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Schwinger’s formalism in quantum field theory can be easily implemented in the case of scalar theories
in D dimension with exponential interactions, such as u” exp(a¢). In particular, we use the relation
exp(a#fx)) exp(—=Zy[J]) = exp(=Zy[J + a,]) with J the external source, and a,(y) = ad(y — x). Such a
shift is strictly related to the normal ordering of exp(a¢) and to a scaling relation which follows by
renormalizing u. Next, we derive a new formulation of perturbation theory for the potentials
V(¢) =4 :¢":, using the generating functional associated to : exp(ag):. The A(0)-terms related to
the normal ordering are absorbed at once. The functional derivatives with respect to J to compute the

generating functional are replaced by ordinary derivatives with respect to auxiliary parameters. We focus on

scalar theories, but the method is general and similar investigations extend to other theories.
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I. INTRODUCTION

The difficulties in quantizing some nonrenormalizable
field theories, are due to the absence of uniqueness rather
than in the existence of a solution. In this respect, one
should recall that the classification of super-renormalizable,
renormalizable, and nonrenormalizable theories is based on
the power counting method, in the framework of the
perturbation theory. Such issues have been considered in
the sixties and seventies (for a review see, for example, [1]).
As emphasized by several authors, what is lacking is the
absence of a natural prescription to make the solution
unique.

A basic example of nonrenormalizable field theory is the
one with exponential interaction for the scalar field ¢. The
potential

/1/ dPx: exp(ag):, (1.1)
I

A >0, with I a cube in RP, and with ultraviolet cutoff at
distance y ™,y > 1, N > 0, has been investigated in several
papers, in particular in [2]. It turns out that for D > 2, the
Schwinger functions converge to the free ones, for all @ and
forall 4 > 0. The same happens for D = 2, but now only in a
given range of a. Namely, there exists > /4, such that
for a > ay and for all 1 >0, the Schwinger functions
converge to the free ones. For D =2 and &? < 4z, the
limit / — R? gives nontrivial Schwinger functions.

The essential point in the investigation of [2] is that
A4 (0), with A, (x) the Feynman propagator with cutoff on
the momenta, grows sufficiently fast to kill the fluctuations
of ¢, so that :exp(a¢g) = exp(—%AA(O)) exp(a¢) van-
ishes in the limit A — oo. We are not aware if such findings
have been reproduced in the standard lattice regularization.
It should be stressed that the problem of removing the

2470-0010/2016,/93(6)/065021(13)

065021-1

infrared cutoff in D-dimensional Euclidean space, that is, of
taking the infinite volume limit I — R”, has been
addressed by Raczka in [3]. In particular, Raczka consid-
ered the exponential interaction with periodic boundary
conditions and then considered the infinite volume limit. It
turns out that all the Wightman axioms are satisfied except
the one concerning SO (D) invariance that has not yet been
proved. It should be stressed that without periodic boun-
dary conditions, translation invariance would be broken. A
related work concerns the spontaneous symmetry breaking
(SSB) of space translations in Liouville theory, observed by
D’Hoker, Freedman, and Jackiw [4]. A key property of the
SSB of space translations is that in this case one escapes a
basic no-go theorem such as the one by Haag. Actually,
such a theorem essentially states that the interaction picture
does not exist. It follows that perturbation theory, where the
interacting field is unitarily equivalent to the free field, is, in
general, ill defined [5—7]. Another consequence of the SSB
of space translations is that the Killén-Lehman spectral
decomposition [8,9] does not hold.

In this paper, we investigate the scalar exponential
interaction using the Schwinger’s formalism. The inves-
tigation, which is applied in the companion paper [10]
concerning the formulation of the Higgs model in terms of
exponential interaction, is based on the observation that
Schwinger’s formalism allows us to use exp(ad J(x)) as the
translation operator of J(y) by the delta-source

a,(y) = ad(y — x). (1.2)
In particular, we will use the relation [see (2.17) for the
notation]

exp <a 6J?x)> exp(—ZylJ]) = exp(—=Zo[J + a,]). (1.3)
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The investigation can be generalized to linear combinations
of exponential terms.

The paper is organized as follows.

In Sec. II, after fixing the notation and shortly recalling
the Schwinger formalism, we show that the translation (1.3)
is strictly related to the normal ordering of exponential
operators. This naturally leads to an alternative representa-
tion of the generating functional. Furthermore, the term
exp(%2 A(0)), with A(x) the Feynman scalar propagator, is
absorbed by the renormalization of yu, leading to scaling
relations for the mass. In Eq. (2.43) we introduce a
modified Feynman propagator in the massless case, whose
dependence on the free parameter m, should be compared
with the ambiguities of taking the D — 4" limit in dimen-
sional regularization. In Eq. (2.56) we report scaling
relations of the generating functionals W[J]. We then
discuss the SSB and its connection with the choice of
the boundary conditions.

