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In this paper, we discuss the gluon propagator in the linear covariant gauges in D ¼ 2, 3, 4 Euclidean
dimensions. Nonperturbative effects are taken into account via the so-called refined Gribov-Zwanziger
framework. We point out that, as in the Landau and maximal Abelian gauges, for D ¼ 3, 4, the gluon
propagator displays a massive (decoupling) behavior, while for D ¼ 2, a scaling one emerges. All results
are discussed in a setup that respects the Becchi-Rouet-Stora-Tyutin (BRST) symmetry, through a recently
introduced nonperturbative BRST transformation. We also propose a minimizing functional that could be
used to construct a lattice version of our nonperturbative definition of the linear covariant gauge.
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I. INTRODUCTION

In the past decade, a great advance in the understanding
of the nonperturbative behavior of the elementary quark,
gluon, and ghost excitations of gauge-fixed Yang-Mills
theory was achieved. Although being a gauge-dependent
quantity, the gluon propagator could in principle contribute
to our comprehension of e.g. color confinement, and
as such it has attracted attention from a very diverse

community. Many nontrivial features of the nonperturba-
tive regime of Yang-Mills theories were captured from
gauge-fixed lattice results and functional methods for
Green functions. A particular approach which was able
to produce nonperturbative results is the so-called (refined)
Gribov-Zwanziger framework. In this paper, we will focus
on the latter nonperturbative quantization approach.
The Gribov-Zwanziger framework emerges from a direct

attempt of eliminating thewell-knownGribov copies, whose
existencewas pointed out byGribov in his seminal paper [1].
After the usual gauge fixing through the Faddeev-Popov
method, a residual gauge symmetry remains, and it is
possible to find gauge fields which are connected via a
gauge transformation and satisfy the same gauge condition.
Let us refer to the reviews [2,3] or the recent paper [4] (or
also [5]), where examples of Gribov copies are explicitly
worked out. We emphasize that the existence of the Gribov
phenomenon is not a pathology of a specific gauge but a
general feature of all Lorentz covariant gauges [6].
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To perform a consistent path integration that is one in
the sense of being free of all local gauge redundancy,
the elimination of these copies is essential. In [1], Gribov
proposed a partial solution to the problem which consists of
restricting the path integral to a region, called the Gribov
region, which is free of a large set of copies, namely,
infinitesimal ones.1 The proposal was worked out just up
to first order in perturbation theory and was generalized
to all orders by Zwanziger [12]. The result is a local,
renormalizable effective action, the Gribov-Zwanziger
action, which implements the restriction of the path integral
domain to the Gribov region [12]. This construction
was done in the Landau gauge, and it explores particular
features of this gauge. Therefore, extending this formalism
to other gauges, albeit very important, is not trivial. A
recent generalization to the SUð2Þ maximal Abelian gauge
was presented in [13], consistent with earlier proposals of
some of us in [14–16].
A property of the Gribov-Zwanziger action is that it

breaks the standard Becchi-Rouet-Stora-Tyutin (BRST)
symmetry [3]. Nevertheless, the breaking is soft in the
sense that it becomes irrelevant when the UV limit is taken.
This is due to the appearance of the Gribov parameter, a
dynamical mass scale which naturally emerges due to the
restriction of the path integral to the Gribov region. In
this way, the Gribov-Zwanziger framework seems to face
two challenges. First, its construction is highly gauge
dependent in the sense that particular properties of the
chosen gauge must be taken into account, which makes a
general construction valid for an arbitrary gauge choice
very complicated. Second, it lacks BRST invariance, a tool
which plays a fundamental role in the proof of e.g. gauge
independence of physical quantities.
Very recently, however, efforts in the opposite direction

of such mentioned problems were presented [17]. In
particular, it was shown that the Gribov-Zwanziger action
in the Landau gauge enjoys a modified nonperturbative
BRST symmetry, which captures nonperturbative effects of
the theory. So, in this way, the usual BRST transformation
corresponds to a symmetry at the perturbative level and,
when we pass to the nonperturbative regime, a suitable
modification of these perturbative transformations is
required. In particular, a fully localized nonperturbative
BRST symmetry enables us to prove that the correlation
functions of composite operators belonging to the coho-
mology of the BRST operator turn out to be independent
from the gauge parameter.
By taking into account further nonperturbative effects, a

refinement of the Gribov-Zwanziger action was proposed
[18]. It arises from the inclusion of dynamical effects such
as the formation of dimension-two condensates in the
original Gribov-Zwanziger action. The ensuing refined

Gribov-Zwanziger gluon and ghost propagators are in
qualitative agreement with the most recent lattice data
[19–22]. Also, developments as the inclusion of matter
[23], glueball spectrum [24,25], thermodynamics [26–32],
and generalization to supersymmetric theories [33,34]
were made.
The gluon propagator obtained from the refined Gribov-

Zwanziger action in the Landau gauge has the so-called
massive (decoupling) behavior in D ¼ 3, 4 and a scaling
behavior in D ¼ 2 [18,35,36]. A massive behavior is
characterized by a suppression in the infrared regime
and a finite nonvanishing value at zero momentum, while
a scaling behavior accounts also for a suppression, but a
vanishing value at zero momentum. These results are in
qualitative agreement with lattice data. Also, the refined
Gribov-Zwanziger framework was studied in the Coulomb
and maximal Abelian gauges sharing these properties of the
Landau gauge. In the Coulomb gauge, a scaling behavior
for the spatial propagator at equal time was observed in
D ¼ 3, while a decoupling behavior for the same propa-
gator was found inD ¼ 4; see [37]. In the maximal Abelian
gauge, the diagonal gluon propagator turns out to be of the
scaling type in D ¼ 2 and decoupling in D ¼ 3, 4; see [38]
and [39–44] for various lattice studies over the years.
In recent years, steady progress has been made on the

nonperturbative study of the linear covariant gauges within
different approaches; see for instance [45–51]. The linear
covariant gauges arise thus as a fertile terrain for further
development of nonperturbative analytical frameworks
through the active comparison with lattice simulations
and functional methods. The goal of the present paper is
to discuss the predictions for the gluon propagator in the
Gribov-Zwanziger framework for linear covariant gauges
in different Euclidean spacetime dimensions (D ¼ 2, 3,
and 4). With that aim, the dynamical generation of
dimension-two condensates has to be addressed in each
case, in order to obtain the correct prediction for the
infrared (IR) behavior of the gluon correlator.
In [52,53], a construction of the Gribov-Zwanziger

action for linear covariant gauges was proposed. A further
generalization which exhibits manifest nonperturbative
BRST invariance was presented in [17]. The nonperturba-
tive invariance controls the gauge-parameter dependence in
a very explicit way, which makes the construction con-
sistent with gauge invariance. Also, the modified BRST
symmetry protects the longitudinal component of the gluon
propagator2 from nonperturbative modifications, while the
transverse part receives modifications similar to the Landau
ones. In this way, we are able to compute the gluon
propagator and conclude that the Landau behavior, i.e.,

1An alternative approach consists of sampling over Gribov
copies, worked out in [7,8] with applications discussed in [9–11].

