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Clock synchronization between the ground and satellites is a fundamental issue in future quantum
telecommunication, navigation, and global positioning systems. Here, we propose a scheme of near-Earth
orbit satellite-based quantum clock synchronization with atmospheric dispersion cancellation by taking
into account the spacetime background of the Earth. Two frequency entangled pulses are employed to
synchronize two clocks, one at a ground station and the other at a satellite. The time discrepancy of the two
clocks is introduced into the pulses by moving mirrors and is extracted by measuring the coincidence rate of
the pulses in the interferometer. We find that the pulses are distorted due to effects of gravity when they
propagate between the Earth and the satellite, resulting in remarkably affected coincidence rates. We also
find that the precision of the clock synchronization is sensitive to the source parameters and the altitude of
the satellite. The scheme provides a solution for satellite-based quantum clock synchronization with high
precision, which can be realized, in principle, with current technology.
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I. INTRODUCTION

High precision synchronization of clocks plays an
important role in modern society and scientific research
[1,2]; examples include navigation, global positioning,
tests of general relativity theory, and long baseline inter-
ferometry in radio astronomy, as well as gravitational wave
observation. Two standard classical protocols for clock
synchronization are Einstein’s synchronization scheme [3]
and Eddington’s slow clock transfer [4]. The former
requires operational exchange of light pulses between
the distant clocks, and the latter is based on sending a
locally synchronized clock from one part to other parts.
Recently, quantum strategies have been exploited to
improve the accuracy of clock synchronization. A few
quantum clock synchronization (QCS) proposals [5–16]
and experiments [17] are reported. It is shown that
the schemes based on quantum mechanics can gain
significant improvements in precision over their classical
counterparts.
On one hand several satellite-based quantum optics

experiences [18] are feasible with current technology, such
as satellite quantum communication [19–27] and quantum
tagging [28], as well as gravity probes using beam
interferometers [29,30] and atomic clocks [31,32] to test
the principle of equivalence. Among these experiments the
synchronization of clocks between a satellite and a ground

station [33] is an essential step. Besides, a satellite-based
quantum network of clocks is promising to act as a single
world clock with unprecedented stability and accuracy
approaching the limit set by quantum mechanics, and there
is also a security advantage [34]. On the other hand time
dilation [32] is a concern because of relativistic effects of
the Earth on QCS. The influence of relativistic effects on
quantum systems [35–43] is a focus of study in recent years
because such studies provide insights into some key
questions in quantum mechanics and relativity, such as
nonlocality, causality, and the information paradox of black
holes. Relativistic effects are particularly significant for the
quantum versions of the Eddington scheme [6–8] because
one must assume that the transfer is performed “adiabati-
cally slowly” [44] and the spacetime is flat such that
relativistic effects are negligible. However, time dilation
induced by the Earth’s spacetime curvature is experimen-
tally observed for a change in height of 0.33 m [32], and
thus cannot be neglected.
In this paper we propose a practical scheme for satellite-

based QCS. We let two observers, Alice and Bob, exchange
two frequency entangled pulses between a ground station
and a satellite. The influence of gravitational redshift on the
frequency of a pulse can be eliminated by an opposite
gravitational blueshift. By assuming the clocks have the
same precision [5,7,8], clock synchronization can be
realized by identifying the time discrepancies. In our
scheme the time discrepancies are introduced through
adding or subtracting optical path differences into the
pulses, and the coincidence rate of the pulses in the
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interferometer as a function of the time discrepancy
between the clocks is measured. In actual satellite-
based quantum information processing tasks [19,21–
23,26,27,45], and similarly in protocols of QCS, the main
errors are induced by photon loss and the dispersion effects
of the atmosphere through which the pulses travel.
Therefore, we employ frequency entangled light, instead
of the entangled N00N state, which is vulnerable for photon
loss [46], as well as the dispersion cancellation technology
[8,47,48] to eliminate the influence of atmospheric scatter-
ing. We find that the coincidence rate of interferometry is
remarkably affected by the spacetime curvature of the
Earth. We also find that the precision of the clock
synchronization is sensitive to the light source parameters.
The outline of the paper is as follows. In Sec. II we

briefly introduce the sketch of the experimental setup. In
Sec. III we discuss how the Earth’s spacetime affects the
propagation of photons. In Sec. IV we study the feasibility
of satellite-based QCS and how the effect of the Earth’s
gravity will disturb it. In the last section we discuss the
experimental feasibility of our scheme and give a brief
summary.