In Sec. III we consider the exponential interaction as a
master potential to generate other interactions. This is very
natural in the case of polynomial interactions. In particular,
we provide a formulation of perturbation theory for the
normal ordered potentials % :¢": which is based on the
potential u”: exp(ag):. It turns out that translations of
J(y) by a.(y) generate the full terms related to normal
ordering. This allows us to absorb at once the A(0)-terms
which are typical of non-normal ordered potentials.
Furthermore, in this approach, the functional derivatives
with respect to J to compute the generating functional are
replaced by ordinary derivatives with respect to auxiliary
parameters. We then derive the explicit full perturbation
series of the generating functional associated to the
potentials % :¢":. Such an expression is reported in
Eq. (3.16). Furthermore, as an illustration of the method,
we derive such a series even in the case of the one- and two-
point functions. We focus on scalar theories, but the method
is general and similar investigations extend to other
theories.

Section IV is devoted to the conclusions and to some
suggestions for further developments of the proposed
formulation of quantum field perturbation theory, based
on the exponential interaction, considered as a master
potential.

II. EXPONENTIAL INTERACTION

In this section we first introduce some notation and recall
few facts on the Schwinger formalism. Next, we use the
translation operator exp(a%(x)) to express the generating
functional W[J] associated to the exponential interaction
uP e as a power series in 4. Such an analysis will shed
light on some properties of the exponential interaction. In

particular, it turns out that the action of exp(a%),

equivalent to introduce infinitely many charges, is strictly
related to normal ordering. This naturally leads to introduce
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an alternative expression for W[J]. Such a little-known
expression extends to generating functionals associated to
arbitrary potentials [11] and leads to some new relations
[12]. Next, we derive scaling relations for the mass, both in
the dimensional and in the momentum cutoff regulariza-
tion. Then, we derive a scaling law relating W[J] at
different values of x. We conclude this section by discus-
sing the possible SSB of space-time translations of the
exponential interaction, relating it to the choice of the
boundary conditions.

A. Notation

In the following we set the notation, essentially the one
in Ramond’s book [13], and recall few facts on the
Schwinger’s formalism.

In D-dimensional Euclidean space, the generating func-
tional is defined by

W) = 24 = N / Deexp [— / d"x G O pOub

+%m2¢2+V(¢) —J¢>]- (2.1)

Z[J] generates the connected N-point functions

NZ[J]

(=1" 5J(xy)...8J (xy)

= (0|]Tp(x)...¢p(xn)|0)..

J=0

(2.2)

Shifting ¢ in the term J¢ in (2.1) by an arbitrary function f
gives, on the right-hand side of (2.2), the correlators of
¢+ f. Such a shift is equivalent to replace Z[J] by
Z|J) = [dPxJ(x)f(x), so that, for N > 2,

SN(Z[J) = [dPxJ(x)f(x)) _ SNZ[J]
8J(xy)...60 (xy) 8J(x1)...60 (xy)

(2.3)

This implies that the N-point functions of ¢ and ¢ + f
coincide for N > 2. In particular, choosing f(x) =—(¢(x)),
one sees that the connected N-point functions of ¢ and
n = ¢ — (¢), coincide for N > 2

OIT¢(x1)...¢(xn)[0). = O[Tn(x1)..n(xn)[0)e,  (2.4)
which holds even when (¢(x)) depends on x. A simple
example to see that factorized terms disappear from the
connected ¢ correlators, even when (¢(x)) is not vanish-
ing, is provided by the expression of (0|T¢(x;)¢p(x,)[0). in
the case V = 1¢. By (3.37), one immediately sees that the
term —(¢p(x;)){(¢p(x,)) = —4>/m* is canceled by the other
J2-term.
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E/dej.../dekf(xl,...,x,,),

(2.5)

Set

(f(xqy .y

and denote by (f(xy, ..., x,)) integration of f over all the
variables. Schwinger’s formalism is based on the relation

W[J] = Ne= (VG e=Zold], (2.6)
where
Ll = -3 A=), (27)
and
Dy eir(x-y)
Alx-y) = / (gﬁfgm (2.8)

is the Feynman propagator. On the other hand, Z[J] can be
expressed in the form

ZJ] = —InN + ZoJ] = In(1 + 8lJ]),  (2.9)

where
8[J] = %ol (e~ V@) — 1)e%l], (2.10)

