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We study flavor and gravitational anomalies in Galilean theories coupled to torsional Newton-Cartan
backgrounds. We establish that the relativistic anomaly inflow mechanism with an appropriately
modified anomaly polynomial can be used to generate these anomalies. Similar to the relativistic case, we
find that Galilean anomalies also survive only in even dimensions. Further, these anomalies only
effect the flavor and rotational symmetries of a Galilean theory; in particular, the Milne boost
symmetry remains nonanomalous. We also extend the transgression machinery used in relativistic
fluids to Galilean fluids, and use it to determine how these anomalies affect the constitutive relations of a
Galilean fluid. Unrelated to the Galilean fluids, we propose an analogue of the off-shell second law of
thermodynamics for relativistic fluids, to include torsion and a conserved spin current in the vielbein
formalism. Interestingly, we find that even in the absence of spin current and torsion the entropy currents
in the two formalisms are different: while the usual entropy current gets a contribution from the
gravitational anomaly, the entropy current in the vielbein formalism does not have any anomaly-induced
part.
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I. NULL REDUCTION AND ANOMALIES

For most practical purposes, the world around us can
be regarded as nonrelativistic. So it is natural to ask how
various exotic results in relativistic theories can be
interpreted in the nonrelativistic limit. Taking this limit
(sending the speed of light c → ∞) however turns out to
be a notoriously nontrivial task. Except in a few special
cases, the nonrelativistic limit is either not well defined or
is not unique,1 which forces the analysis to resort to
other methods. One such (and historically the first)
method is, rather than taking a limit of a relativistic
theory, to define nonrelativistic theories in their own right
guided by the symmetries. Nonrelativistic theories are
known to transform covariantly under the action of
“Galilean algebra.” This algebra2 is spanned by the
following generators:

Continuity ðmass operatorÞ∶ M;

TimeTranslation∶ H;

Translations∶ Pa;

GalileanBoosts∶ Ba;

Rotations∶ Mab;

with the commutation relations

½H;Pa� ¼ 0; ½H;Mab� ¼ 0; ½H;Ba� ¼ −Pa;

½Pa; Pb� ¼ 0; ½Mab; Pc� ¼ δacPb − δbcPa;

½Ba; Bb� ¼ 0; ½Mab; Bc� ¼ δacBb − δbcBa;

½Mab;Mcd� ¼ δacMbd − δadMbc − δbcMad þ δbdMac;

½M; ·� ¼ 0; ½Ba; Pb� ¼ δabM: ð1:1Þ

In this work we will be interested in studying properties
of Galilean theories, defined as theories respecting the
Galilean algebra. Note that this definition spans a larger
class of theories than just the nonrelativistic theories, as
every Galilean theory might not arise as a c → ∞ limit of
a relativistic theory.
About a decade after the inception of general relativity it

was realized that the spacetimes with the Galilean isometry
group (calledGalilean spacetimes) can also be packaged into
a nice covariant language: Newton-Cartan geometries [2,3].
Since then there has been a huge amount of development in
our understanding of how Galilean theories couple to
Newton-Cartan backgrounds [4–18].3 We recommend look-
ing at Sec. 2.1 of Ref. [14] for a short and self-contained
review of Newton-Cartan geometries, which will be exten-
sively used throughout this work. References [19–22] con-
tain some more recent work on Galilean physics which will
not be touched upon here.

*akash.jain@durham.ac.uk, ajainphysics@gmail.com
1For example, Maxwell’s electromagnetism is known to have

more than one nonrelativistic limits [1].
2To be more precise, what we call Galilean algebra is generally

known as the Bargmann algebrawhich is the central extension of
Galilean algebra with the mass operator M. Galilean algebra sits
inside as a special case with M ¼ 0.

3It is far from the reach of a mortal being to compile an
exhaustive list of the work on nonrelativistic physics; please refer
to the mentioned works and references therein.
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There is another well-known way to approach non-
relativistic physics: null reduction [23–25]. It has been
known for a long time that the Galilean group can be
embedded into a Poincaré group that is one dimension
higher. Correspondingly, one can constrain the Poincaré
algebra in a certain way, and reduce it to the Galilean
algebra. To be more precise, consider generators of the five-
dimensional Poincaré algebra written in null coordinates4

(A; B ¼ −;þ; 1; 2; 3),

Spacetime Translations∶ PA;

Lorentz Transformations∶ MAB; ð1:2Þ

with the usual commutation relations,

½PA; PB� ¼ 0;

½MAB; PC� ¼ ηACPB − ηBCPA;

½MAB;MCD� ¼ ηACMBD − ηADMBC − ηBCMAD þ ηBDMAC:

ð1:3Þ

We can check that a subset of these generators, those that
commute with null momenta P− (a, b ¼ 1, 2, 3),

P−; Pþ; Pa; Ma−; Mab; ð1:4Þ

span the Galilean algebra (1.1), with P− acting as a new
Casimir. M ≡ P− can be interpreted as a continuity
operator (with mass as its conserved charge), Pa as trans-
lations, H ≡ Pþ as time translation, Ba ≡Ma− as Galilean
boosts, and finallyMab as rotations (look at Ref. [26] for an
extensive review). This is rather convenient as instead of
starting from a four-dimensional relativistic theory and
taking c → ∞, one can start with a five-dimensional
relativistic theory and reduce it over a light cone (introduce
a null Killing vector) to get a Galilean theory. This idea
(and its generalizations to higher and lower dimensions)
have been used readily in the literature to reproduce known
results and to get new insights into nonrelativistic physics.
Probably the most important of these results, in the current
context, was to reproduce (torsional) Newton-Cartan geom-
etries starting from a Bargmann structure (relativistic
manifold carrying a covariantly constant null Killing
vector) in one higher dimension [9,12,27–29]. Also, the
authors of Ref. [30] and many following them (e.g.,
Refs. [31,32]) established that reducing a relativistic fluid
on a light cone indeed gives the expected constitutive
relations of a Galilean fluid, which was discussed, e.g.,
in Ref. [33].

The authors of Ref. [32] realized that this mechanism
fails to reproduce the most generic Galilean theories. In
particular, the thermodynamics of a Galilean fluid gained
via null reduction is in a sense more restrictive than the
most generic Galilean fluids.5 Further, the parity-violating
sector of the reduced fluid is highly restrictive and
survives only in a very special case of “incompressible
fluids kept in a constant magnetic field.” In Ref. [35], the
same authors provided a resolution to this issue, which
however is a little different from the usual spirit of null
reduction. Rather than performing null reduction of a
relativistic fluid, the authors suggested constructing a
theory of fluids coupled to Bargmann structures from
scratch, henceforth referred to as a Bargmann fluid or null
fluid.6 In the process it was realized that there are certain
aspects of null fluids which arise just by the introduction
of null isometry and have no analogue in usual relativistic
fluids. Upon null reduction,7 this null fluid gives rise to
the most generic Galilean fluid. In a sense null fluids can
be seen as a particular embedding of Galilean fluids into a
spacetime of one higher dimension. This approach is
more in line with the axiomatic approach to study
Galilean theories, but has the benefit that we have all
of the well-developed machinery of relativistic physics at
our disposal.
The aim of this paper is to address a similar issue, but

in a different setting: anomalies. Flavor and gravitational
anomalies for a nonrelativistic quantum field theory
(Lifshitz fermions) were discussed in Ref. [36] using
path integral methods. Reference [37], on the other hand,
took the conventional null reduction approach to this
problem, where the author started with an anomalous
relativistic theory and figured out its fate upon reduction.
There is however an issue with this approach: relativistic
anomalies8 are known to exist only in even dimensions,
and hence this approach will essentially give anomalies
only in odd-dimensional Galilean theories. This is slightly

4We define the transformation to null coordinates as
x� ¼ 1ffiffi

2
p ðx0 � x4Þ.

5See Eq. IV. 121 of Ref. [32] and footnote (7) of Ref. [34] for
more details on this issue.

6Why A “null” fluid? A fluid is generally called “null” if the
corresponding fluid velocity is a null vector. Unlike usual
relativistic fluids, one can show that on a Bargmann structure
(with null Killing vector VM), a null fluid (uMuM ¼ 0) and a unit
normalized fluid (wMwM ¼ −1) are related by merely a field
redefinition: uM ¼ wM þ 1

2wNVN
VM. The authors of Ref. [35]

found that writing a Bargmann fluid in terms of a “null fluid
velocity” is more natural from the point of view of a Galilean
fluid.

7Since the theory already has a null Killing field, null reduction
is defined as choosing a foliation transverse to the Killing field
and compactifying the null direction. As we shall discuss in
Sec. II C, doing this requires introducing a Galilean frame of
reference, or in other words, a preferred notion of time.