2This is trivial if we assume that the perturbative BRST
symmetry remains at the nonperturbative level. However, if
the perturbative BRST symmetry is broken—which is the case
in the Gribov-Zwanziger approach—we cannot ensure it from the
beginning.
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massive/decoupling in D ¼ 3, 4 and scaling in D ¼ 2 is
preserved, when the inclusion of condensates is taken into
account.
The paper is organized as follows: In Sec. II, we provide

a review of the construction of the nonperturbative BRST
symmetry for the Gribov-Zwanziger action in the Landau
gauge. In Sec. III, we extend our results to continuum
linear covariant gauges, through the introduction of an
action which restricts the path integral domain to a Gribov
region which is free of a large set of gauge copies. This
action is manifestly invariant under a nonperturbative
BRST transformation and shares many features with the
Gribov-Zwanziger action in the Landau gauge. In Sec. IV,
we discuss a possible lattice construction of the non-
perturbative continuum formulation used in this paper
and its predecessor [17]. We then argue that the Gribov-
Zwanziger vacuum in the linear covariant gauge develops
further nonperturbative effects via the generation of mass
dimension 2 condensates. Therefore, we extend the results
of Sec. III by the introduction of such condensates in the
action, akin to the refined Gribov-Zwanziger action. This
introduction is consistent in D ¼ 3, 4, while in D ¼ 2, a
nonintegrable IR singularity prevents their introduction.
We also discuss how a similar IR obstruction would lead
to an inconsistency with the restriction to the Gribov region
in the presence of the condensate in D ¼ 2. These results
are discussed in Sec. V. In Sec. VI, we show the gluon
propagator in D ¼ 3, 4 and in D ¼ 2. For the former cases,
we observe a decoupling behavior while for the latter, a
scaling one. Finally, we point out our conclusions.

II. THE GRIBOV-ZWANZIGER FRAMEWORK
IN THE LANDAU GAUGE AND THE

NONPERTURBATIVE BRST SYMMETRY

The Gribov-Zwanziger action in the Landau gauge, for
SUðNÞ gauge group and in D-dimensional Euclidean
space, implements the restriction of the path integral
domain to the Gribov region Ω, defined as

Ω ¼ fAa
μj∂μAa

μ ¼ 0;Mab > 0g; ð1Þ
where Mab is the Faddeev-Popov operator in the Landau
gauge,

MabðAÞ≡ −∂μDab
μ ¼ −δab∂2 þ gfabcAc

μ∂μ; ð2Þ
with the Landau gauge condition ∂μAa

μ ¼ 0 imposed. The
operator MabðAÞ is Hermitian, which is a very important
property for constructing Ω, a region where MabðAÞ is
strictly positive and, therefore, does not develop any zero
modes. This region is free from infinitesimal Gribov copies,
which are related to zero modes ω of the Faddeev-Popov
operator. Indeed, assuming that

Mabωb ¼ 0; ð3Þ

then we immediately see that also

∂μðAa
μ þDab

μ ωbÞ ¼ 0; ð4Þ

so that a gauge copy is associated with each zero mode.
Remarkably, the region Ω enjoys a large set of properties

which makes the restriction to Ω a consistent procedure:
it is bounded in all directions, it is convex, and all gauge
orbits cross it at least once [54]. We should emphasize that
although free from a large set of copies, Ω still contains
Gribov copies (related through finite gauge transforma-
tions); see [55]. The restriction implemented by Gribov and
generalized by Zwanziger is obtained via

Z ¼
Z
Ω
½DA� detðMÞδð∂AÞe−SYM

¼
Z

½DA� detðMÞδð∂AÞe−ðSYMþγ4HðAÞ−DVγ4ðN2−1ÞÞ; ð5Þ

where

HðAÞ ¼ g2
Z

dDxdDyfabcAb
μðxÞ½M−1ðx; yÞ�adfdecAe

μðyÞ

ð6Þ

is the so-called horizon function and V stands for the
spacetime volume. It involves a mass parameter γ, known
as the Gribov parameter, which is not free but fixed by the
gap equation

hHi ¼ DVðN2 − 1Þ; ð7Þ
where vacuum expectation values h� � �i are taken with the
measure defined in Eq. (5). It will set γ ∝ ΛQCD via
dimensional transmutation and as such the Gribov param-
eter becomes a nonperturbative mass scale.
The Gribov-Zwanziger action is defined as

~SGZ ¼ SFP þ γ4HðAÞ; ð8Þ

where SFP corresponds to the usual Faddeev-Popov action
in the Landau gauge,

SFP ¼ SYM þ
Z

dDxðba∂μAa
μ þ c̄a∂μDab

μ cbÞ; ð9Þ

with ðc̄; cÞ standing for the Faddeev-Popov ghosts and b is
the auxiliary Nakanishi-Lautrup field. However, in this
form, the Gribov-Zwanziger action is nonlocal, due to the
presence of the horizon function. Nevertheless, it turns out
that it is possible to recast this action in a local form by the
introduction of a set of auxiliary fields, namely a pair of
commuting fields, ðφ̄;φÞ, and a pair of anticommuting
ones, ðω̄;ωÞ. Therefore, the Gribov-Zwanziger action is
written as
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SGZ ¼ SFP þ
Z