Expanding §[J] in the power series of the dimensionless
coupling constant 4,

8[J] = iék[l]lk, (2.11)
k=1
leads to the perturbative series
Z[J) = —InN + Zy[J] — 26, ]
-2 <52[J] —%5%[]]) + e (2.12)

B. Generating functional from the translation operator

Consider the potential

V(@) = uPe, (2.13)
where y and @ have mass dimension 1 and (2 —D)/2,
respectively. Dropping the constant N in the expression of

W/[J], we have
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WI[J] = exp [_ﬂD<exp< 55J> >] exp(—Zo[J])
kio; (_Z?)k <6XP (a%) >keXp(—ZO[J]). (2.14)

e )) translates J(y) by

Since exp(a 3

as(y — x), (2.15)

a(y) =

it follows that in this case Eq. (2.6) can be easily
implemented. In particular,

exp <a %x)) exp(=Zol/])

= exp(—=Zo[J + a,]) exp (a 5J?X))

= exp(=Zo[J + ),

(2.16)

where

zol ) == [ @ [ @200) + aa =)

x Ay = 2)(J(z2) + ad(x = 2))
o>
—24l0) -5 A0) - a [ y)Al )
(2.17)
Therefore,
kz‘x’; z, (exp(=ZolJ + ay, + -+ a,])).
(2.18)
or, more explicitly,
W[J] = exp(— ; Z! CXP<kZ A(0)>ka’
(2.19)
with Gy = 1 and
/dDzl /d % exp< /dDzJ(z)
Z (z—z,)+aZZA -—z,) (2.20)

Jj= [>]

k € N, where the second summation starts contributing
from k = 2.
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Since the derivatives of W with respect to J commute to
the right of the first exponential in (2.14), it follows that
even the N-point functions GV (x,, ..., xy) are obtained by
acting with the translation operator. In this case, such
operators act on

n 8" exp(=Zo[J])

FlJ,a,xq, ..., = (- , 2.21
o] = GOV emS—ray 32
so that
N (=
G( )_x]’ _Z k| +
=0
‘oo x, L xn]), L, (2.22)

where a, is the delta source defined in (2.15).

C. An alternative representation of W (/]

Here we show that the action of the translation operator
is strictly related to the normal ordering. We will see that
such an analysis will naturally lead to introduce an
alternative representation of W/[J].

Let us first observe that the generating functional can be
expressed as the vacuum expectation value (vev)

WU = (O[T exp { [ stepets s o)
(2.23)

where here |0) is the vacuum of the free theory. Setting

) =# @)+ [ @PueAb-2)  (224)
in (2.23) and then removing the prime in ¢’ yields

WJ] = e=%VN0|T
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o 2 k —
We now show that the terms ¢'$2(0), ¢ 2y AG~2)

VDA i (2.19), generated by the  shift
J(y) = J(y) + ad(y — x), are the same as the ones due
to the normal ordering of the exponentiated operators. To
check this, note that (2.14) corresponds to the power
expansion of e~V(#)) in (2.23), that is,

, and

(2.26)

Next, recall that

2

exp(a(c) = exp( =5 A0) ) expla(c). (227

and

Texp ( / dDzJ(z)d)(z))

= exp(—Zy[J]): exp (/ dDZJ(Z)¢(Z)> oo (2.28)

Furthermore,

T:exp(ag(zy)):...:explag(zy))::

X exp (/ dDzJ(z)(ﬁ(z)) :
_exp( ZA Zi—2) /dDzJ iA z—z,))

cexp(ad(zy))...exp(ap(z;)) exp (/ dDzJ(z)¢(z)) .

X exp {—MD / dP 7™+ [ 0 ] |0). (2.29)
(2.25)  Equations (2.27), (2.28), and (2.29) imply
|
T explap(en)-..xplad)) exp [ a2r(200c) )
= T |explada))explap(e) e [ @2 |
k k
:exp(—ZO[J])exp[az(gA(O)+ZA =2 ) +a/ Z)ZA(Z—ZJ-)]
I>] =1
cexp(ad(zy))... explag(zy)) exp (/ dDzJ(z)¢(z)> . (2.30)
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Since the vev of the last normal ordering is one, it follows that (2.26) reproduces, by (2.30), Eq. (2.19). We note that a
slightly modified version of (2.30) provides an alternative way to prove Eq. (2.25). First note that the vev of (2.30) coincides

with the one of

exp(—ZdJ})exp(a/dDzJ(z zk:A (z—7z;

J=1

= exp(—Zy[J]) exp [a <
sexplag(zy))...

