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(2þ 1)-dimensional Abelian gauged CPð2Þ model with a self-interaction potential is considered. It is
shown that there are topological solitons in this model. The magnetic flux of these solitons can be either
quantized or nonquantized. Properties of the topological soliton with quantized magnetic flux are
investigated as well as properties of the topological soliton with nonquantized magnetic flux. A
comparative analysis of the properties is performed for the topological solitons of both types. Solutions
of the model field equations are obtained numerically for the topological solitons of both types. The
dependencies on the model parameters are presented for the energy and magnetic flux of the solitons. The
stability of the topological solitons of both types to the decay into solitons with smaller topological charges
is studied numerically. Possible generalizations of the investigated topological solitons are discussed.
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I. INTRODUCTION

There are many (2þ 1)-dimensional field models that
have in their spectra static soliton solutions [1]. The
existence and stability of these soliton solutions are based
on the nontrivial topology of the corresponding field
models. Two-dimensional topological solitons play an
important role in various areas of physics: field theory,
condensed matter physics, astrophysics, and hydrodynam-
ics. The Derrick theorem [2], however, imposes severe
restrictions on the existence of static two-dimensional
solitons.
Let us first consider as an example (2þ 1)-dimensional

pure scalar field models. If the target manifold of such a
model is topologically trivial, then static two-dimensional
solitons do not exist in this model. If the target manifold of
such a model is topologically nontrivial and there is no
potential term in the model Lagrangian, then the existence
of static two-dimensional solitons is possible only if the
model Lagrangian is quadratic in the derivatives of scalar
fields. The classic examples of such solitons are the
static solitons of the nonlinear O(3) σ-model [3] and the
CPðN − 1Þ model [4,5]. If a pure scalar model with a
topologically nontrivial target manifold has a potential
term, then the existence of static two-dimensional solitons
is possible only if the model Lagrangian contains, along
with the quadratic terms, higher-order terms in the deriv-
atives of scalar fields. An example of such a soliton is the
static soliton of the baby Skyrme model [6,7].
Now let us consider (2þ 1)-dimensional field models in

which an Abelian gauge field interacts minimally with a
scalar field. Note that by a static field configuration in a
Maxwell gauge theory, we mean one that does not depend
on time in the temporal gauge. By a static field configu-
ration in a Chern-Simons gauge theory, we mean one that

does not depend on time up to a gauge transformation.
Then the existence of static two-dimensional solitons is
possible only if the model Lagrangian has a potential term,
while the model target manifold can be either trivial or
nontrivial. Examples of solitons of (2þ 1)-dimensional
gauged models with trivial target manifolds are the vortices
of the effective theory of superconductivity [8] and of the
Abelian Higgs model [9]. Among solitons of (2þ 1)-
dimensional gauged models with nontrivial target mani-
folds, we should mention the soliton of the gauged O(3)
σ-model [10] and the soliton of the gauged baby Skyrme
model [11].
Two-dimensional topological solitons of Abelian gauged

models can be divided into two types: solitons with
quantized magnetic flux and solitons with nonquantized
magnetic flux. This is because the requirement of the
finiteness of the soliton energy leads to different boundary
conditions for the gauge fields of solitons of both types.
The gauge field of a soliton with quantized magnetic flux
satisfies the Dirichlet boundary condition at spatial infinity,
while that of a soliton with nonquantized magnetic flux
satisfies the Neumann boundary condition. Examples of
topological solitons with quantized magnetic flux are the
Abrikosov-Nielsen-Olesen vortex [8,9] and its non-Abelian
generalizations [12–14], the electrically charged vortex of
the Abelian Higgs model with the Chern-Simons term [15],
the semilocal string [16], and vortices of many other
models. Examples of topological solitons with nonquan-
tized magnetic flux are the soliton of the gauged O(3) σ-
model [10], the solitons of the gauged O(3) σ-model with
the Chern-Simons term [17,18], the soliton of the gauged
baby Skyrme model [11], and the soliton of the gauged
baby Skyrme model with the Chern-Simons term [19].
Static topological solitons of (2þ 1)-dimensional field

models can be considered as instantons of the correspond-
ing two-dimensional Euclidean field models. One such
model is the CPðN − 1Þ model. Since its appearance in the*aloginov@tpu.ru
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late 1970s [20–23], the CPðN − 1Þ model has attracted
undiminishing interest. This interest is primarily based on
the fact that the CPðN − 1Þ model is an indispensable
instrument for the study of the nonperturbative effects in
four-dimensional Yang-Mills models. The two-dimensional
CPðN − 1Þ models share many common properties with
four-dimensional Yang-Mills models, including asymptotic
freedom in the ultraviolet regime [24], strong coupling in the
infrared regime, and the existence of instantons [4,5]. The
lower dimensionality of the CPðN − 1Þ models facilitates
the analysis of nonperturbative effects in the strong coupling
regime, compared to four-dimensional Yang-Mills models.
Note also that CPðN − 1Þ models are the effective field
models, which describes the low-energy dynamics on the
world sheet of vortex solutions of four-dimensional Yang-
Mills models [25]. It should also be noted that for N ¼ 2
the CPðN − 1Þ model is equivalent to the O(3) σ-model;
in particular, both models have instanton solutions. This
equivalence, however, is absent for largerN. TheCPðN − 1Þ
model continues to have the nontrivial vacuum structure and
instanton solutions for N > 2, while the OðNÞ σ-model has
the trivial vacuum structure and no instanton solutions
for N > 3.
Unlike many other field models the CPðN − 1Þ model

possesses a local Abelian invariance that is not connected to
any physical gauge field. The CPðN − 1Þ model can be
gauged with the help of a physical gauge field interacting
minimally with the scalar CPðN − 1Þ field. It was shown in
[26,27] that the topological soliton exists in the gauged
CPð1Þ model with the Chern-Simons term and properties
of this soliton were studied. Properties of the topological
soliton of the gauged CPð1Þ model with the Chern-Simons
term were also studied in [28–31]. The topological soliton
of the gauged CPð1Þ model with the Maxwell and Skyrme
terms was considered in [32]. The solitons [26–32] possess
the quantized magnetic flux taking on discrete values
related to the vorticity of the soliton.
In the present paper, we research the topological solitons

of the (2þ 1)-dimensional Abelian gauged CPð2Þ model
with the Maxwell term. In particular, it was found that the
topological soliton with quantized magnetic flux and the
topological soliton with nonquantized magnetic flux simul-
taneously exist in this model. The paper is structured as
follows. In Sec. II we describe briefly the Lagrangian, the
symmetry groups, and the field equations of the gauged
CPð2Þ model. Section III is divided into three subsections.
In Secs. III A and III B, the soliton solutions corresponding
to different charge matrices are considered. We give the
ansatz used for solving the model field equations and obtain
the boundary conditions for the topological soliton solu-
tions. It is shown that in the gauged CPð2Þ model, the
topological soliton with quantized magnetic flux and the
topological soliton with nonquantized magnetic flux
simultaneously exist. The systems of nonlinear differential
equations for the ansatz functions are derived. The

expressions for the energy and Noether current densities
are obtained in terms of the ansatz functions. The asymptotic
properties of the soliton solutions of both types are inves-
tigated as r → 0 and r → ∞. In Sec. III C, research of soliton
properties is continued. First, we consider the properties that
are common for the topological solitons of both types, then
the properties that are not common for them. In Sec. IV we
describe the procedure for numerically solving the system of
nonlinear differential equations for the ansatz functions. We
present numerical results for the ansatz functions, the energy
density, and the magnetic field strength for both types of the
topological solitons. The dependence of the soliton energy
on the model parameters is also presented. Then we numeri-
cally study the possibility of the decay for the soliton with a
given topological charge into solitons with smaller topo-
logical charges. Finally, in Sec. V, we discuss possible
generalizations of the considered topological solitons.
Throughout the paper the natural units c ¼ 1, ℏ ¼ 1

are used.