dDxðφ̄ac
μ MabðAÞφbc

μ

− ω̄ac
μ MabðAÞωbc

μ þ gγ2fabcAa
μðφþ φ̄Þbcμ Þ: ð10Þ

In this local form, the gap equation (7) is given by

∂Ev

∂γ2 ¼ 0; with e−VEv ¼
Z

½DΦ�e−ðSGZ−DVγ4ðN2−1ÞÞ; ð11Þ

where Φ denotes the entire set of fields and Ev, the vacuum
energy.
The Gribov-Zwanziger action (10) is local and renor-

malizable to all orders in perturbation theory [18,56–59].
However, it breaks BRST softly, a point extensively
discussed in the literature; see [7–9,23,60–72]. This break-
ing can be naively expected to be a consequence of the
restriction of the domain of the path integral, as we are
enforcing a nontrivial boundary in field space in which the
BRST transformation connects different configurations
[65]. Therefore, it sounds reasonable to wonder if a suitable
modification of the usual BRST transformations to a new
one that feels the restriction of the path integral to Ω and
that corresponds to a symmetry of the Gribov-Zwanziger
action is possible. Such construction was addressed in a
recent paper [17], and the modified BRST transformation,
called nonperturbative BRST, leads to a symmetry of the
Gribov-Zwanziger action.
The nonperturbative BRST transformation is constructed

through the introduction of the nonlocal field Ah
μ,

Ah
μ ¼

�
δμν −

∂μ∂ν

∂2

��
Aν − ig

�
1

∂2
∂A; Aν

�

þ ig
2

�
1

∂2
∂A; ∂ν

1

∂2
∂A

��
þOðA3Þ; ð12Þ

where we are employing the matrix notation Aμ ¼ Aa
μTa,

with Ta denoting the Hermitian SUðNÞ generators satisfy-
ing the algebra ½Ta; Tb� ¼ ifabcTc. The field Ah is trans-
verse and gauge invariant order by order, a very important
property underpinning the construction. Let us refer to
[17,73] for the derivation of expression (12). Notice that
this is a series expansion, so questions might be raised
about its convergence for larger coupling/gauge fields. We
will come back to this issue in Sec. IV.
We notice that, in Eq. (12), all terms but the ones linear

in Aμ contain at least one factor of ∂A which allows us to
write the horizon function in the form

HðAÞ ¼ HðAhÞ − RðAÞð∂AÞ; ð13Þ

with RðAÞð∂AÞ ¼ R
dDxdDyRaðx; yÞð∂AaÞy, a nonlocal

expression which contains contributions proportional to
ð∂AÞ in (12). It implies we can rewrite the Gribov-
Zwanziger action as

~SGZ ¼ SYM þ
Z

dDxðbh;a∂μAa
μ þ c̄a∂μDab

μ cbÞ þ γ4HðAhÞ;

ð14Þ

where bh;a is a redefinition of the ba field with trivial
Jacobian, given by

bh;a ¼ ba − γ4RðAÞ: ð15Þ

Introducing the auxiliary Zwanziger’s fields ðφ̄;φ; ω̄;ωÞ,
the reformulated Gribov-Zwanziger action reads

SGZ ¼ SYM þ
Z

dDxðbh;a∂μAa
μ þ c̄a∂μDab

μ cbÞ

þ
Z

dDxðφ̄ac
μ ½MðAhÞ�abφbc

μ − ω̄ac
μ ½MðAhÞ�abωbc

μ

þ gγ2fabcAh;a
μ ðφþ φ̄Þbcμ Þ; ð16Þ

which enjoys the new nonperturbative BRST symmetry,

sγ2A
a
μ ¼ −Dab

μ cb; sγ2c
a ¼ g

2
fabccbcc;

sγ2 c̄
a ¼ bh;a; sγ2b

h;a ¼ 0;

sγ2φ
ab
μ ¼ ωab

μ ; sγ2ω
ab
μ ¼ 0;

sγ2ω̄
ab
μ ¼ φ̄ab

μ þ γ2gfcdbAh;c
μ ½M−1ðAhÞ�da; sγ2 φ̄

ab
μ ¼ 0;

sγ2A
h;a
μ ¼ 0: ð17Þ

The operator sγ2 is nilpotent, s
2
γ2
¼ 0, and corresponds to an

exact symmetry of (16). We must comment that (16) is a
nonlocal expression as well as the transformations (17). It
would be highly desirable to cast this framework in a local
form, a subject already under investigation [74]. However,
we can already extract important information from these
nonlocal expressions for our present purposes.
Before continuing, it is perhaps important to remind the

reader that at the level of the gauge field itself, sγ2
still implements nothing more than an infinitesimal local
gauge transformation. This will be important to make the
connection between classically gauge-invariant operators
and their full BRST-invariant quantum counterparts.
The nonperturbative nature of the new BRST operator
resides in its explicit dependence on γ ∝ ΛQCD. Also, the
nonperturbative nature of γ ensures that in the UV region
the γ-dependent BRST transformations simply reduce to
the standard perturbative one.

III. EXTENSION TO THE LINEAR
COVARIANT GAUGES

A big challenge for the Gribov-Zwanziger approach has
always been a proper generalization of the framework to
different gauges. Besides the Landau choice, important
developments were achieved in the maximal Abelian gauge
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[13,38] and in the Coulomb gauge [1,37,75–77]. The main
reason is that in the Landau gauge, the Faddeev-Popov
operator, whose zero modes correspond to infinitesimal
Gribov copies, is Hermitian. This feature allows us to
define a region where such an operator is strictly positive
due to its real spectrum. However, if we relax this
condition, we immediately lose this geometric interpreta-
tion, and the construction of a region to restrict the path
integral domain becomes unclear.
The extension of the Gribov-Zwanziger framework

to linear covariant gauges faces precisely this problem.

