).

C. The sextic Kähler model

Let us next consider the other case in which the Kähler
potential includes the noncanonical sextic term. The non-
trivial component of the Kähler metric is Eq. (35), which
vanishes when s2 ¼ ð−ζ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ 9ω

p
Þ=9ω. Thus κ ¼ 0 at

four values of s which are (i) neither real nor pure
imaginary when ω < −ζ2=9; (ii.a) all pure imaginary when
−ζ2=9 < ω < 0 and ζ < 0; (ii.b) all real when −ζ2=9 <
ω < 0 and ζ > 0; (iii) two real and two pure imaginary
when ω > 0. To remove the tachyonic instabilities in the s
direction, we must have κ ¼ 0 at least two real s’s (these are
the locations of the singularity walls). Thus the parameter
regions that are of our interest are (ii.b) −ζ2=9 < ω < 0,
ζ > 0 and (iii) ω > 0. We focus on the (iii) case below.

1. Background solutions

Figure 6 shows the behavior of the potential as the
parameter ω is varied, when ζ is fixed to zero. Similarly to
the cubic Kähler case, we choose the reference point
ζ ¼ −3000 and ω ¼ 107 in the parameter space, for which

FIG. 4. The scalar power spectrum, the scalar spectral index and the tensor-to-scalar ratio for the cubic Kähler model with the
parameter ξ fixed to 5285.

TABLE II. The values of the parameter ξ, the scalar spectral
index ns, the tensor-to-scalar ratio r and the local-type non-
linearity parameter flocalNL in the cubic Kähler model as the
parameters ζ and ω are varied. The initial value of the h field
is chosen to be hinit ¼ 0.12 and the parameter ξ is adjusted to
yield the Planck normalization of the scalar power spectrum.

ζ ω ξ ns r flocalNL

10000 −117 5209 0.9670 0.0031 −1.056
8000 −94 5417 0.9670 0.0031 −1.811
6000 −71 5670 0.9671 0.0031 −4.048
4000 −48 5968 0.9672 0.0031 −5.893
2000 −25 6369 0.9675 0.0030 −7.1427These constraints are from the temperature data alone.
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the Planck normalization of the scalar power spectrum
gives ξ ¼ 6450. We use this as the reference value of ξ in
the sextic Kähler potential model. ω ¼ 107 is large enough
to remove the tachyonic instabilities of the potential in the
s-field direction. While ω ¼ 107 itself is large, the ωs4 term
in the Kähler metric is of the same order as the ζs2 term.
Thus the unitarity problem (if it exists) is not more serious
than the original Higgs inflation model. Note that higher-
dimensional operators that may arise from the ωs6 (≪ 1)
term of the Kähler potential are Planck suppressed. For the
trajectories shown in Fig. 7, the initial value of h is chosen
to be the same as in the cubic case, h ¼ hinit ¼ 0.12.

To study the behavior of the background solutions near
the ðζ;ωÞ ¼ ð−3000; 107Þ solution, we solved, like in the
cubic Kähler potential case, the background equations of
motion fully numerically without the slow-roll approxima-
tion. Similarly to the cubic case, we have found four types
of inflaton trajectories LW, GUT, SM and RW. Examples
of these are shown in Fig. 7. The distributions of these
four types of numerical solutions in the parameter range
of −3200 ≤ ζ ≤ −400 and 105 ≤ ω ≤ 107 are shown in
the left panel of Fig. 8. A clear separation between the
LWþ GUT solutions and the SMþ RW solutions can be
seen; the separatrix line is found to be

FIG. 6. The shape of the sextic Kähler potential for ω ¼ 0 (left), ω ¼ 106 (center), and ω ¼ 107 (right) when the ζ parameter is fixed to
zero. The black square and the red circle are respectively the GUT vacuum and the SM vacuum. The ξ parameter is chosen to be
ξ ¼ 6450, which yields the Planck-normalized scalar power spectrum when ω ¼ 107 and ζ ¼ −3000.

