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Nonperturbative studies of Schwinger-Dyson equations require their infinite, coupled tower to be
truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable
Ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED)
provides a simple and neat platform to address this problem. The most general form of the three point
scalar-photon vertex can be expressed in terms of only two independent form factors, a longitudinal and a
transverse one. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-
Fradkin-Green-Takahashi identity while the transverse vertex remains undetermined. In massless quenched
sQED, we construct the transverse part of the nonperturbative scalar-photon vertex. This construction
(i) ensures multiplicative renormalizability of the scalar propagator in keeping with the Landau-
Khalatnikov-Fradkin transformations, (ii) has the same transformation properties as the bare vertex under
charge conjugation, parity and time reversal, (iii) has no kinematic singularities and (iv) reproduces the one-
loop asymptotic result in the weak coupling regime of the theory.
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I. INTRODUCTION

Gauge theories of fundamental interactions have been
the cornerstone of describing the physical world at the most
basic level. Their enormous success primarily lies in the
region where the coupling strength is small enough and the
tools of perturbation theory are reliable. However, not all
interesting phenomena can be accessed in this approxima-
tion scheme. In the nonperturbative sector of quantum
chromodynamics (QCD), two major phenomena emerge:
(1) color confinement and (2) dynamical chiral symmetry
breaking. For studying strongly interacting bound states, a
reliable understanding of these phenomena is essential.
However, it can be achieved solely through nonperturbative
techniques such as lattice QCD, Schwinger-Dyson equa-
tions (SDEs) [1,2], chiral perturbation theory and effective
quark models. Keeping this in mind, our interest is focussed
on the study of physically acceptable truncations of SDEs
beyond perturbation theory.
SDEs are the fundamental equations of motion of any

quantum field theory (QFT). They form an infinite set of
coupled integral equations that relate the n-point Green
function to the (nþ 1)-point function. As the simplest
example, propagators are related to the three point vertices,
the latter to the four point functions and so on, ad infinitum.
As their derivation requires no assumption regarding the
strength of the interaction, they are ideally suited for
studying interactions like QCD, where one single theory

has diametrically opposed perturbative and nonperturbative
facets in the ultraviolet and infrared regimes of momenta,
respectively. Unfortunately, being an infinite set of coupled
equations, they are intractable without some simplifying
assumptions. Typically, in the nonperturbative region,
SDEs are truncated at the level of two-point Green
functions (propagators). We must then use an Ansatz for
the full three point vertex. This has to be done carefully.
Otherwise, solutions can be in conflict with some of the key
features of a QFT, such as gauge invariance of physical
observables and renormalizability of the divergent func-
tions involved, thus jeopardizing the credibility of the
truncation scheme employed.
In contrast with the complicated non-Abelian scenario of

QCD, quantum electrodynamics (QED) has proved to be a
good starting point in studying the nonperturbative regime
of the SDEs. Better yet, in the absence of Dirac matrices,
sQED can offer an even more attractive model to construct
acceptable nonperturbative Ansätze for the vertices
involved. In this article, we set out to construct a scalar-
photon three point vertex which must comply with the
following key criteria.
First, it must satisfy the Ward-Fradkin-Green-Takahashi

identity (WFGTI) [3–5]. Just like in spinor QED and QCD,
Ball and Chiu [6] provide the nonperturbative form of
the longitudinal three point vertex in sQED, which
explicitly satisfies the WFGTI [3–5]. We take it as our
starting point.
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Second, the vertex must satisfy the local gauge
covariance properties of the theory. Note that although
the WFGTI is a consequence of gauge invariance, it is
insufficient to ensure the local gauge covariance relation
of the scalar propagator. In order to ensure the latter, we
demand the transverse part of the vertex to be constrained
by the Landau-Khalatnikov-Fradkin transformations
(LKFTs) [7–10]. The LKFTs are a well-defined set of
transformations which describe the response of the Green
functions to an arbitrary gauge transformation. These
transformations leave the SDEs and the WFGTI form
invariant and ensure chiral quark condensate is gauge
invariant in spinor QED and QCD, a feature not
guaranteed through satisfying WFGTI alone. Therefore,
LKFTs potentially play an important role in guiding us
toward an improved Ansatz for the three point vertex and
imposing gauge invariant chiral symmetry breaking; see
for example Refs. [11–19]. More recently, these trans-
formations have also been studied in the world line
formalism, where we generalize LKFTs to arbitrary
amplitudes in sQED [20].
The truncation scheme in preserving gauge invariance

of observables has also been studied in simpler gauge
theories such as QED3, e.g., [13,21–25]. These works
involve introducing constraints of gauge invariance in
the truncations. In Ref. [24], it was shown that if one
naively employed even the most sophisticated full
Curtis-Pennington or Ball-Chiu (BC) vertices in differ-
ent covariant gauges, they are not sufficient to ensure
gauge invariant results for physical observables and the
expected gauge covariance properties of the fermion
propagator. However, in later articles [16,26], the need
to incorporate the LKFT correctly was emphasized in
order to obtain gauge invariance of corresponding
physical observables, such as the chiral quark conden-
sate and the confinement-deconfinement phase transition
as a function of the number of fermion flavors (nf).
Third, the vertex must ensure the multiplicative renor-