II. THE LAGRANGIAN AND THE
FIELD EQUATIONS

The Lagrangian density for the pure CPðN − 1Þ model
in 2þ 1 dimensions can be written in the form

L ¼ ð∂μϕaÞ�∂μϕa − h−1ϕað∂μϕaÞ�ϕ�
b∂μϕb; ð1Þ

where the CPðN − 1Þ field ϕ is the set of N complex scalar
fields satisfying the condition

ϕ�
aϕa ¼ h: ð2Þ

Let us define the Hermitian projection operator

Pab ¼ δab − h−1ϕaϕ
�
b: ð3Þ

Then the Lagrangian density (1) can be written in the
condensed form

L ¼ ðPab∂μϕbÞ�Pac∂μϕc: ð4Þ

The Lagrangian density of the pure CPðN − 1Þ model is
invariant under the global SUðNÞ transformations

ϕaðxÞ → UabϕbðxÞ; ð5Þ

and under the local U(1) transformations

ϕaðxÞ → exp ðiΛðxÞÞϕaðxÞ: ð6Þ
Let us consider the (2þ 1)-dimensional Abelian

gauged CPðN − 1Þ model with the Maxwell term and a
self-interacting potential. The Lagrangian density for this
model is
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L ¼ −
1

4
FμνFμν þ ðPabDμϕbÞ�PacDμϕc − VðjϕjÞ; ð7Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength tensor of the
Abelian gauge field Aμ,

Dμϕa ¼ ∂μϕa − igAμQabϕb ð8Þ
is the covariant derivative of the CPðN − 1Þ field ϕ,
and VðjϕjÞ is a self-interaction potential. The charge
matrix Q in Eq. (8) is some real diagonal matrix: Qab ¼
diagðq1;…; qNÞ. Note that the gauging of the CPðN − 1Þ
model used in the present paper is different from the
gauging used in [26–32]. The feature of gauging (7)–(8) is
that the Lagrangian (7) of the gauged CPðN − 1Þ model
becomes the Lagrangian (4) of the pure CPðN − 1Þ model
as the gauge coupling constant g tends to zero.
The Lagrangian (7) is invariant under the local U(1)

gauge transformations,

AμðxÞ → AμðxÞ þ g−1∂μ
~ΛðxÞ;

ϕaðxÞ → exp ðiqa ~ΛðxÞÞϕaðxÞ; ð9Þ

where qa is the ath element of the diagonal charge matrix
Q. Note that the Lagrangian (7) continues to be invariant
under local U(1) transformations (6). It can be shown that,
if the charge matrix Q is a multiple of the unit matrix,
then the Abelian gauge field Aμ is decoupled from the
CPðN − 1Þ field ϕ. This fact is the consequence of the
invariance of the Lagrangian (7) under local U(1) trans-
formations (6). Therefore, in what follows, we assume that
the charge matrix Q is traceless:

TrQ ¼ 0: ð10Þ

By varying the action S ¼ R
Ld3x in Aμ and ϕ�

a subject
to constraint (2), we obtain the field equations of the model,

∂νFνμ ¼ −igϕ�
aQabD

↔
μϕb þ ih−1gðϕ�

aD
↔

μϕaÞ
× ðϕbQbcϕ

�
cÞ; ð11Þ

Pab

�
2PbcDμðPcdDμϕdÞ −DμDμϕb þ

∂V
∂ϕ�

b

�
¼ 0; ð12Þ

where

u�D
↔

μv≡ u�ðDμvÞ − ðDμuÞ�v:

Note that the right-hand side of Eq. (11) is the Noether
(electromagnetic) current corresponding to gauge transfor-
mations (9).Note also that theNoether current corresponding
to transformations (6) vanishes identically. Using the well-
known formula Tμν ¼ 2∂L=∂gμν − gμνL, we obtain the
symmetric energy-momentum tensor of the model:

Tμν ¼ −FμλFλ
ν þ

1

4
gμνFλρFλρ

þ ðDμϕaÞ�PabðDνϕbÞ þ ðDνϕaÞ�PabðDμϕbÞ
− gμνððDλϕaÞ�PabðDλϕbÞ − VðjϕjÞÞ: ð13Þ

From Eq. (13) the expression for the energy density of the
model can be obtained,

E ¼ T00 ¼
1

2
EiEi þ

1

2
B2 þ ðD0ϕaÞ�PabðD0ϕbÞ

þ ðDiϕaÞ�PabðDiϕbÞ þ VðjϕjÞ; ð14Þ

where

Ei ¼ −Ei ¼ F0i; B ¼ F12

are the electric and magnetic field strengths in 2þ 1
dimensions, respectively.

III. THE ANSATZ AND SOME PROPERTIES
OF THE CPð2Þ SOLITONS

In this paper we investigate properties of the topological
solitons of Abelian gauged CPðN − 1Þ model (7) for the
case N ¼ 3. We use the following self-interaction potential
in Eq. (7):

VðjϕjÞ ¼ λjϕ3j2: ð15Þ

To find the solutions of field equations (11)–(12), we use
the following ansatz for the normalized CPð2Þ field ϕ,

0
B@

ϕ1

ϕ2

ϕ3

1
CA ¼ h

1
2

0
B@

exp ðim1θÞ sin ðαðrÞÞ cos ðβðrÞÞ
exp ðim2θÞ sin ðαðrÞÞ sin ðβðrÞÞ

exp ðim3θÞ cos ðαðrÞÞ

1
CA; ð16Þ

where mi ∈ Z. Ansatz (16) is axially symmetric under
the combined action of spatial SO(2) rotations, diagonal
SU(3) transformations (5), and U(1) transformations (6).
For the (2þ 1)-dimensional Abelian gauge field Aμ the
well-known vortex ansatz is used,

A0 ¼ 0; Ai ¼ −Ai ¼ −
1

gr
ϵijnjAðrÞ; ð17Þ

where ϵij and nj are the components of the two-
dimensional antisymmetric tensor and unit vector, respec-
tively. It can be shown that Eqs. (16)–(17) are compatible
with the Lagrangian (7) and field equations (11)–(12).
From the regularity condition at r ¼ 0 it follows that

m3 ¼ 0 in Eq. (16) and the functions αðrÞ and AðrÞ in
Eqs. (16)–(17) satisfy the boundary conditions:

αð0Þ ¼ 0; Að0Þ ¼ 0: ð18Þ
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The finiteness of the soliton energy leads us to the
boundary conditions as r → ∞:

αðrÞ⟶
r→∞

π

2
; ð19Þ

PabðDrϕbÞ ¼ h
1
2

0
B@

− exp ðim1θÞ sinðβÞβ0
exp ðim2θÞ cosðβÞβ0

−α0

1
CA⟶

r→∞
0; ð20Þ

PabðDθϕbÞ

¼ i
2
h

1
2

0
B@
−expðim1θÞðΔm−ΔqAÞsinð2βÞsinðβÞ
expð−im2θÞðΔm−ΔqAÞsinð2βÞcosðβÞ

0

1
CA⟶

r→∞
0;

ð21Þ
where Δm ¼ m2 −m1, Δq ¼ q2 − q1. Boundary condi-
tions (20)–(21) require the vanishing of only the transverse
part (with respect to ϕ) of the covariant derivatives. At the
same time, the covariant derivatives themselves can be
different from zero as r → ∞. The reason for this is the
invariance of the Lagrangian (7) under local U(1) trans-
formations (6). Such a situation differs considerably from
the general case in which covariant derivatives always tend
to zero as r → ∞.
As the charge matrices Q we use the generators of the

Cartan subgroup of SU(3) group

Q ¼ 1

2
λ3 ¼

1

2
diagð1;−1; 0Þ; ð22Þ

and

Q ¼ 1

2
λ8 ¼

1

2
ffiffiffi
3

p diagð1; 1;−2Þ; ð23Þ

where λ3, λ8 are the diagonal Gell-Mann matrices. In this
paper we consider the two most interesting combinations of
the charge matrices and winding numbers: Q ¼ λ3=2,
m1 ¼ −m2 ¼ m, and Q ¼ λ8=2, m1 ¼ m2 ¼ m.

A. The case Q ¼ 1
2 λ3; m1 ¼ −m2 ¼ m; m3 ¼ 0

In this case, the differential equation for the ansatz
function βðrÞ is current corresponding to gauge trans-
formations

β00ðrÞ þ
�
1

r
þ 2 cot ðαðrÞÞα0ðrÞ

�
β0ðrÞ

−
sin2ðαðrÞÞ sin ð4βðrÞÞ

r2

�
m −

AðrÞ
2

�
2

¼ 0: ð24Þ

It is readily seen that Eq. (24) has the two types of
solutions:

βðrÞ ¼ π

4
þ π

2
k; k ∈ Z; ð25Þ

and

βðrÞ ¼ π

2
k; k ∈ Z: ð26Þ

It is clear that constant solutions (25)–(26) satisfy condition
(20). Now let us consider cases (25)–(26) separately.