FIG. 7. Four types of inflaton trajectories: (a) escape through the left wall, (b) settle at the GUT vacuum, (c) settle at the SM vacuum,
(d) escape through the right wall. The ζ parameters for (a), (b), (c) and (d) are respectively ζ ¼ −2800, −2964, −3050 and −3400. The
parameter ω is ω ¼ 107 for all cases.

FIG. 5. The scalar spectral index and the tensor-to-scalar ratio for the cubic Kähler model with adjusted ξ values.
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ω ≈ −3.38 × 103ζ − 4.33 × 104: ð50Þ

The right panel of Fig. 8 shows the number of e-folds
between hinit ¼ 0.12 and hend at which the slow-roll
parameter ϵ becomes unity. Phenomenologically viable
trajectories are those reaching the SM vacuum after the
slow roll; they are below the separatrix (50). As emphasized
in Sec. III B 1, the escaping behavior of the LW and RW
solutions are numerical artifacts and they should be
considered actually as the GUT-type and the SM-type
solutions, respectively.

2. Cosmological observables

To compute the cosmological observables in this model,
we adopt the same methodology as explained in Sec. III B 2.
We focus on the parameter region near the separatrix (50) and
change the value of ω. Concretely, we choose ζ ¼ −2.96 ×
10−4ω − 112.8 and 4.3 × 105 ≤ ω ≤ 1.0 × 107. This line is
slightly below the separatrix line (50), as the parameters
exactly on the separatrix do not always give the SM-type
solutions in the grid search; we are only interested in the SM-
type trajectories that are phenomenologically viable. The
lower value ofω ¼ 4.3 × 105 is chosen to yield at least 60 e-
foldings with our initial conditions hinit ¼ 0.12 (see Fig. 8).
In Fig. 9 the scalar power spectrum PR, its spectral

index ns and the tensor-to-scalar ratio r are plotted for

different values of ω (ζ is chosen to be on the line above
and ξ is fixed). We again found that the isocurvature
fraction βiso is negligible, for the same reason as in the
cubic Kähler potential case. Table III shows the field value
of h at the horizon crossing, the value of h at the end of
inflation, the e-folding number Ne between h ¼ hinit and
at the end of the slow roll, the power spectra PR and PT ,
the scalar spectral index ns, the tensor-to-scalar ratio r and
the local-type nonlinearity parameter flocalNL for several
sample values of ðζ;ωÞ. The values of ns and r in the table
are well within the constraints of the latest Planck experi-
ment results [39] as well as the BICEP2/Keck Array/
Planck joint results [1]. For lower values of ω the scalar
power spectrum is seen to increase and goes outside the
Planck constraints (47) for ω≲ 52.4 × 105, but this is not
meant to be the lower bound of this parameter as the ξ
parameter may be readjusted [recall that we have fixed
ξ ¼ 6450 at ðζ;ωÞ ¼ ð−3000; 107Þ using the Planck nor-
malization]. The local-type nonlinearity parameter is
flocalNL ∼Oð1Þ throughout the parameter region of interest
and is marginally within the present observational con-
straints (49).

3. Results for adjusted ξ

We have also studied the prediction of the model for
adjusted values of the ξ parameter so that the scalar power

FIG. 8. The four types of numerical solutions with different fates (left) and the e-folding number (right) for numerical solutions in the
parameter range −3200 ≤ ζ ≤ −400 and 105 ≤ ω ≤ 107. These parameters are changed with the step size Δζ ¼ 12, Δω ¼ 1.1 × 105.

FIG. 9. Scalar power spectrum, scalar spectral index and tensor-to-scalar ratio for the sextic Kähler model with the parameter fixed
to 6450.
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spectrum is always Planck normalized. In the range of
−3200 ≤ ζ ≤ −400, 105 ≤ ω ≤ 107 we solved the back-
ground and perturbation equations iteratively for different
values of ξ until the condition (44) was satisfied. The
separatrix line (50) is nearly unchanged, reflecting the
attractor feature of the nonminimally coupled model.
Table IV shows the cosmological observables and the

values of ξ along ζ ¼ −2.96 × 10−4ω − 112.8, a line
slightly below the separatrix line (50), for different values
of ω. Figure 10 shows the scalar spectral index ns and the
tensor-to-scalar ratio r as functions of ω. Similarly to the
cubic Kähler model case, the results for the adjusted ξ case
are almost indistinguishable from the fixed ξ case; see
Fig. 9 and Fig. 10.