malizability (MR) of the two point propagator. Studies in
massless scalar and spinor QED, as well as in QCD,
demonstrate that the LKFT of the wave function renorm-
alization implies a MR form of a power law [13–15,19,27].
We would like to reiterate that this solution can be
reproduced only with an appropriate choice of the elec-
tron-photon three point vertex, as demonstrated first in
Ref. [28]. There have been a series of works, spanning a
couple of decades, which construct the electron-photon
vertex, implementing the LKFT and MR of the electron
propagator [28–38]. In Ref. [38], MR was implemented for
the fermion propagator and it simultaneously ensures the
gauge invariance of the critical coupling, above which
chiral symmetry is dynamically broken.
In this article, we impose the conditions of MR on the

three point scalar-photon vertex in sQED. It involves an
unknown function WðxÞ of a dimensionless ratio x of

momenta, satisfying an integral constraint which guar-
antees the MR of the scalar propagator. In this con-
struction, we assume that the transverse vertex has no
dependence on the angle between the incoming and
outgoing momenta of the scalar particle, an approxima-
tion which can be readily undone through defining an
effective transverse vertex.
Fourth, the vertex should reduce to its perturbation

theory Feynman expansion in the limit of weak coupling.
A truncation of the complete set of SDEs, which
maintains gauge invariance and MR of a gauge theory
at every level of approximation, is perturbation theory.
Physically meaningful solutions of the SDEs must agree
with perturbative results in the weak coupling regime. We
use one-loop perturbative calculations as a guiding
principle for the three point vertex [39–41]. In our
construction in terms of the function W mentioned
above, we explore how perturbation theory provides an
additional constraint. Using a one-loop calculation of
the scalar-photon three point vertex presented in
Refs. [41,42], we derive a perturbative constraint on
WðxÞ to OðαÞ in the leading logarithms approximation
(LLA). We ensure that our nonperturbative construction
of the said vertex satisfies this constraint.
Fifth, the vertex must have the same symmetry properties

as the bare vertex under charge conjugation, parity and time
reversal.
Finally, one-loop perturbation theory suggests that it

should be free of any kinematic singularities. Following
Ball and Chiu [6], we shall enforce this requirement.
The scalar-photon three point vertex Γμðk; pÞ must be
symmetric under the exchange of momenta k and p.
Moreover, we do not expect it to have kinematic
singularities as k2 ⇒ p2. We build these features into
our construction.
The paper is organized as follows: In Sec. II we

introduce the SDE for the massless scalar propagator in
quenched sQED. We define the longitudinal and trans-
verse parts of the scalar-photon vertex and simplify the
SDE by performing angular integration. In Sec. III, we
study the LKFT for the scalar propagator to obtain a
nonperturbative expression for the wave function renorm-
alization which defines this propagator. We introduce and
explain the concept of MR in Sec. IV. We deduce a
power law solution for the wave function renormalization
of the scalar propagator and compare it with the findings
of the LKFT in Sec. III. Section V contains details of
how we impose constraints of the LKFT and MR on the
three point transverse scalar-photon vertex in terms of the
function WðxÞ. In Sec. VI, we add additional constraints
of one-loop perturbation theory, symmetry properties and
the lack of kinematic singularities. We also construct an
explicit example of a nonperturbative massless three point
scalar-photon vertex. We present our conclusions and
discussion in Sec. VII.
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II. THE SDE FOR THE SCALAR PROPAGATOR

The explicit form of the sQED Lagrangian is

LsQED ¼ −
1

4
FμνFμν −

1

2ξ
ð∂μAμÞ2 þ ð∂μφ�Þð∂μφÞ

−m2φ�φ − ieðφ�∂μφ − φ∂μφ�ÞAμ

þ 2e2φ�AμφAμ −
λ

4
ðφ�φÞ2: ð1Þ

The detailed derivation of the SDEs for relevant Green
functions for this sQED Lagrangian already exists in the
literature [43]. The SDE for the scalar propagator SðkÞ, in
the quenched approximation, is shown in Fig. 1.
Mathematically, this is written as

−iS−1ðkÞ ¼ −iS−10 ðkÞ

þ e2
Z
M

d4ω
ð2πÞ4 ðωþ kÞμSðωÞΓνðω; kÞΔμνðqÞ

− e2
Z
M

d4ω
ð2πÞ4 Γ

μν
0 ðk;−ω; k;ωÞΔμνðωÞ

−
Z
M

d4ω
ð2πÞ4 SðωÞΓ0ðk;ωÞ þ � � � ; ð2Þ

where e is the electromagnetic coupling, q ¼ ω − k, and
the subscript M indicates integration over the entire
Minkowski space. ΔμνðωÞ and S0ðkÞ are the bare photon
and scalar propagators. SðkÞ is the full scalar propagator.
For massless scalars, SðkÞ can be expressed in terms of the
so-called wave function renormalization Fðk2;Λ2Þ, so that

SðkÞ ¼ Fðk2;Λ2Þ
k2

; ð3Þ

where Λ is the ultraviolet cutoff used to regularize the
divergent integrals involved. The bare scalar propagator is
given by S0ðkÞ ¼ 1=k2. The bare photon propagator is