1. The case βðrÞ ¼ π
4 þ π

2 k; k ∈ Z

In this case, condition (21) can be satisfied only if AðrÞ
satisfies the boundary condition of the vortex type

AðrÞ →
r→∞

2m; m ∈ Z: ð27Þ

The system of differential equations for the ansatz functions
αðrÞ and AðrÞ can be written as

α00ðrÞ þ α0ðrÞ
r

−
sin ð2αðrÞÞ

2r2

�
m −

AðrÞ
2

�
2

þ λ

2
sin ð2αðrÞÞ ¼ 0; ð28Þ

A00ðrÞ − A0ðrÞ
r

þ g2hsin2ðαðrÞÞ
�
m −

AðrÞ
2

�
¼ 0: ð29Þ

The functions αðrÞ and AðrÞ satisfy boundary conditions
(18)–(19) and (27). Note that boundary condition (27) leads
to the magnetic flux quantization

Φ ¼ 2π

Z
BðrÞrdr ¼ 2π

g
A∞ ¼ 4π

g
m; ð30Þ

where

BðrÞ ¼ A0ðrÞ
gr

ð31Þ

is the magnetic field strength of the soliton.
Substituting Eqs. (15)–(17), (22), and (25) into Eqs. (11)

and (14), we obtain the expressions for the electromagnetic
current density and the energy density in terms of the ansatz
functions αðrÞ, AðrÞ:

j0ðrÞ ¼ 0;

jrðrÞ ¼ 0;

jθðrÞ ¼ ghsin2ðαðrÞÞ
�
m −

AðrÞ
2

�
; ð32Þ

EðrÞ ¼ A0ðrÞ2
2g2r2

þ h

�
α0ðrÞ2 þ sin2ðαðrÞÞ

r2

×

�
m −

AðrÞ
2

�
2

þ λcos2ðαðrÞÞ
�
: ð33Þ
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Substituting the power expansions for αðrÞ, AðrÞ into
Eqs. (28)–(29), we obtain the behavior of the solution as
r → 0,

αðrÞ ¼ αmrm þ αmþ2rmþ2 þOðrmþ4Þ; ð34Þ

AðrÞ ¼ A2r2 þ A2mþ2r2mþ2 þOðr2mþ4Þ; ð35Þ

where

αmþ2 ¼ −
αmðmA2 þ λÞ þ 2α31δ

1
m=3

4ðmþ 1Þ ;

A2mþ2 ¼ −
g2h
4

α2m
mþ 1

: ð36Þ

It follows from Eqs. (34)–(35) that AðrÞ is an even function
of r, while αðrÞ is an even function of r for an even m and
an odd function of r for an odd m. From Eqs. (32)–(36) we
obtain the power expansions for the electromagnetic
current and energy densities as r → 0:

jθðrÞ ¼ c2mr2m þ c2mþ2r2mþ2 þOðr2mþ4Þ; ð37Þ

EðrÞ ¼ d0 þ d2m−2r2m−2 þ d2mr2m þOðr2mþ2Þ; ð38Þ

where

c2m ¼ ghmα2m;

c2mþ2 ¼ ghαmð2mαmþ2 − αmA2=2Þ;
d0 ¼ 2A2

2g
−2 þ hλ;

d2m−2 ¼ 2hm2α2m;

d2m ¼ 4hmðmþ 1Þαmαmþ2 − hα2mðmA2 þ λÞ
þ 4ðmþ 1Þg−2A2A2mþ2 − δ1mhα41=3: ð39Þ

Equations (34)–(39) are valid only for m > 0. The corre-
sponding expressions for a negative m can be obtained
from the relations

αðr;−mÞ ¼ αðr;mÞ;
Aðr;−mÞ ¼ −Aðr;mÞ;
jθðr;−mÞ ¼ −jθðr;mÞ;
Eðr;−mÞ ¼ Eðr;mÞ: ð40Þ

Note that Eqs. (40) follow from the invariance of the
Lagrangian (7) under the charge conjugation.
Boundary conditions (19) and (27) lead us to the

following asymptotics of αðrÞ and AðrÞ as r → ∞:

αðrÞ ∼ π

2
þ a∞

exp ð− ffiffiffi
λ

p
rÞffiffiffiffiffiffiffiffiffiffiffiffi

λ
p

r
p

�
1þ 1

16
ffiffiffi
λ

p
r

�
; ð41Þ

AðrÞ ∼ 2mþ b∞

ffiffiffiffiffiffiffiffiffiffiffi
g

ffiffiffi
h

p
r

q
exp

�
−
g

ffiffiffi
h

p
ffiffiffi
2

p r

�

×

�
1 −

3

8
ffiffiffi
2

p 1

g
ffiffiffi
h

p
r

�
: ð42Þ

From Eqs. (32)–(33) and (41)–(42), we obtain the asymp-
totic expressions for the electromagnetic current and energy
densities of the soliton as r → ∞:

jθðrÞ ∼ −
b∞
2

gh
ffiffiffiffiffiffiffiffiffiffiffi
g

ffiffiffi
h

p
r

q
exp

�
−
g

ffiffiffi
h

p
ffiffiffi
2

p r

�
; ð43Þ

EðrÞ ∼ 2a2∞h
ffiffiffi
λ

p

r
exp ð−2

ffiffiffi
λ

p
rÞ

þ b2∞gh
3
2

2r
exp ð−

ffiffiffiffiffiffi
2h

p
grÞ: ð44Þ

It is understood that the asymptotics of the energy density
EðrÞ is determined by the smallest of the two exponents
2

ffiffiffi
λ

p
and

ffiffiffiffiffiffi
2h

p
g in Eq. (44).

2. The case βðrÞ ¼ π
2 k; k ∈ Z

In this case boundary condition (21) is satisfied identi-
cally. Therefore, this condition imposes no restrictions on
the function AðrÞ as r → ∞. However, the finiteness of the
soliton energy leads to the Neumann boundary condition
for AðrÞ,

A0ðrÞ⟶
r→∞

0: ð45Þ

The system of differential equations for the functions αðrÞ
and AðrÞ can be written as

α00ðrÞ þ α0ðrÞ
r

−
sin ð4αðrÞÞ

4r2

�
m −

AðrÞ
2

�
2

þ λ

2
sin ð2αðrÞÞ ¼ 0; ð46Þ

A00ðrÞ − A0ðrÞ
r

þ g2h
4

sin2ð2αðrÞÞ
�
m −

AðrÞ
2

�
¼ 0: ð47Þ

The functions αðrÞ and AðrÞ satisfy boundary conditions
(18)–(19) and (45). Now the limiting value of AðrÞ is
nonquantized as r → ∞, as is themagnetic flux of the soliton.
By analogy with Eqs. (32)–(33), we obtain the expres-

sions for the electromagnetic current density and the energy
density:

j0ðrÞ ¼ 0;

jrðrÞ ¼ 0;

jθðrÞ ¼
gh
4
sin2ð2αðrÞÞ

�
m −

AðrÞ
2

�
; ð48Þ

TOPOLOGICAL SOLITONS IN A GAUGED CPð2Þ MODEL PHYSICAL REVIEW D 93, 065009 (2016)

065009-5



EðrÞ ¼ A0ðrÞ2
2g2r2

þ h

�
α0ðrÞ2 þ sin2ð2αðrÞÞ

4r2

×

�
m −

AðrÞ
2

�
2

þ λcos2ðαðrÞÞ
�
: ð49Þ

As r → 0 the behavior of αðrÞ, AðrÞ, jθðrÞ, and EðrÞ is also
determined by Eqs. (34)–(40). The only difference is that
the formulas for the coefficients αmþ2 and d2m in Eqs. (36)
and (39) must be slightly changed:

αmþ2 ¼ −
αmðmA2 þ λÞ þ 8α31δ

1
m=3

4ðmþ 1Þ ; ð50Þ

d2m ¼ 4hmðmþ 1Þαmαmþ2 − hα2mðmA2 þ λÞ
þ 4ðmþ 1Þg−2A2A2mþ2 − δ1m4hα41=3: ð51Þ

Boundary conditions (19) and (45) lead us now to the
following asymptotics of αðrÞ and AðrÞ as r → ∞:

αðrÞ ∼ π

2
þ a∞

exp ð− ffiffiffi
λ

p
rÞffiffiffiffiffiffiffiffiffiffiffiffi

λ
p

r
p

×

�
1þ ðA∞ − 2mÞ2 − 1

8

1ffiffiffi
λ

p
r

�
; ð52Þ

AðrÞ ∼ A∞ −
g2h
8λ

ð2m − A∞Þa2∞
exp ð−2 ffiffiffi

λ
p

rÞffiffiffi
λ

p
r

: ð53Þ

The asymptotic expressions for the electromagnetic
current and energy densities follow from Eqs. (32)–(33)
and (52)–(53):

jθðrÞ ∼ −a2∞ghðA∞ − 2mÞ exp ð−2
ffiffiffi
λ

p
rÞ

2
ffiffiffi
λ

p
r

; ð54Þ

EðrÞ ∼ 4a2∞λh
exp ð−2 ffiffiffi

λ
p

rÞ
2

ffiffiffi
λ

p
r

: ð55Þ

Note that unlike Eqs. (43)–(44), the ratio of energy density
(55) to electromagnetic current density (54) tends to some
constant as r → ∞:

