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The inner regions of the most massive compact stellar objects might be occupied by a phase of quarks.
Since the observations of the massive pulsars PSR J1614-2230 and PSR J0348þ 0432 with about two
solar masses, the equations of state constructing relativistic stellar models have to be constrained respecting
these new limits. We discuss stable hybrid stars, i.e. compact objects with an outer layer composed of
nuclear matter and with a core consisting of quark matter (QM). For the outer nuclear layer we utilize a
density dependent nuclear equation of state and we use a chiral SU(3) quark-meson model with a vacuum
energy pressure to describe the object’s core. The appearance of a disconnected mass-radius branch
emerging from the hybrid star branch implies the existence of a third family of compact stars, so-called twin
stars. Twin stars did not emerge as the transition pressure has to be relatively small with a large jump in
energy density, which could not be satisfied within our approach. This is, among other reasons, due to the
fact that the speed of sound in QM has to be relatively high, which can be accomplished by an increase of
the repulsive coupling. This increase on the other hand yields transition pressures that are too high for twins
stars to appear.
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I. INTRODUCTION

A protocompact star is formed in the aftermath of a
supernova explosion, which is one of the most extreme
events to occur in the Universe. At low temperature and
finite baryon density these objects contain the densest
matter known to mankind, which exceeds even nuclear
density (ρ0 ≈ 2.5 × 1014 g=cm3). The recent measurements
of the massive pulsars PSR J1614-2230 [1] and PSR
J0348þ 0432 [2] with about two solar masses exceed
the highest measured pulsar mass of PSR 1913þ 16 with
M ∼ 1.44M⊙ by far [3]. This new mass limit sets con-
straints on the equation of state (EoS) of dense matter
within compact stellar objects. The repulsive effect of the
strong interaction triples the maximum obtainable mass
compared to a noninteracting Fermi gas of neutrons [4]. An
appropriate EoS therefore should yield solutions for com-
pact stars with ≳2M⊙ and illustrates likewise the impor-
tance of the incorporated interactions.
Spherically symmetric compact stars are generally

described by the Tolman-Oppenheimer-Volkoff (TOV)
equations [5]. These equations can be derived by solving
the Einstein field equations

Gμν ¼ Rμν −
1

2
Rgμν ¼ −

8πG
c4

Tμν ð1Þ
where Gμν is the Einstein tensor and Rμν is a contraction of
the Riemann curvature tensor, called the Ricci tensor, R

being the curvature scalar and Tμν the energy-momentum
tensor of a relativistic fluid. Under the above-mentioned
assumptions one arrives at
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in units where c ¼ G ¼ 1.
The solutions of these equations are determined by

different EoS, and the entire collection of masses and
corresponding radii is called the mass-radius relation (MR)
of compact stars [6]. For each EoS, pðϵÞ ¼ pðϵðrÞÞ, where
p is the pressure and ϵ the corresponding energy density at a
given radius r, there exists a solution which is parametrized
by pc, the central pressure of the star.
Two different types of compact stars containing quark

matter (QM) ought to be considered. The first one is based
on the idea that the appearance of the strange quark lowers
the energy per baryon and consequently forms the true
ground state of nuclear matter, i.e. forms the whole star
[7–9]. The resulting object is called a pure quark star and
has been entirely discussed within the SU(3) model in [10].
The second one is called a hybrid star, where a QM core is
surrounded by an outer crust of hadronic matter (HM). The
transition from nuclear matter to quark matter can occur
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either in a mixed phase (Gibbs construction) or, assuming
that there exists a first order phase transition at pt, at a sharp
transition (Maxwell construction).
Now, the particle transformations described by the EoS

may influence the compressibility of the star, which can
affect the stability. Is this effect significantly enough to alter
the properties of the resulting compact object, i.e. give rise
to a third family of degenerate stars, so-called twin stars?
These objects would again be stable at a smaller radius but
similar mass as the former compact star. A possible
evidence of twin stars goes along with a discontinuity in
the EoS [11–19]. In this article we study various EoS and
their solutions within the TOV equations using a Maxwell
construction. A stable hybrid star configuration with
pc ≥ pt is given, if the mass of the star continues to
increase after the quark matter core appears [20–22]. As
soon as the mass decreases with larger central pressures pc,
the configurations become unstable. If the mass then, after
decreasing, increases again with larger pc, a stable twin star
configuration would be established. This behavior is
determined by the energy discontinuity Δϵ between the
two EoS and the speed of sound within the object. The
works of Alford et al. [20–22] confirmed that a stable
connected hybrid star branch emerges from the hadronic
branch if the energy density discontinuity is less than a
critical value. They used a constant speed of sound para-
metrization within the field correlator method for the QM
EoS to provide a general framework for empirical testing
and comparison. The recent observations of the 2M⊙-stars
[1,2] constrain the constant speed of sound parametrization.
A stiffer HM EoS and c2s ≥ 1

3
for the QM EoS yields

solutions with star sequences ≥2M⊙ in their approach. In
this work we work with a density dependent (DD2) nuclear
matter EoS [23] for the outer layers of the star and a chiral
SU(3) EoS derived from the quark-meson model [10]
for the star’s core. In [10] pure quark star configurations
≥2M⊙ for a small parameter range were found; in this
model all other solutions were hybrid stars completely built
of a mixed phase of HM and QM. We scan the same
parameters of the SU(3) EoS as in [10] to look for possible
twin stars emerging from a stable hybrid star.

