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We present a study of Uð1Þ gauged modification of the 2þ 1-dimensional planar Skyrme model with a
particular choice of the symmetry breaking potential term which combines a short-range repulsion and a
long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as
they consist of the individual constituents which are well separated. A peculiar feature of the model is that
there are usually several different stable static multisoliton solutions of rather similar energy in a
topological sector of given degree. We investigate the pattern of the solutions and find new previously
unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field
strongly affects the pattern of interaction between the constituents. We analyze the dependency of the
structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is
found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective
recovery of the rotational invariance of the configuration.
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I. INTRODUCTION

The study of topological solitons in field theory can be
traced back to the seminal paper by Skyrme [1] where the
SUð2Þ-valued nonlinear model for atomic nuclei was
suggested. The Skyrme model can be derived from the
expansion of the QCD low-energy effective Lagrangian in
the large Nc limit [2], then the topological charge of the
multisoliton configuration is set into correspondence to the
physical baryon number. Further, under certain assump-
tions, the semiclassical quantization of rotations and iso-
rotations of the Skyrmions allows us to get a good
approximation to the isospinning nuclei and describe the
corresponding excitations which are associated with pions
[3,4]. However, the Skyrme model has limited success, as
there are several problems with description of the nuclear
masses since the interaction energy of the Skyrmions is
much higher than the corresponding experimental data for
nuclei. Recent experimental observation of the heavy
pentaquarks [5], which could be considered as a sort of
baryon-meson bound state [6], also cannot be explained in
the conventional Skyrme model with the usual pion
mass term.
Several modifications of the Skyrme model in 3þ 1

dimensions were suggested recently [7–10], mostly related
with modification of the potential of the model.
Furthermore, the contribution of the Coulomb electromag-
netic energy is necessary to get a good agreement between
the binding energies of the heavy nuclei and the predictions
of the reduced BPS Skyrme model [7]. Therefore, it is
physically natural to extend the model by gauging it to
describe various electromagnetic processes of nucleons.

The Uð1Þ gauged Skyrme model was originally pro-
posed in [11]; the axially symmetric gauged Skyrmions
were later considered in [12,13]. It was noticed that the
gauging of aUð1Þ subgroup may stabilize the solitons even
if the Skyrme term is dropped [14]; furthermore, in the
gauged Skyrme model, the topological energy bound
becomes saturated.
The planar reduction of the nonlinear sigma model is

known as the baby Skyrme model [15,16]. This (2þ 1)-
dimensional simplified model resembles the basic proper-
ties of the genuine Skyrme model in many aspects.
Furthermore, the baby Skyrme model has a number of
applications on its own, e.g., in condensed matter physics
where Skyrmion configurations were observed experimen-
tally [17], in the description of the topological quantum
Hall effect [18,19], or in brane cosmology where the
solitons of the model induce warped compactification of
the two-dimensional extra space [20]. Also, it was found
that the restricted baby Skyrme model in 2þ 1 dimensions
has BPS soliton solutions saturating the topological
bound [21].
A peculiar feature of the planar Skyrme model is related

to the particular choice of the potential term which is
necessary to stabilize the solitons.1 In low-dimensional
systems, the effect of this term becomes more significant
than in the original Skyrme model; for example, there are
different choices of the potential related with various kinds

1Note that a special choice of the parameters of the baby
Skyrme model allows to evade the potential term and construct
static soliton solutions in the reduced model [22]; however,
dynamical properties of these special configurations are still
unknown.
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of symmetry breaking [23–26]. In particular, a suitable
choice for the potential term allows us to separate the
individual constituents of the planar Skyrmions, each of
them being associated with a fractional part of the topo-
logical charge of the configuration [25]. Another possibility
is to combine a short-range repulsion and a long-range
attraction between the solitons [26,27]. Then the multi-
soliton configuration consists of aloof constituents.
Clearly, coupling the model to the electromagnetic field