EðrÞ
jθðrÞ

→
r→∞

4λ

gð2m − A∞Þ
: ð56Þ

B. The case Q ¼ 1
2 λ8; m1 ¼ m2 ¼ m; m3 ¼ 0

Now the boundary condition (21) vanishes identically, so
it imposes no restrictions on the functions AðrÞ and βðrÞ as
r → ∞. The differential equation for βðrÞ is simplified for
this case,

β00ðrÞ þ
�
1

r
þ 2 cot ðαðrÞÞα0ðrÞ

�
β0ðrÞ ¼ 0; ð57Þ

and has the general solution

βðrÞ ¼ β0 þ β1

Z
r

1

dϱ
ϱsin2ðαðϱÞÞ : ð58Þ

The finiteness of the soliton energy leads us to boundary
condition (45) for AðrÞ and to the trivial solution βðrÞ ¼ β0,
where β0 is an arbitrary constant. The system of differential
equations for αðrÞ and AðrÞ now is

α00ðrÞ þ α0ðrÞ
r

−
sin ð4αðrÞÞ

4r2

�
m −

ffiffiffi
3

p

2
AðrÞ

�2

þ λ

2
sin ð2αðrÞÞ ¼ 0; ð59Þ

A00ðrÞ − A0ðrÞ
r

þ
ffiffiffi
3

p
g2h
4

sin2ð2αðrÞÞ
�
m −

ffiffiffi
3

p

2
AðrÞ

�
¼ 0;

ð60Þ

and the expressions for the current and energy densities are

j0ðrÞ ¼ 0;

jrðrÞ ¼ 0;

jθðrÞ ¼
ffiffiffi
3

p
gh
4

sin2ð2αðrÞÞ
�
m −

ffiffiffi
3

p

2
AðrÞ

�
; ð61Þ

EðrÞ ¼ A0ðrÞ2
2g2r2

þ h

�
α0ðrÞ2 þ sin2ð2αðrÞÞ

4r2

×

�
m −

ffiffiffi
3

p

2
AðrÞ

�2

þ λcos2ðαðrÞÞ
�
: ð62Þ

It is readily seen that the solution of Eqs. (59)–(60) and
that of Eqs. (46)–(47) are related to each other. Let us
denote the solution of Eqs. (59)–(60) by subscript B and
that of Eqs. (46)–(47) by subscript A2. Then we can write
the relations:

ABðr; gÞ ¼
AA2ðr;

ffiffiffi
3

p
gÞffiffiffi

3
p ;

αBðr; gÞ ¼ αA2ðr;
ffiffiffi
3

p
gÞ: ð63Þ

In Eqs. (63) the dependence on the gauge coupling is
explicitly shown, and the values of the parameters h, λ,
and m are assumed to be equal for both sides of the
relations. From Eqs. (48)–(49) and (61)–(63), we obtain
similar relations for the electromagnetic current and energy
densities:
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jθBðr; gÞ ¼ jθA2ðr;
ffiffiffi
3

p
gÞ;

EBðr; gÞ ¼ EA2ðr;
ffiffiffi
3

p
gÞ: ð64Þ

The asymptotics of the ansatz functions, the current
density, and the energy density follow directly from
Eqs. (50)–(55) and (63)–(64). We see that the cases
Q ¼ λ8=2, m1¼m2¼m;m3¼0, βðrÞ ¼ β0 and Q ¼ λ3=2,
m1 ¼ −m2 ¼ m;m3 ¼ 0, βðrÞ ¼ πk=2 are essentially
equivalent to each other.

C. More on properties of the CPð2Þ solitons
Let us continue the consideration of properties of the

topological solitons of the gauged CPð2Þ model. We begin
with the properties that are shared by the soliton with
quantized magnetic flux and the soliton with nonquantized
magnetic flux. First of all note that Eqs. (33), (49), and (62)
for the energy densities can be represented as the sum of the
three parts:

EðrÞ ¼ EemðrÞ þ EpðrÞ þ EgðrÞ; ð65Þ

where

EemðrÞ ¼
A0ðrÞ2
2g2r2

ð66Þ

is the electromagnetic part,

EpðrÞ ¼ hλcos2ðαðrÞÞ ð67Þ

is the potential part, and the remainder EgðrÞ is the gradient
part. Then it follows from Derrick’s theorem [2] that on a
two-dimensional static soliton solution, the following
relation holds between the electromagnetic and potential
parts of energy:

Eem ¼ Ep; ð68Þ

where Eem ¼ R
Eemd2x and Ep ¼

R
Epd2x.

It follows from Eqs. (29) and (47) that the function
aðrÞ ¼ m − AðrÞ=2 has no positive maxima or negative
minima for finite values of r. From this fact it follows easily
that AðrÞ is a monotonically increasing function for m > 0
and a monotonically decreasing function for m < 0. In the
topologically trivial sector with m ¼ 0 the function AðrÞ
must monotonically increase if AðrÞ > 0, and monotoni-
cally decrease if AðrÞ < 0. It can be shown from Eqs. (29)
and (47) that the increase or decrease of AðrÞ is unbounded
for m ¼ 0. Hence, boundary conditions (18), (27), and (45)
lead us to the conclusion that AðrÞ must vanish for the
topologically trivial solutions. In this case, the only solution
of Eqs. (24), (28), (46), (57), and (59) with a finite energy is
the vacuum one: αðrÞ ¼ π=2, βðrÞ ¼ β0, where β0 is an
arbitrary constant.

Systems of differential equations (28)–(29) and
(46)–(47) depend on the four parameters: g, h, λ, and m.
From the three dimensional parameters we can form the
dimensionless combination κ ¼ g2h=λ. Then it can be
shown that the general dependence of the ansatz functions
on the parameters g, h, λ, and m can be written as
αð ffiffiffi

λ
p

r; κ; mÞ and Að ffiffiffi
λ

p
r; κ; mÞ. From this general depend-

ence and Eqs. (30)–(31), (33), and (49), we can conclude
that the energy density E, the energy E, the magnetic fluxΦ,
and the magnetic field strength B must have the following
general dependence on g, h, λ, and m:

E ¼ hλ ~Eð
ffiffiffi
λ

p
r; κ; mÞ; ð69Þ

E ¼ h ~Eðκ; mÞ; ð70Þ

Φ ¼ 2π

g
A∞ðκ; mÞ; ð71Þ

B ¼ λ

g
~Bð

ffiffiffi
λ

p
r; κ; mÞ; ð72Þ

where ~Eð ffiffiffi
λ

p
r; κ; mÞ, ~Eðκ; mÞ, A∞ðκ; mÞ, and ~Bð ffiffiffi

λ
p

r; κ; mÞ
are dimensionless quantities. Note once again that
A∞ðκ; mÞ ¼ 2m for the solitons with quantized magnetic
flux. Later we need the explicit expression for dimension-
less energy density (69)

~Eðρ; κ; mÞ ¼ A0ðρÞ2
2κρ2

þ α0ðρÞ2 þ sin2ðnαðρÞÞ
n2ρ2

×

�
m −

AðρÞ
2

�
2

þ cos2ðαðρÞÞ; ð73Þ

where ρ ¼ ffiffiffi
λ

p
r, n ¼ 1 for Eq. (33), n ¼ 2 for Eq. (49), and

the dependence of the ansatz functions on κ and m is
not shown.
Let the ansatz functions αðρÞ and AðρÞ satisfy field

equations (28)–(29) [or field equations (46)–(47)], and
variations δαðρÞ and δAðρÞ of these functions vanish as
ρ → 0 and as ρ → ∞. The first variation of the energy
functional ~E ¼ 2π

R
~Eðρ; κ; mÞρdρ vanishes on these var-

iations. Now we consider variations of αðρÞ and AðρÞ that
correspond to a variation of the dimensionless parameter κ:

δκαðρ; κÞ ¼
∂αðρ; κÞ

∂κ δκ;

δκAðρ; κÞ ¼
∂Aðρ; κÞ

∂κ δκ: ð74Þ

For the topological soliton with quantized magnetic flux the
variations δκαðρ; κÞ and δκAðρ; κÞ vanish as ρ → 0 and
ρ → ∞ because of boundary conditions (18)–(19) and (27).
Thus the corresponding first variation of the energy func-
tional ~E vanishes in this case. However for the topological
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soliton with nonquantized magnetic flux the variation
δκAðρ; κÞ does not vanish as ρ → ∞, because boundary
condition (45) does not fix the value of Aðρ; κÞ at spatial
infinity. In this case, the corresponding first variation of the
energy functional can be written as