8The author of Ref. [37] considered both flavor/gravitational as
well as Weyl anomalies; however, in this work we will only be
concerned with the former.
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unpleasant, because if one is to look at Galilean theories
as a makeshift version of nonrelativistic theories which in
turn are the “low-velocity” limit of relativistic theories in
the same number of dimensions, one would expect them
to be anomalous only in even dimensions (see footnote 8).
Half of this problem can be solved by noting that all of the
anomalies found in Ref. [37] crucially depend on the
components of the higher-dimensional gauge field and
affine connection along the Killing direction (A∼, ΓM

∼N ,
where AM is the gauge field, ΓR

MN is the affine connection,
and the null Killing vector is chosen to be ∂∼). It was noted
in Ref. [32] that these components act as sources in the
mass conservation Ward identity [look at the discussion
around Eq. (2.42)]. Since we do not know of any such mass
sources appearing in nature, it would be better to switch
these off (one can check that these mass sources
A∼, ΓM

∼N are well-defined gauge-covariant tensors). Doing
so will eliminate all the anomalies in odd-dimensional
Galilean theories. We call the Bargmann structures
with these mass sources set to zero as compatible
Bargmann structures or null backgrounds, following
Ref. [34]. The other half of the problem is however more
challenging: we need to find a consistent mechanism
to introduce anomalies in theories coupled to odd-
dimensional null backgrounds.
The basic idea to do this was illustrated in Ref. [34] using

U(1) anomalies. To motivate this let us consider the
simplest case of a four-dimensional flat relativistic theory
with a U(1) anomaly. Conservation of the corresponding
(covariant) current Jμ is given as

∂μJμ ¼
3

4
Cð4ÞϵμνρσFμνFρσ; ð1:5Þ

where Fμν is the field-strength tensor and Cð4Þ is the
anomaly constant. Upon taking a nonrelativistic limit,
one would qualitatively expect the conservation law to
look like9

∂tqþ ∂iji ¼ −6Cð4Þeibi; ð1:6Þ

where e, b are the electric and magnetic fields, respectively.
This effect can be reproduced after null reduction of a five-
dimensional conservation law,

∂MJM ¼ 3

4
Cð4ÞϵMNRSTVMFNRFST; ð1:7Þ

where VM is an arbitrary null vector with V∼ ¼ −1. Note
that F∼M ¼ ∂∼AM − ∂MA∼ ¼ 0 when A∼ ¼ 0. Since one
index on ϵ must be “∼,” this responsibility lands on VM,
implying that the mentioned expression does not depend
on which VM is chosen (these statements will be made
more rigorous in Sec. III B). It was observed in Ref. [34]
that this anomaly can indeed be generated by the anomaly
inflow mechanism exactly in the same way as it works for
usual relativistic anomalies, but with a tweaked anomaly
polynomial. The authors there were interested in Abelian
anomalies and how they affect the hydrodynamics at the
level of constitutive relations. This work will generalize
these arguments to non-Abelian and gravitational anoma-
lies, and will give a more rigorous and transparent
mechanism to compute their contribution to Galilean
hydrodynamics using the transgression machinery of
relativistic fluids [38].
However, unlike Ref. [34], we would need to introduce

torsion into the game for a clearer analysis of the
gravitational sector. In Newton-Cartan geometries it is
known (see Ref. [14]) that torsionlessness imposes a
constraint dn ¼ 0 on the time metric n ¼ nμdxμ. It has
been noted in Refs. [12,18,39] that lifting this constraint
off shell is necessary to study energy transport in
Galilean theories. A similar issue also showed up
in the context of Galilean hydrodynamics discussed in
Ref. [35], where the authors noted that on torsionless
Galilean backgrounds the second law of thermodynamics
fails to capture all the constraints obeyed by the transport
coefficients of a Galilean fluid. Since we will be
interested in off-shell physics to understand anomalies,
imposing torsionlessness would only make matters less
clear. Nevertheless, at the cost of some added technical-
ities, it will allow us to explore null reduction for theories
with a nonzero spin current, which as far as we can tell
has not been attempted.10 Reference [17] considered the
most generic Galilean theories on a torsional Newton-
Cartan background (without a conserved spin current),
which follows very nicely via null reduction. Notably,
the authors of Ref. [17] presented their results in a
“frame-independent” manner using an “extended
space representation” of the Galilean group; we will
show in Appendix B that this representation is nothing
but the theory on a null background seen prior to null
reduction.
It is worth noting here that the essence of null

reduction—whether usual or axiomatic—lies in the fact
that the sophisticated machinery of relativistic theories
can be used to say something useful about nonrelativistic
theories. This method however has its limitations; one

9Note that Eq. (1.6) is not just Eq. (1.5) expanded into
coordinates. When we take the c → ∞ limit of ∂μJμ ¼ ∂tJ0=cþ∂iJi we get ∂tqþ ∂iji, where q ¼ limc→∞J0=c and
ji ¼ limc→∞Ji. For right-hand side we use the definitions
εijk ¼ ϵ0ijk=c, ei ¼ limc→∞cFi0, bi ¼ limc→∞

1
2
εijkFjk, and as-

sume Cð4Þ ∼Oðc0Þ.

10Some authors (including those of Ref. [12]) have considered
null reduction in the presence of torsion, but have not included a
spin connection as an independent background source.
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needs to be acquainted with the relativistic side of the
story to appreciate the construction. Although we review
whatever is required for this work, readers might find it
helpful to consult the relativistic results first, or from time
to time during the reading. The respective relativistic
references will be mentioned on the go.
Unrelated to Galilean fluids, we also make some

observations regarding the entropy current for a relativ-
istic fluid. Recently, an off-shell generalization of the
second law of thermodynamics was considered in
Ref. [40] in the context of torsionless relativistic hydro-
dynamics. The authors of Refs. [41,42] also proposed a
new Abelian Uð1ÞT symmetry in hydrodynamics associ-
ated with this off-shell statement, with entropy as its
conserved charge. We propose a natural generalization of
this off-shell statement of the second law in the vielbein
formalism, in the presence of torsion and a conserved spin
current. More interestingly, even in the absence of torsion
we find that the entropy current defined by the off-shell
second law in the vielbein formalism is different from
what is defined in the metric-like formalism (we call the
latter the Belinfante entropy current). The vielbein
entropy current does not have any anomaly-induced parts,
while the Belinfante entropy current has been shown to
get contributions from a gravitational anomaly [42].
A similar distinction between the two formalisms has
been known for the energy-momentum tensor as well:
while the vielbein formalism deals with an asymmetric
canonical energy-momentum (EM) tensor (which is
the Noether current of translations), the metric-like
formalism deals with a symmetric Belinfante EM tensor
(which couples to the metric in general relativity)
(see footnote 15 for related comments). Motivated by
this, and the fact that the vielbein entropy current does not
get contributions from an anomaly, we guess that it
should be in some sense more naturally related to the
fundamental Uð1ÞT symmetry of Refs. [41,42]. In passing
we would also like to note that the two entropy currents
are found to differ only off shell, and boil down to the
same thing upon imposing the equations of motion.
Further, for a spinless fluid11 the difference only survives
in the anomalous sector, and is precisely what accounts
for the vielbein entropy current being independent of
anomalies. Interested readers can jump directly to
Appendix D.
This work is broadly categorized in five sections. The

remainder of the Introduction contains a summary of our
main results in Sec. I A. Section II starts off by extending
the null background construction of Ref. [34] to include
torsion, which is further used to derive the Ward identities
of a Galilean theory with a nontrivial spin current in

Sec. II C. A review of the relativistic anomaly inflow
mechanism has been provided in Sec. III, which we modify
in Sec. III B to account for anomalies in the null/Galilean
backgrounds and derive the corresponding anomalousWard
identities. Later, in Sec. IV we discuss how these anomalies
affect the constitutive relations of null/Galilean hydrody-
namics. Keeping in mind the technicality of this work, a
detailedwalkthrough example for the simplest case of three-
dimensional null theories (two-dimensional Galilean
theories) is given in Sec. VA. These results are further
generalized to arbitrary higher dimensions in Sec. V B. In
Appendix A we present some of our results in the conven-
tional noncovariant basis for the benefit of readers not
acquainted with the Newton-Cartan language. Appendix B
is devoted to a comparison of null backgrounds to the
extended space representation of Ref. [17]. In Appendix C
we give some notations and conventions for differential
forms used throughout this work. Finally, in AppendixDwe
comment on the entropy current in relativistic hydrody-
namics in the vielbein formalism.