II. THE MODELS

According to lattice QCD calculations, the phase tran-
sition at high baryonic densities is of first order [24–26].
Based on this assumption the transition from hadronic
matter to quark matter is described via a Maxwell con-
struction [27–29]. The quark-meson model couples mesons
as mediators of the strong interaction to quarks utilizing
chiral symmetry [30] via a Yukawa-type coupling. The
coupled equations of motions of the meson fields derived
from the grand canonical potential have to be solved
self consistently and determine finally the EoS. Possible
resulting pure quark stars emerging from the chiral SU(3)

quark-meson model have been discussed entirely in [10]
such as the derivation of the EoS.

A. Chiral quark-meson model

The SU(3) Lagrangian L of the chiral quark-meson
model reads

L ¼ Ψ̄ði∂ − gφφ − gvγμVμÞΨþ trð∂μφÞ†ð∂μφÞ
þ trð∂μVÞ†ð∂μVÞ − λ1½trðφ†φÞ�2 − λ2trðφ†φÞ2
−m2

0ðtrðφ†φÞÞ −m2
vðtrðV†VÞÞ

− tr½Ĥðφþ φ†Þ� þ cðdetðφ†Þ þ detðφÞÞ ð4Þ

for SUð3Þ × SUð3Þ chiral symmetry incorporating the
scalar (φ) and vector (Vμ) meson nonet. Here, mv stands
for the vacuum mass of the vector mesons and λ1, λ2,
m0, and c are the standard parameters of the linear σ model
[30–33]. The matrix Ĥ describes the explicit breaking of
chiral symmetry. The quarks couple to the meson fields via
Yukawa-type interaction terms with the coupling strengths
gφ and gv for scalar and vector mesons, respectively.
The energy density and the pressure are then determined to
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where the indices n are nonstrange (up and down quarks) and
s are strange quarks. For the couplings and masses of the
included fields standard values are assumed. A detailed
treatment on the parameters can be found in [10,30,32,34].
Since the properties of the reviewed hybrid stars depend only
on the parameters of the quark sector, a broader overview is
given compared to the nuclear matter parameter range.
However, four parameters can be varied:
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(1) The constituent quark massmq determines the scalar
coupling for the nonstrange gn and strange con-
densate gs via the Goldberger-Treiman relation:
gn ¼ mq

fπ
and gs ¼ gn

ffiffiffi
2

p
, where gs is adopted from

SU(3) symmetry considerations.
(2) The vector coupling is independent of the constitu-

ent quark mass; it is varied in the scale of the scalar
coupling, gω ∼ gn, to study its influences in an
appropriate range. The strange coupling of the
ϕ-meson is fixed by SU(3) symmetry.

(3) The experimentally not well determined mass
of the σ-meson covers a range of 400 MeV ≤ mσ ≤
800 MeV [35,36].

(4) The bag constant B
1
4 models the confinement and

can be interpreted as a vacuum energy density term.
The fields are independent of its variation; its
impact is to stiffen or soften the EoS. Physically
reasonable ranges within this context are 60 MeV
≤B

1
4 ≤ 200 MeV. In the followingwe denoteB

1
4 asB.

III. HYBRID STARS

At large densities hadronic matter is expected to undergo
two phase transitions. The first one deconfines hadrons to
quarks and gluons. Note that in a strict sense neither the
deconfinement phase transition nor the chiral phase tran-
sition can be described by an order parameter based on
underlying symmetries of QCD. The second one restores
chiral symmetry. Yet it is an unsettled issue whether these
transitions are real phase transitions or crossover transitions
[37]. We study and compare various models at ultrahigh
densities to search for differences and similarities as well as
their resulting predictions for compact objects, i.e. the
mass-radius relation.

A. Construction of the phase transition

The study of the deconfined phase transition is related to
the mixed phase. It has been suggested that the mixed phase
in compact objects behaves more in accordance with the
Maxwell construction than with the Gibbs construction
[29,38,39]. Furthermore it is more likely that twin stars
appear within the Maxwell construction, according to [29].
In this article we thus utilize a Maxwell construction due to
the above-mentioned reasons. In Refs. [20–22] the QM
EoS was parametrized in a relatively simple form [see
Eq. (11)] and the transition from HM to QM can be
constructed without any constraints concerning the chemi-
cal potential. Our approach on the other hand needs to take
into account the pressure as a function of the chemical
potential to find the thermodynamically justified transition
pressure (see Fig. 13 and the discussion there).
In electrically neutral stellar matter baryon number

and charge have to be conserved quantities. Under this
assumption the chemical potential of species i can be
defined as

μi ¼ BiμB þQiμQ ð7Þ

where Bi is the baryon number andQi the charge in units of
the electron charge and μB and μQ are the baryonic and
electric chemical potentials respectively. Note that strange-
ness is not a conserved quantity. The phase transition from
HM to QM produces a mixed phase. Now, the Gibbs
condition requires that the coexisting phases have opposite
charge and it might also happen that the mixed phase is
energetically too expensive [29,38]. Then the two phases
are in direct contact with each other, which corresponds to a
Maxwell construction, where

PHMðμB; μQÞ ¼ PQMðμB; μQÞ ð8Þ

μB ¼ μHM ¼ μQM: ð9Þ

The baryon chemical potential is continuous, but μQ jumps
at the interface of the two phases, so that the phase transition
takes place if the pressure of the QM phase equals the
pressure of the HMphase at a given baryochemical potential
μB. The Maxwell construction corresponds to constant
pressure in the energy density interval of the mixed phase,
whereas the pressure increases with baryon density in the
Gibbs construction.
However, the existence of a quark phase in a compact

star requires the transition pressure to be smaller than the
central pressure pc of the star, which is valid for the
Maxwell construction and also for the Gibbs construction.