In this class of gauges, the Faddeev-Popov operator is not
Hermitian due to the fact the gauge field is not transverse
on shell. Some attempts to the extension of the Gribov-
Zwanziger action to linear covariant gauges were done
in [52,53]. In this section, we extend the formalism of the
last section to linear covariant gauges, which provides a
Gribov-Zwanziger action which enjoys the nonperturbative
symmetry and implements the restriction of the domain of
integration to a region which is free of a large set of Gribov
copies; see [17]. The extension of the Gribov-Zwanziger
action to linear covariant gauges is

SLCGGZ ¼ SYM þ sγ2
Z

dDxc̄a
�
∂μAa

μ −
α

2
bh;a

�
þ
Z

dDxðφ̄ac
μ ½MðAhÞ�abφbc

μ − ω̄ac
μ ½MðAhÞ�abωbc

μ þ gγ2fabcAh;a
μ ðφþ φ̄Þbcμ Þ

¼ SYM þ
Z

dDx

�
bh;a

�
∂μAa

μ −
α

2
bh;a

�
þ c̄a∂μDab

μ cb
�

þ
Z

dDxðφ̄ac
μ ½MðAhÞ�abφbc

μ − ω̄ac
μ ½MðAhÞ�abωbc

μ þ gγ2fabcAh;a
μ ðφþ φ̄Þbcμ Þ; ð18Þ

where the gauge condition for linear covariant gauges is
defined as

∂μAa
μ − αbh;a ¼ 0; ð19Þ

with α being an arbitrary positive parameter. Because of the
nilpotency of sγ2 , the action (18) is manifestly invariant
under nonperturbative BRST transformations. As discussed
in [17], this action restricts the domain of integration of the
path integral to a region which is free of a large set of
Gribov copies.
More precisely, it restricts the path integral to gauge

fields Aμ that fulfill the gauge condition, next to ensuring
positivity of3 MabðAhÞ. As explained in detail in [17,53],
this ensures the absence of zero modes ω of the Faddeev-
Popov operatorMabðAÞ itself, modulo the assumption that
ω is Taylor expandable around α ¼ 0. A fortiori, the gauge
copies associated with these zero modes are then also
eliminated.
We must mention that in previous works [52,53] an

action akin to the Gribov-Zwanziger action was obtained
through the imposition of the restriction of the transverse
gauge field to the Gribov region Ω. The resulting action is
equivalent to (18) in the lowest-order approximation

Ah
μ ≈ Aμ −

∂μ

∂2
ð∂AÞ≡ AT

μ : ð20Þ

The invariance under nonperturbative BRST transforma-
tions, however, brings a much clearer scenario. This

symmetry provides a powerful tool to control the depend-
ence from α of correlation functions of gauge-invariant
composite operators. In particular, the gap equation which
fixes the Gribov parameter γ can be written as

hHðAhÞi ¼ DVðN2 − 1Þ; ð21Þ
a manifestly gauge-invariant expression which implements
the gauge independence of γ and, thus, attributes to it a
genuine physical meaning. As a consequence, it can enter
expectation values of gauge-invariant operators Og inv

which will obey sγ2Og inv ¼ 0. Moreover, given that the
gauge parameter α is coupled to a sγ2-exact form in SLCGGZ , it
holds that d

dα hOg invðxÞOg invðyÞi ¼ 0. A general proof of
this outcome is a subject of another work of the present
authors.

IV. A MINIMIZING FUNCTIONAL
FOR THE NONPERTURBATIVE
LINEAR COVARIANT GAUGE

In the current paper, based on [17], a pivotal role in the
whole construction is played by the transverse gauge-
invariant field Ah

μ, introduced in Eq. (12). As noticed
before, the explicit expression for Ah

μ is a formal power
series expansion in the original field Aμ, so it becomes
difficult to access Ah if such power series would be needed
to (arbitrarily) large orders. We recall here that Ah

μ is
constructed via the minimization of the functionalR
dDxAa

μAa
μ along the gauge orbit; see e.g. [17]. A local

minimum is achieved when Aa
μ would be transverse and its

associated Faddeev-Popov operator positive. This is also
nothing other than the way the Landau gauge is

3Notice that the argument of the Faddeev-Popov operator here
is the gauge-invariant transverse field Ah

μ. As such, this operator is
again Hermitian, but it does not equal the Faddeev-Popov
operator of the linear covariant gauges.
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implemented numerically, i.e. via a minimization procedure
of a suitable functional for which powerful algorithm
exists; see e.g. [4,78] for recent interesting works.
For future lattice numerical studies, it would thus also be

interesting to have at our disposal a minimizing functional
that would implement the linear covariant gauge as
analytically investigated here. Minimizing functionals for
a lattice version of the linear covariant gauge were already
introduced in [45] and used in [46]. The importance of
minimizing functionals was also recognized in [8]. The
functionals in [45,46] do lead to the gauge condition (19)
via the vanishing of the first derivative, though the second
derivative is not really used to our understanding. For our
definition of the linear covariant gauge, we also need to
ensure MabðAhÞ > 0.
Therefore, consider the (positive) functional

RðA;B;U; VÞ≡ Tr
Z

dDx

�
AU
μ AU

μ þ 2

g
ReðiUΛÞ

�

þ Tr
Z

dDxðBV
μBV

μ Þ

þ Tr
Z

dDxðBV
μ − PμνAU

ν Þ2; ð22Þ

with Pμν ¼ δμν −
∂μ∂ν
∂2 the usual transversal projector.

We define our gauge by looking at the (local) minima of
RðA;B;U; VÞ, for a fixed function ΛðxÞ ¼ ΛaðxÞta in a
function of variable U, V. We work with conventions
½ta; tb� ¼ ifabctc, TrðtatbÞ ¼ 1

2
, AU

μ ¼ U†AμU þ i
g U

†∂μU

and similarly for BV
μ and V.

We will compute the variation of RðA; B;U; VÞ up to
second order in ω, θ, with U ¼ eigω

ata , V ¼ eigθ
ata generic

gauge transformations.
Clearly, the third term of R [cf. (22)] will be minimal

(zero) if

Bμ ¼ PμνAν; ð23Þ
thus Bμ is the transverse part of Aμ.
Let us now consider the variation of the first and second

terms of R,Z
dDx

�
AU
μ AU

μ þ 2

g
ReðiUΛÞ

�
þ
Z

dDxðBV
μBV

μ Þ

¼
Z

dDxðAa
μAa

μ þ Ba
μBa

μÞ

þ
Z

dDxðωa∂μAa
μ − ωaΛa þ θa∂μBa

μÞ

−
1

2

Z
dDx½ωað∂μD

A;ab
μ þDA;ab

μ ∂μÞωb�

−
1

2

Z
dDx½θað∂μD

B;ab
μ þDB;ab

μ ∂μÞθb� þ � � � : ð24Þ

The notation DX;ab
μ refers to the covariant derivative with

respect to X ¼ A, B.