D. Summary

We have seen in this section the behavior of the back-
ground inflaton trajectories and the prediction for the
cosmological observables in the inflationary scenarios
introduced in the previous section. For a systematic param-
eter scan, we first fixed the ξ parameter by the Planck
normalization of the scalar power spectrum at special points
in the parameter spaces—ðζ;ωÞ ¼ ð10000;−116Þ for the
cubic Kähler case and ðζ;ωÞ ¼ ð−3000; 107Þ in the sextic

Kähler case—in order to see the effects of the ζ and ω
parameters. We then varied the parameters ζ and ω, in the
range of 2000 ≤ ζ ≤ 10000, −200 ≤ ω ≤ 0 for the cubic
Kähler model, and −3200 ≤ ζ ≤ −400, 105 ≤ ω ≤ 107 for
the sextic Kähler model. In both cases we obtained four
types of numerical solutions: two types of runaway solutions
LW and RW, and the one that ends up in the GUT vacuum
and the other that ends up in the SM vacuum. The runaway
solutions are due to the (unavoidable) pathological behavior
of the numerical integration near the Kähler metric singu-
larities; these walls, while infinitely high, become infini-
tesimally thin near the measure-zero pin holes. Since a
classical trajectory cannot penetrate such a wall, these
runaway solutions should be regarded as numerical artifacts.
The observable parameters predicted in the cubic and the

sextic Kähler models are quite similar. We have selected the
phenomenologically viable and numerically well-behaved
sets of background inflaton trajectories on the SM side of
the separatrix between the GUT- and SM-type solutions in
the ζ-ω plane. We then computed the scalar power spectra
in the adiabatic and the isocurvature modes, the tensor
power spectrum, the scalar spectral index, the tensor-to-
scalar ratio, and the local-type nonlinearity parameter for
these inflaton trajectories. A well-known attractive feature
of the Bezrukov-Shaposhnikov scenario of Higgs inflation
is that the prediction for the scalar spectral index and the
tensor-to-scalar ratio agrees remarkably well with the
present observations [1,39], once the nonminimal coupling
parameter ξ is fixed by the scalar power spectrum. This
feature is found to persist in our supersymmetric GUT
embedding, in both the cubic and sextic Kähler potential
cases. Supersymmetric GUT embedding necessarily
involves multiple scalars and in principle the multifield
effects may change the cosmological observables; we have
found that such effects, in particular the isocurvature mode
of fluctuations, are negligible in our model. The absence
of the isocurvature mode is due to the large effective
mass along the s-field direction. We also found that the
nonlinearity parameter is Oð1Þ. As we vary the parameters
ζ and ω along the vicinity of the separatrix, the scalar

TABLE IV. The values of the parameter ξ, the scalar spectral
index ns, the tensor-to-scalar ratio r and the local-type non-
linearity parameter flocalNL in the sextic Kähler model as the
parameters ζ and ω are varied. The initial value of the h field
is chosen to be hinit ¼ 0.12 and the parameter ξ is adjusted to
yield the Planck normalization of the scalar power spectrum.

ω ζ ξ ns r flocalNL

1.0 × 107 −3068.6 6415 0.9670 0.0031 −1.043
8.5 × 106 −2625.2 6460 0.9670 0.0031 −1.125
6.5 × 106 −2034.1 6522 0.9670 0.0031 −1.315
4.0 × 106 −1442.9 6612 0.9671 0.0031 −1.757
2.5 × 106 −851.74 6666 0.9672 0.0031 −2.215
5.0 × 105 −260.58 7000 0.9683 0.0028 −3.400

TABLE III. The values of the field h at the horizon crossing h� and at the end of slow roll hend, the e-folding number Ne, the scalar and
tensor power spectra PR and PT , the scalar spectral index ns, the tensor-to-scalar ratio r and the local-type nonlinearity parameter flocalNL
in the sextic Kähler model as the parameters ζ and ω are varied. The initial value of the h field is chosen to be hinit ¼ 0.12 and
the parameter ξ is fixed to 6450 using the Planck normalization of the scalar power spectrum when ðω; ζÞ ¼ ð107;−3000Þ and 60
e-foldings. The Ne in the table is the e-folding number between hinit and hend.