yields another possible channel of interaction between the
solitons. Analysis of the gauged baby Skyrmions [28]
reveals very interesting features of the corresponding
solutions which carry a nonquantized nontopological
magnetic flux. Further, if the Chern-Simons term is addi-
tionally included in the Lagrangian, the planar Skyrmions
become electrically charged [29]. Recently, the properties
of the soliton configurations in the gauged BPS baby
Skyrme model were investigated [30]. An interesting
observation is that, in the strong coupling limit, the
magnetic flux becomes quantized though there is no
topological reason for that [28,31].
The aim of this paper is to discuss the structure of the

soliton solutions of the gauged aloof baby Skyrme-
Maxwell system with a rotationally invariant potential term
analogous to that used in [26,27]. Our calculations are
performed for multisoliton solutions up to charge 10. We
study numerically the dependence of masses of these
configurations and the corresponding magnetic fluxes on
the gauge coupling constant, both in the perturbative limit
and in the strong coupling limit without any restrictions of
symmetry.

II. THE MODEL

We consider a gauged version of the Oð3Þ σ model with
the Skyrme term in 2þ 1 dimensions [16] with a
Lagrangian

L ¼ −
1

4
FμνFμν þ 1

2
Dμϕ

aDμϕa

−
1

4
ðεabcϕaDμϕ

bDνϕ
cÞ2 − V: ð1Þ

Here ϕa denotes a triplet of scalar fields, which is con-
strained to the surface of a sphere of unit radius ϕaϕa ¼ 1.
We introduce the usual Maxwell term with the field
strength tensor defined as Fμν ¼ ∂μAν − ∂νAμ. Clearly,
the scaling dimensions of this term and the Skyrme term,
which is quartic in derivatives, are identical.
The coupling of the scalar field to the Uð1Þ gauge field

Aμ is given by the covariant derivative [14,28,32]

Dμϕ
a ¼ ∂μϕ

a þ gAμεabcϕ
bϕc

∞; ð2Þ

where g is the gauge coupling constant. The localized field
configuration has finite energy if Dμϕ

a → 0, Fμν → 0 and
V → 0 as r → ∞.

The topological restriction on the field ϕa is that it
approaches its vacuum value at spacial boundary, i.e.
ϕa
∞ ¼ ð0; 0; 1Þ. This allows a one-point compactification

of the domain space R2 to S2 and the field of the finite
energy solutions of the model is a map ϕ: R2 → S2 which
belongs to an equivalence class characterized by the
topological charge Q ¼ π2ðS2Þ ¼ Z. Explicitly,

Q ¼ −
1

4π
εabc

Z
ϕa∂xϕ

b∂yϕ
cdxdy: ð3Þ

A special feature of the solutions of the planar Skyrme
model is that their structure strongly depends on the
particular form of the potential term V. The most common
choice is the so-called “old potential” [16]

V ¼ μ2½1 − ϕ3�; ð4Þ

which is an analogue of the standard pion mass term in the
(3þ 1)-dimensional Skyrme model. The symmetry is
broken via the potential to SOð2Þ, and there is a unique
vacuum ϕ∞ ¼ ð0; 0; 1Þ. The corresponding solitons of
degree Q ¼ 1, 2 are axially symmetric [16]; however,
the rotational symmetry of the configurations of higher
degree becomes broken [33].
In the model with double vacuum potential (or “easy-

axis” potential) [15,34],

V ¼ μ2ð1 − ϕ2
3Þ; ð5Þ

the multisoliton solutions are rotationally invariant over
entire range of values of the mass parameter μ. The most
general case of the one-parametric potential,

V ¼ μ2ð1 − ϕ3Þs; ð6Þ

with 0 < s ≤ 4 was considered in [24]. Since the “old”
potential (4) corresponds to the attractive force acting
between the solitons, while the “holomorphic” potential
V ¼ μ2ð1 − ϕ3Þ4 is repulsive [35,36], the parameter s in the
potential (6) is responsible for the balance of the repulsive
and attractive interaction between the Skyrmions. Further,
one can consider the linear combination of the “old” and
“holomorphic” potentials [26,27],