So, the first-order variations vanish when

∂μAa
μ ¼ Λa; ∂μBa

μ ¼ 0: ð25Þ

The second condition is, however, obsolete since we
already have (23). In any case, our gauge field Aμ is
confined to the linear covariant gauge. This gauge clearly
leaves the transverse part of Aμ, viz. Bμ, undetermined.
Likewise, the second-order variations will be positive if4

−
1

2
ð∂μD

A;ab
μ þDA;ab

μ ∂μÞ > 0; −∂μD
B;ab
μ > 0: ð26Þ

By construction, Bμ is nothing other than Ah
μ: it corresponds

to a (local) minimum of
R
B2. The trick is that we

first identified Bμ with the transverse part of the original
gauge field Aμ, which is acceptable since Ah

μ is transverse
by construction. So, Bμ ≡ Ah

μ, and we have assured that
MðAhÞ > 0.
There is one extra condition, namely the positivity of

the Hermitian operator Δ≡ −ð∂μD
A;ab
μ þDA;ab

μ ∂μÞ. We
notice that, employing generic real test functions ρ,

Δ > 0⇔ −
1

2

Z
dDxρað∂μDab

μ þDab
μ ∂μÞρb > 0

⇔ −
Z

dDxρað∂μDab
μ Þρb

−
1

2

Z
dDxρagfabcρb∂μAc

μ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 due to antisymmetry of fabc

> 0⇔ “ − ∂D > 0:”

ð27Þ

The last identification is, however, a bit formal, since to
call an operator positive one usually requires the operator
to have only positive eigenvalues: a priori, only for
Hermitian operators are the eigenvalues real, which is,
of course, a necessity to check whether they are positive.
The operator −∂D is, however, not Hermitian, contrasting
with −∂D −D∂.
However, the reasoning (27) is useful anyhow. We

recall that ∂A ¼ ∂A0 ¼ Λ could occur for infinitesimally
connected equivalent gauge fields A and A0 if and only
if ∂Dω ¼ 0; i.e. if ∂D has zero modes. Silently, we can
restrict to real-valued ω, since the operators are supposed
to act on real spaces, the reason being that after all, the ω
are referring to the transformation variables (“angles”)
of SUðNÞ transformations. The standard Faddeev-Popov
operator itself is also obtained via the action of local SUðNÞ
gauge rotations, that is, with real transformation variables.
To proceed, assuming that ω is such a real zero mode,

−∂Dω ¼ 0, a fortiori one has −
R
ω∂Dω ¼ 0, which

4We already used that Bμ is transverse here.
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would be inconsistent with ð−ω∂Dω ¼ÞωΔω > 0. So,
requiring Δ > 0 (in the real space it acts on) is formally
equivalent to “−∂D > 0” and also takes care of the (partial)
resolution of the Gribov problem, as infinitesimal gauge
copies are excluded. But in [17], we actually showed that
for smooth copies, imposing MðAhÞ > 0 already kills off
the infinitesimal copies, so it is not even necessary to
further impose that Δ > 0. From this perspective, it would
seem that a numerical minimization of (22) can be used
to implement our desired nonperturbative linear covari-
ant gauge.

V. INTRODUCING FURTHER DYNAMICAL
EFFECTS: THE NONPERTURBATIVE

BRST-INVARIANT REFINED
GRIBOV-ZWANZIGER ACTION

In the Landau gauge, it was shown that the Gribov-
Zwanziger action suffers from instabilities that give
rise to the dynamical generation of condensates. Such
effects can be taken into account by the construction of
the so-called refined Gribov-Zwanziger action [18,79,80].
The same issue was analyzed in the maximal Abelian
gauge [38] and in the Coulomb gauge [37]. In [53],
the existence of nonvanishing condensates at one loop in
linear covariant gauges was pointed out, in the framework
of (20).
Clearly, at one-loop order, the computation using the

action (18) or the one using the expression (20) leads
to the same results for the condensates. However, we
should keep in mind these formulations are conceptually
very different. In the present case, we are concerned with
the condensates

hAh;a
μ Ah;a

μ i and hφ̄ab
μ φab

μ − ω̄ab
μ ωab

μ i; ð28Þ

while in [53], the dimension-two gluon condensate was
hATa

μ ATa
μ i. Explicitly, the value of the condensates (28) can

be computed by coupling such composite operators with
constant sources m and J, namely

e−VEðm;JÞ ¼
Z

½DΦ�e−ðSLCGGZ þm
R
dDxAh;a

μ Ah;a
μ −J

R
dDxðφ̄ab

μ φab
μ −ω̄ab

μ ωab
μ ÞÞ

ð29Þ

and

hφ̄ab
μ φab

μ − ω̄ab
μ ωab

μ i ¼ −
∂Eðm; JÞ

∂J
����
m¼J¼0

;

hAh;a
μ Ah;a

μ i ¼ ∂Eðm; JÞ
∂m

����
m¼J¼0

: ð30Þ

At one-loop order, employing dimensional regularization,

Eðm; JÞ ¼ ðD − 1ÞðN2 − 1Þ
2

×
Z

dDk
ð2πÞD ln

�
k2 þ 2γ4g2N

k2 þ J
þ 2m

�

−Dγ4ðN2 − 1Þ; ð31Þ
which results in

hφ̄ac
μ φac

μ − ω̄ac
μ ωac

μ i ¼ g2γ4NðN2 − 1ÞðD − 1Þ

×
Z

dDk
ð2πÞD

1

k2
1

ðk4 þ 2g2γ4NÞ ð32Þ

and

hAh;a
μ Ah;a

μ i ¼ −2g2γ4NðN2 − 1ÞðD − 1Þ

×
Z

dDk
ð2πÞD

1

k2
1

ðk4 þ 2g2γ4NÞ : ð33Þ

From (32) and (33), we see the integrals are perfectly
convergent in the UV and depend explicitly on γ.
For D ¼ 3, 4, these integrals are defined in the IR
and correspond to well-defined quantities. Nevertheless,
in D ¼ 2, because of the 1=k2 factor in the integrals, we
have a nonintegrable singularity which makes the con-
densates ill defined. This IR pathology inD ¼ 2 is a typical
behavior of two-dimensional theories; see [36] and refer-
ences therein. In this way, these results suggest such
condensates should be taken into account in D ¼ 3, 4,
giving rise to a refinement of the Gribov-Zwanziger action.
In D ¼ 2, as happens in other gauges, these condensates
cannot be safely introduced as they give rise to non-
integrable IR singularities. As a consequence, in D ¼ 2
the Gribov-Zwanziger theory does not need to be refined.
Therefore, for D ¼ 3, 4, the refined Gribov-Zwanziger
action in linear covariant gauges is written as