ω ζ h� hend Ne PR PT ns r flocalNL

1.0 × 107 −3068.6 0.1047 0.0080 79.67 2.185 × 10−9 6.727 × 10−12 0.9670 0.0031 −1.046
8.5 × 106 −2625.2 0.1047 0.0081 79.66 2.214 × 10−9 6.816 × 10−12 0.9670 0.0031 −1.124
6.5 × 106 −2034.1 0.1047 0.0083 79.65 2.255 × 10−9 6.940 × 10−12 0.9670 0.0031 −1.230
4.0 × 106 −1442.9 0.1048 0.0087 79.60 2.300 × 10−9 7.067 × 10−12 0.9671 0.0031 −1.607
2.5 × 106 −851.74 0.1049 0.0099 79.40 2.354 × 10−9 7.199 × 10−12 0.9671 0.0031 −2.153
5.0 × 105 −260.58 0.1078 0.0158 75.61 2.568 × 10−9 7.327 × 10−12 0.9681 0.0029 −3.295
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power spectrum PR is found to deviate from the
Planck-normalized value, while the spectral index ns and
the tensor-to-scalar ratio r are insensitive to the change
of these parameters. The isocurvature fraction βiso stays
negligible and flocalNL moves outside the Planck constraints
for small values of ζ in the cubic Kähler model and stays
Oð1Þ in the sextic Kähler model.
We also studied the prediction of the model with the

adjusted ξ parameter that yields the Planck-normalized
scalar power spectrum everywhere in the ðζ;ωÞ parameter
space. We found, both in the cubic and sextic Kähler
models, the cosmological observables are barely altered
from the fixed ξ computation.

IV. DISCUSSION

As a well-motivated and technically natural beyond-the-
SM implementation of the Bezrukov-Shaposhnikov sce-
nario, we have discussed, extending the work of Ref. [13],
Higgs inflation in supersymmetric GUT in this paper. The
supergravity η problem is avoided by using the nonca-
nonical Kähler potential in the superconformal framework;
the noncanonical term gives rise to the nonminimal
coupling of the Higgs field as in the Bezrukov-
Shaposhnikov scenario. We have considered the minimal
SUð5Þ GUT model as a prototype of GUTand analyzed the
model including multifield effects. The prediction for the
scalar spectral index ns and the tensor-to-scalar ratio r is
very similar to the Bezrukov-Shaposhnikov scenario of SM
Higgs inflation and thus agrees very well with the present
observations. This feature is found to be insensitive to the
change of the model parameters ζ and ω, which may
indicate some attractor mechanism, similar to the one
studied recently in Refs. [41–43]. The prediction of
cosmological parameters in this model is also robust
against multifield ambiguities, as the isocurvature mode
of the fluctuations is found to be negligible. The prediction
of this model thus agrees well with that of the single-field
model, for which the heavier degrees of freedom during
inflation are assumed to be integrated out and analytic
expressions are available.
In the supersymmetric SUð5Þ Higgs inflation model

that we have studied, the non-Gaussianity (the local-type

nonlinearity parameter) stays relatively small, reflecting the
fact that the multifield effects are overall insignificant. In a
similar embedding of Higgs inflation in the NMSSM or
in the supersymmetric seesaw, in contrast, the non-
Gaussianity can be important [24]. Why are the effects
less important in the SUð5Þ case? A salient feature of
inflation models realized in grand unification is that the
GUT symmetry is broken during inflation. In the scenario
we have studied, this is related to the asymmetry of the
inflaton potential in the singlet (the s-field) direction; the
requirement that the trajectory must reach the SM vacuum
disfavors trajectories that typically produce large isocurva-
ture modes and large non-Gaussianity, that is, trajectories
that stay on a ridge of the potential for a while and then
make a turn [44,45]. While symmetries of an inflaton
potential are commonly imposed in simple toy examples of
multifield inflationary models, one cannot expect high
symmetries in generic inflationary models, such as in
GUT scenarios or the stringy landscape scenario (see
however Ref. [46] for a discussion in favor of symmetries
in generic models). We have provided a concrete case study
of a GUT scenario in this paper and found that multifield
effects are not important. The results seem to indicate that
discussions based on inflationary toy models tend to
overestimate the multifield effects.
Let us conclude by commenting on possible directions of