B. Stability criteria

As long as the mass of the star is an increasing function
of pc the compact object will be stable. Since a hybrid star
contains a QM core, there exists a threshold value in the
jump in energy density Δϵc which determines the star’s
stability when the QM core first appears.

Δϵc
ϵt

¼ 1

2
þ 3

2

pt

ϵt
ð10Þ

where ϵt and pt are the values of the energy density
and pressure at the phase transition to hadronic matter.
Δϵc is the threshold value below which there is in any case
a stable hybrid star branch connected to the hadronic
star branch [20–22]. For a derivation and discussion of
(10) see [11–14,40–43].
For a high value of Δϵ the cusp in the MR relation is

hardly detectable and in the range of ∼10−4M⊙ in agree-
ment with [19,20,43], i.e. shortly after the QM core appears
the QM core is unable to counteract the gravitational
attraction from the HM and the star becomes unstable.
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IV. RESULTS

The appearance of a QM core within a compact star is
entirely determined by the transition pressure pt and the
discontinuity in the energy density Δϵ. If the pressure
within the star lies below the transition pressure, the object
would be entirely determined by the HM EoS and could not
be classified as a hybrid star. The relation Δϵ

ϵt
as a function of

pt
ϵt
will become important in context with Eq. (10) when

investigating for connected or disconnected hybrid star
branches [20–22].

A. Various EoS and the corresponding mass-radius
relations for fixed B and different gω

Figure 1 shows the total hybrid EoS for a fixed value of
the vacuum pressure B ¼ 60 MeVwhile varying the vector
coupling constant from 0 ≤ gω ≤ 3.
For increasing values of the repulsive coupling the

transition pressure pt increases. This is due to a higher
intersection point of the hadronic EoS and the correspond-
ing QM EoS in the p − μ plane; see Fig. 13. Larger gω goes
along with a stiffening in the QM EoS.
The gω ¼ 0 case corresponds to a transition from HM to

QM at ϵ
ϵ0
≤ 1. A transition occurring below saturation

energy density is clearly unphysical and shall therefore
not be discussed any further (see the upper x axis in
Fig. 12). For gω ¼ 1 the transition occurs at pt ≃
1.05 MeV=fm3 and ϵt ≃ 102 MeV=fm3 (see the inlaid
figure in Fig. 1). The discontinuity in energy density here
isΔϵ≃ 122 MeV=fm3. In this case ϵ

ϵ0
≃ 1; see also Fig. 12,

which corresponds to the leftmost data point on the gω ¼ 0
line. Note that in Fig. 1 and in all the following graphics the
pure HM results are shown as a reference, denoted
as “DD2.”

The corresponding mass-radius relation is shown in
Fig. 2. For gω ¼ 1 the phase transition from HM to QM
does not destabilize the star for a relatively wide range in
mass, i.e. the emerging QM core gets larger while the
hybrid star manages to stay stable up to ∼1.7M⊙. This
behavior is very similar to the one of the hadronic mode
DD2, but shifted to smaller masses and radii.
A repulsive coupling of gω ¼ 2 on the other hand results

in a connected hybrid star branch hardly detectable com-
pared to gω ¼ 1 and with a similar trend as the DD2 case,
but with solutions reaching ≳2M⊙.
For gω ¼ 3 the transition sets in at already unstable

configurations for the pure nuclear matter case.
Figure 3 displays the radius and mass curves as a

function of pc with B ¼ 60 MeV while varying gω at
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FIG. 1. The EoS with fixed B ¼ 60 MeV while varying gω at
mσ ¼ 600 MeV and mq ¼ 300 MeV. The inlaid figure accen-
tuates the behavior of the EoS for gω ¼ 0 and gω ¼ 1 which is
otherwise hardly perceivable.
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FIG. 2. The mass-radius relation with fixed B ¼ 60 MeV while
varying gω at mσ ¼ 600 MeV and mq ¼ 300 MeV.
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FIG. 3. The radius and mass curves as a function of the central
pressure pc with fixed B ¼ 60 MeV while varying gω at mσ ¼
600 MeV and mq ¼ 300 MeV. The curves starting in the upper
left region are the radius curves whereas the curves starting on the
lower left side are the mass curves.