δκ ~E ¼ lim
ρ→∞

∂Aðρ; κÞ
ρ∂ρ

∂Aðρ; κÞ
κ∂κ δκ: ð75Þ

It follows from Eq. (53) that the first factor in Eq. (75)
vanishes exponentially as ρ → ∞. Thus we conclude that
the first variation δκ ~E vanishes on field configurations of
the topological soliton with nonquantized magnetic flux.
Note that the factor κ in the denominator of the first term in
Eq. (73) is kept fixed when calculating the first variation
δκ ~E. Hence the first derivative of ~E with respect to κ can be
written as

d ~E
dκ

¼ −2πκ−2
Z

A0ðρÞ2
2ρ

dρþ δκ ~E
δκ

¼ −κ−1 ~EemðκÞ; ð76Þ

where

~EemðκÞ ¼ 2π

Z
A0ðρÞ2
2κρ

dρ ð77Þ

is the electromagnetic part of the dimensionless soliton
energy ~E. It follows from Eqs. (76)–(77) that the energy of
the topological solitons of both types decreases monoton-
ically with the increase of κ.
By making use of Eq. (29) or (47) we can obtain two

integral relations for the soliton solutions. The first integral
relation is

A∞ ¼ g
2

Z
∞

0

jθðrÞrdr: ð78Þ

Equation (78) relates the limiting value of AðrÞ at spatial
infinity to the first moment of the covariant θ-component of
the current density. The second integral relation is

A00jr¼0 ¼ g
Z

∞

0

jθ
r
dr ¼ −gI: ð79Þ

Equation (79) establishes the relationship between the
second derivative of AðrÞ at r ¼ 0 and the first inverse
moment of the covariant θ-component of the current
density. Note that the integral −

R∞
0 jθ=rdr is equal to

the electromagnetic current I flowing perpendicular to the
half-line θ ¼ const, r ∈ ½0;∞Þ. From Eqs. (28) and (46) we
can obtain the third integral relation

Z
∞

0

�
XðrÞ þ λ

2
sin ð2αðrÞÞ

�
rdr ¼ 0; ð80Þ

where

XðrÞ ¼ −
sin ðkαðrÞÞ

kr2

�
m −

AðrÞ
2

�
2

: ð81Þ

The integer number k is equal to 2 for Eq. (28) and 4
for Eq. (46).
If the values of the parameters g,h, λ, andm are fixed, then

the behavior of the solution αðrÞ, AðrÞ as r → 0 is deter-
mined by the two parameters αm and A2 in Eqs. (34)–(35).
The behavior of the solution αðrÞ, AðrÞ as r → ∞ is
also determined by the two parameters a∞ and b∞ in
Eqs. (41)–(42), or a∞ and A∞ in Eqs. (52)–(53). Thus we
have the four free parameters in all. The continuity condition
for αðrÞ and AðrÞ and their derivatives α0ðrÞ and A0ðrÞ at
arbitrary r give us four equations. Therefore, we have the
four equations for determining the four parameters: αm, A2,
a∞, and b∞ (or αm, A2, a∞, and A∞). According to [33], this
fact is an argument in favor of the existence of the solution
for the boundary value problem in some range of the
parameters g, h, λ, and m.
It can be shown that the topological CPð2Þ solitons of

two types are not separated by a topological barrier of
infinite energy. Indeed, a continuous transition from the
soliton with quantized magnetic flux to the soliton with
nonquantized magnetic flux can be realized in two steps. At
the first step the limiting value A∞ of the ansatz function
AðrÞ is set equal to its quantized value 2m, while the
constant ansatz function βðrÞ varies continuously from
π=4þ πk=2 to πl=2, where k and l are integers. At the
second step the ansatz function βðrÞ is set equal to πl=2,
while the limiting value A∞ varies continuously from 2m to
some nonquantized value corresponding to the topological
soliton with nonquantized magnetic flux. At any point of
this continuous transition the transverse part of the covar-
iant derivative PabðDiϕbÞ vanishes at spatial infinity.
Consequently, the static energy of a field configuration
is finite at any point of the transition, so there is no
topological barrier between the CPð2Þ solitons of two
types. However, the topological CPð2Þ solitons of two
types are separated by a kinetic barrier of infinite energy.
Indeed, at the second step of transition the gauge field at
large r can be written as

A0 ¼ 0; Ai ¼ −Ai⟶
r→∞

−
2m
gr

ϵijnjξðtÞ; ð82Þ

where ξðtÞ is a function of time varying from 1 to some
fixed value. From Eq. (82) we obtain the electric field
strength Ei ¼ −∂tAi and the energy density of the electric
field
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EEðrÞ⟶
r→∞

2m2

g2r2
ð∂tξÞ2: ð83Þ

If the transition occurs within a finite period of time, then
the time derivative ∂tξ is different from zero. Then the
integral 2π

R
EEðrÞrdr diverges logarithmically at the

upper limit. Hence there is a kinetic barrier of infinite
energy, so the topological soliton of one type cannot decay
into the topological soliton of the other type.
Now we consider the properties that are not common for

the topological solitons of two types. From Eqs. (28)–(29)
it follows that the regions, where the functions αðrÞ and
AðrÞ are appreciably different from their limiting values
π=2 and 2m, are of the order 1=

ffiffiffi
λ

p
and 1=ðg ffiffiffi

h
p Þ,

respectively. Let
ffiffiffi
λ

p
be much greater than g

ffiffiffi
h

p
. In this

case the soliton with quantized magnetic flux has a small
scalar core and a large vector core. Then for r≳ 1=

ffiffiffi
λ

p
we

can replace αðrÞ in Eq. (29) by its limiting value π=2:

A00ðrÞ − A0ðrÞ
r

þ g2h

�
m −

AðrÞ
2

�
¼ 0: ð84Þ

Equation (84) is the equation for the free massive vector
field with the mass mA ¼ g

ffiffiffiffiffiffiffiffi
h=2

p
, which has the solution

AðrÞ ¼ 2mð1 −mArK1ðmArÞÞ; ð85Þ

where K1 is the modified Bessel function of the second
kind of order 1. Note that this solution satisfies boundary
conditions (18) and (27). Substituting Eqs. (85) and αðrÞ ¼
π=2 into Eq. (33) for EðrÞ and integrating the expression
2πrEðrÞ from ∼1=

ffiffiffi
λ

p
to ∞, we obtain the expression for

the soliton energy with logarithmic accuracy

E ≈ −πhm2 lnðκÞ þOð1Þ: ð86Þ

We see that the energy of the soliton with quantized
magnetic flux diverges logarithmically as κ ¼ g2h=
λ → 0. It follows from Eqs. (68), (70), (76), and (86) that
the electromagnetic and potential parts Eem and Ep of the
soliton energy E tend to the constant πhm2 as κ → 0. Note
that as κ tends to zero, the energy of the soliton with
winding number m is proportional to m2, while the
energy of the m widely separated solitons with winding
numbers 1 is proportional to m. Therefore the soliton with
quantized magnetic flux is unstable to the decay m →
m1 þm2 þ…;

P
i mi ¼ m as κ → 0.

It can be shown that for λ ¼ g2h=2 the energy of the
soliton with quantized magnetic flux can be written in
Bogomolny-Prasad-Sommerfield (BPS) form

E ¼ 2π

Z
1

2

�
A0ðrÞ
gr

� gh cos ðαðrÞÞ
�

2

rdr

þ 2πh
Z �

α0ðrÞ � sin ðαðrÞÞ
r

�
m −

AðrÞ
2

��
2

rdr

þ 4πjmjh: ð87Þ

From Eq. (87), we read off Bogomolny equations for the
ansatz functions of the soliton:

α0ðrÞ∓ sin ðαðrÞÞ
r

�
m −

AðrÞ
2

�
¼ 0; ð88Þ

A0ðrÞ∓g2hr cos ðαðrÞÞ ¼ 0: ð89Þ

The upper and lower signs in Eqs. (88)–(89) correspond to
the cases m > 0 and m < 0. It can be shown that if the
ansatz functions αðrÞ and AðrÞ satisfy Eqs. (88)–(89), then
these functions also satisfy field equations (28)–(29).
Consequently, for λ ¼ λBPS ¼ g2h=2, the energy of the
soliton with quantized magnetic flux is equal to

EBPS ¼ 4πjmjh ð90Þ

in the topological sector with a given m. Expressions
(87)–(90) are valid only for λ ¼ λBPS ¼ g2h=2 (i.e.,
for κ ¼ κBPS ¼ 2). Now let us consider the case
λ ≠ λBPS. For the potential part of the energy density
Ep ¼ hλ cos2 ðαðrÞÞ we use the representation Ep ¼
hλBPScos2ðαðrÞÞ þ hðλ − λBPSÞcos2ðαðrÞÞ for λ > λBPS,
and Ep ¼ hλBPSðλ=λBPSÞcos2ðαðrÞÞ for λ < λBPS. By com-
pleting the squares in the expression E ¼ 2π

R
EðrÞrdr

similarly to Eq. (87) and discarding some positive terms,
we obtain the inequality for the energy of the soliton with
quantized magnetic flux in the topological sector with a
given m:

E ≥
�
4πhjmj if κ ≤ 2

8πh
κ jmj if κ > 2:

ð91Þ

Inequality (91) is saturated at κ ¼ κBPS ¼ 2. Note also that
there is no BPS representation similar to Eq. (87) for the
energy of the soliton with nonquantized magnetic flux.