ΔμνðqÞ ¼
1

q2

�
gμν þ ðξ − 1Þ qμqν

q2

�
; ð4Þ

and it remains unrenormalized in the quenched approxi-
mation. Γμν

0 ðk;−ω; k;ωÞ ¼ 2ie2gμν and Γ0ðk;ωÞ ¼ −iλ are
the bare four point scalar-scalar-photon-photon and the
four-scalar vertices, respectively. The last two diagrams of
the gap equation, Eq. (2), will be referred to as the photon
and the scalar bubble diagrams, in that order. Γνðω; kÞ is the
full three point scalar-photon vertex, for which we must
make an Ansatz in order to solve Eq. (2). The WFGTI for
this vertex, i.e.,

qμΓμðω; kÞ ¼ S−1ðωÞ − S−1ðkÞ; ð5Þ

allows us to decompose it as a sum of longitudinal and
transverse components, as suggested by Ball and Chiu [6],

Γμðω; kÞ ¼ Γμ
Lðω; kÞ þ Γμ

Tðω; kÞ: ð6Þ

The longitudinal part Γμ
Lðω; kÞ satisfies the WFGTI, Eq. (5),

by itself, and the transverse part Γμ
Tðω; kÞ, which remains

completely undetermined, is naturally constrained by

qμΓ
μ
Tðω; kÞ ¼ 0: ð7Þ

Moreover,

Γμ
Tðk; kÞ ¼ 0: ð8Þ

In order to satisfy the WFGTI in a manner free of kinematic
singularities, we follow Ball and Chiu and write

Γμ
Lðω; kÞ ¼

S−1ðωÞ − S−1ðkÞ
ω2 − k2

ðωþ kÞμ: ð9Þ

This construction implies that the ultraviolet divergences
solely reside in the longitudinal part. Moreover, recall the
following relations between the renormalized and bare
quantities:

SRðpÞ ¼ Z−1
2 SðpÞ; Γμ

Rðk; pÞ ¼ Z1Γμðk; pÞ: ð10Þ

Thus, the form of the longitudinal vertex in Eq. (9)
guarantees the relation Z1 ¼ Z2. Consequently, the running
of the coupling is dictated by the corrections to the photon
propagator alone. In the approximation of quenched sQED,
the coupling does not run. If we unquench the theory, it is
easy to calculate Z3 and the running coupling constant with
the well-known expression

αðQ2Þ ¼ αðQ2
0Þ

1 − ðαðQ2
0Þ=12πÞ lnðQ2=Q2

0Þ
: ð11Þ

The ultraviolet finite transverse vertex can be expanded out
in terms of one unknown function τðω2; k2; q2Þ [6],

= _
k k k k

−1 −1

ω

ω  − k

ΓνSS

ωω

_ _

S

_ _
k kk k

S

+...

FIG. 1. The SDE for the scalar propagator. The color-filled
solid blobs labeled with S and Γν stand for the full scalar
propagator and the full scalar-photon vertex, respectively. The
dots (� � �) represent all the diagrams whose contribution begins at
the two-loop level.
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Γμ
Tðω; kÞ ¼ τðω2; k2; q2ÞTμðω; kÞ; ð12Þ

where

Tμðω; kÞ ¼ ðω · qÞkμ − ðk · qÞωμ ð13Þ

is the transverse basis vector in the Minkowski space
and fulfills Eqs. (7), (8). To begin with, the form factor
τðω2; k2; q2Þ is an unconstrained scalar function (represent-
ing an eightfold simplification of the spinor QED/
QCD case).
Following the nonperturbative vertex construction/

truncation of Refs. [6,41], our analysis ensures that gauge
invariance (in terms of the WFGTI) for the scalar propagator
and the scalar-photon vertex is satisfied. Within our trunca-
tion, another source of gauge noninvariance in the scalar
propagator could be the lack of implementation of LKFT, a
feature of the bare as well as BC vertices. We make sure that
our Ansatz for the transverse part satisfies this constraint
nonperturbatively. The photon propagator also has its Ward
identity but we work throughout in the quenched approxi-
mation. Therefore, within the confines of our assumptions, it
receives no corrections and hence the four point diagrams we
have discarded do not affect the correct gauge invariance
properties of the scalar propagator. They will be essential, for
example, in ensuring the transversality of the photon propa-
gator in unquenched sQED, which is not investigated in the
present work. Furthermore, there are also restrictions of the
gauge transformations on how the three point vertex is related
to the four point vertex, constraining the form of the latter. In
Ref. [42], two of the present authors exploited these con-
straints to carryout its nonperturbative constructionconsistent
with WFGTI, which relates three point vertices to the four
point ones. There is an undetermined part which is transverse
to one or both the external photons, and needs to be evaluated
through perturbation theory. Reference [42] presents in detail
how the transverse part at one-loop order can be evaluated for
completely general kinematics of momenta involved in
covariant gauges and dimensions. In this article, our focus
is on constraining the nonperturbative three point scalar-
photon vertex and capturing its key features, in particular its
gauge covariance properties, its perturbative expansion in the
LLA as well as the MR of the scalar propagator.
We make use of Eqs. (5), (6), (9), (12), and (13) in the

gap equation, i.e., Eq. (2), and then Wick rotate it to the
Euclidean space to write