II. THE SCHEME

The sketch of our proposal for satellite-based QCS is
described in Fig. 1. The quantum optical technology of our
proposal is based on the Hong, Ou, and Mandel (HOM)
interferometer [49]. We assume that Alice works on the
surface of the Earth (r ¼ rA) with her own clock, while Bob
works on a satellite at constant radius r ¼ rB > rA. The
clocks have the same accuracy; thus, the clock synchro-
nization problem is reduced to the problem of identifying
the time discrepancy between the clocks. Alice sends two
frequency entangled beams produced by a parametric
down-converter crystal (PDC) source to Bob, and Bob
bounces them back to Alice again. Those two pulses are

named signal ðSÞ beam and idler ðIÞ beam. By exchanging
entangled beams between Alice and Bob, a “conveyor belt”
[8] for time information is established. After propagating
through different optical paths, the signal and idler beams
interfere at the 50=50 beam splitter and are measured by the
detectors. To introduce timing information into the beams,
Alice and Bob use moving mirrors with constant speed v to
add or subtract optical path differences (OPD) from the
beams [8]. Alice and Bob come to an agreement on the
starting time τ0 of their mirrors in advance. Since they do
not have a synchronized clock to start with, they can only
start the mirrors at time τi0ði ¼ a; bÞ relative to the time
readings of their own clocks, which are different due to
different locations. As described in Fig. 1, at the ground
station, Alice starts a moving mirror to add an OPD δlIaðtÞ
to the idler beam [8] and to subtract the same amount of
OPD δlSaðtÞ from the signal beam, which was bounced back
from Bob. At the satellite Bob subtracts an OPD δlIbðtÞ from
the idler beam and adds an identical OPD δlSbðtÞ to the
signal beam. The linear time dependent OPDs are given by

δlIaðtÞ ¼ vðt − τa0Þ; δlIbðtÞ ¼ −vðt − τb0Þ;
δlSaðtÞ ¼ −vðt − τa0Þ; δlSbðtÞ ¼ vðt − τb0Þ; ð1Þ

where τa0 and τb0 are the starting times (proper time) as
measured by Alice’s and Bob’s clocks, respectively. In
Eq. (1) t is the time point (coordinate time) of the
coincidence detection of the signal and idler photons,
i.e., the time when the photons’ quantum state is measured.
By assuming the quantum state is instantaneously collapsed
by the measurements made on the surface of the Earth, we
can agree that the collapsing time is identical, t ¼ ta ¼ tb,
even if Alice’s and Bob’s reading times are different,
τa ≠ τb, at this moment. From Eq. (1) we can see that
the delays are proportional to the time interval between the
starting time τi0 for the moving of the mirrors and the time t

FIG. 1. Sketch of the experimental setup for satellite-based QCS. Alice sends two frequency entangled beams produced by a
parametric down-converter crystal (PDC) source to Bob who bounces them back to Alice again. Alice adds an OPD δlIaðtÞ to the idler
beam [8] and subtracts the same amount of OPD δlSaðtÞ from the signal beam, which was bounced back from Bob. At the satellite Bob
subtracts an OPD δlIbðtÞ from the idler beam and adds an identical OPD δlSbðtÞ to the signal beam. Finally, we let the pulses interfere at
the 50=50 beam splitter (BS) and be detected at the measurement setups. The coincidence rate Pc is measured as a function of the time
discrepancy τb0 − τa0 between the clocks.
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when the photons are detected. If the proportionality
constant v in Eq. (1) and the starting time reading τi0 on
Alice’s and Bob’s clocks are identical, the quantity of OPD
at Alice’s point will be zero after an exchange period.
Therefore, the final OPD is totally produced from the
starting time discrepancy Δτ ¼ τb0 − τa0 between Alice’s
clock and Bob’s clock. Then the signal and idler pulses
interfere at the beam splitter (BS) and click the detectors.
We show in Sec. IV that the final difference of optical path
lengths is affected by a factor depending on the starting
time discrepancy Δτ. By measuring the photon coincidence
rate Pc at the output ports 1 and 2 of the beam splitter, one
may acquire very precise information on OPD in the two
arms. Thus, it is sufficient to measure the photon coinci-
dence rate to recover the exact time discrepancy between
Alice’s clock and Bob’s clock. Then Alice tells Bob by
classical communication to adjust his clock time according
to the time discrepancy. By using this scheme Alice and
Bob may check how much the accuracy is disturbed by the
gravity-induced spacetime curvature of the Earth, and
inversely, they can precisely measure the curvature via
an atomic clock, which is the most accurate setup currently
available in the world.