further research. One direction is to investigate less trivial
examples of GUT embedding. While the SUð5Þ GUT is
widely recognized as a prototype of grand unification, it is
certainly not an entirely satisfactory example as it suffers
e.g. from the proton decay problem. While many of the
features found here are expected also in other GUT models,
a quantitative consistency check on various phenomeno-
logical and cosmological bounds in concrete realistic
scenarios is certainly desirable. Another important topic
that we have not touched upon in this paper is (p)reheating
after inflation.8 Recent studies of nonminimally coupled
multifield reheating based on simple inflationary toy
models indicate that energy transfer due to parametric

FIG. 10. The scalar spectral index and the tensor-to-scalar ratio for the sextic Kähler model with adjusted ξ values.

8The reheating process of the SM Higgs inflation was
discussed in Ref. [47].
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resonance is efficient [48], since the strong single-field
attractor behavior persists during reheating and multifield
dephasing effects can be avoided. In our phenomenological
example based on supersymmetric GUT, in contrast, the
inflaton dynamics after the slow roll may exhibit irregular
and chaotic behavior, due to the irregular shape of the scalar
potential near the GUT and the SM vacua. Such irregular
motion may lead to the suppression of the resonance effects
as in Ref. [49].
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APPENDIX A: MULTIFIELD
INFLATON DYNAMICS

To analyze the two-field inflation model given by the
Lagrangian (26), we first describe the background solutions
and then discuss fluctuations on the background. We use
the covariant formalism developed in Refs. [44,50–56].
We denote the background inflaton fields as φa and the
fluctuations as δϕa, i.e.

ϕaðt; xÞ ¼ φaðtÞ þ δϕaðt; xÞ: ðA1Þ

The background inflaton is assumed to have no spatial
dependence.

1. Background solutions

The Klein-Gordon equation obtained from the
Lagrangian (26) is

D _φa

dt
þ 3H _φa þGab∇bVðφcÞ ¼ 0; ðA2Þ

where D
dt is the covariantized time derivative which is

defined to operate on a field space vector Xa as

DXa

dt
¼ _Xa þ Γa

bcXb _φc: ðA3Þ

The overdot is the derivative with respect to the cosmic
time t. H ¼ _a=a is the Hubble parameter. ∇a denotes the
covariant derivative in the field space; its connection is the
Christoffel symbol Γa

bc [Eq. (28) or Eq. (40)] constructed
from the field space metric [Eq. (27) or Eq. (39)]. The
Einstein equations are

3H2 ¼ ρ; ðA4Þ

_ρþ 3Hðρþ PÞ ¼ 0; ðA5Þ

where

ρ≡ 1

2
Gab _φ

a _φb þ VðφcÞ; ðA6Þ

P≡ 1

2
Gab _φ

a _φb − VðφcÞ; ðA7Þ

are the energy density and the effective pressure of the
inflaton fields. In numerics we solve the Klein-Gordon
equation (A2) and use the Friedmann equation (A4) to
obtain the Hubble parameter. The equation of energy
conservation (A5) is used to monitor numerical accuracy.
To solve the inflaton dynamics in the flat Friedmann

universe we need the initial conditions for φa ¼ ðs; hÞ and
_φa ¼ ð_s; _hÞ. In this paper we are considering the infla-
tionary model driven by the SM Higgs field h. Hence, the
initial value of h is assumed to be large, hðt0Þ ≫ sðt0Þ.
Turning on the ζ parameter (the quartic term of the Kähler
potential), the inflaton potential becomes a half-pipe shape
along h, making Higgs-driven inflation possible [13]. Such
a half pipe however cannot be too narrow since the SM
vacuum s ¼ v ∼MGUT, h ¼ 0 needs to be reached from the
initial point s ¼ sðt0Þ, h ¼ hðt0Þ. During inflation, light
fields have quantum fluctuations of the order of the Hubble
parameter. For example, the s field is expected to have
fluctuations