I>j

exp(ag(z)):.

+ZA

> Texp(ap(zy))... exp(ap(zy))

<—z1> /dDzJ iAZ_ZJ]

J=1

(2.31)

Equation (2.25) then follows by replacing the operator in the vev of (2.26) by (2.31).
Let us show that W[J] admits a representation which is an alternative to the representation (2.14). The key point is the

following relation:

1 P
— | ar D A-
exp [z/d o / 4"x; 5J(xy)

:exp[a < —|—ZA
I>j

where A~!(y — x) is the inverse of the Feynman propagator

/dDzA‘l(x —2)A(z—y)=6(x—y), (2.33)

that is,

_ [ d°p
80=0= [ G

By (2.19) it then follows

(p? + m?)eP=), (2.34)

WJ] :exp(—ZO[J})exp(%/del/dez(sJ?xl)

)

X exp {_,,D / P exp <a / dDzJ(z)A(z—x)ﬂ.

(2.35)

x A7 (x

It turns out that such a little-known expression extends to
generating functionals associated to arbitrary potentials
[11]. Recently, in [12], it has been shown that it leads to
some new relations.

D. Mass renormalization and scaling

The term exp(k“ A(0)) in (2.19) can be absorbed either
by considering the normal ordered potential 4" : exp(ag):
or by redefining u

'(x, —xz)ﬁ} exp(a/dDzJ(z)zk:A(z - Zj))

k
._Zl>+a/dDzJ ZA z—zj)} (2.32)
j=1
o>
uP = b exp <—?A(O)>. (2.36)
Since in dimensional regularization one has [14]
mbP-2
A(0) =—+=T(1 =D/2), 2.37
0) = o T(1=D/2). (237

it follows that (2.36) is equivalent to the scaling relation

2D(4x)P/?
b2 2DUm | ko (2.38)
aT(1-D/2) u

Recall that A(0) is singular for D =2n, n =N,. In
particular, its expansion near to D = 4 reads

/ d°p 1 om? 2
(27)P p? + m? N (4n)> \D -4

where y(2) =3 -y, with y =05772..., the Euler-
Mascheroni constant. Dropping the terms in (2.39) vanish-
ing for D = 4, yields

w(2)> LoD -4).

(2.39)

oo APD-9)
“@e-o-ape) e Y

We note that setting

= (D-4)m} (2.41)
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gives, in the D — 4 limit, the finite mass
32x? I U3

——In=.
P

(2.42)

2
my =

From the point of view of the Feynman propagator,

- [P
Smie=) = | G o am

eiP(X—}')

(2.43)

it should correspond, for D = 4, to a massless particle. In
this respect it is interesting to compare

2
my
A, (0) = —

Py (2.44)

with [14]

d®p o

| G =0, (2.45)
holding for k, D € C, except in the cases D = 2n,n = N,
where there are some open questions [15]. On the other
hand, adding a term (D —4)m3¢?/2 in the path-integral
formulation is in the spirit of dimensional regularization.
The free parameter m, would be an alternative to the
ambiguities stressed in [15], where it is shown that,
depending on the calculation method, the D — 47 limit
yields either infinity, zero, or a finite value.

The above analysis can be compared with the regulari-
zation by the momentum cutoff A. For D = 4 we have

d*p 1 m? [A? A?
= — —In—| + O[(A~1)?],
//\(27[>4 p>4+m?  16x? {m2 nmz} +Ol(A™)]
(2.46)
which implies the scaling relation
A2\ 2% a?\2
4 4 327
= — -—— . 2.47
i =) ew(- 5 ) 24D
Note that setting
8
a=+2 (2.48)
m

yields a simple scaling relation involving only the dimen-
sionless ratios A/m and pu/p

o noe2)
—=—exp|—z|— ]| |-
Uy m 2 \m

We note that rescaling by the normal ordering contributions
has been considered in several contexts, for example in the
framework of Liouville theory [4]. This is related to the
scaling law for W[J], investigated in the next subsection.

(2.49)
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E. The scaling of W[/J] and (¢(x))

Note that by (2.14) or, equivalently, by (2.23), it follows
that W[J] satisfies the equations

(i (e

and
(Gt enfety) oo

Another equation satisfied by W|J] follows by noticing that
since

(2.50)

(2.51)

(A==, 2.52)
one has
b OGT] K
/d i) = Ol (2.53)

By (2.19) such a relation implies

a O W] _ /dux<w_@), (2.54)

m? dlnub sI(x)  m?