SLCGRGZ¼ SYMþ
Z

dDx

�
bh;a

�
∂μAa

μ−
α

2
bh;a

�
þ c̄a∂μDab

μ cb
�

þ
Z

dDxðφ̄ac
μ ½MðAhÞ�abφbc

μ − ω̄ac
μ ½MðAhÞ�abωbc

μ

þgγ2fabcAh;a
μ ðφþ φ̄Þbcμ Þ

þm2

2

Z
dDxAh;a

μ Ah;a
μ

−M2

Z
dDxðφ̄ac

μ φac
μ − ω̄ac

μ ωac
μ Þ; ð34Þ

while forD ¼ 2, the action is simply the Gribov-Zwanziger
action, given by Eq. (18). Notice thatM2 ≥ 0; otherwise the
theory would be plagued by a tachyon in the ðω; ω̄Þ sector.
The action (34) enjoys a nonperturbative nilpotent BRST

symmetry, which is precisely the same as (17) with the only
modification of
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sγ2ω̄
ab
μ ¼ φ̄ab

μ þ gγ2fcdbAh;c
μ ð½MðAhÞ − 1M2�−1Þda; ð35Þ

where 1 stands for the identity operator. Therefore,
the refined Gribov-Zwanziger action in linear covariant
gauges takes into account the presence of dimension-two
condensates and is invariant under (17) and (35), a non-
perturbative nilpotent BRST symmetry.
There is an additional problem, of a more fundamental

nature, that prohibits the dynamical occurrence of refine-
ment in D ¼ 2. We recall here from the earlier Sec. II that
the starting point was to avoid a large class of infinitesimal
gauge copies in the linear covariant gauge. This was
achieved by requiring that MabðAhÞ > 0. For a general
classical field Ah we can use Wick’s theorem to invert the
operator MabðAhÞ. In momentum space, one finds [17,66]

hpj 1

MabðAhÞ jpi ¼ GabðAh; p2Þ ¼ δab

N2 − 1
GccðAh; p2Þ

¼ δab

N2 − 1

1þ σðAh; p2Þ
p2

: ð36Þ

At zero momentum, we find consequently [66]

σðAh; 0Þ ¼ −
g2

VDðN2 − 1Þ

×
Z

dDk
ð2πÞD

dDq
ð2πÞD Ah;ab

μ ð−kÞ

× ½ðMðAhÞÞ−1�bck−qAh;ca
μ ðqÞ;

and this leads to the exact identification

σðAh; 0Þ ¼ HðAhÞ
VDðN2 − 1Þ : ð37Þ

At the level of expectation values, we can rewrite
Eq. (36) as

Ghðp2Þ ¼ hGaaðAh; p2Þiconn ¼ 1

p2ð1 − hσðAh; p2Þi1PIÞ ;

ð38Þ
so that we must impose at the level of the path integral

σð0Þ≡ hσðAh; 0Þi1PI < 1 ð39Þ
to ensure a positive operator5 MðAhÞ.

We will now show that in the presence of the extra mass
scale M2, it is impossible to comply with the necessary
condition (39) in D ¼ 2. It is sufficient to work at leading
order, as the problem will already reveal itself at this order.
Since this corresponds to working at order g2 with two
factors of g already coming from the term gfabcAh;c

μ ∂μ in
the operatorMabðAhÞ, we may cut off the expansion of Ah

at order g0, i.e. use the approximation (20). Doing so, we
find at leading order (see also Fig. 1)

σðkÞ ¼ g2N
kμkν
k2

Z
d2q
ð2πÞ2

1

ðk − qÞ2
q2 þM2

q4 þ ðM2 þm2Þq2 þ λ4

×

�
δμν −

qμqν
q2

�
: ð40Þ

We set here λ4 ¼ 2g2Nγ4 þm2M2. The quantity
q2þM2

q4þðM2þm2Þq2þλ4
is the transversal piece of the would-be

refined Gribov-Zwanziger gluon propagator in D ¼ 2; see
also (45).
The above integral σðkÞ can be evaluated exactly quite

easily by using polar coordinates. Choosing the qx axis

along ~k, we get

σðkÞ ¼ g2N
4π2

Z
∞

0

qdq
q2 þM2

q4 þ ðM2 þm2Þq2 þ λ4

×
Z

2π

0

dϕ
1

k2 þ q2 − 2qk cosϕ
ð1 − cos2ϕÞ

¼ g2N
4π

�
1

k2

Z
k

0

qðq2 þM2Þ
q4 þ ðM2 þm2Þq2 þ λ4

dq

þ
Z

∞

k

q2 þM2

qðq4 þ ðM2 þm2Þq2 þ λ4Þ dq
�
; ð41Þ

where we employed ~k · ~q ¼ kq cosϕ, next to the integral

Z
2π

0

dϕ
1− cos2ϕ

k2þq2−2qkcosϕ
¼ π

q2
θðq2−k2Þþ π

k2
θðk2−q2Þ:

ð42Þ

From the integrals appearing in (41), we can extract the
leading small k2 behavior to be

σðkÞjk2∼0 ∼ −
g2N
8π

M2

λ4
lnðk2Þ: ð43Þ

FIG. 1. The leading order correction toM−1ðAhÞ. The wiggled
line represents a hAhAhi propagator, and the broken line
represents the tree-level approximation to M−1ðAhÞ, viz. 1

p2 in

momentum space.