III. EARTH’S SPACETIME ON THE
PROPAGATION OF PHOTONS

Now we describe the propagation of photons from the
Earth to a satellite by taking Earth’s gravity into consid-
eration. The Earth’s spacetime curvature will influence the
light pulses during their propagation between the ground
station and the satellite. We know that the Earth rotates
slowly with an angular velocity at the equator of ωE ¼
7.2921151247 × 10−5 rad=s or at a linear speed of
vE ¼ 465 ms−1, which is much slower than the speed of
light. Therefore, the Schwarzschild metric [50–52] is a
sufficient approximation for the Earth’s spacetime, as has
been discussed in [27,45,50]. The Schwarzschild metric is
given by [51,52]

ds2 ¼ −
�
1 −

rs
r

�
dt2 þ ð1 − rs

r
Þ−1dr2

þ r2ðdθ2 þ sin2θdφ2Þ; ð2Þ

where rS ≔ 2GM
c2 is the Earth’s Schwarzschild radius, M is

the mass of the Earth, c is the speed of light in vacuo, andG
is the gravitational constant.
A photon can be properly modeled by a wave packet of

electromagnetic fields [53] with a distribution FðKÞ
ωK;0 of

modes peaked around the frequencies ωK;0 [54,55], where
K ¼ A, B means Alice or Bob, respectively. The annihi-
lation operator for a photon from the point of view of Alice
or Bob takes the form

aωK;0
ðtKÞ ¼

Z þ∞

0

dωΩKe−iωKtKFðKÞ
ωK;0ðωKÞaωK

; ð3Þ

where ωK is the physical frequencies as measured in their

labs. At time τA, Alice prepares a wave packet FðAÞ
ωA;0 and

sends it to Bob, whowill receive it at a different proper time
τB ¼ Δτ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrBÞ=fðrAÞ
p

τA, where fðrAÞ ¼ 1 − rs
rA
, Δτ is

propagation time of the wave packet, and the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrBÞ=fðrAÞ

p
τA indicates the relativistic time dilation.

The wave packet received is modified due to the spacetime

curvature of the Earth and takes the form FðBÞ
ωB;0 . By

employing the definition of proper time, it is easy to show
that the time evolution for the modes has the form

i∂τKϕωK
¼ ωKϕωK

, where ϕðuÞ
ωK are the quantum states of

the modes corresponding to the operators aωK
[27]. This

equation indicates that the physical frequency ωK measured
by an observer at the position rK isωK ¼ fðrKÞ−1=2ω. Then
we find that Bob will receive a mode with frequency ωB ¼ffiffiffiffiffiffiffiffi

fðrAÞ
fðrBÞ

q
ωA if a sharp frequency mode with ωA was sent by

Alice. This is the well-known gravitational redshift effect,
which was predicted by Einstein in 1911 and experimen-
tally verified in 1960 [56]. In our scheme such a classical
gravitational effect is designed to be eliminated by an

opposite gravitational blueshift factor
ffiffiffiffiffiffiffiffi
fðrBÞ
fðrAÞ

q
because

the signal will be sent downward from a satellite to
the Earth.
However, such a nonlinear gravitational effect is found to

influence the fidelity of the quantum channel between Alice
and Bob [27,45] and will inevitably affect the accuracy of
the satellite-based QCS as well. The mode ā0 received by
Bob can be decomposed in terms of the mode a prepared by
Alice and an orthogonal mode a⊥ [27,45,57],

ā0 ¼ Θaþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Θ2

p
a⊥; ð4Þ

where Θ is the wave packet overlap between the distribu-

tions FðBÞ
ωB;0ðωBÞ and FðAÞ

ωA;0ðωBÞ,

Θ ¼
Z þ∞

0

dωAF
ðAÞ⋆
ωA;0 ðωBÞFðBÞ

ωB;0ðωBÞ; ð5Þ

which describes the fidelity of the channel between Alice
and Bob. For a perfect channel, one has Θ ¼ 1.