ZACCHI, HANAUSKE, and SCHAFFNER-BIELICH PHYSICAL REVIEW D 93, 065011 (2016)

065011-4



mσ ¼ 600 MeV and mq ¼ 300 MeV. The curves starting
in the upper left region are the radius curves for a given
value of gω. The curves starting on the lower left side are
the mass curves. The associated x axis in Fig. 3 shows the
pressure pertaining to both curves. The curves leave the
hadronic DD2 reference line at the respective transition
pressure pt and, still rising, yielding stable hybrid star
solutions. Unstable solutions can be read off from the point
where the mass decreases with increasing pressure. These
features are valid for all following radius and mass curves
as a function of pc.
Figure 3 substantiates the hitherto discussion regarding

the increase of the repulsive coupling by depicting up to
which central pressure pc the hybrid star configurations
stay stable: With higher repulsive coupling, the appearing
hybrid star configurations become unstable, i.e. the smaller
the resulting QM core, though the masses are significantly
higher.
Figure 4 shows the EoS for B ¼ 100 MeV. The tran-

sition pressure increases with an associated increase of the
jump in energy density. For gω ¼ 0 with fixed B ¼
100 MeV the respective values are pt ≃ 15 MeV=fm3,
ϵt ≃ 230 MeV=fm3 and Δϵ≃ 90 MeV=fm3; see the inlaid
figure in Fig. 4 and see Fig. 12 for ϵ

ϵ0
≃ 1.8 respectively. For

gω ¼ 1 and B ¼ 100 MeV we find pt ≃ 75 MeV=fm3,
ϵt ≃ 380 MeV=fm3 and Δϵ≃ 100 MeV=fm3 at ϵ

ϵ0
≃ 2.8;

see also Fig. 12. The resulting mass-radius relations for
these EoS are shown in Fig. 5. The symbols △ and ○ (see
Figs. 5–6) mark the positions of two individual stars which
are later discussed in greater detail.
However, increasing further the repulsive coupling leads

to hybrid star configurations, which do not support a stable
QM core (gω ≥ 2). The trends of the curves obviously show
differences to the B ¼ 60 MeV parameter choice. For
values of gω ≤ 1 the transition pressures for B ¼
100 MeV are higher compared to the B ¼ 60 MeV case;

see Figs. 3 and 6. Note that for gω ≥ 2 the transition
pressures change not significantly, and the appearing QM
core does destabilize the configurations nearly immediately
(the transition for gω ¼ 3 happens already in the unstable
regime of the branch).
The QM core for gω ¼ 0 appears at∼0.8M⊙ at a radius of

∼12.5 km; see Fig. 6 where the mass and radius lines leave
the hadronic DD2 reference line. The star does not get
unstable up to∼1.6M⊙ at a radius of∼11 km. The QM core
for gω¼ 1 appears at∼1.6M⊙. The hybrid star configurations
stay stable up to ∼1.7M⊙; see Figs. 5–6. The appearance of
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FIG. 4. The EoS with fixed B ¼ 100 MeV while varying gω at
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the QM core at gω ¼ 1 destabilizes the star configurations
faster than in the gω ¼ 0 case for B ¼ 100 MeV.
To demonstrate the particle occupation within the star

configurations, we picked out two individual stars from
Fig. 5 (and respective Fig. 6), marked with△ and○, whose
individual properties are denoted in Table I.
We choose a hybrid star, marked with △, and a purely

hadronic star, marked with ○, calculated from the EoS
with the parameter choice B ¼ 100 MeV, gω ¼ 1, mσ ¼
600 MeV and mq ¼ 300 MeV.
Figure 7 depicts the energy density profiles of the two

stars, ranging from their center at r ¼ 0 up to their surface,
where ϵcent ¼ 0 and r ¼ R, indicating the radius of the star.
The quark matter phase for △ appears at r≃ 6.1 km at
ϵ≃ 500 MeV=fm3. The respective jump in energy density
is Δϵ≃ 100 MeV=fm3, which can also be seen in Fig. 4.
We point out that due to the used Maxwell construction of
the phase transition, no mixed phase region and therefore
no crystalline (pastalike) structure [44] of mixed phase
matter is present within our hybrid star model. The profile
of the star ○ shows a continuous behavior as the star does

not reach the pressure required for quark matter to appear.
Figure 8 demonstrates the particle fraction of the two
individual stars, plotted versus their respective radius. From
the surface on at R△ ¼ 12.35 km the star △ is mainly
composed of neutrons, which contribute ∼90%, and con-
sists of an equal number of protons and electrons (due to
charge neutrality), contributing ∼10%. With decreasing
radius the respective hadronic particle fraction decreases,
but changes are not that significant. Yet at a radius of
∼6.1 km, at ϵcrit≃500MeV=fm3 and pt¼64.81MeV=fm3,
the phase transition from hadronic matter to quark matter
takes place.
Approaching the center of the star, the contribution

of the strange quark increases, while the contribution of
the down quark decreases in nearly equal manner.
The fraction of the up quarks stays (nearly) constant at
∼33%. The increase of the strange quark contribution
can be explained with the increase in pressure approach-
ing the center of the object [45,46]. The particle compo-
sition of the star ○, indicated by the thin violet dotted
lines, on the other hand does not reach the required
pressure for the corresponding phase transition, pc ¼
45.323 MeV=fm3 ≤ pt ≤ 64.81 MeV=fm3, and therefore
remains purely hadronic. As in the case for △ within the
shell 6.1 km ≤ r ≤ R○, the hadronic fraction, neutrons,
protons and electrons, stays nearly constant.
The star is mostly composed of neutrons (∼90%),

protons and electrons (∼10%).

TABLE I. The properties of the two individual stars △ and ○

for the parameter choice B ¼ 100 MeV, gω ¼ 1,mσ ¼ 600 MeV
and mq ¼ 300 MeV. The entries display the mass in solar
masses, the radius R of the star in km, the pressure pc and
the energy density ϵcent at the center of the star in MeV=fm3 and
the respective energy density in units of nuclear energy density.