This equation can be also obtained by (2.50), together with
the integrated version of the Schwinger-Dyson equation

( [ a2
4 / d%% (f%) - J(x)> Wl =0. (255

Note that Eq. (2.54) is equivalent to the scaling relation

W ug] = WIJ. £ig]

cexp™ [ [ aor( o) -1 |
Ho

where pf and zf) are two arbitrary values of the mass scale
and

~ 6InWJ, u]

o (¥) = — 70) (2.57)

Since W|J, 0] is the free generating functional, Eq. (2.56)
implies the following representation for W[/, uf)]:
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W) = exp(-zoeso 3 [ [ aPx(oan ) - 00

PHYSICAL REVIEW D 93, 065021 (2016)

(2.58)

Taking the functional derivatives of Eq. (2.56) with respect to J, evaluated at J = 0, generates identities between the Green

functions at different scales. For example,

_m* K5 du D D n@
(B, — () = / [y QTpp)0), + o, (2.59)
where
(P(x), = 51%(%,14 o (2.60)
and
8 InW([J, u]
O (I0 000, = Fyrsiig| 2.61)
Let us now consider the one-point function
ooy - <exp< LURL)PYSECLLY MY e
S T (exp(e® S Az - 7))

Such an expression is formally translation invariant; there-
fore, it should be treated as a constant. However, it needs a
finite volume regularization. The infrared regularization for
the exponential interaction has been investigated, e.g., in
[2] and by Raczka in [3], who considered periodic
boundary conditions that may break the SO (D) invariance.
A related issue concerns the SSB of space translations, in
the case of Liouville theory, observed by D’Hoker, Freed-
man, and Jackiw in [4].

We conclude this section by observing that the above
analysis can be extended to the case of more general
potentials, such as

N
=Y Wenad). (263
k=1
whose corresponding generating functionals are
(=D /N 3\ \
=3 S (e (ar5;) ) exo(-2ob
- =

(2.64)

We also note that interesting cases concern the extension to
more scalar fields with exponential interactions.

III. EXPONENTIAL INTERACTION AS
MASTER POTENTIAL

In this section we consider the exponential interaction as
a master potential to get the generating functional for
polynomial interactions. After introducing the method, we

l
will derive the explicit expression of the functional gen-
erator in the case of the normal ordered potentlals L.
This is obtained by deriving u? : exp(a¢): with respect to
a, so that all the A(0)-terms due to the non-normal ordered
contributions are absorbed at once from the very beginning.
We note that whereas in the standard approach the gen-
erating functional is obtained by taking the functional
derivatives with respect to J, here such derivatives are
replaced by standard derivatives with respect to auxiliary
parameters. We conclude with illustrative examples by
computing the one- and two-point functions.

A. The method

The starting point is to note that
P" = e . (3.1)

It follows that the generating functional corresponding to
V= %g{)” is the following modified version of (2.14)

W [J] = exp [— P <exp aiﬂ exp(=Zo[J])| a0

oJ
= (—A)k ' 5 5
= kz:; o TE Bal...é?ak<exp a §> <exp a 5J>
x exp(=Zo[J])]g0—0> (3.2)
where a¥) := (ay, ..., a;). We now show that, within such

an approach, the A(0)-terms can be absorbed at once. First
note that by (2.27)

065021-7
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n n ’lz
()= az:ea¢<x>:|ao—2( k)aae-zw

k=0

|aco®(x)" 7
(3.3)

The first few cases are

1p*(x): = ¢ (x) — A(0),
1 (x0): = ¢ (x) = 3A(0)p(x).
1t (x): = ¢*(x) — 6A(0)4(x) + 3A%(0).

=

(3.4)

It follows by (3.3) that the generating functional associated
to V= % :¢": corresponds to (3.2), where now each

(expa; Z) is multiplied by exp(—3A(0)). The net effect
on W[J] in (3.2) is that now, acting with the translation
operator {(a2) on Zy[J], one may replace Zy[J + a,] in
(2.17) by

Zold + o] = ZolJ) ~ / PyI()Ay—x).  (3.5)

This leads to the central result for the generating functionals

W] = exp(=Z,[J

> ) 1 1
D3 e [ .