IV. NUMERICAL RESULTS

The system of differential equations (28)–(29) with
boundary conditions (18)–(19) and (27) is the boundary
value problem with Dirichlet boundary conditions, while
the system of differential equations (46)–(47) with boun-
dary conditions (18)–(19) and (45) is the mixed boundary
value problem. Both problems are defined on the semi-
infinite interval r ∈ ½0;∞Þ and can be solved only by
numerical methods. In this paper, these boundary value
problems were solved using the MAPLE package [34] by
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the method of finite differences and subsequent Newtonian
iterations. The point r ¼ 0 is the regular singular point for
both problems, so we applied difference schemes that do
not use the boundary values of the functions. Richardson
extrapolation was used to accelerate the convergence of the
numerical procedure to the exact solution. Equations (68),
(78), and (80) were used to check the correctness of the
numerical solutions.
The boundary value problems depend on the parameters

g, h, λ, and m. The general dependence of the ansatz
functions and basic physical quantities on these parameters
is given by Eqs. (69)–(72). In the present paper, numerical
results are presented for the soliton with quantized mag-
netic flux and the soliton with nonquantized magnetic flux
in the topological sector with m ¼ 1. We use the dimen-
sionless ansatz functions α and A, the dimensionless
quantities ~E, ~E, A∞, and ~B, and the dimensionless radial
variable ρ ¼ ffiffiffi

λ
p

r for presenting numerical results.
At first, let us present the numerical results for the soliton

with quantized magnetic flux. Figure 1 shows the numeri-
cal solution for the ansatz functions αðρÞ and AðρÞ,
corresponding to the dimensionless parameter κ ¼ 1. The
functions αðρÞ and AðρÞ have the typical vortex form. Their
behavior at small and large distances corresponds to
asymptotic expressions (34)–(35) and (41)–(42). Note, in
particular, that αðρÞ ∝ ρ and AðρÞ ∝ ρ2 as ρ → 0. Note also
that the functions αðρÞ and AðρÞ tend exponentially to their
limiting values π=2 and 2 as ρ → ∞. Figure 2 shows the
energy density ~EðρÞ and the magnetic field strength ~BðρÞ,
corresponding to the solution in Fig. 1. Let us consider the
behavior of ~EðρÞ and ~BðρÞ at small ρ. From Eqs. (31), (35),
and (72) we obtain the power expansion for ~BðρÞ as ρ → 0,

~BðρÞ ¼ 2A2

λ
−
α2mκ

2λm
ρ2m þOðρ2mþ2Þ: ð92Þ

Note that the coefficient A2 in Eqs. (35) and (92) is always
positive, since AðrÞ is a monotonically increasing function
form > 0. Thus form > 0 the magnetic field strength ~BðρÞ
has a positive maximum at ρ ¼ 0, since the parameters g, h,
λ, and the coefficient A2 are all positive. Then it follows
from Eqs. (40) and (92) that for m < 0 the magnetic field
strength ~BðρÞ has a negative minimum at ρ ¼ 0. From
Eqs. (38)–(40) and (69) it follows that for jmj ≥ 2 the
energy density ~EðρÞ has a positive minimum at ρ ¼ 0, since
the coefficient d2m−2 in Eq. (38) is positive in this case.
However, the situation is quite different for jmj ¼ 1.
Indeed, from Eqs. (38)–(39) and (69) we can obtain the
power expansion of ~EðρÞ for m ¼ 1,

~EðρÞ ¼ 1þ 2
α21
λ
þ 2

κ

A2
2

λ2
−
α21
λ

�
2þ α21

λ
þ 3

A2

λ

�
ρ2 þOðρ4Þ:

ð93Þ

From Eq. (40) it follows that Eq. (93) is valid also for
m ¼ −1. Thus we see from Eq. (93) that the energy density
~EðρÞ has a positive maximum at ρ ¼ 0 for jmj ¼ 1. We see
also from Fig. 2 that in the neighborhood of ρ ¼ 0 the
behavior of ~BðρÞ and ~EðρÞ corresponds to Eqs. (92)–(93).
Note that this behavior of ~BðρÞ and ~EðρÞ is similar to that of
the classical vortex solution [8,9].
Figure 3 presents the dependence of the dimensionless

energy ~E of the soliton with quantized magnetic flux on the
logarithm of the dimensionless combination κ ¼ g2h=λ.
The soliton energy decreases monotonically with the
increase of κ. It was checked numerically that the depend-
ence ~EðκÞ satisfies Eq. (76). Also it was found that the
electromagnetic and potential parts of the soliton energy ~E

2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

, A

FIG. 1. The numerical solution αðρÞ, AðρÞ for the soliton with
quantized magnetic flux, corresponding to κ ¼ 1. The solid curve
is for αðρÞ; the dashed curve is for AðρÞ.

1 2 3 4 5 6
0

1

2

3

4

5

, B

FIG. 2. The dependence of the energy density ~E and the
magnetic field strength ~B of the soliton with quantized magnetic
flux on ρ. The solid curve is for ~E; the dashed curve is for ~B. The
parameter κ is the same as in Fig. 1.

A. YU. LOGINOV PHYSICAL REVIEW D 93, 065009 (2016)

065009-10



tend to the constant π as κ → 0 in accordance with Eqs. (76)
and (86). It follows from Fig. 3 that d ~E=d lnðκÞ ≈ −π for
small values of κ. This fact is also in accordance with
Eq. (86). It follows from Eq. (76) that the electromagnetic
part ~Eem of the soliton energy ~E must tend to zero as
κ → ∞. Moreover, ~Eem must tend to zero faster than
ln−1ðκÞ. Indeed, if ~Eem tends to some nonzero positive
value or ~Eem tends to zero like ln−1ðκÞ or more slowly, then
according to Eq. (76) the soliton energy ~E becomes
negative and diverges logarithmically as κ → ∞. If ~Eem

tends to zero faster than ln−1ðκÞ, then the soliton energy ~E
can be written as

~EðκÞ⟶
κ→∞

~E∞ þ Δ ~EðκÞ; ð94Þ

where ~E∞ is some non-negative constant and Δ ~EðκÞ is
some positive function of κ that tends to zero as κ → ∞.
The exact determination of ~E∞ becomes problematic
because the function Δ ~EðκÞ decreases slowly and there
are difficulties in the numerical solution of the boundary
value problem for values of κ ≳ 1012. The existence of the
nonzero limiting value ~E∞ can be shown as follows. Since
~Ep ¼ ~Eem, the potential part ~Ep of the soliton energy ~E
tends to zero as κ → ∞. It follows from this that the
variation of the ansatz function αðρÞ from 0 to π=2 is
concentrated in a small interval ½0; ρ̄Þ, where ρ̄ tends to zero
as κ → ∞. Then we can approximate αðρÞ by the first term
in its power expansion: αðρÞ ≈ αmρ

m, where αm ∼ ρ̄−m.
Substituting this approximation into Eq. (73) and integrat-
ing the term α0ðρÞ2 over a disk of radius ρ̄, we obtain an
approximate estimate for the gradient part of the soliton
energy: ~Eg ∼m. We see that ~Eg does not vanish as κ → ∞.