V ¼ μ2½λð1 − ϕ3Þ þ ð1 − λÞð1 − ϕ3Þ4�; λ ∈ ½0; 1�; ð7Þ

which corresponds to a short-range repulsion and a long-
range attraction between the solitons. Following [26,27],
we restrict our consideration to the case λ ¼ 0.5.
The resulting multisoliton configuration is no longer

rotationally invariant—each constituent of unit charge is
clearly separated from the other, and they form a cluster
structure. Further, in the absence of the gauge interaction,
there are usually several different static multisoliton sol-
utions of rather similar energy in a topological sector of
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given degree [26]. Note that this feature is like the Hopfion
solutions of the Faddeev-Skyrme model [37]. Indeed, the
structure of both models looks similar—the corresponding
Lagrangian (1) includes the usual sigma model term,
the Skyrme term, which is quartic in derivatives of the
field, and the potential term. Further, the field of the
Faddeev-Skyrme model in three spacial dimensions is
also a three-component unit vector restricted to the unit
sphere S2. However, the domain space of the latter
model is the compactified three-dimensional sphere S3,
and the Hopfion solutions are classified by the linking
number associated with the homotopy group
π3ðS2Þ ¼ Z. Thus, in some sense, the baby Skyrme
model can be considered as a planar reduction of the
Faddeev-Skyrme model [38].
In 2þ 1 dimensions, the electric field of configuration

is vanishing everywhere [28], and we can consider a
purely magnetic field generated by the Maxwell potential,

A0 ¼ Ay ¼ 0; Ax ¼ Aðx; yÞ; ð8Þ

where the gauge fixing condition is used to exclude the
Ay component of the vector potential. Thus, the magnetic
field is orthogonal to the x-y plane: B ¼ Bz ¼ −∂yAx.
Note we do not use here the rotationally invariant
parametrization of the fields where the gauge-fixing
condition Ar ¼ 0 is imposed [15,16,34].
The complete set of the field equations, which follows

from the variation of the action of the baby Skyrme-
Maxwell model (1), can be solved when we impose the
boundary conditions. As usual, they follow from the
regularity on the boundaries and symmetry requirements
as well as the condition of finiteness of the energy and
topology. In particular, we have to take into account that the
magnetic field is vanishing on the spacial asymptotic.
Explicitly, on the spacial boundary, we impose

ϕ1

����
r→∞

→ 0; ϕ2

����
r→∞

→ 0; ϕ3

����
r→∞

→ 1;

∂yA

����
r→∞

→ 0: ð9Þ

Here r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the usual radial variable.

As an initial guess for further computation, we used
various combinations of single solitons with preassigned
phases and positions. These field configurations can be
constructed via the usual parametrization of the unit scalar
triplet ϕa in terms of the complex field W via the stereo-
graphic projection:

W ¼ ϕ1 þ iϕ2

1 − ϕ3

: ð10Þ

Let WiðzÞ, z ¼ xþ iy, be the field of a single Skyrmion of
degree one with an arbitrary position and phase, then the

function 1
W ¼ P

1
Wi
, i ¼ 1; 2; ::Q allows us to obtain the

field of the multisoliton configuration of degree Q with
various relative phases and separations. For example, the
function

WðzÞ

¼ 4

ðz − 2Þ−1 − ðz − 1Þ−1 þ z−1 − ðzþ 1Þ−1 þ ðzþ 2Þ−1
ð11Þ

yields the input configuration in the sector of degreeQ ¼ 5,
which represents the chain of baby Skyrmions with
opposite relative orientations and separation between the
constituents d ¼ 1.