A. Overview and results

Skipping all the technicalities, we start directly with the
results, keeping inmind that these results have been obtained
by null reduction of anomalies on null backgrounds. In the
following we denote indices on a Newton-Cartan (NC)
manifold MNC

ðdþ1Þ by μν…, and on a flat spatial manifold
RðdÞ by a; b…. The NC structure is defined by a time metric
nμ, a degenerate vielbein eaμ, and a flat metric δab. Further,
wedefine aNC framevelocityvμ, andbyusing it an “inverse”
vielbein eaμ satisfying vμnν þ eaμeaν ¼ δμν and eaμebμ ¼
δab. Indices on MNC

ðdþ1Þ cannot be raised/lowered, while on

RðdÞ they can be raised/lowered by δab, δab.MNC
ðdþ1Þ indices

can be projected down to RðdÞ using eaμ, eaμ. An NC
manifold is also equipped with a connection Γλ

μν, a spin
connection Ca

μb, a non-Abelian gauge field Aμ, and a

covariant derivative ~∇μ associated with all of these. We also
define the spacetime dependence of the frame velocity (also
known as the boost connection) as cμa ¼ eaν ~∇μvν.
Differential forms are denoted by bold symbols.
Similar to the relativistic case, we find that (flavor and

gravitational) anomalies on an even-dimensional NC back-
ground MNC

ð2nÞ are governed by a (2nþ 2)-dimensional
anomaly polynomial pð2nþ2Þ. However, here the anomaly
polynomial is written in terms of the Chern classes of the
gauge field strength F ¼ dAþ A ∧ A ¼ 1

2
Fμνdxμ ∧ dxν

and the Pontryagin classes of NC spatial curvature
Ra

b ¼ dCa
b þ Ca

c ∧ Cc
b ¼ 1

2
Rμν

a
bdx

μ ∧ dxν. On the
other hand, the odd-dimensional Galilean theories are non-
anomalous (in the absence of any extra mass sources). In the
presence of anomalies, the conservation laws of the theory
are given as

11By “spinless” we mean that the theory does not contain an
independent conserved spin current (coupled to torsion).
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Mass Cons ðContinuityÞ∶̲ ̲~∇μρ
μ ¼ 0;

Energy Cons ðTime TranslationÞ∶̲ ̲~∇μϵ
μ ¼ ½power� − pμacμa;

Momentum Cons ðTranslationsÞ∶̲ ̲~∇μpμ
a ¼ ½force�a − ρμcμa;

Temporal Spin Cons ðGalilean BoostsÞ∶̲ ̲~∇μτ
μa ¼ 1

2
ðρa − paÞ;

Spatial Spin Cons ðRotationsÞ∶̲ ̲~∇μσ
μab ¼ p½ba� þ 2τμ½acb�μ þ σ⊥ab

H ;

Charge Cons ðFlavor TransformationsÞ∶̲ ̲~∇μjμ ¼ j⊥H; ð1:8Þ

where̲ ̲~∇μ ¼ ~∇μ þ vνHνμ − eaνTa
νμ. Here Hμν is the tem-

poral torsion and Ta
μν is the spatial torsion. Along with

the conservation laws, the associated symmetries and
conserved quantities have been specified above. We see
that the mass current is exactly conserved. The energy/
momentum current is sourced by the power/force den-
sities (expressions can be found in Sec. II C) and pseudo-
power/force densities due to the spacetime dependence of
the frame velocity cμa. The temporal spin current is
sourced by the difference between the spatial mass current
and momentum density (for spinless theories it implies
equality of the two). Barring anomalies, the spatial spin
current is sourced by the antisymmetric part of the
momentum density (causing torque) and pseudotorque
density, while the charge current is exactly conserved.
In addition to these, the spatial spin and charge
currents are also sourced by gravitational12 σ⊥ab

H and
flavor j⊥H anomalies, respectively. These anomaly sources
can be determined from the anomaly polynomial
pð2nþ2Þ as

σ⊥ab
H ¼−�↑

�∂pð2nþ2Þ

∂Rba

�
; j⊥H ¼−�↑

�∂pð2nþ2Þ

∂F
�
: ð1:9Þ

In the study of Galilean hydrodynamics, we can construct
the sector of constitutive relations completely determined
by these anomalies, following the transgression machi-
nery developed to do that same job in relativistic fluids
[38]. To do this, we first need to define the hydrodynamic
shadow gauge field Â ¼ A − μn and spin connection
Ĉa

b ¼ Ca
b − ½μσ�abn, where μ is the flavor chemical

potential and ½μσ�ab is the spatial spin chemical potential.
We call the corresponding field strengths F̂ and R̂a

b, and
the anomaly polynomial made out of these is p̂ð2nþ2Þ.
Using these we define the transgression form,

Vð2nþ1Þ
p ¼ − n

H ∧ ðpð2nþ2Þ − p̂ð2nþ2ÞÞ, where13 H ¼ −dn.
It can be used to generate the anomalous sector of
constitutive relations; only nonzero contributions are
given as

ðϵμÞA ¼ �↑
�∂Vð2nþ1Þ

p

∂H
�
μ

;

ðσμabÞA ¼ �↑
�∂Vð2nþ1Þ

p

∂Rba

�
μ

;

ðjμÞA ¼ �↑
�∂Vð2nþ1Þ

p

∂F
�
μ

:

We leave it for the reader to convince themselves that
these formulas are well defined. These constitutive
relations follow the second law of thermodynamics and
off-shell adiabaticity with a trivially zero entropy current.
We would like to caution the reader that these are merely
the contributions from anomalies to the constitutive
relations; there will be further contributions which are
independent of the anomalies and have not been discussed
here. We would like to mention that in this derivation of
the anomaly-induced constitutive relations, we rely on the
existence of an equilibrium partition function which
describes the fluid in the equilibrium configuration.
These ideas were discussed for a relativistic fluid in
Refs. [43–45] and were later adapted to Galilean fluids in
Refs. [15,16,34,35].
Explicit examples of the above results in case of the U(1)

and spin anomalies for two dimensions and a generalization
to 2n dimensions is given in Sec. V. But probably the most
important take-home message of this work is that one can
perform a consistent analysis of flavor and spin anomalies
for Galilean theories using guidelines laid out by the
relativistic construction. This should be taken as yet
another point in the favor of (or rather an advertisement
for) the axiomatic approach to null reduction: null back-
grounds [35].

12It should be noted that the gravitational anomaly appears as a
“spin anomaly” in Eq. (1.8). This is already familiar from the
respective relativistic version, where the gravitational anomaly in
a metric-like formulation appears as a Lorentz anomaly in the
vielbein formalism.

13It is not immediately clear why it is okay to divide by a two-
form H. One can however check that the numerator always
contains at least one power of H, which will cancel the H in the
denominator.
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II. GALILEAN THEORIES WITH
SPIN AND TORSION

The aim of this section is to extend the null background
construction of Refs. [34,35] to torsional backgrounds, and
derive the nonanomalous Ward identities for a Galilean
theory with a nonzero spin current. We will introduce
anomalies later in Sec. III. The construction is mainly based
on the work of Refs. [12,28] on torsional null reductions,
with certain modifications. We will be working in the
vielbein formalism, which is a more natural choice for a
spin system. Hence the language and expressions will be
slightly different from what has been seen in the earlier
work on null backgrounds [34] where authors focused on
the torsionless and spinless case.

A. Einstein-Cartan backgrounds

We start with a short review of the Einstein-Cartan
backgrounds, mostly to set up notation for our later dis-
cussion on the torsional null backgrounds. A more compre-
hensive introduction to this formalism can be found in, e.g.,
Ref. [46]. Consider amanifoldMðdþ2Þ, onwhich theories are
invariant under diffeomorphisms and (possibly non-Abelian)
flavor gauge group G. We denote the infinitesimal diffeo-
morphism and flavor variation parameters by

ψξ ¼ fξ ¼ ξM∂M;ΛðξÞg ∈ TMðdþ2Þ × g: ð2:1Þ

We have denoted the tangent bundle ofMðdþ2Þ as TMðdþ2Þ,
and the Lie algebra corresponding to G as g. Indices on
Mðdþ2Þ are denoted by M;N; R; S…:Mðdþ2Þ is endowed
with a metric ds2 ¼ GMNdxMdxN , a g-valued gauge field
A ¼ AMdxM, and a metric compatible affine connection
ΓR

MS which is not necessarily symmetric in its last two
indices. In the case of torsional geometries it is more natural
to shift to the vielbein formalism, which we describe in the
following. The condition of local flatness of a manifold
allows us to define a map between TMðdþ2Þ and (pseudo-
Riemannian) flat space Rðdþ1;1Þ, realized in terms of a
vielbein EA

M and its inverse EA
M, restricted by

GMN ¼ EA
MEB

NηAB; GMN ¼ EA
MEB

NηAB; ð2:2Þ

where ηAB is the flat Minkowski metric, and A; B;C;D…
denote indices on Rðdþ1;1Þ. Indices onMðdþ2Þ can be raised
and lowered by GMN, and those on Rðdþ1;1Þ by ηAB. Indices
on Mðdþ2Þ and Rðdþ1;1Þ can also be interchanged using the
EA

M. The vielbein has ðdþ 2Þ2 components out of which
1
2
ðdþ 2Þðdþ 3Þ are taken away by Eq. (2.2). The remaining

1
2
ðdþ 1Þðdþ 2Þ components can be fixed by introducing an

additional SOðdþ 1; 1Þ symmetry in the definition of the
vielbein: EA

M ∼OA
BEB

M. Hence EA
M modded by diffeo-

morphisms and SOðdþ 1; 1Þ has the same physical

information as GMN modded with only diffeomorphisms.
We also define a spin connection for fields living inRðdþ1;1Þ,

CA
B ¼ CA

MBdxM ¼ EB
SðEA

RΓR
MS − ∂MEA

SÞdxM; ð2:3Þ

which has the same information as ΓR
MS. So finally our

system can be described by the trio fEA
M;CA

MB; AMg
modded by diffeomorphisms, flavor transformations, and
SOðdþ 1; 1Þ rotations denoted by infinitesimal parameters,