Thus we can conclude that the soliton energy ~E does not
vanish as κ → ∞. From Eq. (90) it follows that the energy ~E

of the soliton with a given m is equal to the BPS value
4πjmj for κ ¼ κBPS ¼ 2. Indeed, from Fig. 3 we see that
~E ¼ 4π ≈ 12.57 for lnðκÞ ¼ lnð2Þ ≈ 0.69.
Now we present the numerical results for the soliton with

nonquantized magnetic flux in the topological sector with
m ¼ 1. Figure 4 shows the numerical solution for the ansatz
functions αðρÞ and AðρÞ, corresponding to the dimension-
less parameter κ ¼ 60. Note that the limiting value A∞ in
Fig. 4 is not equal to the quantized value 2 as it is in Fig. 1.
Consequently the magnetic flux of the soliton is non-
quantized. The behavior of αðρÞ and AðρÞ at small and large
distances corresponds to asymptotic expressions (34)–(35)
and (52)–(53). Figure 5 presents the energy density ~EðρÞ
and the magnetic field strength ~BðρÞ, corresponding to the
solution in Fig. 4. As well as for the soliton with quantized
magnetic flux, the power expansion of ~BðρÞ is given by
Eq. (92). Hence, at ρ ¼ 0 the magnetic field strength of the
soliton with nonquantized magnetic flux has a positive
maximum for m > 0 and a negative minimum for m < 0.
For m ¼ 1 the power expansion for the energy density of
the soliton with nonquantized magnetic flux is slightly
modified compared to Eq. (93):

~EðρÞ ¼ 1þ 2
α21
λ
þ 2

κ

A2
2

λ2

−
α21
λ

�
2þ 4

α21
λ
þ 3

A2

λ

�
ρ2 þOðρ4Þ: ð95Þ

We see that the coefficient of ρ2 in Eq. (95) is negative as it
is for the soliton with quantized magnetic flux. Hence we
conclude that at ρ ¼ 0 the energy density of the soliton with
nonquantized magnetic flux has a minimum for jmj ≥ 2
and a maximum for jmj ¼ 1. We see also from Fig. 5 that in
the neighborhood of ρ ¼ 0 the behavior of ~BðρÞ and ~EðρÞ
corresponds to Eqs. (92) and (95).
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FIG. 3. The energy ~E of the soliton with quantized magnetic
flux as a function of the logarithm of the dimensionless
combination κ.
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FIG. 4. The numerical solution αðρÞ, AðρÞ for the soliton with
nonquantized magnetic flux, corresponding to κ ¼ 60. The solid
curve is for αðρÞ; the dashed curve is for AðρÞ.
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In Fig. 6 we can see the dependence of the dimensionless
energy ~E of the soliton with nonquantized magnetic flux on
the logarithm of the dimensionless combination κ ¼ g2h=λ.
The dependence ~E on lnðκÞ is presented in the range from
the minimum value of κ to its maximum value that we
managed to reach by numerical methods. In Fig. 6 the
minimum value κmin ≈ 50.9. It was found numerically that
the mixed boundary value problem does not have solutions
as κ < κmin. We see later that dA∞ðκÞ=dκ → ∞ as κ tends
to κmin. This fact also indicates that there are no solutions of
the mixed boundary value problem as κ < κmin. The
absence of solutions at small κ can be explained as follows.
The limit κ → 0 can be achieved as g → 0; h ¼ const; λ ¼
const. In this limit the electromagnetic energy Eem of the

soliton with nonquantized magnetic flux must tend to zero.
It follows from Eq. (68) that the potential part Ep of the
soliton energy must also tend to zero in this limit. Hence we
conclude that for g sufficiently small the function AðrÞ
becomes small for all r and the variation of the function
αðrÞ from 0 to π=2 is concentrated in a small neighborhood
of r ¼ 0. Then in Eqs. (80)–(81) we can neglect the term
AðrÞ=2 and approximate αðrÞ by the first term in its power
expansion: αðrÞ ≈ αmrm. Because the variation of αðrÞ is
concentrated in a small neighborhood of r ¼ 0, the coef-
ficient αm increases indefinitely as g → 0; h ¼ const; λ ¼
const. But it can be easily shown that Eq. (80) cannot
be satisfied for sufficiently large αm. Consequently, there
are no solutions of the mixed boundary value problem
for sufficiently small κ. Arguments based on continuity
lead us to the conclusion that solutions of the mixed
boundary value problem do not exist in some interval
½0; κminÞ.
It follows from Fig. 6 that the energy ~E decreases

monotonically with the increase of κ. It was checked
numerically that the dependence ~EðκÞ satisfies Eq. (76).
From lnðκÞ ≈ 10 the dependence ~EðκÞ for the soliton with
nonquantized magnetic flux does not differ visually from
that shown in Fig. 3 for the soliton with quantized magnetic
flux. This fact can be explained as follows. The limit κ →
∞ can be achieved as g → ∞; h ¼ const; λ ¼ const. In this
case differential equations (29) and (47) will contain the
large factor g2 in the terms g2hsin2ðαðrÞÞðm − AðrÞ=2Þ and
ðg2h=4Þsin2ð2αðrÞÞðm − AðrÞ=2Þ, respectively. In order to
compensate this factor, the function AðrÞ must reach the
values in a small neighborhood of 2m at small r. Note that
the function AðrÞ of the soliton with nonquantized mag-
netic flux also reaches the values close to the quantized
value 2m. It is easily seen that for small r, when αðrÞ ≪ 1,
systems of differential equations (28)–(29) and (46)–(47)
are close to each other. As r increases, the function AðrÞ
quickly reaches the values close to 2m and the differing
terms are suppressed in Eqs. (28) and (46) [and in Eqs. (29)
and (47)]. Thus systems of differential equations (28)–(29)
and (46)–(47) are close to each other for all r. Therefore,
the solution αðrÞ, AðrÞ for the soliton with nonquantized
magnetic flux tends to that of the soliton with quantized
magnetic flux as g → ∞; h ¼ const; λ ¼ const. This fact
was checked numerically. Expressions (33) and (49) for the
energy densities are also close to each other for all r as
g → ∞; h ¼ const; λ ¼ const. Therefore the energies of the
two solitons tend to each other as κ → ∞. Note that the
energy of the soliton with nonquantized magnetic flux is
smaller than that of the soliton with quantized magnetic
flux for any given κ. Nevertheless, the soliton with
quantized magnetic flux is stable to the transition into
the soliton with nonquantized magnetic flux for any given
parameters g, h, and λ. This is because these solitons are
separated by a kinetic barrier of infinite energy (see
Sec. III C).
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FIG. 5. The dependence of the energy density ~E and the
magnetic field strength ~B of the soliton with nonquantized
magnetic flux on ρ. The solid curve is for ~E; the dashed curve
is for ~B. The parameter κ is the same as in Fig. 4.
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FIG. 6. The energy ~E of the soliton with nonquantized magnetic
flux (solid line) as a function of the logarithm of the dimension-
less combination κ. The dotted line corresponds to the energy of
the soliton with quantized magnetic flux.
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Figure 7 shows the dependence of the limiting value A∞
on κ for the soliton with nonquantized magnetic flux in the
topological sector with m ¼ 1. The dependence is pre-
sented in the range of κ from the minimum value 50.9 (as in
Fig. 6) to 800. We see that dA∞ðκÞ=dκ → ∞ as κ tends to
its minimum value κmin. We see also that as κ is increased,
A∞ increases monotonically to its quantized value 2. In
particular, from κ ≈ 500 the value of A∞ is virtually
indistinguishable from 2. Thus the increase of the gauge
coupling constant g (or the decrease of the self-interaction
constant λ) leads to an effective quantization of the
magnetic flux of the soliton. The analogous effect was
described in [11] for the Skyrme-Maxwell soliton in 2þ 1
dimensions. Note that we chose the value of κ equal to 60 in
Fig. 4, because the corresponding value of A∞ differs
significantly from the quantized value 2.
Let us consider the value ~Δðκ;mÞ¼ ~Eðκ;mÞ−m ~Eðκ;1Þ.

If ~Δðκ; mÞ > 0 ( ~Δðκ; mÞ < 0), then the soliton with given
m and κ is unstable (stable) to the decay m → m1þ
m2 þ…;

P
i mi ¼ m. Figure 8 presents the dependence

~Δðκ; mÞ onm for the solitons with quantized magnetic flux.
The dependence is presented for several values of κ. It
follows from Fig. 8 that the solitons are unstable to the
decay if κ < 2 and stable to it if κ > 2. If κ ¼ κBPS ¼ 2,
then we see from Fig. 8 that ~Eð2; mÞ ¼ m ~Eð2; 1Þ in
accordance with Eq. (90). In this case there are no
intersoliton forces between the separated solitons. Note
that all these properties of the CPð2Þ soliton with quantized
magnetic flux are exactly analogous to those of the classical
vortex [8,9]. Figure 9 presents the dependence ~Δðκ; mÞ on
m for the solitons with nonquantized magnetic flux. It was
found that these solitons are stable to the decay m →
m1 þm2 þ…;

P
i mi ¼ m for all κ that have been

achieved numerically. Figure 9 illustrates this fact for
several values of κ.