Star M=M⊙ R pc ϵcent ϵcent=ϵ0

△ 1.81 12.35 169.21 917.73 6.23
○ 1.42 13.14 45.32 351.54 2.39
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FIG. 7. The energy density versus radius of the two selected
stars △ (continuous line) and ○ (dotted line) from Figs. 5–6 for
the parameter choice B ¼ 100 MeV, gω ¼ 1, mσ ¼ 600 MeV
and mq ¼ 300 MeV. The phase transition for △ from hadronic
matter to quark matter appears at ∼6.1 km, whereas ○ is purely
hadronic.
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ZACCHI, HANAUSKE, and SCHAFFNER-BIELICH PHYSICAL REVIEW D 93, 065011 (2016)

065011-6



The EoS for B ¼ 140 MeV is shown in Fig. 9. It shows
an increase of the transition pressure pt as expected. The
discontinuity in energy density increases too, but displays a
nontrivial relation to pt which can be observed in greater
detail in the phase diagram shown in Fig. 12. The resulting
mass-radius curve for B ¼ 140 MeV is shown in Fig. 10. A
hybrid star branch appears but is hardly noticeable.
As already mentioned, the transition for a value of gω ¼

3 sets in at an already unstable configuration, i.e. no stable
hybrid star branch at all emerges.
Figure 11 shows the corresponding radius and mass

curve as a function of the central pressure pc. The hybrid
star configurations follow the DD2 curve, and become
unstable nearly immediately after the appearance of the
QM core. The repulsive force in the QM EoS is not strong
enough to support a large hadronic mantle. The star would
collapse having a too large QM core.
Generally speaking, raising the value of the vacuum

pressure leads to shorter hybrid star branches, i.e. the mass

difference between the maximum mass on the connected
hybrid star branch and the mass of the purely hadronic star
at the phase transition (pc ¼ pt) gets smaller. The phase
diagram displayed in Fig. 12 depicts the ratio of pressure to
energy density at the transition of hadronic matter versus
the discontinuity in energy density at the transition. The
upper x axis displays the corresponding central energy
density in units of nuclear energy density ϵ0 ≃ 145MeV

fm3 .
The transition for small values of B and gω occurs at a

too small central energy density ϵt
ϵ0
≤ 1. For large values of

B and a small repulsive coupling the transition occurs at
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four to ten times nuclear saturation density. Within the
range 100 ≤ B ≤ 140 MeV the transition for zero repulsion
stays below the constraint line, given by Eq. (10). It is
interesting to note that all curves gather in an area at around
0.55 ≤ pt

ϵt
≤ 0.65 and 0.4 ≤ Δϵ

ϵt
≤ 0.6 where the central

energy density is ∼10 times nuclear saturation density
(even for higher values of gω not displayed here).
Figure 13 displays the pressure as a function of

the chemical potential μ for the parameter choice
mσ ¼ 600 MeV,mq ¼ 300 MeV and B ¼ 100 MeVwhile
varying 0 ≤ gω ≤ 3. The intersecting point between the
HM and the QM curve indicates where the transition
pressure for a given choice of parameters is located.
The intersection for gω ¼ 0 takes place at p≃

15 MeV=fm3 and μ≃ 355 MeV and for gω ¼ 1 at p≃
75 MeV=fm3 and μ≃ 400 MeV; see also Figs. 4 and 6. It
is interesting to note that within our approach a stiffer EoS
has a “softer” behavior in the p − μ plane. Due to this
softening the intersection between the hadronic and the QM
curve takes place at a higher pressure. That corresponds to a
transition from HM to QM at a higher energy density in
terms of nuclear energy density; see Figs. 12 and 18 for
comparison (upper x axis). An appearing QM core desta-
bilizes the star quite soon, and twin star solutions are ruled
out, since these require a relatively low transition pres-
sure [19,26].
In Fig. 14 we examine the speed of sound for 0≤ gω ≤ 3

within the parameter choice mσ¼600MeV, mq¼300MeV
and B ¼ 100 MeV, corresponding to Figs. 4–6. Since the
bag constant does not affect the stiffness of the EoS (it just
changes the value of the vacuum pressure) the slope of

theses curves for any choice of B would remain the same.
Only the transition values of the energy density ϵt from one
EoS to the other EoS would change and in equal steps of
Δϵ. For gω ¼ 0 and gω ¼ 1, Δϵ≃ 95 MeV=fm3, see also
the discussion in the previous sections. The symbols on the
DD2 curve mark the point where the transition takes place
and the stars leave the hadronic branch. The corresponding
symbols on the QM lines mark then the points where the
QM core appears. As one would expect, an increase of the
repulsive coupling stiffens the EoS, which is equivalent to a
larger speed of sound within the medium. The gω ¼ 0 line
saturates at c2s ¼ 1

3
which is reasonable since ultrarelativ-

istic matter without interactions saturates at pðϵÞ ¼ 1
3
ϵ

[47,48]. Since gω ¼ 3 has far too high transition pressures
for hybrid and twin stars the highest considered repulsive
coupling gω ¼ 2 reaches c2s ≃ 0.5. That means that all
physically relevant and considered cases in this work lie
within 0.3 ≤ c2s ≤ 0.5. This becomes important in the
following when we compare our results with those from
Alford et al. [20–22].