III. NUMERICAL RESULTS

In this section, we outline our method for calculating the
multisoliton solutions of the gauged baby Skyrme model.
The numerical calculations are mainly performed on a
equidistant square grid, typically containing 1602 lattice
points and with a lattice spacing dx ¼ 0.15 To check our
results for consistency, we also considered the lattice
spacings dx ¼ 0.1, 0.2.
To construct multisoliton solutions of the model (1), we

minimize the corresponding rescaled energy functional of
the static configuration,

E ¼
Z �

1

2
B2 þ 1

2
Diϕ

a ·Diϕ
a

þ 1

4
ðεabcϕaDiϕ

bDjϕ
cÞ2 þ V

�
dxdy; ð12Þ

with the aloof baby Skyrmions potential (7). The gauge
coupling g is a parameter, with each of our simulations
beginning at g ¼ 0 with a fixed value of μ and λ, then we
proceed by making small increments in g. For comparative
consistency with [26], in most of our calculations we
choose μ2 ¼ 0.1 and λ ¼ 0.5.
The numerical algorithm employed was similar to that

used in [39]. Well-chosen initial configurations of given
degree were evolved using the Metropolis method to
minimize the energy functional (12). In our numerical
calculations, we introduce an additional Lagrange multi-
plier to constrain the field to the surface of the unit sphere.
Simulations were considered to have converged to local
minima if the quantity− 1

E
dE
dt becomes less than 10−3, where

t is the time of computation in minutes. We also verify that
the evaluated topological charge of the configuration is in
agreement with the input integer value.
Another check of the correctness of our results was

performed by finding corresponding solutions of the Euler-
Lagrange equations which follow from the Lagrangian (1)
subject to a set of boundary conditions (9). The relative
errors of the solutions we found implementing the
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Newton-Raphson fourth-order finite difference method are
of order of 10−4 or smaller.
First, we recover the usualQ ¼ 1 solution. Its energy for

g ¼ 0 is E1 ¼ 20.25; this is within 0.1% of the previously
known result [26]. This similarity is another nice validation
of our numerical algorithm.
Since there are a variety of configurations of planar aloof

Skyrmions, in order to distinguish these multisolitons, we
are using the following notation: QDn where Q is the
topological charge of the planar configuration or its
building block and Dn is the dihedral group of correspond-
ing symmetry. For example, in the sector of degree four, we
have found the 4D4 (which is the global minimum at
g ¼ 0), 4D3, and 4D2 solutions.
Note that among solutions we constructed using the

rational map input (10), there are new configurations,
which were not considered in [26] since they represent
local minima. In Fig. 1, we exhibited the energy density
plots of some of these new solutions, 3D3, 4D3, and 9D9,
respectively.
Constructing these configurations, we vary relative

orientation χ of the constituents in the internal space.
Indeed, the total potential of interaction between two
neighboring baby Skyrmions is proportional to cos χ
[16] and repulsive if the solitons are in phase (χ ¼ 0).
The most attractive channel corresponds to opposite ori-
entations of the solitons, χ ¼ π.
However, the interaction energy is still negative for the

solitons which are not completely out of phase. If the
number of constituents is even, they always form pairs with

opposite relative orientation; however, for a system of N
solitons, where N is an odd number, another possibility
exists. The solitons may form a circular necklace where
each ofN baby Skyrmions is rotated by angle ð1 − 1

NÞπ with
respect to its neighbor. Hence, in this case, we considered
composite solutions with N soliton species, not only binary
species like in [26]. Thus, for odd N the total angle of
internal rotation along the ring is πðN − 1Þ ¼ 2πk, where k
is integer. Particular examples of this type, the 3D3 and 9D9

solutions, are displayed in Fig. 1. Clearly, configurations of
that type represent local minima.
Another interesting example of configuration, which also

was not discussed in [26], is the “tristar” configurations
4D3 of degree four. Here the relative phase of the three
solitons with respect to the central constituent is π;
however, with respect to each other, they are in phase,
χ ¼ 0. Thus, the central component provides strong attrac-
tion to the outer solitons binding the configuration together.
As the gauge coupling increases from zero, the energy of

the gauged aloof Skyrmions decreases since the magnetic
flux is formed. Now each individual Skyrmion is coupled to
a magnetic flux, and the electromagnetic interaction modi-
fies the usual pattern of the scalar interaction of constitu-
ents. Effectively, the asymptotic field of the gauged soliton
represents a triplet of dipoles, two scalar dipole moments
are associated with the asymptotic form of the scalar fields
ϕ1, ϕ2 in the x-y plane, and the third magnetic dipole is
orthogonal to this plane [28].
Note that, effectively, using the Maxwell equation