+Zaal

I>j

There is a nice property satisfied by the N-point functions.
Namely, since the derivatives with respect to J of W([J]
commute with the derivatives with respect to the a;’s, and
since the N-point functions are obtained at J = 0, it follows
that the term (J(y) >-)_; @;A(y = z;)), in (3.6) can be set
to zero before computing the derivatives with respect to the
a;’s. Also note that the functional derivatives to get the
correlators with respect to J are easily computed. In
particular, the only contributions come from the free part,
i.e., Zo[J], and from the term (J(y) > j_ K aA(y - Zj))ys
that contributes by a term >7_, a;(A(x - z;)), for each
derivative with respect to J(x).

B. W[J]

Here we derive the explicit expression of W [J]. It is
instructive to start by considering the simpler case of
W] at J =0

PHYSICAL REVIEW D 93, 065021 (2016)

o0

Z n‘kk' fll

8" < E > a; (l[
A

>|a(1">:0'

(3.7)

When kn is odd, there are no contributions to the kth term
of the series. When kn is even, 0y, ...0j, selects, by setting
a®) =0, nl* times the coefficient of af---a} in the
expansion of the exponential. In order to investigate the
contributions to W) [0] coming from such an expansion, it
is useful to consider the multinomial identity

(o)

I>j

1 k
DD IR st | (CECEE NS
Z' mj=kn/2 I>j ]l 1>
where 0 <mj < kn/2. For each [=1,....k, the total
exponent of ¢; in (3.8) is
pr= thz‘f' Z m, (3.9)

Jj=I+1

where it is understood that for / = 1 there is only the second
summation, while for / = k there is only the first one. The
contributions to the kth term in the series (3.7) are the ones
with

Pr=...=pi=n (3.10)

which gives Y% p; = kn. On the other hand, Eq. (3.9)
implies ), p; =2 3. ;mj;, so that the condition (3.10)
includes the condition Zf;j mj = kn/2 reported in the
summation in the right-hand side of (3.8). Hence,

k

Z Z [k|m]H<A(Zj—Zz)m"’>’
k=0,k#1 Y opi=...=pr=n I>j
(3.11)
where for kn even
1
k] = ———. (3.12)
I>j Mt

and [k|m] = 0 otherwise. It is everywhere understood in the
paper that, for k = 0, 1, terms of the form Hf; jajaresetto 1.

Let us extend the analysis to the case of W) [J]. First, for
each k in the series (3.6), consider the following identity
satisfied by the term in the expansion of the exponential, in
the integrand of W) [J], containing af - - - &, unless in the
case J = 0 with kn odd,
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p:o(kn_lzpw < Z“A o >kn ZP<Z”’ >p

I>j

P= OZflq, kn— ZPEA mj= PHI 14 Hl>]

k

k
x [J ey -
i=1

I>j

where [a] denotes the integer part of a, 0 < g; < kn —2p,
0 <mj < p. Letus first show how this formula reproduces,
for J = 0, the identity (3.8). If kn is even, then, for J = 0, all
the terms (J(y)o;A(y — z;))¥, i = 0, ..., k, in the right-hand
side of (3.13) are zero unless g; = 0. Similarly, for / = 0 the
term (J(y) S5, o A(y — 2;))y" 77, on the left-hand side of
(3.13), contributes only for kn —2p = 0; this is, of course,
consistent with the condition Z;‘:l q; = kn —2p. Therefore,
for J = 0 the summation over p in (3.13) reduces to the term
with p = 4. Since ¢; =... =¢; =0, we have [[%_, ¢;! = 1,
and (3.13) reducesto (3.8). If knisodd and J = 0, then the kth
term in (3.6) is zero. This follows also by (3.13). In this case,
the only possible contribution to (3.13) would come from
g =...=¢q;=0. On the other hand, this would give

le q; = 0 that cannot be equal to the odd number
kn — 2p. Therefore, such a configuration of the g;s is not
included in the summation.

Let us now consider (3.13) for arbitrary J. For each
I =1,..., k, and for each choice of m ;’s, the total exponent
of @; in (3.13) is

Pt —Zmri‘ Zmzj+6h

j=I+1

(3.14)

The two conditions in the summation’s indices, in the right-
hand side of (3.13), imply

k k
:2Zmﬂ+2ql:2p+kn—2p:kn.
I>] 1=1

-
S

(3.15)

For each k, the only contributions to W) [J] are the ones with

p1=...= pr=n. This condition implies (3.15), so that
W]
00 % k
=2l
wy >, 2 Kmaq]]
k=0 : =OZ | qi=kn=2p P1=w=Pi=N i=1

(3.16)

L~ ) >

<<J(y q’gA

)y’ H(ajakA(Zj — )",

(3.13)

C. One- and two-point functions

As an illustration of the method, we now derive the one-
and two-point functions. This can be done directly con-
sidering the functional derivatives of (3.16); nevertheless, it
is instructive to investigate the combinatorics starting again
from the expression (3.6).