1

Fðk2;Λ2Þ ¼ 1 −
α

4π3
1

k2

Z
E
d4ω

1

q2

��
1 −

SðωÞ
SðkÞ

�

×

�
1þ ðξ − 1Þω

2 − k2

q2
þ 2

k2

ω2 − k2

þ2
ω · k

ω2 − k2

�
− 2SðωÞτðω2; k2; q2ÞΔ2

�
; ð14Þ

where Δ2 ¼ ðω · kÞ2 − ω2k2, α ¼ e2=4π is the bare cou-
pling constant, and the subscript E indicates integration over
the whole Euclidean space. Note that we have neglected the
photon and the scalar bubble diagrams as well as the
diagrams whose contribution begins at the two-loop level,
since they do not contribute to leading logs in the one-loop
calculation, as we shall discuss later. At this stage, it appears
impossible to proceed any further because of the dependence
of τ on the angle between the incoming and outgoing
momenta ω and k of the scalar particle. We shall assume that
the transverse vertex has no dependence on this angle, i.e., it
is independent of q2. Consequently, this vertex is only an
effective one, which will allow us to capture many key
features of the theory in a simple manner. This assumption
allows us to carry out the angular integration in Eq. (14). In
this sense, we are calculating an effective transverse vertex.
Note that it is easy to undo this independent angle approxi-
mation exactly. This has been explained and employed in
Refs. [33,44] for the case of spinor QED. Based on the
results found in these articles and our cross-check for sQED,
we conclude that the qualitative implications of the Ansatz of
the three point scalar-photon vertex are insignificant, and
hence we do not report corresponding findings.
The angular integration leads us to
1

Fðk2;Λ2Þ ¼ 1 −
α

4π

Z
k2

0

dω2
ω2

k2

�
1 −

SðωÞ
SðkÞ

�

×

�ð2 − ξÞ
k2

þ 1

ω2 − k2

�
2þ ω2

k2

��

−
α

4π

Z
Λ2

k2
dω2

�
1 −

SðωÞ
SðkÞ

��
3

ω2 − k2
þ ξ

k2

�

þ α

8π

Z
k2

0

dω2ω2SðωÞτðω2; k2Þ
�
ω4

k4
− 3

ω2

k2

�

þ α

8π

Z
Λ2

k2
dω2ω2SðωÞτðω2; k2Þ

�
k2

ω2
− 3

�
:

ð15Þ

TABLE I. We compare different vertex Ansätze: Bare, BC and our proposal, the last being the only vertex satisfying the constraints of
LKFT and MR. The last column gives the value of the exponent β of the multiplicatively renormalizable wave function renormalization
in Eq. (38).

Structure MR β

Bare vertex ðkþ ωÞμ No
BC vertex ½ðS−1ðωÞ − S−1ðkÞÞðωþ kÞμ�=ðω2 − k2Þ No
This work Γμ

Tðω; kÞ ¼ Γμ
Lðω; kÞ þ τðω2; k2; q2Þ½ðω · qÞkμ − ðk · qÞωμ� Yes αðξ − 3Þ=4π
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At this point, it is obvious that we require the knowledge
of the form factor τðω2; k2Þ to find the wave function
renormalization Fðk2;Λ2Þ. However, this problem can be
inverted. The requirements of LKFT and the MR of
Fðk2;Λ2Þ can tightly constrain the function τðω2; k2Þ.
We would like to stress that these constraints will be valid
only within our truncation scheme, which consists of the set
of assumptions and hypotheses we have detailed before.
We study them in the next section.

III. SCALAR PROPAGATOR AND LKFT

These transformations have the simplest structure in the
Euclidean coordinate space. Therefore, we start by defining
the Fourier transformations between the scalar propagators
in coordinate and momentum spaces,

SEðx; ξÞ ¼
Z

ddk
ð2πÞd e

−ik·xSEðk; ξÞ; ð16Þ

SEðk; ξÞ ¼
Z

ddxeik·xSEðx; ξÞ: ð17Þ

Notice a slight modification of notation that we shall use in
this section: SðpÞ ⇒ Sðp; ξÞ for the sake of clarity.
Moreover, we use the notation S for the propagator in
the coordinate space in order to specify that its functional
dependence is different from that of S, the same propagator
in the momentum space. The subscript E stands for the
Euclidean space.
The LKFT relating the coordinate space scalar propa-

gator in a given gauge ξ0 to the one in an arbitrary covariant
gauge ξ reads

SLKFT
E ðx; ξÞ ¼ SEðx; ξ0Þe−i½Δð0Þ−ΔðxÞ�; ð18Þ

where

ΔðxÞ ¼ −iðξ − ξ0Þe2ðμxÞ4−d
Z

ddk
ð2πÞd

e−ik·x

k4

¼ −
iðξ − ξ0Þe2
16ðπÞd=2 ðμxÞ4−dΓ

�
d
2
− 2

�
: ð19Þ

Here, μ is a mass scale introduced for dimensional
purposes: it ensures that in every dimension d, the coupling
e is dimensionless. For the four-dimensional case, we
expand around d ¼ 4 − 2ϵ and use

Γð−ϵÞ ¼ −
1

ϵ
− γ þOðϵÞ;

xϵ ¼ 1þ ϵ ln xþOðϵ2Þ: ð20Þ

Therefore,

ΔðxÞ ¼ i
ðξ − ξ0Þe2
16π2−ϵ

�
1

ϵ
þ γ þ 2 ln μxþOðϵÞ

�
: ð21Þ

Note that in the term proportional to ln x, one cannot simply
put x ¼ 0. Therefore, we need to introduce a cutoff scale
xmin. We then arrive at

ΔðxminÞ − ΔðxÞ ¼ −i ln
�

x2

x2min

�
ν

; ð22Þ

with ν ¼ αðξ − ξ0Þ=ð4πÞ. If we have the knowledge of the
propagator in one gauge, we can transform it to any other
gauge dictated by the LKFT,