∇ × ~B ¼ ~j, one can set the magnetic field into

FIG. 1. Contour energy density plots of the 3D3, 4D3 and 9D9 of planar Skyrmions in the model (1) at g ¼ 0.
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FIG. 2a. Energy density plots for 1 ≤ Q ≤ 6 gauged planar Skyrmions in the model (1) at some set of values of g ∈ ½0; 2� and μ2 ¼ 0.1
and λ ¼ 0.5.
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correspondence with an effective circular electric current
jν. On the other hand, the term ∼g2A2ϕ2 in the total
Hamiltonian of the system effectively contributes to the
mass of the scalar field; thus, the Yukawa interaction
between the gauged baby Skyrmions becomes stronger.
In Fig. 2, we exhibited the contour energy density plots

of the gauged baby Skyrmions in the model (1) for 1 ≤
Q ≤ 10 at some set of values of the gauge coupling
g ∈ ½0.2�. First, we observe that for relatively small values

of the coupling constant g, two neighboring solitons with
opposite orientations form pairs in accordance with the
binary species model [26].
Let us consider a few particular configurations. In

Fig. 3, left plot, we have plotted the dependency of the
energy of the static gauged baby Skyrmion of unit
charge and the chains 2D2, 5D2, 8D2 as functions of g.
In the right plot, we also displayed the soliton’s binding
energy ΔE ¼ QE1 − E as a function of the gauge

FIG. 2b. Energy density plots for 7 ≤ Q ≤ 10 gauged planar Skyrmions in the model (1) at some set of values of g ∈ ½0; 2� and
μ2 ¼ 0.1 and λ ¼ 0.5.
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coupling. Here E1 is the energy of the one-soliton
configuration at the corresponding value of the gauge
coupling g, and we used the normalized units of energy
per unit charge. From these plots, it is clear that the
energy of the configurations decreases as the gauge
coupling becomes stronger while the binding energy is
increasing. Thus, the balance between the repulsive and
attractive forces in the ungauged model with the
potential (7) is shifted towards the attraction and, as
coupling becomes strong enough, the rotational invari-
ance of the multisoliton configuration is restored.
Further increasing of the gauge coupling makes the
solitons’ width increasingly localized.
Note that as the coupling remains smaller than one, the

electromagnetic energy Eem is increasing; however, in the
strong coupling limit, its contribution begins to decrease as
g continues to grow, as seen in Fig. 4, left plot.
We can understand this effect if we note that the

conventional rescaling of the potential Aμ → gAμ leads
to F2

μν →
1
g2 F

2
μν. Thus, the very large gauge coupling

effectively removes the Maxwell term leaving the limiting
configuration of the gauged planar Skyrmions coupled
to a circular magnetic vortex of constant flux. Apparently,

in such a limit, the strong coupling with a vortex yields
an effective potential term which supplements the
potential (7).
Let us note that the particular choice of the parameters of

the aloof potential (7) is related with the condition of
balance between a short-range repulsion and a long-range
attraction, decreasing of the parameter λ increases the
repulsive component. Coupling to magnetic field modifies
the structure of interactions, as the coupling g increases, the
attractive part of interaction becomes stronger. As a result,
we can approach the limit λ → 0 providing the gauge
coupling is nonvanishing. In such a limit, variation of the
coupling g allows us to manipulate the attractive part of
interaction between the Skyrmions. Further, at some critical
value of the gauge coupling there is a transition from the
aloof structure of the multisolitons to the rotationally
invariant configuration, for example in the sector of degree
Q ¼ 2 it happens as g ¼ 0.45 and λ ¼ 0.
Thus, the configurations carry total magnetic flux

Φ¼ R
d2xB, which is in general, nonquantized. The flux

of the gauged baby Skyrmions is associated with the
position of the solitons and is orthogonal to the x − y
plane [28]. In the usual model with rotationally invariant

FIG. 3. The normalized energy per charge E of the Q ¼ 1, 2, 5, 8 chains of gauged baby Skyrmions (left plot), and the corresponding
binding energy per charge (right plot) as a function of the coupling constant g at μ2 ¼ 0.1 and λ ¼ 0.5.