IV. SPACETIME CURVATURE
ON SATELLITE-BASED QCS

The emitted signal and idler beams from the PDC
initially share an entangled state [8],
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jψi ¼
Z

dω1dω2Fðω1;ω2Þa†ðω1Þa†ðω2Þj0i; ð6Þ

where a†ðω1Þ and a†ðω2Þ are creation operators of the first
and the second photons, respectively. For a monochromatic
pump this state can be rewritten as

jψi ¼
Z

dωFω0
ðωÞjω0 þ ωiIjω0 − ωiS; ð7Þ

where jωiS and jωiI are the states for the signal and idler
pulses, respectively, and Fω0

ðωÞ is the spectral distribution
function of the down-converted photons [47,48]. Now let
us briefly discuss how quantum entanglement is useful to
quantum clock synchronization and the advantage of the
quantum clock synchronization scheme. The main advan-
tage of a quantum strategy is that we can employ quantum
uncertainty and coherence time of the frequency entangled
photons. From Eq. (7) we can see that although the sum
frequency 2ω0 is certain, the down-shifted frequencies
jω0 − ωiS and jω0 þ ωiI are highly uncertain. The frequen-
cies are largely determined by the pass bands of the
interference filters that are inserted in the down-shifted
beams [49]. These pass bands have been found on the order
of 5 × 1012 Hz, which corresponds to a coherence time for
each photon on the order of 100 fs [49]. Therefore, they are
able to measure a time interval of or better than the
coherence time of the photons (50 fs), with an accuracy
of 1 fs (10−15 s). Also, the most important task for the
quantum clock synchronization is to determine the time
interval by measuring the rate at which photons are detected
in coincidence, which relates to the coherence length of the
photon wave packet and entanglement of the photons.
As stated before Alice adds an OPD δlIaðtÞ to the idler

beam [8] and subtracts the same amount of OPD δlSaðtÞ
from the signal beam that was bounced back from Bob. At
the satellite Bob subtracts an OPD δlIbðtÞ from the idler
beam and adds an identical OPD δlSbðtÞ to the signal beam.
Then we let the pulses interfere at the 50=50 BS and be
measured in the HOM interferometer. The detected coinci-
dence rate Pc at the detectors is given by the Mandel
formula [58],

Pc ∝
Z
t
dt1dt2hψ jEð−Þ

1 Eð−Þ
2 EðþÞ

2 EðþÞ
1 jψi; ð8Þ

where t is the interaction time of the detectors, and the
electromagnetic fields at time tj at the output of the beam
splitter can be defined by

EðþÞ
j ¼ i

Z
dω

ffiffiffiffiffiffiffiffiffiffi
ℏω
4πζc

s
ajðωÞe−iωðtj−xj=cÞ

¼ ðEð−Þ
j Þ†; for j ¼ 1; 2; ð9Þ

where ζ is the beam cross section, and xj is the position of
the moving mirrors’ detector. The relationship between the
output and input fields of the beam of the moving mirrors
can be obtained by performing Lorentz transformations
on the input fields [8]. For example, the factor

ajðωÞe−iωðτ
j
0
−xj

0
=cÞ after the beams outflow from the moving

mirrors evolves to
ffiffiffi
χ

p
ajðχωÞe−iω

2β
1−βðτj0−xj0=cÞ, where β ¼ v

c is

the Lorentz transformation factor, χ ¼ 1þβ
1−β denotes the

Doppler shift introduced by the moving mirrors, and xj0
is the distance of the beam’s delay. For the time delays
defined in Eq. (1), we have xj0 ¼ x0 for all j. Then the
beams are sent from the Earth to the satellite and are
influenced by the dissipation of the atmosphere and the
spacetime curvature. The former produces a phase discrep-
ancy iκjtðωÞ, and the latter can be described by Eq. (5).
Taking the signal beam as an example, the full procedure
can be expressed by the transformations between the
annihilation operators when the photons are sent from
the Earth to the satellite,