SLKFT
E ðx; ξÞ ¼ SEðx; ξ0Þe−iðΔðxminÞ−ΔðxÞÞ

¼ SEðx; ξ0Þ
�

x2

x2min

�−ν
: ð23Þ

Let us start from the tree-level massive scalar propagator

SEðk; ξ0Þ ¼ −
1

k2 þm2
: ð24Þ

Its Fourier transformation into the coordinate space is

SEðx; ξ0Þ ¼ −
m

4π2x
K1ðmxÞ; ð25Þ

where K1ðmxÞ is the modified Bessel function of the
second kind. The LKFT readily yields

SLKFT
E ðx; ξÞ ¼ −

m
4π2x

K1ðmxÞ
�

x2

x2min

�−ν
: ð26Þ

We can Fourier transform this result back to the momentum
space to get

SLKFTE ðk; ξÞ ¼ −
1

m2

�
m2

−Λ2

�
ν

Γð1 − νÞΓð2 − νÞ

× 2F1

�
1 − ν; 2 − ν; 2;−

k2

m2

�
; ð27Þ

where we have made the identification 4=x2min → −Λ2. This
is the nonperturbative LKFT expression for the scalar
propagator, starting from its knowledge at the tree level
in the gauge ξ0. To evaluate it in the massless limit, we
make use of the identity

2F1ða; b; c; zÞ ¼ ð1 − zÞ−a2F1

�
a; c − b; c;

z
z − 1

�
ð28Þ

to rewrite the scalar propagator as follows:
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SLKFTE ðk; ξÞ ¼ −
�

1

−Λ2

�
ν

Γð1 − νÞΓð2 − νÞ

× ðk2 þm2Þν−12F1

�
1 − ν; ν; 2;−

k2

k2 þm2

�
:

ð29Þ

The massless limit now yields

SLKFTE ðk; ξÞ ¼ −
1

k2
Γð1 − νÞ
Γð1þ νÞ

�
−
k2

Λ2

�
ν

: ð30Þ

This is a power law with exponent ν. Expanding it out in the
powers of coupling, retaining the leading logarithms and
writing the result in the Minkowski space, we get

SLKFTðk; ξÞ ¼ 1

k2

�
1þ αðξ − ξ0Þ

4π
ln

�
k2

Λ2

��
: ð31Þ

It implies

FLKFTðk2;Λ2Þ ¼ 1þ αðξ − ξ0Þ
4π

ln

�
k2

Λ2

�
: ð32Þ

This result provides constraints on the transverse scalar-
photon vertex through Eq. (15). Before we set about
exploiting this constraint, we would like to connect
Eq. (32) with perturbation theory and MR of the scalar
propagator in the next section.

IV. SCALAR PROPAGATOR AND MR

MR of the scalar propagator requires the renormalized
FR to be related to the unrenormalized F through a
multiplicative factor Z2 by

FRðk2; μ2Þ ¼ Z−1
2 ðμ2;Λ2ÞFðk2;Λ2Þ; ð33Þ

where μ plays the role of an arbitrary renormalization scale.
Within a truncation scheme which focuses only on loga-
rithmic divergences, it is possible to write down the above
functions as perturbative series involving terms of the form
αn lnn (the so-called leading log terms). We should keep in
mind that the sQED has features of a φ4 scalar field theory
as well as the spinor QED. It has both quadratic and
logarithmic ultraviolet divergences. Our truncation scheme
makes it resemble the spinor QED or QCD, problems of our
eventual interest.
In the LLA, we then have

Fðk2;Λ2Þ ¼ 1þ
X∞
n¼1

αnAnlnn
�
k2

Λ2

�
; ð34Þ

Z−1
2 ðμ2;Λ2Þ ¼ 1þ

X∞
n¼1

αnBnlnn
�
μ2

Λ2

�
; ð35Þ

FRðk2; μ2Þ ¼ 1þ
X∞
n¼1

αnCnlnn
�
k2

μ2

�
: ð36Þ

[Note that the next-to-leading logs (NLLs) are of the type
αn lnn−1 and so on.] The MR condition, Eq. (33), requires

An ¼ Cn ¼ ð−1ÞnBn ¼
An
1

n!
; ð37Þ

so that the functions F, FR and Z−1
2 obey a power law

behavior. Thus the nonperturbative solution of Eq. (33) for
F in the LLA is

Fðk2;Λ2Þ ¼
�
k2

Λ2

�
β

; ð38Þ

where the anomalous dimension β is unknown at the
nonperturbative level. This is in contrast with perturbation
theory, where β ¼ αA1 is obvious from Eq. (37). It is
straightforward to calculate A1 in one-loop perturbation
theory: Taking the tree-level values Γνðω; kÞ ¼ ðωþ kÞν
and SðωÞ ¼ 1=ω2 in the gap equation [i.e., Eq. (2)] we get,
on Wick rotating it to the Euclidean space,

1

Fðk2;Λ2Þ ¼ 1 −
α

4π3
1

k2

Z
E

d4ω
ω2

ðωþ kÞ2
q2

−
α

4π3
ðξ − 1Þ
k2

Z
E

d4ω
ω2

ðω2 − k2Þ2
q4

: ð39Þ

Note that we have dropped the photon and the scalar bubble
contributions as they do not contribute to the LLA. Angular
integration of Eq. (39) yields