FIG. 4. The ratio per charge of the magnetic energy Eem to the total energy E of the Q ¼ 1, 2, 5, 8 chains of gauged baby Skyrmions
(left plot), and the magnetic flux through the x-y plane (right plot) as a function of the coupling constant g at μ2 ¼ 0.1 and λ ¼ 0.5.

GAUGED MULTISOLITON BABY SKYRME MODEL PHYSICAL REVIEW D 93, 065018 (2016)

065018-7



potential (5), or in the strong coupling limit of the gauge
model (1), there is a single magnetic flux through the center
of the soliton, in the aloof system, where rotational
invariance becomes violated and each unit charge constitu-
ent of the multisoliton configuration is coupled to a flux.
An interesting observation is that, as the gauge coupling

becomes stronger, the magnetic flux of the degree Q baby
Skyrmions grows from 0 to 2πQ=g; i.e., in the strong
coupling regime, the magnetic flux is quantized though
there is no topological reason for it [28]. Indeed, in Fig. 4,
right plot, we display the results of our numerical calcu-
lations of the integrated magnetic field of the gauged planar
Skyrmion through the x-y plane. In the limit g ¼ 0, the
magnetic flux is vanishing; in the weak coupling regime
0 ≤ g≲ μ, the fluxes are attached to the individual partons
of the multisoliton configuration.
As gauge coupling increases further, the radius of the

each vortex is getting smaller and the magnitude of the
magnetic field increases significantly. For g > 1, the flux
tends to be quantized in units of 2π=g and the configuration
becomes rotationally invariant. The energy density distri-
bution in the strong coupling limit is localized near the
center of the configuration approaching a singular string-
like distribution in the limit g → ∞ [28].

IV. CONCLUSION

The main purpose of this work is to present a new type of
gauged soliton in the planar Skyrme-Maxwell theory. In the
model with aloof potential (7), the individual solitons are
composed of the constituents with unit topological charge.
A peculiar feature of the model is that, similar to the
solutions of the Faddeev-Skyrme model, a number of local
energy minima of various types exists in each topological
sector. Coupling of the solitons to the gauge sector yields
additional attractive interaction which modifies the struc-
ture of configurations of given degree. It has been shown
that the rotational invariance of the multisoliton configu-
ration is restored in the strong coupling regime.
Similar to the corresponding solutions in the gauged

Skyrme model and Faddeev-Skyrme model [40], the planar
configurations are topologically stable, and in the weak
coupling regime they carry a nonquantized magnetic flux

which is orthogonal to the x-y plane and penetrates the
Skyrmion. In the strong coupling limit, the total magnetic
flux, associated with the partons, becomes quantized in
units of topological charge.
We confirm that the mass of the static configuration

decreases when the electromagnetic coupling constant is
increased; thus, a baby Skyrmion can lower its mass by
interacting with the electromagnetic field. Also, when g is
increasing, the binding energy of the solitons increases.
Finally, note that the planar Skyrmions appear as

quasiparticles in various systems; in particular, they are
natural objects in the description of the integer quantum
Hall effect [19]. The vortices coupled to the planar
Skyrmion constituents may appear in multicomponent
superconductors [41]; thus, as avenues for further
research, it would be interesting to extend the solutions
in this work to the effective condensed matter systems
where the scalar field of the model is the order parameter.
In such a context, there is a phase transition related with
rotational symmetry breaking at some critical value of the
gauge coupling and separation of the individual solitons.
The phase with unbroken symmetry corresponds to the
strong coupling limit, while the symmetry becomes
broken in the weak coupling limit; thus, this situation
resembles the usual pattern of the second-order phase
transition in superconductors.
Another interesting possibility is to consider the gauged

baby Skyrme model with aloof potential and Chern-
Simons term [29] without restrictions of symmetry, which
would allow us to include the electric field in our
consideration.
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