a0SðωÞ ¼ Θ1

ffiffiffi
χ

p
aS

 
χ

ffiffiffiffiffiffiffiffiffiffiffi
fðrAÞ
fðrBÞ

s
ω

!
e
−i

ffiffiffiffiffiffiffi
fðrAÞ
fðrBÞ

q
ωϒ1þiκSt ðωÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Θ2

1

q
a⊥S

 
χ

ffiffiffiffiffiffiffiffiffiffiffi
fðrAÞ
fðrBÞ

s
ω

!
; ð10Þ

where ϒ1 ¼ 2β
1−β ðτb0 − x0=cÞ − L=c and Θ1 is the wave

packet overlap between the distributions when the pulse is
sent from the Earth to the satellite. We can see that the
annihilation operator aSðωÞ at Alice’s laboratory evolves
into a0SðωÞ when observing at Bob’s laboratory, where L is
the distance between the Earth and the satellite. Again, the
annihilation operator for the signal beam evolves into
a00SðωÞ before entering the 50=50 BS,

a00SðωÞ ¼ Θ1Θ2aIðωÞeiωϒ2þiκSt ðωÞþiκSfðω=χÞ

þ Λa⊥S ðωÞ; ð11Þ

where ϒ2 ¼ 2β
1þβ ðτa0 − τb0 þ x0

c Þ þ ðL=χ þ L0Þ=c, Λ ¼
Θ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Θ2

1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Θ2

2

p
, L0 denotes the distance between

Bob and the BS, and Θ2 is the mode overlap between the
distributions when the pulse is received from the satellite.
In Eq. (11) the terms κSt and κSf describe the effect of the
dispersive atmosphere on the signal beams on their way to
and from the satellite, respectively. Notice that the Doppler
shift introduced by the first mirror is ω=χ, and the
frequency itself is revaluated at ω again because the second
mirror moves in the opposite direction [8]. The analogous
procedures can be applied to the idler beam propagation
process, yielding the final operator transformations,
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a00I ðωÞ ¼ Θ1Θ2aIðωÞe−iωϒ3þiκIt ðω=χÞþiκIfðωÞ þ Λa⊥I ðωÞ;

where ϒ3 ¼ 2β
1þβ ðτa0 − τb0 −

x0
c Þ − ðL=χ þ L0Þ=c. Because

the distance between the BS and the PDC source is much
smaller than the distance between the satellite and the
Earth, we assume that L ¼ L0. At the output of the
50=50 BS, the modes are found to be a1ðω1Þ ¼
1ffiffi
2

p ½ia00I ðω1Þe−iω1δl=c þ a00Sðω1Þ� and a2ðω2Þ ¼ 1ffiffi
2

p ½ia00Sðω2Þþ
a00I ðω2Þe−iω2δl=c�, where δl is the delay introduced to relate
the coincidence rate Pc with the path length. Then the
coincidence rate Pc defined in (8) is obtained as

Pc ∝
Z

dω1dω2hψ ja†1ðω1Þa†2ðω2Þa1ðω1Þa2ðω2Þjψi

¼
Z

dω1dω2jh0ja1ðω1Þa2ðω2Þjψij2: ð12Þ

The matrix element h0ja1ðω1Þa2ðω2Þjψi in (12) is given by

h0ja1ðω1Þa2ðω2Þjψi

¼ 1

2
ðΘ1Θ2Þ2δðω1 þ ω2 − 2ω0Þ

× eiφϕðω1 − ω0Þ½1 − e2iðω1−ω0Þϒ4−iΔκðω1Þ�; ð13Þ

where ϒ4 ¼ 4β
1þβ ðτb0 − τa0Þ − δl=c, and φ is an overall phase

term that will disappear by taking the modulus [8], and the
contribution of the dispersion terms is

ΔκðωÞ ¼ κSt ðωÞ − κIfðωÞ þ κIfðω0Þ − κSt ðω0Þ

þ κItðω0Þ − κSf

�
ω1

χ

�
þ κSf

�
ω

χ

�
− κIt

�
ω

χ

�
; ð14Þ

where ω0 ¼ 2ω0 − ω. If the properties of the beams
propagating through different optical paths are such that
κSt ¼ κIf and κSf ¼ κIt , the dispersion effect of the atmos-
phere is erased. Such conditions can be satisfied by
allowing the “from” idler beam to propagate at a distance
less than the spatial inhomogeneities of the atmosphere
from the “to” signal beam and, equivalently, by allowing
the “to” idler beam to propagate less than the “from” signal
beam [8]. Here, the “from” beam denotes the beam from
Alice to Bob and vice versa. Then the dispersion suffered
by one of the photons can cancel that suffered by the other
photon. These two photons can remain totally coincident
after propagating through different optical paths.
Substituting Eq. (13) into Eq. (12), we can obtain