hðΔŝÞ2i ≈ hGssðΔsÞ2i ≈
H2

ð2πÞ2 ; ðA8Þ

where ŝ is canonically normalized in the Einstein frame.
Thus jΔsj ≈ H

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξh

p
, assuming hsi ≪ MP. Fine-tuning

the initial value of s below this Δs is considered unnatural.
In the numerical study we assume the inflaton already
follows an attractor at 60 e-folds before the end of inflation;
we thus choose sðt0Þ to be at a local minimum for a given
(large enough) hðt0Þ. We may consistently set _sðt0Þ ¼ 0.
_hðt0Þ is found by the slow-roll equation of motion.

2. Fluctuations

It is well known that the ten degrees of freedom (DoF) in
the metric perturbation on the Friedmann-Lemaître-
Robertson-Walker background split into a tensor (two
DoF), two vectors (four DoF), and four scalars (four
DoF) of SOð3Þ. These include two gauge DoF in the
vector and two gauge DoF in the scalar mode. The two DoF
in the tensor mode represent the two helicity states of
gravitational waves. After the horizon exit, the tensor mode
fluctuations undergo no nontrivial evolution as they decou-
ple from the scalar mode. In the absence of a vector source,
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the evolution of the vector mode fluctuations is trivial decay
[57] and hence of no interest; we will not discuss them any
further. The metric with scalar mode fluctuations A, B, E, ψ
and tensor mode fluctuations hij may be written as

ds2 ¼ −ð1þ 2AÞdt2 þ 2aBjidtdxi

þ a2½ð1 − 2ψÞδij þ 2Ejij þ hij�dxidxj; ðA9Þ

where a ¼ aðtÞ is the scale factor and �ji ≡ ∂�
∂xi is the spatial

derivative with respect to the comoving coordinates. In
multifield inflation with n (¼ 2 in our case) inflaton
components, there are nþ 4 scalar DoF, two of which
are the gauge DoF. Since there are two constraint equations,
the physical scalar DoF is n. This indicates that the
dynamics of scalar mode fluctuations may be studied by
analyzing essentially the perturbed Klein-Gordon equa-
tions for the inflaton fields alone. The relevant equations of
motion for the scalar perturbations are neatly expressed by
using the covariant formalism [44,50–53,55,56] as

D2Qa

dt2
þ 3H

DQa

dt

þ
�
k2

a2
δab þMa

b −
1

a3
D
dt

�
a3

H
_φa _φb

��
Qb ¼ 0; ðA10Þ

where

Qa ¼ Qa þ _φa

H
ψ ; ðA11Þ

is the Mukhanov-Sasaki gauge-invariant variable andQa is
a covariant fluctuation vector which is related to δϕa to first
order in the fluctuations. The effective mass-squared matrix
Ma

b is defined as

Ma
b ≡Gac∇b∇cV − Ra

cdb _φ
c _φd; ðA12Þ

where Ra
bcd is the Riemann curvature tensor of the field

space [see Eqs. (31) and (42)].
One may decompose the fluctuations into the adiabatic

and isocurvature components respectively as

Q∥ ≡Gabσ
a
∥Q

b; Q⊥ ≡Gabσ
a⊥Qb; ðA13Þ

where σa∥ is the unit vector along the inflationary trajectory
and σa⊥ is the unit vector orthogonal to it. These unit vectors
are defined as

σa∥ ≡ _φa

j _φj ¼
_φaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gcd _φ
c _φd

p ; ðA14Þ

σa⊥ ≡ Dσa∥=dt

jDσa∥=dtj
: ðA15Þ

The absolute value of a quantity, say Xa, should be
understood as jXj≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GabXaXb
p