1

Fðk2;Λ2Þ ¼ 1þ αðξ − 3Þ
4π

Z
Λ2

k2

dω2

ω2

þ α

4π

ðξ − 3Þ
k4

Z
k2

0

dω2ω2 −
α

4π

ξ

k2

Z
Λ2

0

dω2:

ð40Þ

After carrying out the radial integration in the above
Eq. (40), dropping the quadratic and quartic divergencies
(Λ2 and Λ4) coming from the last two terms on the right-
hand side of Eq. (40) and conserving only the logarithmic
divergence (as we are interested in the LLA), we have

Fðk2;Λ2Þ ¼ 1þ αðξ − 3Þ
4π

ln
�
k2

Λ2

�
: ð41Þ

Comparing Eqs. (32) and (41), we deduce that ξ0 ¼ 3 is the
correct choice for sQED until one-loop order in perturba-
tion theory. This is unlike the case of spinor QED, where
Landau gauge ξ ¼ 0 works well for the same order of
approximation.
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Comparing expression (41) with the perturbative expan-
sion (34) to one-loop order, we see that A1 ¼ ðξ − 3Þ=4π.
Therefore, perturbation theory suggests that the anomalous
dimension in (38) is

β ¼ αðξ − 3Þ
4π

; ð42Þ

see also [41,45–47]. One can readily note that the power
behavior of (38), with β given in (42), is the solution of the
following integral equation:

1

Fðk2;Λ2Þ ¼ 1þ αðξ − 3Þ
4π

Z
Λ2

k2

dω2

ω2

Fðω2;Λ2Þ
Fðk2;Λ2Þ : ð43Þ

This term can be separated out in Eq. (15) to impose
the required condition of MR on the transverse form
factor τðω2; k2Þ. This is what we study in the next
section.

V. THE TRANSVERSE VERTEX

Equation (43) imposes the following restriction on the
transverse vertex through Eq. (15):

− 2

Z
k2

0

dω2

�
3

k2
þ ð3 − ξÞ

k2
ω2

k2
þ 3

ω2 − k2

þðξ − 3Þ
k2

Fðω2;Λ2Þ
Fðk2;Λ2Þ −

3

ω2 − k2
Fðω2;Λ2Þ
Fðk2;Λ2Þ

�

− 2

Z
Λ2

k2
dω2

�
3

ω2 − k2
−

3

ω2 − k2
Fðω2;Λ2Þ
Fðk2;Λ2Þ þ

ξ

k2

�

þ
Z

k2

0

dω2Fðω2Þτðω2; k2Þ
�
ω4

k4
− 3

ω2

k2

�

þ
Z

Λ2

k2
dω2Fðω2Þτðω2; k2Þ

�
k2

ω2
− 3

�
¼ 0: ð44Þ

Recall that in the above equation, we have neglected the
contributions of the photon and the scalar bubble diagrams
since they do not contribute to the one loop LLA, Eq. (41).
Introducing the variable x, where

x ¼ ω2

k2
∀ ω2 ∈ ½0; k2�; ð45Þ

x ¼ k2

ω2
∀ ω2 ∈ ½k2;Λ2�; ð46Þ

in Eq. (44), the resulting restriction can be rewritten as

Z
1

0

dxWðxÞ ¼ 0; ð47Þ

with

WðxÞ ¼ −6x
ð1 − xβÞ
x − 1

þ 6x−1
ð1 − x−βÞ
x − 1

þ 2ξð1 − xβÞ
þ ðx − 3Þðxβ þ x−2ÞhðxÞ: ð48Þ

Note that we have again kept only those terms which
contribute to the LLA. The lower limit 0 of x integration in
Eq. (47) encodes the fact that we have taken Λ2 ⇒ ∞. This
can be done with impunity as the all-order logarithmic
divergence has already been separated out to construct the
MR solution for the wave function renormalization F.
Moreover, we have introduced the definition

hðxÞ≡ xk2Fðk2;Λ2Þτðxk2; k2Þ; ð49Þ
which is a dimensionless function satisfying the property

hðx−1Þ ¼ xβ−1hðxÞ; ð50Þ
with β ¼ ðξ − 3Þ=4π, as prescribed by Eq. (42). Employing
Eq. (48) and the property in Eq. (50), we can write

WðxÞ −Wðx−1Þ ¼ 4ðx − 1Þðxβ þ x−2ÞhðxÞ
þ 6xð1 − xβÞ − 6x−1ð1 − x−βÞ
þ 2ξ½ð1 − xβÞ − ð1 − x−βÞ�: ð51Þ

Taking x ¼ p2=k2 in (51), and using the symmetry
τðp2; k2Þ ¼ τðk2; p2Þ, it is straightforward to derive the
expression for τðk2; p2Þ in terms of WðxÞ and the wave
function renormalization F. On Wick rotating it back to the
Minkowski space, it acquires the following form:

τðk2; p2Þ ¼ −
3

2

1

ðk2 − p2Þ
�

1

Fðk2Þ −
1

Fðp2Þ
�

−
ξ

2

1

ðk2 − p2Þ
Fðk2Þ þ Fðp2Þ

sðk2; p2Þ
�

1

Fðk2Þ −
1

Fðp2Þ
�

þ 1

4

1

ðk2 − p2Þ
1

sðk2; p2Þ
�
W

�
k2

p2

�
−W

�
p2

k2

��
;