Pc ¼ ðΘ1Θ2Þ2
Z

dωjF j2
�
1 − cos

�
2ω

c

�
4vΔτ
1þ β

− δl

���
;

ð15Þ

where F ¼ Fω0
ðωÞ. From Eq. (15) we can see that the

coincidence rate Pc is directly related to the time discrep-
ancy Δτ ¼ τb0 − τa0 of Alice’s and Bob’s clocks. That is to
say Alice’s and Bob’s clocks can be synchronized by using
the measured coincidence rate of interferometry.
To be explicit we next only consider the case in

which Fω0
ðωÞ is a Gaussian wave packet Fω0

ðωÞ ¼
1ffiffi
24

p
πσ2

e−
ðω−ω0Þ2

4σ2 , where σ is the Gaussian width. The wave

packet overlaps Θ1 and Θ2 are found to be

Θ1ð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ1ð2Þ

1þ Δ2
1ð2Þ

s
e
−

ϑ2ω2
0

4σ2 ½1þΔ2
1ð2Þ �; ð16Þ

where Δ1ð2Þ ¼ 1� ϑ, and the signs � occur for rA < rB or

rA > rB. In Eq. (16), we define ϑ ¼
ffiffiffiffiffiffiffiffi
fðrAÞ
fðrBÞ

q
− 1, and ωA;0 ¼

ωB;0 ¼ ω0 is assumed. The modes will be perfectly over-
lapped (Θ ¼ 1) when Alice and Bob are in a flat spacetime
fðrAÞ ¼ fðrBÞ ¼ 1. For the typical resources used in
quantum optics experiments, the relation ϑ ≪ ðϑω0

σ Þ2 ≪ 1

should be satisfied [27,45,59], which yields Θ1 ¼
Θ2 ∼ 1 − ϑ2ω2

0

8σ2
. Then we find that the coincidence rate Pc

has the form

Pc ¼
�
1 −

ϑ2ω2
0

8σ2

�
4

½1 − e−2σ
2ðδl−4vΔτ

1þβ Þ2=c2 �: ð17Þ

We can see that the coincidence rate Pc has the factor

ð1 − ϑ2ω2
0

8σ2
Þ4 compared to that of the flat spacetime case,

where Pf
c ¼ 1 − e−2σ

2ðδl−4vΔτ
1þβ Þ2=c2 [8]. We define the effect of

spacetime curvature on the accuracy of clock synchroniza-
tion as the relative disturbance of coincidence rate

Δp ¼ Pf
c − Pc

Pf
c

¼ 1 −
�
1 −

ϑ2ω2
0

8σ2

�
4

: ð18Þ

It is now clear that the relative disturbance of coincidence
rate Δp depends on the spacetime parameter ϑ and the
characteristics of the PDC source.
In Fig. 2 we plot the relative disturbance of the Earth’s

spacetime curvature on the coincidence rate Δp as a
function of the distance rB between the satellite and the
Earth’s core for the fixed light source parameters. It is
shown that Δp increases as the distance increases; i.e., the
accuracy of clock synchronization depends on the altitude
of the satellite, which also verifies that the spacetime
curvature remarkably influences the running of the atomic
clocks [32]. This result is very different from that of
Ref. [8], in which the coincidence rate is independent of
the distance L between Alice and Bob when the spacetime
curvature of the Earth is not considered.
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In Fig. 3 we plot the relative disturbance Δp over
the peak frequency ω0 and bandwidth σ of the PDC.
It is shown that the disturbance of accuracy depends
sensitively on the bandwidth σ of the source, which is
similar to the flat spacetime case [8]. However, here we find
that the disturbance on accuracy also depends on the peak
frequency of the pulses, which is different from that of
Ref. [8] where the accuracy is independent of the peak
frequency. In this paper we are particularly interested in two
typical cases in which the QCS are performed between the
ground station and either a low earth orbit satellite (LEO) or
a geostationary earth orbit (GEO) satellite.
The LEO case: The typical distance from the Earth

to a LEO satellite is about 400 km, which yields rA ¼
6.371 × 106 m and rB ¼ 6.771 × 106 m. Considering that
the Schwarzschild radius of the Earth is rS ¼ 9 mm, it is
found that δ ∼ − 1