5We emphasize here again (see also Sec. III) that the removal
of zero modes of MðAhÞ implies the elimination of a large class
of zero modes of the operator MðAÞ. The underlying argumen-
tation can be found in [17]. To avoid confusion, this also means
that the quantity σðkÞ introduced in Eq. (40) is not referring to
the (inverse) Faddeev-Popov ghost propagator for general α.
The connection with the ghost self-energy is valid only for the
Landau gauge α ¼ 0.
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Since M2 ≥ 0, we unequivocally find that σðk2Þ will
become (much) larger than 1 if the momentum gets too
small for M2 > 0; that is, it would become impossible to
fulfill condition (39) and thus to ensure the positivity
of MðAhÞ.
We are thus forced to conclude that M2 ¼ 0. Notice,

however, that we are not able to prove that m2 ¼ 0. Indeed,
if M2 ¼ 0, we are already back to the scaling case
irrespective of the value form2. Scaling implies a vanishing
of the transversal gluon form factor at zero momentum,
which is in general sufficient to eliminate IR problems
in the ghost form factor σðk2Þ; see [81] for a general
discussion. Only an explicit discussion of the effective
potential of the condensate related to m2 (that is, hAhAhi)

will reveal whether it can be introduced into the theory.
However, this will not affect the conclusion that inD ¼ 2, a
massive/decoupling behavior is excluded.

VI. THE GLUON PROPAGATOR

As discussed in Sec. V, the restriction of the path integral
to a suitable region which is free of a large set of Gribov
copies and is intimately related to the introduction of the
Gribov parameter γ generates dynamically dimension-two
condensates. This generation is consistent in D ¼ 3, 4,
while in D ¼ 2 it is absent. In this way, the gluon
propagator is further affected by the introduction of such
operators.
In D ¼ 3, 4, the tree-level gluon two-point function is6

hAa
μðkÞAb

νð−kÞiD¼3;4 ¼ δab
�

k2 þM2

ðk2 þm2Þðk2 þM2Þ þ 2g2γ4N

�
δμν −

kμkν
k2

�
þ α

k2
kμkν
k2

�
; ð44Þ

and in D ¼ 2,

hAa
μðkÞAb

νð−kÞiD¼2 ¼ δab
�

k2

k4 þ 2g2γ4N

�
δμν −

kμkν
k2

�
þ α

k2
kμkν
k2

�
: ð45Þ

As is clear from (44) and (45), the longitudinal part of the
tree-level gluon propagator is not affected by nonperturba-
tive effects; i.e., it has the same form as in the standard
Faddeev-Popov quantization scheme. It is ensured by the
nonperturbative BRST symmetry to hold to all orders and,
therefore, is not a peculiarity of the tree-level approxima-
tion. A rigorous proof based on the corresponding Ward
identities will be presented elsewhere [74], but we can
already provide a path integral proof. We add a source termR
ddxJabh;a to the action SLCGRGZ to write (suppressing color

indices)

hbhðxÞbhðyÞi ¼ δ2

δJðyÞδJðxÞ
Z

½Dφ�½Dbh�e−SLCGRGZ j
J¼0

: ð46Þ

As the bh-field appears at most quadratically, we find
exactly

Z
½Dfields�e−S ¼

Z
½Dfields�e−

R
dDxð 1

2αð∂AÞ2þ1
αJ∂AþJ2

2αþrestÞ;

ð47Þ

or, using (46),

hbhðxÞbhðyÞi ¼ 1

α2
h∂AðxÞ∂AðyÞi − δðx − yÞ

α
: ð48Þ

Since we also have

hbhðxÞbhðyÞi ¼ hsγ2ðc̄ðxÞbhðyÞÞi ¼ 0 ð49Þ

because of the nonperturbative BRST symmetry generated
by sγ2, the combination of (48) and (49) necessarily gives

0 ¼ 1

α2
h∂AðxÞ∂AðyÞi − δðx − yÞ

α
; ð50Þ

which becomes in momentum space

hAa
μðkÞAb

νð−kÞi ¼ DTðk2Þ
�
δμν −

kμkν
k2

�
þ α

kμkν
k4

; ð51Þ

where the nontrivial information is encoded in the trans-
verse form factor DTðk2Þ.
For the transverse component of the gluon propagator,

we see that a decouplinglike behavior for D ¼ 3, 4 is
apparent, i.e., it has a nonvanishing form factor for zero
momentum, while in D ¼ 2, a scalinglike behavior is
observed.
This result is completely analogous to what happens in

the Landau gauge. From (44) and (45), since the transverse
part does not depend of α, it has to be equal to the Landau
gauge result, a particular choice α ¼ 0. In this framework,
D ¼ 3, 4, the Gribov-Zwanziger action in linear covariant
gauges refines, and a decoupling behavior for the gluon
propagator is obtained. On the other hand, the usual
Gribov-Zwanziger action seems to describe the gluon
propagator behavior in D ¼ 2, which is scalinglike.

6In this expression we should keep in mind the meaning of
indices and dimensions for different choices of D.
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VII. A SHORT LOOK AT THE
GHOST PROPAGATOR

Having worked out the expression of the gluon propa-
gator in D ¼ 4, Eq. (44), we can have a short preliminary
look at the ghost propagator. We limit here ourselves to the
one-loop order, leaving a more complete and exhaustive
analysis for future investigation.
For the one-loop ghost propagator in D ¼ 4, we have

1

N2 − 1

X
ab

δabhc̄aðkÞcbð−kÞi1-loop ¼
1

k2
1

1 − ωðk2Þ ; ð52Þ

where

ωðk2Þ ¼ Ng2

k2ðN2 − 1Þ
Z

d4q
ð2πÞ4

kμðk − qÞν
ðk − qÞ2 hAa

μðqÞAa
νð−qÞi:

ð53Þ

From expression (44), we get

ωðk2Þ ¼ ωTðk2Þ þ ωLðk2Þ; ð54Þ

where ωTðk2Þ stands for the contribution corresponding to
the transverse component of the gluon propagator, i.e.