B. Various EoS and the corresponding mass-radius
relations for fixed gω and different B

Figure 15 shows the EoS at fixed gω ¼ 0 for various
values of the bag constant B. For increasing values of B the
transition pressure pt increases. As in the case of increasing
B at fixed gω, increasing B while varying gω leads to the
same behavior of the different EoS.
For B ¼ 80 MeV, pt ≃ 1 MeV=fm3, ϵt ≃ 92 MeV=fm3

and the discontinuity in energy density is Δϵ≃
160 MeV=fm3 (see the inlaid figure). For the highest
chosen value of B ¼ 180 MeV pt ≃ 202 MeV=fm3, ϵt ≃
650 MeV=fm3 and Δϵ≃ 1100 MeV=fm3, i.e. the
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discontinuity in the energy density Δϵ increases also with
B. Figure 16 shows the mass-radius relations for gω ¼ 0
while varying B withmσ ¼ 600 MeV andmq ¼ 300 MeV.
For the smallest value of B ¼ 80 MeV the QM core
appears at already 0.11M⊙ at a radius of ∼25 km (see
the inlaid figure); see also Fig. 17.
The shape of the curve is similar to the pure hadronic one

but shifted to slightly smaller values of mass and radius due
to the appearence of the QM core. The transition from HM
to QM appears at ϵ

ϵ0
≤ 1; see fig. 18. The inlaid figure

displays a disconnected mass-radius branch, which is an
indication for a twin star. These disconnected solutions
were found up to values of B≃ 90 MeV, getting harder
to detect with larger B and always at physically too small
transition energy densities 0.66 ≤ ϵ

ϵ0
≤ 1, see Figs. 18

and 22, and are therefore not discussed any further.

For B ¼ 100 MeV the transition occurs at ϵ
ϵ0
≃ 1.8. The

respective values are pt≃15MeV=fm3, ϵt≃230MeV=fm3

and Δϵ≃ 90 MeV=fm3 (see also the inlaid figure in Fig. 4,
Fig. 15 and Fig. 17). The QM core appears at ∼0.8M⊙ at a
radius of ∼12.5 km. The star configuration does not get
unstable up to ∼1.6M⊙ at a radius of ∼11 km, which can
altogether be observed in Fig. 17. The resulting mass-radius
relation for this EoS is also shown in Fig. 5. Higher values
of the vacuum energy term B lead to much smaller hybrid
star branches, hardly visible and in accordance with
[20–22]. The configurations get unstable nearly immedi-
ately after the appearance of the QM core, which itself
emerges at a higher mass. The case B ¼ 140 MeV reaches
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∼1.9M⊙ but after the transition has set in, the star
configurations get quickly unstable. These stars support,
if they support, only a very small QM core and sub-
sequently become unstable.
Interesting to note is that, when varying the vacuum

pressure B, the resultant family of mass-radius curves
rotates counterclockwise around a small region where all
of the curves pass through; see Fig. 16. This behavior has
already been found by Yudin et al. [49].
However, the transition pressure rises with the increase

of gω, which generates eventually an unstable QM core.
The labeling of the axes in the phase diagram for fixed gω

in Fig. 18 is the same as for fixed B in Fig. 12. Generally,
increasing the value of the repulsive coupling of the QM
EoS leads to a higher pt and also a larger discontinuity Δϵ
for a given B. The higher the repulsive force within the
QM core, the higher pt is for a QM core to appear. For
the transition to occur at 2ϵ0, B has to be at least 104 MeV
in case of zero repulsion (gω ¼ 0), corresponding to the
minimum of the plotted data in Fig. 18. For gω ¼ 1, B has
to be at least 84MeV to be located at 2ϵ0. Both cases lead to
stable hybrid star configurations, shown in Figs. 16–17
for gω ¼ 0.
However, both trends are parabolalike, crossing the

constraint line twice, whereas the gω ¼ 2 and gω ¼ 3 cases
stay below the constraint (except for the choice gω ¼ 2 and
B≳ 190 MeV). The gω ¼ 2 case in the range 50 < B <
200 MeV corresponds to 4.5 ≤ ϵt

ϵ0
≤ 7. There a connected

hybrid star branch, even if very small and hardly observ-
able, exists up to B≃ 180 MeV. The stars get unstable
almost immediately after the appearance of the QM core.
A higher value of B leads to transitions at already unstable
mass-radius configurations. In case of even higher repul-
sion gω ¼ 3 the transition takes place at ten to fourteen
times nuclear energy density at an already unstable mass-
radius configuration. Our results match the results from
[20–22].
An investigation in the phase space by variation of mσ

and mq leads us to the conclusion that neither Δϵ
ϵt

nor pt
ϵt

changes in an adequate amount to get a relatively large
jump in energy density accompanied with a small transition
pressure, which is an essential requirement for twin stars;
see Fig. 22. Their attractive character through varying both
quantities is far weaker than the variation of gω and B
[10,50,51].