Let us start with the one-point function

(p(x)) = W(j) [O]ki: / Pz, / Pz,
xZan z,)exp(Za oA >

I>j

a®=0

(3.17)

Expanding the exponential, one sees that the total degree in
the @;’s is odd, so that, as obvious, (¢(x)) = 0 for n even.
More generally, when kn is even, there are no terms in
(3.17) containing «f - - - a}. Therefore, the contributions to
(¢p(x)) arise only for kn odd. In this case the term including
aj ---aj in the integrand of (3.17) is

k
kn 1 Z —Zj <Za oA
Jj=1 I>j
Let us focus on the term
¢ Bl
<Z a;oA(z; — z,)) .
I>j

By (3.8), with kn/2 replaced by (kn — 1)/2, one sees that,
for each [ =1, ..., k, the total exponent of ¢; in (3.19) is

1012_—1
-2 ) . (3.18)

(3.19)

pr= thl+ Z m, (3.20)
Jj=I+1
with the mj;’s constrained by the condition
k
> my = (kn—1)/2. (3.21)

J>1

065021-9
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so that

k

By (3.18), it follows that the terms in (3.19) contributing to (¢(x)) are the ones containing o} - - - &
z;). This implies the condition

multiplied by the «; in Zle a;A(x —

Pizi = 1,

[=1,..,

k
Zp,:22mjl:kn—l.

=1 I~]

pi=n—1,

PHYSICAL REVIEW D 93, 065021 (2016)

(3.22)

Lai=1,.k

(3.23)

k, that, by (3.22), implies the condition on the m;;’s (3.21). Note that inspection of (3.17) shows that the term

k = 1 of the series is nonvanishing only when n = 1. Recalling then that nonvanishing contributions to (3.17) arise only for

k odd, one gets

— 15,4 -
W<">[0]{ k=)

I>j I>j

ot Z 2k+1
| 2%+1
H2k+] < H A

/121<+1 2k+1

>

=1 pi=n—1.p\=..=p;=...=pyq1=n

i Zz > :| .
1+ 22k41

(3.24)

Next, note that the sum over i is just the sum of 2k + 1 identical quantities. Therefore, it corresponds to 2k + 1 times an
arbitrary element of the sum. We choose the one with i = 2k + 1

— {5,,,, (A(x —

: <
X—
2k+1 |
I>j mﬂ.

Let us consider the case n = 1. Since p,;; = 0, it follows that mp, ; =0,/ =1, ...,

2k+1
— Zok41) HA Zj—7) > }
21+ 22k+1

+Z /121{ Z

I’2k+| =n—1.p|=...=py=n

(3.25)

I>j

2k. Furthermore, the dependence on

Zoks1 only appears in A(x — zy.41), so that, according to (2.52), integration over z,;,, gives a factor 1/m?. Hence,

for n =1,

© /12/(

(#(x)) = Z

k PI: =pyu=I1

where it is understood that the term k£ = O in the summation
is 1. On the other hand, by (3.11) the expression of W) [0]
for n odd is an expansion on even k, and this coincides, for
n = 1, with the series (3.26), so that

(3.27)

This result can be seen as a check. Actually, for n =1 the
theory is free, so that (¢(x)) corresponds to the value of ¢
that minimizes m?¢?/2 + A¢, that is, (3.27).

We conclude this section by considering the connected
two-point function

RRVARIN]

(@(x1)g(x2)) = m (3.28)

A(z 3.26
Z Hl>] ]l <g > ( )
[
where Z") = —In W), We have
(Pp(x1)p(x2)) = —<¢(x1))<¢( 2)) +Ax) —x2)
- ) 11 1
+ 2 R
/dDzl /dDzk ZajalA x
2 =2 exp(Za aA(zj— 2z >
1> a®=0
(3.29)

Expanding the exponential one sees that the only contri-
butions to the series are for kn even. The term including
aj ---ay in the integrand is

065021-10
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1 k
—(M)v Z ajoA(x
2 /=l
‘ b
X (ZajalA(zj —z;)) .
I>j

Because the second summation starts from k = 2, it follows
that the kK = 1 term is not vanishing only for n = 2. In this
case the contribution to (3.29) is

Zj)A<x2 )

(3.30)

PHYSICAL REVIEW D 93, 065021 (2016)