ψξ ¼ fξM∂M; ½ΛΣðξÞ�AB;ΛðξÞg ∈ TMðdþ2Þ

× soðdþ 1; 1Þ × g: ð2:4Þ

Here soðdþ 1; 1Þ denotes the Lie algebra of SOðdþ 1; 1Þ.
ψξ is given a Lie algebra structure by defining a commutator
on it,

ψ ½ξ1;ξ2� ¼ ½ψξ1 ;ψξ2 � ¼ δξ1ψξ2 ¼ −δξ2ψξ1 ; ð2:5Þ

where

δξ1ξ2 ¼ £ξ1ξ2 ¼ −£ξ2ξ1 ¼ −δξ2ξ1;

δξ1 ½ΛΣðξ2Þ�AB ¼ £ξ1 ½ΛΣðξ2Þ�AB þ ½ΛΣðξ2Þ�AC½ΛΣðξ1Þ�CB

− ½ΛΣðξ1Þ�AC½ΛΣðξ2Þ�CB − £ξ2 ½ΛΣðξ1Þ�AB
¼ −δξ2 ½ΛΣðξ1Þ�AB;

δξ1Λðξ2Þ ¼ £ξ1Λðξ2Þ þ ½Λðξ2Þ;Λðξ1Þ� − £ξ2Λðξ1Þ

¼ −δξ2Λðξ1Þ: ð2:6Þ

Similarly, the action of ψξ (denoted by δξ) on an arbitrary
field φ (all indices suppressed) obeys an algebra:
½δξ1 ; δξ2 �φ ¼ δ½ξ1;ξ2�φ. Under the action of ψξ, constituent
fields vary as

δξEA
M ¼ £ξEA

M − ½ΛΣðξÞ�ABEB
M

¼ ∇Mξ
A þ ξNTA

NM − ½νΣðξÞ�ABEB
M;

δξCA
MB ¼ £ξCA

MB þ∇M½ΛΣðξÞ�AB
¼ ∇M½νΣðξÞ�AB þ ξNRNM

A
B;

δξAM ¼ £ξAM þ∇MΛðξÞ ¼ ∇MνðξÞ þ ξNFNM; ð2:7Þ

where ξA ¼ EA
Mξ

M and £ξ denotes the Lie derivative along
ξM. The covariant derivative ∇M is associated with all the
connections ΓR

MS, CA
MB, AM, which acts on a general field

φR
S
A
B transforming in the adjoint representation of the flavor

group as

∇Mφ
R
S
A
B ¼ ∂Mφ

R
S
A
B þ ΓR

MNφ
N
S
A
B − ΓN

MSφ
R
N
A
B

þ CA
MCφ

R
S
C
B − CC

MBφ
R
S
A
C þ ½AM;φR

S
A
B�;

ð2:8Þ
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and similarly on higher-rank objects. In Eq. (2.7) we have
defined14

Scaled flavor chemical potential∶ νðξÞ ¼ ΛðξÞ þ ξNAN;

Scaled spin chemical potential∶ ½νΣðξÞ�AB ¼ ½ΛΣðξÞ�AB
þ ξNCA

NB;

ð2:9Þ

associated with ψξ. One can check that, despite appearing
noncovariant, these scaled chemical potentials transform
covariantly under the action of ψξ. We have also defined
curvatures of all the constituent fields,

Gauge Field Strength∶F¼ dAþA∧A¼ 1

2
FMNdxM ∧ dxN;

Spacetime Curvature∶RA
B ¼ dCA

BþCA
C ∧CC

B

¼ 1

2
RMN

A
BdxM ∧ dxN;

Spacetime Torsion∶TA ¼ dEAþCA
B ∧EB

¼ 1

2
TA

MNdxM ∧ dxN: ð2:10Þ

One can check that all these quantities also transform
covariantly under the action of ψξ. It is interesting to
note that CA

MB transforms as a soðdþ 1; 1Þ-valued gauge
field. In terms of torsion it is possible to give an exact
expression for the connections, which we note for
completeness:

ΓR
MS ¼

1

2
GRNð∂MGNS þ ∂SGNM − ∂NGMS þ TNMS

− TMSN − TSMNÞ;

CA
MB ¼ 1

2
ηBDE½DjS½2ð2∂ ½SEA�

M� − TA�
SMÞ

þ ECMEA�Nð2∂ ½SEC
N� − TC

SNÞ�: ð2:11Þ

A physical theory onMðdþ2Þ can be described by a partition
function W½EA

M; CA
MB; AM� which is a functional of the

vielbein and connections. Under an infinitesimal variation of
the sources its response is captured by

δW ¼
Z

fdxMg
ffiffiffiffiffiffiffi
jGj

p
ðTM

AδEA
M þ ΣMA

BδCB
MA

þ JM · δAMÞ; ð2:12Þ

whereX · Y ¼ Tr½XY� forX; Y ∈ g is the inner product on g.
TMA is the canonical energy-momentum tensor, ΣMAB is the
spin current (antisymmetric in its last two indices), and JM is
the charge current. Demanding the partition function to be
invariant under the action of ψξ, we can find the Ward
identities15 related to these currents,

̲ ∇̲MTM
N ¼ TB

NMTM
B þ RNM

A
BΣMB

A þ FNM · JM;

̲ ∇̲MΣMAB ¼ T ½BA�;

̲ ∇̲MJM ¼ 0: ð2:13Þ

Here̲∇̲M ¼ ∇M − TN
NM has been introduced for brevity.

B. Null backgrounds

We are now ready to define null backgrounds. These
kinds of backgrounds and their Galilean interpretation
goes back to Refs. [9,12,28,48]. The idea of null back-
grounds is to somewhat tweak the procedure, so that we not
only get the correct symmetries, but also reproduce the
required background field content after reduction. As we
shall show, this even allows us to add anomalies in odd-
dimensional null backgrounds which naively does not look
possible.
We will call ψξ a compatible symmetry data if the scaled

chemical potentials associated with it defined in Eq. (2.9) are
identically zero. Now, a manifold Mðdþ2Þ along with fields
fEA

M; CA
MB; AMgwill be called a null background (or more

formally a compatible Bargmann structure) if it admits a
covariantly constant compatible null isometry generated by
ψV ¼ fVM∂M; ½ΛΣðVÞ�AB;ΛðVÞg, i.e.,

1. the action of ψV is an isometry, δVEA
M ¼

δVCA
MB ¼ δVAM ¼ 0;

2. V is null, VMVM ¼ 0;
3. V is covariantly constant, ∇MVN ¼ 0; and
4. ψV is compatible,νðVÞ¼VMAMþΛðVÞ¼0, ½νΣðVÞ�AB¼

VMCA
MBþ½ΛΣðVÞ�AB¼0.

Although this definition of null backgrounds is a little
different from that in Ref. [34], one can check that it
boils down to the same thing in the torsionless limit.
If we drop condition (4), i.e., compatibility, we would
be left with the definition of Bargmann structures [9]

14By scaled we mean scaled with temperature: νðξÞ ¼ μðξÞ=ϑðξÞ,
where μðξÞ is the chemical potential and ϑðξÞ is the temperature.
Note that at this point these quantities are just introduced for
computational convenience, and they will get a physical meaning
only in the presence of preferred symmetry data, e.g., when
spacetime admits an isometry.

15Note that we can use the spin Ward identity to eliminate the
antisymmetric part of the canonical EM tensor in the
EM conservation equation. Doing this is particularly helpful
in torsionless theories where the new EM conservation
becomes ∇MTMN

ðbÞ ¼ FNM · JM. Here we have defined the
symmetric Belinfante energy-momentum tensor, TMN

ðbÞ ¼ TðMNÞþ
2∇RΣðMNÞR. In this work, however, we will mostly talk in terms
of the canonical EM tensor as this is the Noether charge
corresponding to translations. Also, it is well known that
gravitational anomalies do not affect the canonical EM
conservation [47].
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extended to the vielbein formalism. They have some nice
properties:

TA
MNVA ¼HMN ≡2∂ ½MVN�; RMN

A
BVA ¼ 0: ð2:14Þ

Hence, if we are interested in a torsionless theory, we would
have to apply a constraint on V, which can be violated off
shell. The requirement of compatibility further imposes

VMTA
MN ¼VMFMN ¼VMRMN

A
B ¼ 0; VM∇Mφ¼ δVφ

ð2:15Þ

for any tensor φ transforming in an appropriate representa-
tion of g and soðdþ 1; 1Þ (all indices suppressed). These
restrictions are in some sense the backbone of the null
background construction. First and foremost, they eliminate
the unphysical mass sources that would otherwise appear in
the mass conservation law after reduction. Hints of it were
originally found in Ref. [32] in an attempt at naive null
reduction of charged fluids.Wewill havemore to say about it
later. As we shall see, these restrictions also allow for
anomalies in the odd-dimensional null backgrounds and
forbid them in even-dimensional ones. This is an important
feature, if we are to reproduce physically realizable anoma-
lies in Galilean theories in one lower dimension.
We demand that physical theories on null backgrounds