V. COMPARISON WITH OTHER MODELS

In the last section we analyzed the parameter dependence
of the resulting hybrid star properties within our HM-QM
model. One main outcome of our analysis is the absence of
a twin star region within the physical reasonable parameter
space. Theoretically we have found a narrow parameter
region where twin stars do exist (pt=ϵt < 0.05); however,
within all of these EoS the HM to QM phase transition

appears at irrelevant low density (ϵt < ϵ0). As the existence
of twin stars has been found in many different kinds of
phase-transition scenarios, e.g. hadron-quark phase tran-
sition [28,52,53] (using a Maxwell or Gibbs construction),
hyperon phase transition [54], and pion [55] and kaon
condensation [56,57], the question arises of what the main
reason is that we do not find twins in our model. On the one
hand, in all the existing twin star models, the relevant EoS
parameter region where twins occur is always narrow and a
“parameter fine-tuning” is needed to achieve an EoS which
will result in a twin star behavior. On the other hand, we
carefully analyzed the allowed parameter space in the last
section and did not find twin star solutions where ϵt > ϵ0.
We show that the nonexistence of twin stars in our model

is due to the fact that the potential twin star area lies outside
of our available parameter region and therefore cannot be
reached in our simulations. By constructing the phase
transition within our model we are not capable to
choose arbitrary values for Δϵ, ϵt and pt (like Alford et al.
[20–22]), because we need to match the HM EoS with the
QM EoS in a consistent way, i.e. find the intersection
between pressure p and chemical potential μ for the
transition pressure pt.
In this section we use the same density dependent DD2

EoS for the hadronic part, but we use a much simpler model
for the QM sector. Similar to [20–22] we take a QM EoS,
which is parametrized by the following three values, pt, Δϵ
and cs (constant sound speed in quark matter), and which is
given by Eq. (11). In order to construct a comparable QM
EoS with respect to our model, we have used a fixed value
of c2s ¼ 1=3 for the following calculations. The EoS for
p > pt in this simple QM model has the following form
[20,58],

pðϵÞ ¼ c2sðϵ − ϵ�Þ; with∶ ϵ�≔ϵt þ Δϵ −
1

c2s
pt; ð11Þ
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where ϵ� is the energy density at zero pressure. Figure 19
shows the resulting EoS for three choices of the parameters,
which are given in Table II. In contrast to our model the
parameters can be chosen in such a way that twin stars
appear in a physically meaningful region.
In Figs. 20–21 the mass-radius relations and the radius-

mass curves of the three chosen representative twin star
parametrizations are displayed. Set A’s mass-radius relation
has been calculated by using the parameter configuration,
Δϵ=ϵt ¼ 0.56 and pt=ϵt ¼ 0.168, which is located below
the constraint line given by Eq. (10) (see Fig. 22). This
configuration is located right at the corner of the twin star
region boundary lines and the differences between the
maximum masses of the first and second sequence is very
small (Mmax

1 ¼ 1.69332M⊙ and Mmax
2 ¼ 1.69794M⊙). Set

B displays a twin star where the first sequence maximum
mass lies above the maximum mass of the twin star
(Δϵ=ϵt ¼ 1.36; pt=ϵt ¼ 0.12). The parameter set C curve
shows the mass-radius relation of a twin star sequence with
a rather high value of Δϵ=ϵt ¼ 1.68 but a low value of
pt=ϵt ¼ 0.08. The phase transition starts at low density and

the maximummass of the first sequence is much lower than
the maximum mass of the twin star sequence (see Table II).
In this model too the neutron star sequence continuously
moves to the hybrid star branch and hybrid stars with a tiny
quark core are stable for a short period. The connected
stable hybrid star branch is very small and difficult to
recognize, as the hybrid stars soon get unstable after
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TABLE II. The parameter choice for a constant speed of sound
c2s ¼ 1

3
of the three different sets of star sequences with the

respective masses and radii of the corresponding branches
(Fig. 20).

Star sequence pt=ϵt Δϵ=ϵt M1 R1 M2 R2

• Set A 0.17 0.56 1.69 13.26 1.70 11.72
▪ Set B 0.12 1.36 1.35 13.21 1.26 8.91
▴ Set C 0.08 1.68 0.96 13.05 1.20 7.90
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formation of the tiny quark core. Nonetheless twin stars
somehow manage to restabilize again at a higher transition
pressure.
We do not get maximum mass values of the twin star

configurations which are above the observational known
value ofM ¼ 2.01M⊙, which means as a consequence that
all the twin star EoS are ruled out by nature.
In Fig. 22 the twin star region in the model utilized by

Alford et al. [20–22] is compared with the space of
available parameters within our model. It can be easily
seen that the main part of the region where twin stars exist
lies out of our attainable values of Δϵ=ϵt and pt=ϵt. Solely
for irrelevant low values of pt=ϵt we find a twin star area;
see Fig. 16. The cusp at the lower end of the twin star region
at (pt=ϵt ¼ 0.18, Δϵ=ϵt ¼ 0.51) overlaps in a tiny region
with the curve for gω ¼ 0; however, we do not find any twin
star in this parameter range. The radius-mass properties of
hybrid stars near the parameter region of the cusp almost
reach a twinlike structure (see e.g. the curve with B ¼
120 MeV in Fig. 17). The reason for this apparent contra-
diction is the fact that the sound speed for gω ¼ 0 is not
constant and slightly below the value which has been
chosen to calculate the twin star area (see Fig. 14). As
pointed out in [20], a decrease of c2s has the effect of scaling
down the size of the twin star area and moves the cusp at
the end of the twin star region upwards. Therefore, the
absence of twin stars at the intersection of the cusp
region is due to the energy dependence of the sound speed,
resulting in an average value below c2s ¼ 1=3. The line
between the shaded areas separates whether the mass of
the first branchM1 lies above (blue) or below (lighter blue)
the mass of the second stable branch M2. The gω ¼ 0 line
with B ¼ 120 − 124 MeV gets closest to the twin star
region.
Nevertheless, twin stars in general could exist in nature,

as other models have been constructed [59,60] that satisfy
the Mmax > 2.01M⊙ constraint.