ð52Þ

where we have introduced Fðk2Þ≡ Fðk2;Λ2Þ as a sim-
plifying notation. We also introduce the definition

sðk2; p2Þ ¼ Fðk2Þ k
2

p2
þ Fðp2Þp

2

k2
: ð53Þ

In the transverse form factor, Eq. (52), the scalar structure
½1=Fðk2Þ − 1=Fðp2Þ� appears, as first reported in spinor
QED by Curtis and Pennington in Ref. [29]. The exact form
of the function W remains unknown. Inded, there exists a
whole family of W-functions satisfying the integral restric-
tion Eq. (47). However, for the sake of simplicity we can
choose the trivial solutionWðxÞ ¼ 0 for any dimensionless
ratio x of momenta. When substituted in Eq. (52), it leads to
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τðk2; p2Þ ¼ −
3

2

1

ðk2 −p2Þ
�

1

Fðk2Þ−
1

Fðp2Þ
�

−
ξ

2

1

ðk2 −p2Þ
Fðk2Þ þFðp2Þ

sðk2; p2Þ
�

1

Fðk2Þ−
1

Fðp2Þ
�
:

ð54Þ

This vertex has already been calculated in one-loop
perturbation theory by Bashir et al., Ref. [41], using
dimensional regularization, in arbitrary gauge ξ and dimen-
sions d.
For the massless case, in dimension d ¼ 4, they report

τBCDðk2; p2; q2Þ

¼ α

8πΔ2

�
ðk2 þ p2 − 4k · pÞ

�
k · pJ0 þ ln

�
q4

p2k2

��

þ ðk2 þ p2Þq2 − 8p2k2

p2 − k2
ln

�
k2

p2

�

þ ðξ − 1Þ
�
k2p2J0 þ

2½k2p2 þ k · pðk2 þ p2Þ�
k2 − p2

�
ln

�
p2

k2

�

þ 2k · p
k2 − p2

�
k2 ln

�
q2

p2

�
− p2 ln

�
q2

k2

���
; ð55Þ

where

J0 ¼
2

iπ2

Z
M
d4ω

1

ω2ðp − ωÞ2ðk − ωÞ2 ; ð56Þ

with q ¼ k − p. We now see if our proposal, Eq. (54), fares
well against the constraints of this perturbative form
factor, Eq. (55).

VI. PERTURBATION THEORY CONSTRAINTS

In order to compare the vertex Ansatz, Eq. (54), based
upon multiplicative renormalizability, against its one-loop
perturbative form, Eq. (55), it is convenient to take the
asymptotic limit k2 ≫ p2 of external momenta in the latter
vertex. The resulting τBCD in the LLA is

τasymBCDðk2; p2Þ ¼k2≫p2

− 3
α

4π

1

k2
ln

�
k2

p2

�
: ð57Þ

Expectedly, it is independent of q2, and hence we drop this
dependence from its argument. Note that this expression
is also independent of the covariant gauge parameter ξ. It is
unlike spinor QED where the leading asymptotic vertex is
proportional to ξ. For a numerical check, we define

~τðxÞ ¼ −
k2τðk2; xk2Þ

α ln x
; ð58Þ

where x ¼ p2=k2 and we have suppressed the q2 depend-
ence for notational simplification. Thus

~τasymBCDðxÞ ¼ −
3

4π
: ð59Þ

In Fig. 2, we plot ~τasymBCDðxÞ and ~τBCDðxÞ as a function of x,
the latter for different values of the gauge parameter ξ and
for a fixed value of q2, chosen arbitrarily. In the asymptotic
limit, all curves converge to a single value, as expected.
Using the perturbative expression, Eq. (41), for Fðk2Þ in

Eq. (54), and taking the asymptotic limit k2 ≫ p2, we have

τasymðk2; p2Þ ¼k2≫p2 3

2

α

4π

ðξ − 3Þ
k2

ln
�
k2

p2

�
ð60Þ

in the LLA. Note that the transverse form factors, Eqs. (57)
and (60), have the functional form ð1=k2Þ lnðk2=p2Þ.
Furthermore, they are the same in the Feynman gauge
(ξ ¼ 1). In order for them to be the same in an arbitrary
gauge ξ, we must seek a nontrivial W-function in Eq. (52),
still satisfying the restriction in Eq. (47), so that the
corresponding perturbative vertex is consistent with
Eq. (57) in the asymptotic limit k2 ≫ p2. Perhaps the
simplest such choice for W is

W

�
k2

p2

�
¼ λ

k2

p2
ln

�
k2

p2

�
þ λ

2

k2

p2
; ð61Þ

with λ ¼ −3αðξ − 1Þ=2π. In the Feynman gauge (ξ ¼ 1)
W ¼ 0; i.e., there is no necessity of a nontrivialW-function
since both perturbative vertices, Eqs. (57) and (60), are
already the same. Note that the second term in the right-
hand side of Eq. (61) is a convenient term to ensure MR of
the scalar propagator. It drops out in the LLA. Using the
variable x ¼ k2=p2 in Eq. (61), we have

0 0.2 0.4 0.6 0.8 1

x=p
2
/k

2

-20

-10

0

10

20

~ τ(
x)