(referred to as null theories) are not invariant under the
action of any arbitrary ψξ but only those which leave ψV
invariant, i.e., ½ψV;ψξ� ¼ 0. This requirement ensures that
there is no dynamics along the isometry even off shell. The
new partition function variation can be written following
Eq. (2.12) as

δW ¼
Z

fdxMg
ffiffiffiffiffiffiffi
jGj

p
ðTM

AδEA
M þ ΣMA

BδCB
MA

þ JM · δAM þ #AδVAÞ: ð2:16Þ
Note the last term in this expression, which is valid since our
restriction does not forbid us from varying VA. The astute
reader might note that we could have absorbed that term into
TMA owing to the fact that δVM ¼ 0, but we have a better
setup in mind. The conditions of a null background along
with the restrictions we have imposed imply that the null
theories are invariant under the following set of current
redefinitions:

TMA → TMA þ VMθA1 ;

ΣMAB → ΣMAB þ VMθAB2 ;

JM → JM þ θ3VM; ð2:17Þ
#A → #A − θA1 þ θ4VA; ð2:18Þ

where the θ’s are arbitrary scalars transforming in appropriate
representations of g and soðdþ 1; 1Þ. TheWard identities on

null backgrounds will also be slightly modified compared to
Eq. (2.13),16

̲ ∇̲MTM
N ¼ TB

NMTM
B þ RNM

A
BΣMB

A þ FNM · JM;

̲ ∇̲MΣMAB ¼ T ½BA� þ #½AVB�;

̲ ∇̲MJM ¼ 0: ð2:19Þ
One can check that these equations are invariant under
the redefinitions (2.17). To interpret the new #A term, note
that the spin (angular momentum) conservation consists of
1
2
ðdþ 1Þðdþ 2Þ equations. However, as was pointed out in

the Introduction, after reduction the system only respects
1
2
dðd − 1Þ equations corresponding to rotations and d equa-

tions corresponding to Galilean boosts. The job of #A is then
to eliminate the remaining (dþ 1) conservation equations.
Practically, it is best to fix an “off-shell gauge” δVA ¼ 0,
which renders a new invariance in the spin current,

ΣMAB → ΣMAB þ θM½A
5 VB�; ð2:20Þ

and omits the remaining (dþ 1) components of the spin
conservation. Note that it will further restrict ψξ to obey
½νΣðξÞ�ABVB ¼ 0. From this point onwardwewill assume that
every symmetry data ψξ satisfies these requirements, and will
term them ψV compatible symmetry data. From this view-
point, the spin conservation in Eq. (2.19) must be true for
some #M, hence ruling out components involving #M as they
carry no information.
On null backgrounds, by using ψV we can also define

some more “thermodynamic” variables associated with ψξ

similar to Eq. (2.9),

Temperature∶ ϑðξÞ ¼ −
1

ξNVN
;

Scaled mass chemical potential∶ ϖðξÞ ¼ −
ξMξM
2ξNVN

;

ð2:21Þ
and by using it we can define chemical potentials from
scaled chemical potentials,

μðξÞ ¼ ϑðξÞνðξÞ;

½μΣðξÞ�AB ¼ ϑðξÞ½νΣðξÞ�AB;
μϖðξÞ ¼ ϑðξÞϖðξÞ: ð2:22Þ

These abstract definitions will be useful later.

16Following footnote 15, one might wonder what the respec-
tive Belinfante EM conservation law looks like for null
theories. Similar to the non-null case, one can use the spin
conservation in the EM conservation law, which will give
∇MðTMN

ðbÞ − #½NVM�Þ ¼ FNM · JM. One can show that the #M

dependence can be removed by using the TMA redefinition
(2.17), after which one recovers the standard Belinfante con-
servation law (given in footnote 15) even for null theories. The
Belinfante EM tensor, on the other hand, is left with redefinition
freedom, TMN

ðbÞ → TMN
ðbÞ þ θ1VMVN . These were derived directly

for a spinless null theory in Ref. [35].
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C. Null reduction—Newton-Cartan backgrounds

Having obtained the Ward identities in the null back-
ground language, it is now time to see what they imply for
the Galilean theories. To do this we need to pick up a
foliationMðdþ2Þ ¼ S1V ×MNC

ðdþ1Þ and compactify along the
isometry direction V. Following Ref. [34], we note that
since V is null, it is not possible to find a unique such
foliation without choosing a set of ψV compatible time
data, ψT ¼ fTM∂M; ½ΛΣðTÞ�AB;ΛðTÞg. This is tantamount to
choosing a preferred Galilean frame of reference.17 Having
chosen ψT , we can define such a foliation as Mðdþ2Þ ¼
S1V ×RT ×MT

ðdÞ, where we identifyM
NC
ðdþ1Þ ¼ RT ×MT

ðdÞ
as a degenerate Newton-Cartan manifold. We define null
reduction as this choice of foliation and subsequent
compactification.
Newton-Cartan structure: Null reduction of a generic

torsional relativistic spacetime in the metric-like formu-
lation was first performed in Ref. [49,50]. Here we add to
their results a non-Abelian gauge field and present them in
the vielbein formalism. Using ψT we can define a null field
orthonormal to V as

VM
ðTÞ ¼ ϑðTÞTM þ μϖðTÞVM; ð2:23Þ

such that VM
ðTÞVðTÞM ¼ 0, and VM

ðTÞVM ¼ −1. Here ϑðTÞ,
μϖðTÞ have been defined in Eqs. (2.21) and (2.22). Without
loss of generality we choose a basis on Mðdþ2Þ, xM ¼
fx∼; xμg such that ψV ¼ f∂∼; 0; 0g. On the other hand, on
Rðdþ1;1Þ we choose a basis xA ¼ fx−; xþ; xag such that V ¼
∂− and VðTÞ ¼ ∂þ. At this stage we choose a specific
representation of ηAB, EA

M, and EA
M that is compatible

with the mentioned basis,

ηAB¼

0
B@

0 −1 0

−1 0 0

0 0 δab

1
CA; EA

M¼

0
B@
1 −Bμ

0 nμ
0 eaμ

1
CA;

EA
M¼

0
B@

1 0

Bνvν vμ

Bνeaν eaμ

1
CA; ð2:24Þ

such that

nμvμ ¼ 1; eaμnμ ¼ 0; eaμvμ ¼ 0;

eaμebμ ¼ δab; vμnν þ eaμeaν ¼ δμν: ð2:25Þ
This can be identified as the Newton-Cartan structure. We
can also define the NC degenerate metric by

hμν ¼ eaμebνδab; hμν ¼ eaμebνδab: ð2:26Þ

Since there is no nondegenerate metric on MNC
ðdþ1Þ, the

raising/lowering of μ; ν… indices is not permitted.
However, a; b… indices can be raised/lowered using δab.
The NC vielbein eaμ is not a “square matrix” and hence
does not furnish an invertible map between tensors on
MNC

ðdþ1Þ and R
ðdÞ. However it can be used to project tensors

on MNC
ðdþ1Þ to tensors on RðdÞ, and tensors on RðdÞ to

“spatial tensors” on MNC
ðdþ1Þ,

eaμXμ ¼ Xa; eaμYμ ¼ Ya;

Xaeaμ ¼ hμνXν; Yaeaμ ¼ hνμYν; ð2:27Þ

where hμν ¼ hμρhσν. The compatibility of null isometry
switches off many components of the connections: ΓM

∼N ,
ΓM
μ∼, CA

∼B, CA
μ−, Cþ

μB, and A∼. The remaining nonzero
components can be determined to be

C−
μa ¼ cμa; Ca

μþ ¼ cμa; Γ∼
μν ¼ cμν − ~∇μBν;

Γλ
μν ¼ vλ∂μnν þ

1

2
hλσð∂μhσν þ ∂νhσμ − ∂σhμνÞ

þ nðμΩνÞσhλσ þ
1

2
ðeaλTa

μν − 2eaðνTa
μÞσhλσÞ;

Ca
μb ¼

1

2
nμΩb

a þ 1

2
ηbde½djν½2ð2∂ ½νe

a�
μ� − Ta�

νμÞ
þ ecμea�σð2∂ ½νecσ� − Tc

νσÞ�: ð2:28Þ

Here we have defined the spacetime dependence of the
frame velocity cμν ¼ hσν ~∇μvσ in terms of which frame
vorticity is given by Ωμν ¼ 2c½μν�. We say that a time data
(reference frame) ψT is globally inertial if cμν ¼ 0. We
choose the connections onMNC

ðdþ1Þ to be Γ
λ
μν, Ca

μb, and Aμ,

and denote the associated covariant derivative by ~∇μ, acting
on a general field φρ

σ
a
b transforming in the adjoint

representation of the flavor group as

~∇μφ
ρ
σ
a
b¼∂μφ

ρ
σ
a
bþΓρ

μνφ
ν
σ
a
b−Γν

μσφ
ρ
ν
a
bþCa

μcφ
ρ
σ
c
b

−Cc
μbφ

ρ
σ
a
cþ½Aμ;φρ

σ
a
b�; ð2:29Þ

and similarly on higher-rank objects. The action of ~∇μ on
the NC structure can be found to be