VI. CONCLUSIONS

In this work we employ a density dependent hadronic
matter EoS and a density dependent chiral quark matter
EoS to find the phase transition from one phase to the other
within compact stars. The quarks couple to the meson fields
via Yukawa-type interaction terms. We utilize a Maxwell
construction, i.e. assume that there is a sharp transition at a
given transition pressure. The transition is therefore deter-
mined consistently when the pressure in the quark phase
equals that of the hadronic phase at the same baryochemical
potential. From that point on the quark matter EoS prevails
with its corresponding energy density. Within our param-
eter range we found stable hybrid star solutions and
investigated the relation of the QM core size and the
appropriate stability of the star. In the SU(3) quark-meson
model utilized for the QM EoS four parameters can be
varied, from which two (mσ andmq) have little effect on the

results. We conclude that a larger repulsive coupling gω and
a larger vacuum pressure B do not allow for a large QM
core to appear but reach the 2M⊙ limit, whereas small
values of both quantities generate hybrid star solutions with
a corresponding, large QM core, but the configurations stay
below the 2M⊙ constraint. Hybrid stars with high transition
pressures are hard to distinguish from pure hadronic stars
because of the tiny QM core. An appearing QM core
generates an additional gravitational pull on the hadronic
mantle. If the core’s pressure can counteract this extra pull,
the star is stable. For a too large discontinuity in energy
density the star gets unstable since the pressure of the core
is not able to counteract the extra gravitational pull [20–22].
In [20] Alford et al. use hadronic EoS based upon works
from Heberler et al. [61] and Shen et al. [62]. Their QM
EoS is density independent and is parametrized through pt,
ϵt and, assuming a constant speed of sound, c2s . They
conclude that for stars with at least 2M⊙ a larger c2s is
advantageous, whereas for c2s ¼ 1=3 a larger region in the
phase diagram for stars with≥ 2M⊙ is excluded, which as a
consequence restricts the other parameters pt and ϵt. In
approximate work Alford et al. [21] apply the constant
speed of sound parametrization to a field-correlator-method
calculation. The corresponding EoS is equipped with an
additive density independent q̄q-potential, corresponding
to our density dependent vector coupling constant, and with
a vacuum energy density term including gluon condensate
contributions, analogous to the bag constant utilized in our
approach. The vacuum energy density term and bag
constant are in both cases additive, i.e. density independent.
In both works the allowed region in the phase diagram for
hybrid stars with more than two solar masses is shifted
to high transition pressures at several times nuclear
energy density (3.5 ≤ ϵ=ϵ0 ≤ 6.5). The family of the
field-correlator-method EoS (varying the two above-
mentioned quantities) covers only a limited region in the
phase diagram due to a nearly density independent speed of
sound (c2s ≃ 1=3), whereas in our approach we achieved
high transition pressures assuming a higher vector coupling
constant. This feature on the other hand raises the speed of
sound up to values c2s ∼ 0.6, which would leave space in the
phase diagram for the other parameters pt and ϵt, only we
have no direct influence on them. However, we confirm the
results Alford et al. [20–22] obtained and investigate further
why we were not able to find a third family (twin stars) of
compact stars within a physically meaningful parameter
region. The conclusion is that the chances for twins are best
when the transition pressure is relatively low and the energy
density discontinuity on the other hand relatively high;
then an appearing QM core does not destabilize the star
immediately. Likewise it gets harder to achieve the 2M⊙
regime.But if the discontinuity in energy density is too large,
the pressure of the QM core is unable to counteract the
additional downward pull and the star configurations
becomes unstable.
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A future work could study the interplay between the
hadronic and quark matter EoS in greater detail to work out
how to achieve the appropriate proportions between pres-
sure and discontinuity in energy density for twin stars.
Furthermore kaon or pion condensation can be taken
into account. The appearance of kaon condensation
depends (among the EoS) also on the mass of the star
and may influence significantly the cooling of the compact
star [63,64]. It has not been considered within our
approach.
Last but not least, dynamical simulations in a fully

general relativistic framework including the discussed EoS
are in progress. Herein, we focus on the collapse scenarios
of twin stars in which a purely hadronic star at the end of
the first sequence collapses to its corresponding twin
star on the second sequence. Such a collapse would be
accompanied by a neutrino, gamma ray and gravitational
wave burst [52,65–67] and in addition could explain the
two-component structure in the recently observed fast radio
burst FRB 121002 [68]. Another application is the imple-
mentation of our EoS in neutron star merger simulations. In
[69] it has been shown that the f1 and f2 frequency peaks
of the emitted gravitational wave produced in the merger

and postmerger phase correlate with several EoS-dependent
quantities. The impact of a twin star EoS on the spectral
properties of the emitted gravitational wave and the internal
structure of the produced hypermassive neutron star is an
open question and the consequence involved might be
observationally relevant for future gravitational wave
detections.
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