. The evolution
equations (A10) are then written as

Q̈∥ þ 3H _Q∥

þ
�
k2

a2
þM∥∥−





Dσa∥
dt





2 − 1

a3
d
dt

�
a3j _φj2
H

��
Q∥

¼ 2
d
dt

�



Dσa∥
dt





Q⊥
�
− 2

�∇σ∥V

j _φj þ
_H
H

�



Dσa∥
dt





Q⊥; ðA16Þ

Q̈⊥ þ 3H _Q⊥ þ
�
k2

a2
þM⊥⊥ þ 3





Dσa∥
dt





2
�
Q⊥

¼ 4
1

j _φj




Dσa∥
dt





 k
2

a2
Ψ; ðA17Þ

where

M∥∥ ≡Gabσ
b
∥σ

c
∥M

a
c; ðA18Þ

M⊥⊥ ≡Gabσ
b⊥σc⊥Ma

c; ðA19Þ

and Ψ is the gauge-invariant Bardeen potential,

Ψ≡ ψ þ a2H

�
_E −

B
a

�
: ðA20Þ

We see from Eqs. (A16) and (A17) that the adiabatic mode
may be sourced by the isocurvature mode but not
vice versa.
In terms of Q∥ and Q⊥, the curvature perturbation and

the isocurvature perturbation are given by

R ¼ H
j _φjQ∥; ðA21Þ

S ¼ H
j _φjQ⊥: ðA22Þ

To study the evolution of fluctuations on superhorizon
scales, it proves useful to introduce so-called transfer
functions, defined as

TRSðt�; tÞ ¼
Z

t

t�
dt0αðt0ÞHðt0ÞTSSðt�; t0Þ; ðA23Þ

TSSðt�; tÞ ¼ exp

�Z
t

t�
dt0βðt0ÞHðt0Þ

�
; ðA24Þ

where

α≡ 2

H





Ddt
�
_φa

j _φj
�



; ðA25Þ
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β≡ −2ϵ − η⊥⊥ þ η∥∥ −
4

3H2





Ddt
�
_φa

j _φj
�



2; ðA26Þ

and t� is the horizon-crossing time at which k ¼ aH. We
have introduced the slow-roll parameters ϵ, η⊥⊥ and η∥∥
defined by

ϵ≡ −
_H
H2

; ðA27Þ

η⊥⊥ ≡M⊥⊥
V

; ðA28Þ

η∥∥ ≡M∥∥

V
: ðA29Þ

The curvature and isocurvature perturbations at time t after
the horizon exit are then given by

�
RðtÞ
SðtÞ

�
¼

�
1 TRSðt�; tÞ
0 TSSðt�; tÞ

��
Rðt�Þ
Sðt�Þ

�
: ðA30Þ

For the appropriateness of the approximations used see
e.g. Refs. [44,52,53,55,56].

3. Cosmological observables

The power spectra of curvature and isocurvature pertur-
bations after the horizon exit are given in terms of the
transfer functions as

PRðkÞ ¼ PRðk�Þ½1þ T2
RSðt�; tÞ�; ðA31Þ

PSðkÞ ¼ PSðk�ÞT2
SSðt�; tÞ: ðA32Þ

The curvature and isocurvature power spectra at horizon
crossing are

PRðk�Þ ¼ PSðk�Þ ¼
�
H�
2π

�
2 1

2ϵ�
; ðA33Þ

where H� and ϵ� are evaluated at t�. The isocurvature
fraction βiso then becomes

βiso ≡ PS

PS þ PR
¼ T2

SS

T2
SS þ T2

RS þ 1
: ðA34Þ

The tensor power spectrum is

PT ¼ 8

�
H�
2π

�
2

: ðA35Þ

It will not evolve in the superhorizon scales.
We use the standard definition of the scalar spectral

index,

ns ≡ 1þ d lnPR

d ln k
: ðA36Þ

It is evaluated as

ns ¼ ns;� − ðα� þ β�TRSÞ sinð2ΔÞ; ðA37Þ

where

ns;� ¼ 1 − 6ϵþ 2η∥∥ ðA38Þ

is the spectral index at the horizon crossing and the angle Δ
is defined by

cosΔ≡ TRSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

RS

q : ðA39Þ

Finally the tensor-to-scalar ratio

r≡ PT

PR
ðA40Þ

is evaluated as

r ¼ 16ϵ

1þ T2
RS

: ðA41Þ
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