~∇μnν ¼ 0; ~∇μeaν ¼ 0; ~∇μhρσ ¼ 0;

~∇μhνρ ¼ −2cμðνnρÞ; ~∇μeaν ¼ −nνcμa: ð2:30Þ

One can check that ~∇μ;Γλ
μν agrees with the most generic

NC covariant derivative and connection written down in
Ref. [17]. One can also perform the reduction of curvatures.
The surviving components of the gauge field strength are

17The authors of Ref. [17] proposed a formalism for Galilean
theories independent of the choice of frame. But on a closer look
it would be clear that they just discovered null backgrounds from
a different perspective. The Ward identities as described in
Ref. [17] are just the null background Ward identities with a
slight rearrangement; we give a comparison in Appendix B.
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Fμν which act as the NC gauge field strength. Similarly, the
surviving components of the torsion are the spatial torsion
Ta

μν, “mass torsion” Tþμν ¼ −T−
μν, and temporal torsion

Hμν ¼ −Tþ
μν. Finally, we have the surviving components of

the curvature,

Rμν
a
þ ¼ 2∂ ½μcν�a þ 2Ca½μjbcν�b;

Rμν
a
b ¼ 2∂ ½μCa

ν�b þ 2Ca½μjcCc
ν�b; ð2:31Þ

which act as the NC temporal and spatial curvatures,
respectively. Both curvatures can also be combined into
a full NC curvature,

Rμν
ρ
σ ¼ eaρðRμν

a
þnσ þ Rμν

a
be

b
σÞ: ð2:32Þ

We define the raised NC volume element,

εμν…↑ ¼ VMϵ
Mμν… ¼ −ϵ−μν…: ð2:33Þ

Again, since the volume element is defined with all indices
up, and there is no lowering operation, the corresponding
Hodge dual �↑ gives a map from differential forms to
completely antisymmetric contravariant tensor fields. It is
also possible to define a lowered volume element, but we
would not require it for our purposes. More details on NC
volume forms and Hodge duals can be found in Appendix C.

Conserved currents and Ward identities: Now we need
to decompose the currents in this basis,

TM
A ¼

�
× × ×

−ρμ −ϵμ pμ
a

�
; JM ¼

�
×

jμ

�
;

Σ∼AB ¼ ×; ΣμAB ¼

0
B@

0 × ×

× 0 τμb

× −τμa σμab

1
CA: ð2:34Þ

Here we have denoted unphysical components by × which
can be eliminated using the redefinitions (2.17) and (2.20).
We identify ρμ as the mass current, ϵμ as the energy current,
pμa as the momentum current, τμa as the temporal spin
current, σμab as the spatial spin current, and finally jμ as the
charge current. We can also project the μ index in these
currents onto RðdÞ to get the corresponding “spatial
currents.” On the other hand, we define various densities
as the projection of these currents along nμ,

ρ ¼ nμρμ; ϵ ¼ nμϵμ; pa ¼ nμpμa;

τa ¼ nμτμa; σab ¼ nμσμab; q ¼ nμjμ: ð2:35Þ
In terms of these, the physical components of the Ward
identities (2.19) can be expressed as

Mass Cons ðContinuityÞ∶̲ ̲~∇μρ
μ ¼ 0;

Energy Cons ðTimeTranslationÞ∶̲ ̲~∇μϵ
μ ¼ ½power� − pμacμa;

Momentum Cons ðTranslationsÞ∶̲ ̲~∇μpμ
a ¼ ½force�a − ρμcμa;

Temporal Spin Cons ðGalilean BoostsÞ∶̲ ̲~∇μτ
μ
a ¼

1

2
ðρa − paÞ;

Spatial Spin Cons ðRotationsÞ∶̲̲~∇μσ
μab ¼ p½ba� þ 2τμ½acμb�;

Charge Cons ðFlavor TransformationsÞ∶̲ ̲~∇μjμ ¼ 0; ð2:36Þ

where ̲ ̲~∇μ ¼ ~∇μ þ vνHνμ − eaνTa
νμ. These are the (non-

anomalous) conservation laws of a Galilean theory with
spin current. The conserved quantities have been men-
tioned above (and the underlying symmetry). The temporal
conservation equation, which is slightly less familiar, is
akin to the Milne boost Ward identity of the torsionless
case, which states that the spatial mass current must be
equal to the momentum density (look, e.g., at Ref. [14] and
follow references therein). Here [power] and ½force�a are
power and force densities due to background fields,

½power� ¼ −vνðHνμϵ
μ þ Tþνμρ

μ þ Ta
νμpμ

a þ Rμν
a
þτ

μ
a

þ Rνμabσ
μba þ Fνμ · jμÞ;

½force�a ¼ eaνðHνμϵ
μ þ Tþνμρ

μ þ Ta
νμpμ

a þ Rμν
a
þτ

μ
a

þ Rνμabσ
μba þ Fνμ · jμÞ; ð2:37Þ

which act as the energy and momentum sources, respec-
tively. The terms coupling to cμa in Eq. (2.36) are due to the
fact that the chosen Galilean frame (time data) is not
globally inertial and hence causes pseudopower, pseudo-
force, and pseudotorque.
One could have taken a slightly different approach to get

these Ward identities and performed null reduction at the
level of the partition function (2.16) itself,

δW ¼
Z

fdxμg
ffiffiffiffiffi
jγj

p
ðρμδBμ − ϵμδnμ þ pμ

aδeaμ þ 2τμaδcμa

þ σμabδCb
μa þ jμ · δAμÞ; ð2:38Þ

where γμν ¼ hμν þ nμnν and γ ¼ det γμν ¼ −G. The sym-
metry data ψξ breaks up in the NC basis as
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ψNC
ξ ¼ fΛMðξÞ ≡ −ξ∼; ξμ; ½ΛτðξÞ�a ≡ ½ΛΣðξÞ�−a;

½ΛσðξÞ�ab ≡ ½ΛΣðξÞ�ab; ΛðξÞg: ð2:39Þ

The variation of various constituent fields under the action
of ψNC

ξ (also denoted as δξ) can be obtained via null

reduction,18

δξBμ ¼ £ξBμþ∂μΛMðξÞ þ ½ΛτðξÞ�aeaμ
¼ ∂μνMðξÞ þξνTþνμ−ξνcμνþ½ντðξÞ�aeaμ;

δξnμ ¼ £ξnμ ¼ ∂μξ
þ−ξνHνμ;

δξeaμ ¼ £ξeaμ− ½ΛσðξÞ�abebμ− ½ΛτðξÞ�anμ
¼ ~∇μξ

aþξþcμaþξνTa
νμ

− ½νσðξÞ�abebμ− ½ντðξÞ�anμ;
δξcμa¼ £ξcμaþð∂μ½ΛτðξÞ�a−Cb

μa½ΛτðξÞ�bÞþ ½ΛσðξÞ�bacμb
¼ ~∇μ½ντðξÞ�aþ½νσðξÞ�bacμb−ξνRνμþa;

δξCa
μb¼ £ξCa

μbþð∂μ½ΛσðξÞ�abþCa
μc½ΛσðξÞ�cb

−Cc
μb½ΛσðξÞ�acÞ¼ ~∇μ½νσðξÞ�abþξνRνμ

a
b;

δξAμ ¼ £ξAμþ∂μΛðξÞ þ ½Aμ;ΛðξÞ�
¼ ~∇μνðξÞ þξνFνμ: ð2:40Þ

Looking at these expressions we can identify ΛMðξÞ as the
continuity parameter, ξμ as the spacetime translation
parameter, ½ΛτðξÞ�a as the Galilean boost parameter,
½ΛσðξÞ�ab as the rotation parameter, and ΛðξÞ as the flavor

parameter. It is further noteworthy that ξþ ¼ nμξμ and ξa ¼
eaμξμ serve as time translation and space translation
parameters, respectively. Demanding the invariance of
Eq. (2.38) under all of these parameters, one can recover
the Ward identities (2.36). One can compare these results to
those of Ref. [17].
In the first equation of Eq. (2.40) we have defined the

scaled total mass chemical potential associated with ψξ as
νMðξÞ ¼ ΛMðξÞ þ ξμBμ ¼ ξMVðTÞM. It differs from the scaled

mass chemical potential ϖðξÞ defined in Eq. (2.21) by a

“kinetic” part, νMðξÞ ¼ ϖðξÞ − 1
2ϑðξÞ

Va
ðξÞVðξÞa. Following

Eq. (2.22) we can also define the total mass chemical
potential as μMðξÞ ¼ ϑðξÞνMðξÞ ¼ μϖðξÞ − 1

2
Va
ðξÞVðξÞa.

19

Wewould like to note that mass, being exactly conserved,
is a consequence of compatibility. Otherwise the respective
conservation equation would look something like

−̲̲~∇μρ
μ ¼ TA

∼MTM
A þ R∼M

A
BΣMB

A þ F∼M · JM

¼ TM
AðEB

M½νΣðVÞ�AB − EA
N∇MVNÞ

− ΣMB
A∇M½νΣðVÞ�AB − JM · ~∇MνðVÞ: ð2:42Þ

One can clearly see that ∇MVN , ½νΣðVÞ�AB, and νðVÞ source
this conservation. One of the prime reasons for imposing
compatibility is to get rid of these mass sources.
Comparing our analysis to the torsionless case of Ref. [34],

one would note that the authors there also imposed a
“T-redefinition” invariance in the theory, which leads to a
Galilean boost transformation upon reduction. Note that on
defining ψμ¼½ΛτðξÞ�aeaμ, our Galilean boost transformation,

δξjψBμ¼ψμ; δξjψvμ¼ψμ; δξjψhμν¼−2ψ ðμnνÞ; ð2:43Þ

boils down to the (infinitesimal) T-redefinition transforma-
tion of Ref. [34]. Hence for us imposing the T redefinition is
redundant. Actually, even in Ref. [34], imposing the T
redefinition was redundant, as the authors noted that the
corresponding Ward identity is trivially satisfied for theories
obtained bynull reduction. Itwas helpful however to have this
transformation there, because Galilean currents are not boost
invariant and therewas no nontrivial inherent symmetry of the
partition function to keep track of these transformations. It is
worth noting that the Galilean boost transformation (2.43) is
same as the “Milne boost” transformation [11] encountered in
the metric-like formulation of Newton-Cartan backgrounds.