ωTðk2Þ ¼ Ng2
kμkν
k2

Z
d4q
ð2πÞ4

1

ðk − qÞ2

×
q2 þM2

ðq2 þm2Þðq2 þM2Þ þ 2g2γ4N

�
δμν −

qμqν
q2

�
;

ð55Þ

while ωLðk2Þ is the contribution stemming from the
longitudinal component, namely

ωLðk2Þ ¼ α
Ng2

k2

Z
d4q
ð2πÞ4

kμðk − qÞν
ðk − qÞ2

qμqν
q4

: ð56Þ

Employing dimensional regularization in the MS scheme,
expression (56) yields

ωLðk2Þ ¼ α
Ng2

64π2
log

k2

μ̄2
: ð57Þ

This result for ωLðk2Þ obviously coincides with the
standard perturbative result at one loop. It is worth under-
lining that the result (57) is a consequence of the nontrivial
fact that the longitudinal component of the gluon propa-
gator is left unmodified by the addition of the horizon
functionHðAhÞ, Eq. (18). The presence of terms of the type
of Eq. (57) seems therefore unavoidable when evaluating
the ghost form factor for nonvanishing values of the gauge
parameter α. When passing from the 1PI Green function to
the connected one, such terms should lead to a ghost form

factor which is severely suppressed in the infrared region
k2 ∼ 0 with respect to the case of the Landau gauge, i.e.
α ¼ 0, as discussed recently within the framework of the
Dyson-Schwinger equations [49,50]. We hope to report
soon on this relevant issue.
An important issue that deserves further study when we

will attempt to compare with (not yet available) lattice data
for the ghost propagator in linear covariant gauges concerns
the precise definition of what is meant with the ghost
propagator if α ≠ 0 (i.e. outside of the Landau gauge).
As MabðAÞ is not a Hermitian operator when A is not
transverse, neither will its inverse be, viz. the ghost
propagator defined via Eq. (52). This has its consequences
on how to define the Hermitian conjugate of the Faddeev-
Popov ghost and antighost, to allow for a Hermitian
formulation of the gauge action in the linear covariant
gauge. For α ≠ 0, the Faddeev-Popov ghost c and antighost
c̄ are to be chosen (in our conventions) to be independent
and real (respectively, purely imaginary).7 The operator
coupled to it [cf. the action of expression (9)] is then
effectively a matrix operator ð 0

−∂D
∂D
0
Þ, which can be used

to introduce a Hermitian ghost 1PI matrix and ensuing
ghost propagator matrix. To our understanding, given that
the lattice ghost propagator is computed via the eigenvalues
of the (supposedly Hermitian) Faddeev-Popov matrix, we
expect both analytical and lattice formulation of the ghost
propagator should be focusing on evaluating the matrix
ghost propagator, at least when we wish to compare with
(future) lattice data.

VIII. CONCLUSIONS

In this paper, we extended the result of [17] to take into
account the presence of dimension-two condensates in the
nonperturbative BRST-invariant Gribov-Zwanziger action
in linear covariant gauges. As discussed, these condensates
arise consistently in D ¼ 3, 4, and a refined Gribov-
Zwanziger action which is also invariant under suitable
nonperturbative BRST transformations was presented. In
D ¼ 2, the computation of the one-loop order vacuum
energy alerts that it seems impossible to introduce such
vacuum condensates due to IR singularities. We made this
argument more strict by showing that, again due to D ¼ 2
IR singularities, it is impossible to fulfill the premise
underlying the whole Gribov-Zwanziger construction, i.e.
positivity of the Faddeev-Popov operator of the gauge-
invariant nonlocal field Ah. This phenomenon is completely
analogous to what happens in the Landau, maximal
Abelian, and Coulomb gauges, in the Gribov-Zwanziger
framework [35–38]. Such results seem to indicate that this
behavior is much more universal than just a coincidence.
On the other hand, it is no surprise that the situation in

7A far more detailed discussion of these matters can be found
in [82].
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D ¼ 2 is manifestly different. Infrared divergences are
known to spoil results that generally apply inD > 2; let one
only think about the Coleman-Mermin-Wagner theorem
where infrared divergent integrals play a key role as
well.
The introduction of condensates inD ¼ 3, 4 modifies the

transverse part of the gluon propagator. In particular, a
massive (decoupling) behavior is observed, namely, a finite
nonvanishing value for its form factor at zero momentum.
This result is in agreement with the most recent lattice data
of linear covariant gauges [45,46], which are limited to
D ¼ 4 so far. In D ¼ 2, however, the transverse part only
receives nonperturbative corrections from the restriction of
the path integral domain, being free of the introduction
of condensates. Therefore, the nonperturbative BRST-
invariant Gribov-Zwanziger framework for the linear
covariant gauges predicts in dimension D ¼ 2 a Gribov-
like gluon propagator, namely a scaling behavior, with a
vanishing value at zero momentum.
It is instructive to reconsider here the origin of the

difference between scaling and massive/decoupling
solution. This is solely based on having M2 ≠ 0, or
more precisely, of having a mass term of the type
M2ðϕ̄ab

μ ϕab
μ − ω̄ab

μ ωab
μ Þ. One could wonder if this is the

only possibility. The answer to this query is definitely no.
However, qualitatively the answer is always the same; there
is decoupling whenever a mass term in the ðϕ̄;ϕÞ sector is
introduced (dynamically). Two more general options were
explored in the literature so far. In [83], different masses
were allowed to couple to ϕ̄ab

μ ϕ̄ab
μ , ϕab

μ ϕab
μ , and ϕ̄ab

μ ϕab
μ .

In [80], different contractions between the color indices
carried by ϕ̄ab

μ , ϕab
μ , ω̄ab

μ , and ωab
μ were allowed, making use

of the available SUðNÞ color tensors. In both cases, it was
reported that the gluon propagator displays a massive
behavior. We can, however, never exclude the possibility
of a kind of delicate fine-tuning of several allowed
“refinement” mass scales, which would give a scaling
solution after all when all orders are considered. Such a
scenario has not been found till now.
Since increasing attention is being devoted to linear

covariant gauges in recent years due to increasing insights

in both, we believe such results are very important not only
for the Gribov-Zwanziger point of view but also for other
approaches as lattice and functional methods. The interplay
between these frameworks has shown to be very productive
in the Landau gauge, and the situation should not be
different for the linear covariant gauges.
At last, it would also be interesting to revisit the explicit

determination, via appropriate gap equations, of the (now
gauge-invariant) D ¼ 2 condensates.8 We hope to come
back to this issue in future work. In particular, a gauge-
invariantD ¼ 2 gluon condensate would be of considerable
phenomenological interest [84–88].
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