ξ=0
ξ=1
ξ=2
ξ=3
ξ=4
Analytical Result

FIG. 2. The analytical result, long dashed lines representing a
constant value given in Eq. (59) for the asymptotic transverse
form factor ~τasymBCDðxÞ, agrees with the numerical plot of ~τBCDðxÞ
obtained from Eq. (55) in the limit x → 0 for different gauges and
an arbitrarily chosen value of q2 ¼ −0.7 GeV2.
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WðxÞ ¼ λx ln xþ λ

2
x; ð62Þ

so that the restriction in Eq. (47) is trivially satisfied. Using
the choice in Eq. (61) for W in the vertex, Eq. (52), we can
finally define the transverse form factor as

τðk2; p2Þ ¼ −
3

2

1

ðk2 − p2Þ
�

1

Fðk2Þ −
1

Fðp2Þ
�

−
ξ

2

1

ðk2 − p2Þ
Fðk2Þ þ Fðp2Þ

sðk2; p2Þ
�

1

Fðk2Þ −
1

Fðp2Þ
�

−
ðξ − 1Þ

ðk2 − p2Þsðk2; p2Þ
3α

8π

�
k2

p2
þ p2

k2

�
ln

�
k2

p2

�
:

ð63Þ

Note that the Eqs. (6), (9), (12), and (63) define our full
vertex Ansatz. It ensures the following key features
of sQED:

(i) It satisfies the WFGTI by construction [3–5].
(ii) It guarantees the LKFT property of the scalar

propagator and can be checked by employing it in
its SDE. In other words, it ensures the MR of the two
point scalar propagator.

(iii) It reduces to its one-loop perturbation theory
Feynman expansion in the limit of small coupling
and asymptotic values of momenta k2 ≫ p2.

(iv) It has the same symmetry properties as the bare
vertex under charge conjugation, parity and time
reversal, which imply symmetry under k ↔ p.

(v) It is free of any kinematic singularities when
k2 ⇒ p2, i.e.,

lim
k2⇒p2

ðk2 − p2Þτðk2; p2Þ ¼ 0: ð64Þ

An important thing to note is that in the Ansatz for W
given in Eq. (62), the MR condition is satisfied independ-
ently of the value of the parameter λ. Moreover, λ is tied to
the anomalous dimensions β. To first order in α, we have

β ¼ −
λ

6
−

α

2π
: ð65Þ

The NLL and subsequent logs can be obtained by writing
out

β ¼ αðξ − 3Þ
4π

þ c2Oðα2Þ þ c3Oðα3Þ þ � � � : ð66Þ

Note that the scalar and tensor vertices present in the SDE
of the scalar propagator, Eq. (2), can start contributing at
the NLL and hence are required to determine the values of
the coefficients ci, i ≥ 2. However, the NLL and constraints
from subsequent orders can be absorbed in our Ansatz for
the effective vector vertex. Practically, this is achieved by a
new definition for λ without affecting the MR condition.

Therefore, the procedure outlined above can easily accom-
modate the NLL, NNLL and so on. We only require ci for
i ¼ 2; 3;…, which are provided by increasing orders of
perturbation theory; see for example [48].
Note that the kinematic dependence of the vertex on q2

plays no role asymptotically and the standard analysis
proceeds without reference to it. On the infrared domain,
however, the kinematic dependence on q2 may be impor-
tant. Our vertex has this pitfall but its simplicity is reason
enough for us to ignore this dependence.
Finally, in Table I, we compare different vertex Ansätze

as regards the correct behavior of the scalar propagator
under LKFT and MR. Neither the bare vertex nor the BC
vertex yield a MR solution. Our proposal is the only one
satisfying this constraint with the exponent of the wave
function renormalization in agreement with the all-order
LLA in perturbation theory.

VII. CONCLUSIONS

In the massless quenched sQED, we have derived a
practical and easy method to implement constraint of
multiplicative renormalizability on the three point scalar-
photon vertex. It leads to a family of these vertices in terms
of a constrained dimensionless function WðxÞ. It has a
remarkably simple nonperturbative integral restriction,

Z
1

0

dxWðxÞ ¼ 0;

which guarantees the multiplicative renormalizability of the
scalar propagator to all orders in perturbation theory. We
further pin down W through the constraints of one-loop
perturbation theory in the asymptotic limit, lack of kinematic
singularities and the imposition of discrete symmetries.
Finally, we construct a simple example ensuring all these
key features of the sQED. Though it is an example from one
of the simplest QFTs, it provides a systematic procedure for
constructing a three point function in terms of the corre-
sponding two point function. This method is general and can
be implemented in a similar manner to unquenched sQED as
well as any other QFT of interest. In this connection, we
would like to comment that an extension to the case of
unquenched sQED is algebraically rather involved. For
example, for spinor QED, its unquenched version has been
investigated in [36]. It involves the constraints of MR on
both the fermion and photon propagators for massless
fermions. However, the fact remains that in the limit of
nf → 0, one recuperates the quenched QED results.
Another obvious and straightforward extension of this

work is to apply the same formalism to QCD and constrain
the quark-gluon vertex through the requirements of MR.
Improving our understanding of this three point function on
lattice [49–51], as well as through continuum methods
[52–54] will supplement earlier works. We naturally expect
the quark-gluon vertex to invoke more W-functions
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because the transverse part of this three point vertex is a lot
richer than the one in sQED, with eight independent
transverse vectors as compared to only one for the latter.
This work is currently in progress.
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