III. GALILEAN FLAVOR AND
SPIN ANOMALIES

In the previous section we used null reduction to obtain
Ward identities for a Galilean theory with a nontrivial spin

18Note that fixing VM or VA is not a “gauge fixing,” as
transformations shifting these are not part of our symmetries on
null backgrounds. On the other hand, fixing V̄A

ðTÞ is a gauge fixing
which can be violated off shell. If we fix this gauge even off shell
we would miss the corresponding temporal spin conservation
equation.

19Although we will not be using it in this work, it is interesting
to differentiate two types of mass chemical potentials. Consider
that our system has a preferred symmetry data ψU . Naively μϖ
corresponds to the first law of thermodynamics written in terms of
the internal energy E, while μM corresponds to the first law in
terms of the total energy Etot ¼ Eþ 1

2
Ruaua (where ua ¼ V̄a

ðUÞ;
subscripts ðUÞ have been dropped),

dE ¼ ϑdSþ μϖdRþ ½μΣ�BAd½QΣ�AB þ μ · dQ;

dEtot ¼ ϑdSþ μMdRþ uadðRuaÞ þ ½μΣ�BAd½QΣ�AB þ μ · dQ·

ð2:41Þ
When working with the total energy as a thermodynamic
variable, the thermodynamics becomes frame dependent and
the first law has a term corresponding to the work done due to the
momentum density Rua as well. The notation used here can be
found in Ref. [34].
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current. Now we would like to take this a step ahead and
ask, how are these identities modified in the presence of
flavor and gravitational anomalies? We will give away the
suspense right away, because the following story is quite
technical. As one would expect, the flavor anomaly in
null theory translates to the flavor anomaly in Galilean
theory as well, while the gravitational anomaly manifests
itself purely through the spatial spin conservation. The
other four of the six conservation laws in Eq. (2.36)
remain nonanomalous. In the formulation of anomalies in
Cartan language it is not surprising; it is known that the
gravitational anomaly acts as a Lorentz anomaly in this
formalism and only violates the spin conservation [47].
What is surprising is that we did not find any anomalies in
the temporal spin conservation (or correspondingly the
Milne boost Ward identity). We do not claim that this
anomaly cannot be introduced by other means or that we
are not missing anything, but the fact that the number of
anomaly coefficients in our treatment and that of a
relativistic theory match exactly (in fact, they both are
determined by the same anomaly polynomial) gives us
some confidence in our results.

A. Anomaly inflow on Einstein-Cartan
backgrounds

In relativistic theories anomaly inflow has been by far
the most efficient way to understand flavor and gravita-
tional anomalies [51]. We would like to take a step back
and first describe the anomaly inflow mechanism for
generic Einstein-Cartan theories. The extension to null
theories will then be more transparent and straightfor-
ward. A good discussion on anomaly inflow for torsion-
less relativistic theories can be found in Sec. II of
Ref. [52]. We consider that our manifold of interest
Mðdþ2Þ lives on the boundary of a bulk manifold
Bðdþ3Þ. Bulk coordinates are denoted with a bar, and

we choose a basis xM ¼ fx⊥; xMg, where x⊥ corresponds

to depth into the bulk. All of the field content EA
M, AM,

CA
MB is extended down into the bulk with the

requirement that all ⊥ components vanish at the
boundary.
Now we keep our theory of interest on Mðdþ2Þ, whose

generating functional WM is not necessarily invariant
under the symmetries of the theory, i.e., it is anomalous.
In the bulk we keep some theory with the generating
functional WB, which is invariant under all the sym-
metries up to some nontrivial boundary terms. The full
theory described by W ¼ WM þWB is assumed to be
invariant under all the symmetries. It is actually this
nontrivial boundary term in WB which induces the
anomaly in the boundary theory, hence the name
anomaly inflow. Note that in the absence of anomalies
WB ¼ 0 ⇒ W ¼ WM which was discussed in the last

section. Let us assume for now that we have figured
out such a WB, and parametrize its infinitesimal
variation as20

δWB ¼
Z

fdxMg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jGðdþ3Þj

q
ðTMA

H δEAM þ ΣMAB
H δCBMA

þ JMH · δAMÞ þ
Z

fdxMg
ffiffiffiffiffiffiffi
jGj

p
ðTMA

BZ δEAM

þ ΣMAB
BZ δCBMA þ JMBZ · δAMÞ: ð3:1Þ

It is generally known that WB is topological and hence
does not depend on the metric/vielbein, but we keep it
here just for the sense of generality; we will see that the
respective terms vanish when we put in the allowed
expression for WB. The Hall currents in the bulk must be
manifestly symmetry covariant by the definition of WB.
The boundary Bardeen-Zumino currents on the other
hand are symmetry noncovariant. The variation of WM
will generate the consistent currents which due to the
anomaly are not symmetry covariant either,

δWM ¼
Z

fdxMg
ffiffiffiffiffiffiffi
jGj

p
ðTMA

consδEAM þ ΣMAB
cons δCBMA

þ JMcons · δAMÞ: ð3:2Þ

Since the full partition function W should be symmetry
invariant, we can read off the symmetry-covariant, covar-
iant currents in the boundary,

TMA ¼ TMA
cons þ TMA

BZ ; ΣMAB ¼ ΣMAB
cons þ ΣMAB

BZ ;

JM ¼ JMcons þ JMBZ: ð3:3Þ

By demanding that W is invariant under all symmetries of
the theory, we will get the anomalous Ward identities for
these currents,

̲ ∇̲MTM
N ¼TA

NMTM
AþRNM

A
BΣMB

AþFNM ·JMþT⊥
H N;

̲ ∇̲MΣMAB ¼T ½BA� þΣ⊥AB
H ;

̲ ∇̲MJM ¼ J⊥H : ð3:4Þ

We verify that the bulk Hall currents source the anomaly
in the boundary theory. Note that the gravitational
anomaly purely manifests itself as a Lorentz anomaly
in the spin conservation equation. On the other hand, the
Hall currents themselves must satisfy the nonanomalous
Ward identities (2.13) in the bulk, which will be trivial if
WB is chosen properly. Now depending on the field
content of the theory one will have to construct the most
generic allowed WB and read off the Hall currents from

20Note that SOðdþ 1; 1Þ transformations leave the flat metric
ηAB invariant, and hence it can commute freely through variations.
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there. This would determine the most generic anomalies
that can occur in the respective theory which can be
modeled using the anomaly inflow mechanism. In the
notation of differential forms WB is given by the
integration of a full rank form Iðdþ3Þ,

WB ¼
Z
Bðdþ3Þ

Iðdþ3Þ: ð3:5Þ

The requirement that its variation should be symmetry
invariant up to a boundary term can be recast into the
requirement that Pðdþ4Þ ¼ dIðdþ3Þ should be symmetry
invariant. Pðdþ4Þ is called the anomaly polynomial, which
encodes all the nontrivial information about the anomaly.
It is evident that Pðdþ4Þ needs to be closed, symmetry
invariant, and should not be expressible as the exterior
derivative of a symmetry-invariant form. For example, on
usual backgrounds (not null), Pð2nþ4Þ is given by the

Chern-Simons anomaly polynomial Pð2nþ4Þ
CS for even-

dimensional boundary theories, and no such term is

possible in odd dimensions. Pð2nþ4Þ
CS is a “polynomial”

made out of Chern classes of F and Pontryagin classes of
R. See, e.g., Ref. [52] for more details.