2
ðrsrB −

rs
rA
Þ ¼ 4.17 × 10−11. We employ a

typical PDC source with a wavelength of 369.5 nm
(corresponding to ω0 ¼ 812 THz) and σ ¼ 100 MHz

[the relation δ ≪ ðδω0

σ Þ2 ≪ 1 is satisfied]. A light source
with such peak frequency and bandwidth is available, for
example, in trapped ion experiments [59]. The relative
disturbance of the spacetime curvature on the coincidence
rate is obtained as ΔL

p ¼ 5.73993 × 10−8. The achievement
of an optical lattice clock with accuracy at the 10−18 level
has been reported in Refs. [60,61]. If we would like to
synchronize two clocks up to a time discrepancy of τ ¼
1 ns (as in Ref. [8], or a much lower level τ ¼ 100 ns as
presented in Ref. [7]), the correction of the Earth’s
spacetime curvature effect will reach 10−17 s during a
single synchronization process. Such a correction is com-
parable to the accuracy of the atom clocks and thus should
be considered for the QCS between clocks in future
satellite-based applications. Therefore, we can safely arrive
at the conclusion that the spacetime curvature is not
negligible when the synchronization is performed by
LEO satellites.
The GEO case: The typical distance L between a GEO

satellite and the ground is about 3.6 × 107 m. Therefore,
the distance between the Earth and the satellite rB is about
rB ¼ 42.371 × 106 m, which yields δ ∼ − 1

2
ðrsrB −

rs
rA
Þ ¼

6 × 10−10. In this case the relative disturbance of the
spacetime curvature on the coincidence rate is
ΔG

p ¼ 1.18729 × 10−5. We find that the disturbance of
the spacetime curvature on the coincidence rate for the
GEO satellites becomes even more remarkable than that of
the LEO case. We remark that the current GPS satellites
have rB ≈ 2.7 × 107 m. In the QCS scheme, the spacetime
curvature is also remarkable.
Error analysis: It is worth mentioning that the velocity

variations of the moving mirrors may induce some errors on
the coincidence rate. However, the order of magnitudes of
the movement speed of the mirrors is much smaller than the
velocity of light, let alone the velocity variation of the
mirrors. To be specific the typical velocity of the moving
mirrors is 10−1 m=s. Let us suppose that this velocity has
one percent of variation, say 10−3 m=s, which is much
smaller than the velocity of light. Note that the relative
disturbance of the spacetime curvature on the coincidence
rate is on the order of 10−8 for the LEO satellites and on the
order of 10−5 for the GEO satellites, which are at least 3
orders of magnitude larger than that of the velocity
variations of the mirrors. Therefore, the systematic errors
induced by the velocity variation of the mirrors can be
safely ignored in the scheme.

V. DISCUSSIONS

We have proposed a practical satellite-based QCS
scheme with the advantages of dispersion cancellation
and robust frequency entangled pulses of light, taking
the effects of the spacetime curvature of the Earth into
consideration. The spacetime background of the Earth is
described by the Schwarzschild metric, and the quantum
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function of the source parameters ω0 and σ for the fixed distance
rB ¼ 6.771 × 106 m (LEO).
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optics parts of our proposal are based on the HOM
interferometer. By eliminating the gravitational redshift
and blueshift of the laser pulses and the atmospheric
dispersion cancellation, the accuracy of clock synchroni-
zation in our quantum scheme can be very high, showing
that Δp is close to unity. Our proposal can be implemented,
in principle, with current available technologies. To be
specific optical sources with the required peak frequency
and bandwidth have been achieved by the trapped ion
experiments [59]. The feasibility of photon exchanges
between a satellite and a ground station has been exper-
imentally demonstrated [21] by the Matera Laser Ranging
Observatory (MLRO) in Italy. Most recently they have
reported the operation of experimental satellite quantum
communications [22] by sending selected satellites laser
pulses. Our scheme can also be generalized to the quantum

clock network cases [6,34]. The results should be signifi-
cant both for determining the accuracy of clock synchro-
nization and for our general understanding of time
discrepancy in future satellite-based quantum systems.
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