Let us now consider the case k > 3. By (3.8), with kn/2
replaced by (kn — 2)/2, one sees that the total exponent of
a, l=1,...k, in

knz—Z
<Za ade=2))
I>j

is again (3.20), where now 0 <mj < (kn—2)/2. The
terms in (3.33) contributing to (¢(x;)¢p(x,)) are the ones
containing

(3.33)

A B it W e N )
S (A0 =208 =), (31) R
i17i2 = 1, k, and
;I;Illl;edcizgtr:nbutlon to  (p(x1)p(x,y)) for k=2 s al a2, (3.35)
i =1,...k. The products (3.34) and (3.35) correspond to
2 a'---a! once multipied by @ a;, and o in
2 83—182—1 A _ A _ 1 k 17 i
2n1?(n —1)! (Oa 0 marAln = 21)Alx = 22) Z?,l:l ajoyA(x = z;)A(x — z;), respectively. This implies
X (aIGZA(Zl - ZZ))n_1>zlzz|a1=a2=0 k P

2 i p=2> my=kn-2. (3.36)

= (n_1>!(A(x1 —21)A( — 2)A" (7 —Zz)>zm- 12:1: ; !

(3.32) The above analysis yields
|
1
<¢(x1)¢(x2)> (¢(x1))<(,/)(x2)> + A(xl - xz) + WT)[O] [5;1,2/1@(?51 - Zl)A(xz - Z1)>11
}“2 n—1
+ (=1 (A(x) = 21)A(x, = 22)A" (21 = 22)),,,
0 (—ﬂ,)k k
SEN S S s —z)ate -2 [[aG-zm) | G
k=3 TodpLip=1 {p}”-il-iz I>j Z1---Zk

where, as in (3.12), if kn is even, then [k|m] := Hk

possible values of m,, m3, ..., my, My, ...,

pi,=n—1-=6

iy

A basic check of the above construction concerns the connected two-point function of % Pt

of £;¢*, the contribution up to order 4* reads

(P(x1)p(x2)) =

" and [k|m] = 0 otherwise. Z{P}mm

pi2_n_1+5tlzzv pj=n,

denotes the sum over all

M1k ranglng between 0 and (kn —2)/2, such that

j# iy, i (3.38)

. In the standard formulation

(3.39)
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Equation (3.37), which gives the full expansion, reproduces
such a result eliminating, by construction, the A(0)-terms,
that is,

(P(x1)p(x2))
/12

= A(x; —xp) +—(A(x; —21)A(x — 22) A% (g

6 _Z2)>Z|ZZ'

(3.40)

IV. CONCLUSIONS

Let us conclude by shortly summarizing the main results
in the paper. We started by observing that the translation
operator exp(ad J(x)) can be used to get the generating
functional associated to exponential interactions. Then, it
has been shown that such a translation operator generates
the normal ordering terms. The analysis naturally leads to
an alternative representation of the generating functional.

Next, we derived the scaling relations coming from the
absorption of the normal ordering contributions, and
discussed the massless case, suggesting a modified
Feynman propagator (2.43), whose dependence on the free
parameter m should be compared with the ambiguities of
taking the D — 47 limit. The scaling relations of the mass
are related to the scaling properties of the generating
functionals, reported in Eq. (2.56). This follows by the
integrated Schwinger-Dyson equation and the equation
relating the derivative of W[J] with respect to the scale
Ho to a shift of ¢ in the term [ d”xJ(x)¢p(x).

We then proposed a new approach to quantum field
perturbation theory: instead of perturbating the free theory,

PHYSICAL REVIEW D 93, 065021 (2016)

one may use : exp(a¢): as master potential. This leads to
the explicit expression of the generating functional,
reported in Eq. (3.16). As a result, the A(0)-terms asso-
ciated to non-normal ordered potentials are absorbed at
once. Furthermore, the functional derivatives with respect
to J, coming from the action of the potential on the free
generating functional, are replaced by ordinary derivatives
with respect to auxiliary parameters.

We note that the present analysis, which can be extended
to other theories, suggests that exponential interactions may
shed light on quantum field theories. For example, one
should investigate whether the auxiliary parameters, intro-
duced as tools to compute W [J], may have some
interpretation. Furthermore, while here the analysis has
been mainly focused on perturbative techniques, with the
exponential interaction acting on the free vacuum, one
should investigate the analogous structure by considering
the exact vacuum of the interacting theory. In this respect,
we note that some evidence on the triviality of the
exponential interaction in D =4 would suggest that the
exact vacuum is in some way equivalent to the free one.
This suggests that we further investigate the proposed
method to get nonperturbative insights on other theories,
including ¢* in D = 4.
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