In conclusion of this section we discuss the possibility of
the existence of excited soliton solutions in the topological
sector with a given m. Self-interaction potential (15)
vanishes at ϕ3 ¼ 0. This value of ϕ3 corresponds to
α ¼ π=2þ πk, k ∈ Z in ansatz (16) for the normalized
CPð2Þ field ϕ. Boundary condition (19) and the topological
solitons considered here correspond to k ¼ 0. Note that
systems of differential equations (28)–(29) and (46)–(47)
are invariant under the discrete transformation αðrÞ →
−αðrÞ. The expressions (32)–(33) and (48)–(49) for the
Noether current density and the energy density are also
invariant under this transformation. We can therefore be sure
that there are topological solitons corresponding to k ¼ −1
in the model. The energy, magnetic flux, and other proper-
ties of the solitons with k ¼ −1 are completely analogous to
those of the solitons with k ¼ 0. The following question
naturally arises: Are there solutions corresponding to
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FIG. 7. The dependence of the limiting value A∞ of the soliton
with nonquantized magnetic flux on the dimensionless combi-
nation κ.
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FIG. 8. The dependence of ~Δ on m for the soliton with
quantized magnetic flux. The dotted, solid, and dashed lines
correspond to κ ¼ 1, 2, 4, respectively.
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FIG. 9. The dependence of ~Δ on m for the soliton with
nonquantized magnetic flux. The dotted, solid, and dashed lines
correspond to κ ¼ 67, 100, 200, respectively.
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k ≠ −1, 0 If such solutions exist, they must correspond to
excited solitons in the topological sector with a givenm. Let
us consider the soliton with quantized magnetic flux at
κ ¼ κBPS ¼ 2. In this case the soliton solution αðrÞ, AðrÞ
must satisfy Bogomolny equations (88)–(89) as well as field
equations (28)–(29). Suppose that there is a BPS soliton
solution that satisfies the boundary conditions, αð0Þ ¼ 0,
αð∞Þ ¼ π=2þ πk, where k is an integer other than −1 and
0. Let r̄ be the value of the radial variable r such that
αðr̄Þ ¼ π=2. Then it follows from Eq. (89) that at r ¼ r̄ the
function AðrÞ must have a maximum for m > 0 and a
minimum for m < 0. However, it is shown in Sec. III C that
AðrÞ monotonically increases for m > 0 and monotonically
decreases for m < 0. Thus, our assumption that αðrÞ can
reach the value�π=2 at finite r leads us to the contradiction.
We conclude that for κ ¼ 2 there are no soliton solutions
with quantized magnetic flux such that αð∞Þ ≠ �π=2.
Arguments based on continuity lead us to the conclusion
that at least in the neighborhood of κ ¼ 2 these solutions
also do not exist. We did not find soliton solutions with
quantized magnetic flux or those with nonquantized mag-
netic flux such that αð∞Þ ≠ �π=2 by numerical methods
for any value of κ.

V. CONCLUSION

In the present paper the topological solitons of the
(2þ 1)-dimensional gauged CPð2Þ model have been
investigated. The Lagrangian of the gauged CPðN − 1Þ
model is invariant under two local Abelian transformations
(6) and (9). The characteristic feature of the CPðN − 1Þ
model is the fact that there is no physical gauge field
corresponding to local Abelian transformations (6).
Instead, the invariance of the Lagrangian (7) under local
Abelian transformations (6) is provided by the Hermitian
projection operator (3). As a result, the finiteness of the
soliton energy leads us to the modified boundary condition:
PabðDiϕbÞ → 0 as r → ∞. This modified boundary con-
dition is less restrictive than the traditional one: Diϕb → 0
as r → ∞. As a consequence, there are two types of
topological solitons in the spectrum of the gauged
CPð2Þ model with the charge matrix Q ¼ λ3=2. For the
topological soliton with quantized magnetic flux the
covariant derivatives Diϕb tend to zero as r → ∞. For
the topological soliton with nonquantized magnetic flux the
transverse parts of the covariant derivativesPabðDiϕbÞ tend
to zero as r → ∞. At the same time, the covariant
derivatives Diϕb of the topological soliton with nonquan-
tized magnetic flux can be different from zero as r → ∞.
In the present paper we found the two different topo-

logical solitons of the gauged CPð2Þ model with the
Maxwell term. It should be noted, however, that there
are other field models that have in their spectra soliton
solutions of different types. It was shown in Ref. [35] that
the gauged Higgs model with the Chern-Simons term has
two self-dual soliton solutions. The first solution is a

topological soliton with quantized magnetic flux; the
second solution is a nontopological soliton with non-
quantized magnetic flux. Two self-dual soliton solutions
also exist in the gauged O(3) σ-model with the Chern-
Simons term [17,18]. The first solution is a topological
soliton; the second solution is a nontopological soliton.
Both these soliton solutions possess a nonquantized mag-
netic flux.
Generalizations of the considered topological solitons

are possible. Note that the Lagrangian (7) contains only the
Maxwell term. It is known [11] that electrically charged
solutions of (2þ 1)-dimensional Maxwell gauged models
must have an infinite energy. Therefore the topological
solitons considered in this paper are electrically neutral.
However, the addition of the Chern-Simons term to the
Lagrangian (7) (or the replacement of the Maxwell
term by the Chern-Simons term) changes this situation
[15,17,18,26,27,32,35–37]. In this case we can expect
electrically charged solitons in the spectrum of the gauged
CPð2Þ model. The presence of electric and magnetic fields
leads to a nonvanishing angular momentum of such
solitons. We can also expect that there is the rotating
generalization [19] of these solitons in the spectrum of the
gauged CPð2Þ model with the Chern-Simons term.
Axisymmetric ansatz (16) is for the normalized CPð2Þ

field ϕ. Its obvious generalization for the normalized
CPðN − 1Þ field is

ϕi ¼ h
1
2 exp ðimiθÞ cos ðαiþ1ðrÞÞ

Yi
j¼1

sin ðαjðrÞÞ

for i ¼ 1;…; N − 2;

ϕN−1 ¼ h
1
2 exp ðimN−1θÞ

YN−1

j¼1

sin ðαjðrÞÞ;

ϕN ¼ h
1
2 exp ðimNθÞ cos ðα1ðrÞÞ: ð96Þ

We see that the ansatz for the normalized CPðN − 1Þ field
ϕ depends on N − 1 radial functions αiðrÞ. In addition to
Eq. (16) ansatz (96) is axisymmetric under the combined
action of spatial SO(2) rotations, diagonal SUðN þ 1Þ
transformations (5), and U(1) transformations (6). It can
be shown that the topological solitons with quantized and
nonquantized magnetic fluxes are presented in the gauged
CPð1Þ models with the Lagrangian (7). However, unlike
the CP(2) case, there is no gauged CPð1Þ model with a
given potential term that contains simultaneously the
topological solitons of both types in its spectrum. At the
same time, we expect that for N ≥ 4 there are gauged
CPðN − 1Þ models with both types of topological solitons
in their spectra.
We have considered the two combinations of the

charge matrices and winding numbers: Q ¼ λ3=2,
m1 ¼ −m2 ¼ m, and Q ¼ λ8=2, m1 ¼ m2 ¼ m. All other
combinations (Q ¼ λ3=2, m1 ¼ m2 ¼ m, Q ¼ λ8=2,
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m1 ¼ −m2 ¼ m, Q ¼ λ3=2, m1 ≠ m2, and Q ¼ λ8=2,
m1 ≠ m2) do not contain anything new compared to those
considered. In particular, it was found that the topological
solitons with quantized magnetic flux and those with
nonquantized magnetic flux simultaneously exist only in
the case Q ¼ λ3=2, m1 ¼ −m2 ¼ m. In all other cases, the
spectrum of the gauged CPð2Þ model with potential term
(15) contains only the topological solitons with nonquan-
tized magnetic flux.
The topological solitons of the gauged CPð2Þ model can

be quantized by several alternative methods [38–41]. All
these methods in one way or another require knowledge of
the spectrum of the quadratic fluctuation operator in the
functional neighborhood of the soliton. The spectrum can
be found only numerically for the specific values of the
model’s parameters g, h, λ, andm. This, however, is a rather

complicated task, and lies beyond the scope of this paper.
We remark only that for g2 ∼

ffiffiffi
λ

p
, h=g2 ∼ h=

ffiffiffi
λ

p
≫ 1 the

topological solitons of both types are classical objects,
because their Compton wavelengths are much less than
their classical linear sizes. Conversely, for g2 ∼

ffiffiffi
λ

p
, h=g2 ∼

h=
ffiffiffi
λ

p
≪ 1 they are quantum objects, because their

Compton wavelengths become greater than their classical
linear sizes.
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