B. Anomaly inflow on null/Newton-Cartan
backgrounds

Now we come back to our case of interest: null back-
grounds. We follow the above procedure, except that the
bulk Bðdþ3Þ is now required to possess a compatible null
isometry ψV, which translates itself to a compatible null
isometry on the boundary Mðdþ2Þ since all the ⊥ compo-
nents vanish. The variation of WB in Eq. (3.1) remains
unchanged under a ψV compatible variation, except that all
the currents now follow the redefinitions specified in
Eqs. (2.17) and (2.20). Consequently, we can find the
anomalous Ward identities for null backgrounds,

̲ ∇̲MTM
N ¼TA

NMTM
AþRNM

A
BΣMB

AþFNM ·JMþT⊥
HN;

̲ ∇̲MΣMAB¼T ½BA� þΣ⊥AB
H þ#½AVB�;

̲ ∇̲MJM¼ J⊥H; ð3:6Þ

for some #M. These are the same as the non-null Ward
identities except that, just like the nonanomalous case,
some components of the spin current conservation have
been discarded using the spin current redefinition (2.20).
The physical components of these laws can be expressed
after reduction as anomalous Galilean conservation laws,

Mass Cons ðContinuityÞ∶̲ ̲~∇μρ
μ ¼ ρ⊥H ;

Energy Cons ðTime TranslationsÞ∶̲ ̲~∇μϵ
μ ¼ ½power� − pμacμa þ ε⊥H ;

Momentum Cons ðTranslationsÞ∶̲ ̲~∇μpμ
a ¼ ½force�a − ρμcμa þ p⊥Ha;

Temporal Spin Cons ðGalilean BoostsÞ∶̲ ̲~∇μτ
μa ¼ 1

2
ðρa − paÞ þ τ⊥a

H ;

Spatial Spin Cons ðRotationsÞ∶̲ ̲~∇μσ
μab ¼ p½ba� þ 2τμ½acμb� þ σ⊥ab

H ;

Charge Cons ðFlavor TransformationsÞ∶̲ ̲~∇μjμ ¼ j⊥H; ð3:7Þ

where we have decomposed the Hall currents as

T⊥
HA ¼

�
−ρ⊥H −ε⊥H p⊥

Ha

�
;

J⊥H ¼ j⊥H ;

Σ⊥AB
H ¼

0
BB@

0 × ×

× 0 τ⊥b
H

× −τ⊥a
H σ⊥ab

H

1
CCA: ð3:8Þ

We hence see that in principle the anomaly inflow can
destroy all the conservation laws. It is now the form of
Pðdþ4Þ which will determine how many of these anomalies
are permissible and in what number of dimensions.
On even-dimensional ðd ¼ 2nÞ null backgrounds the

allowed anomaly polynomial takes the usual Chern-Simons

structure of relativistic theories Pð2nþ4Þ ¼ Pð2nþ4Þ
CS , which

is made up of Chern classes of F and Pontryagin classes of
R. Note however that neither F nor R have a leg along V,

and hence Pð2nþ4Þ
CS is identically zero. The corresponding

ICS might still have a leg along V since ιVA; ιVCA
B ≠ 0 for a

general null theory. But one can check that the correspond-
ing⊥ components of the (dual) Hall currents again have no
leg along V and hence the Ward identities become non-
anomalous. This suggests that we cannot get anomalies
in an even-dimensional null theory, and hence odd-
dimensional Galilean theories are anomaly free.
At this point we would like to point out some subtle

differences from the analysis of Ref. [37]. In the cited
reference the author did not impose compatibility of the
isometry, and henceF,R do have a leg along V. This results
in anomalous conservation laws that crucially depend on
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νðVÞ, ½νΣðVÞ�AB—additional fields which are otherwise
switched off by compatibility. As we mentioned in the
Introduction, we have chosen to switch off these fields as
they serve as “mass sources” in the Galilean theory, and we
do not see these sources in the nonrelativistic theories that
occur in nature.
Now we shift our attention to the more interesting case of

odd-dimensional (d ¼ 2n − 1) null backgrounds. One can
check that with the field content at hand, it is not possible to
naively construct an anomaly polynomial. Following
Ref. [34], however, we note that we can remedy this
problem by introducing the auxiliary time data ψT that was
used to perform null reduction in Sec. II C. Using the
corresponding VðTÞ defined in Eq. (2.23), we can write the
only allowed anomaly polynomial,

Pð2nþ3Þ ¼ VðTÞ ∧ Pð2nþ2Þ
CS ; ð3:9Þ

where VðTÞ ¼ VðTÞMdxM. Although this expression has an
explicit dependence on ψT , one can show that it is invariant
under any arbitrary redefinition of ψT . This follows
from the fact that a change in VðTÞM does not have any
leg along V, due to the normalization property
δðVðTÞMVMÞ ¼ VMδVðTÞM ¼ 0. For this reason we drop
the subscript ðTÞ from VðTÞ from this point onward.
Readers should convince themselves that there are no more
terms which can be written in the anomaly polynomial.
However, we have a problem: the anomaly polynomial in
Eq. (3.9) is not exact,

Pð2nþ3Þ ¼ −dðV ∧ Ið2nþ1Þ
CS Þ þ dV ∧ Ið2nþ1Þ

CS : ð3:10Þ

Hence for Ið2nþ2Þ (and hence WB) to be well defined, the
second term must vanish. In general however it does not, as

Ið2nþ1Þ
CS can have a leg along V. In fact, it can be shown that

Ið2nþ1Þ
CS does not have a leg along V if and only if ψV is in the
transverse gauge, i.e.,

ΛðVÞ ¼ ½ΛΣðVÞ�AB ¼ 0: ð3:11Þ

Some comments are in order. Different choices of ψV
represent different null theories, as we are not allowed to
perform transformations which alter these (we demanded that
the partition function be invariant only under ψV-preserving
transformations). Hence this mechanism can only generate
anomalies in null theories with null isometry in transverse
gauge; otherwise, the last term in Eq. (3.10) will not vanish
and we would not be able to define a WB. Note that in
conventional null reduction, one generally chooses ψV ¼
f∂∼; 0; 0gwhichbychoice satisfies the transversality require-
ment. Modulo this subtlety, we can find

Ið2nþ2Þ ¼ −V ∧ Ið2nþ1Þ
CS : ð3:12Þ

Computing its variation, one can find the Hall and Bardeen-
Zumino currents defined in Eq. (3.1),

TMA
H ¼ 0; ⋆ð2nþ2ÞΣAB

H ¼ V ∧ ∂Pð2nþ2Þ
CS

∂RBA

;

⋆ð2nþ2ÞJH ¼ V ∧ ∂Pð2nþ2Þ
CS

∂F ; TMA
BZ ¼ 0;

⋆ΣAB
BZ ¼ V ∧ ∂Ið2nþ1Þ

CS

∂RBA
; ⋆JBZ ¼ −V ∧ ∂Ið2nþ1Þ

CS

∂F :

ð3:13Þ

We verify that TMA
H ; TMA

BZ vanish. It immediately follows that
the mass, energy, and momentum conservations are non-
anomalous. Also the (Milne) boost Ward identity stays
nonanomalous as the matrix indices of ΣMAB

H come from
RA

B which have a zero contraction along V. Again this
follows from the compatibility of the isometry, and is not true
for the considerations of Ref. [37], which is why they found a
Milne anomaly. These statements can be recast as

ρ⊥H ¼ ε⊥H ¼ p⊥a
H ¼ τ⊥a

H ¼ 0; ð3:14Þ

which follows directly fromnull reduction. Theonly laws that
become anomalous are hence the spin and charge conserva-
tion. Explicit expressions for their Hall currents follow from
reduction,

j⊥H ¼−�↑
�∂pð2nþ2Þ

∂F
�
; σ⊥ab

H ¼−�↑
�∂pð2nþ2Þ

∂Rba

�
: ð3:15Þ

Here we have formally denoted Pð2nþ2Þ
CS as pð2nþ2Þ after

reduction; the distinction is purely notational. �↑ is theHodge
dual associated with the raised Newton-Cartan volume
element ε↑; refer to Appendix C for more details. Putting
Eqs. (3.14) and (3.15) back into Eq. (2.36), we can get the
anomalous Ward identities for Galilean theories.
Before closing this section, we would like to make some

comments on the even-dimensional case. One might worry
that we can use ψT to define anomalies in even dimensions
as well. However one can check that the only possible
symmetry-covariant anomaly polynomial we can write
involving ψT is

Pð2nþ4Þ ¼ V ∧ V ∧ Pð2nþ2Þ
CS ; ð3:16Þ

where V ¼ VMdxM. This anomaly polynomial is however
not an exact form,

Pð2nþ4Þ ¼ dðV ∧ V ∧ Ið2nþ1Þ
CS Þ −H ∧ V ∧ Ið2nþ1Þ

CS

þ V ∧ dV ∧ Ið2nþ1Þ
CS : ð3:17Þ
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The last term can be removed just like before by going to
the transverse gauge, but the second to last term cannot. We
hence see that the current formalism does not allow for
anomalous even-dimensional null theories. From this point
onward we will assume that our null background is odd-
dimensional, and hence set d ¼ 2n − 1.
With this we conclude our discussion of generic anoma-

lous Galilean theories. Using the construction of null
backgrounds, we have found a set of conservation laws
which determine the dynamics of these theories in terms of
a set of currents. These laws have already been well
explored in the literature, but the fact that they follow
by trivially choosing a basis in a higher-dimensional null
theory is to be appreciated. Going along the lines of
Ref. [17], it appears to us that null backgrounds are the
true “covariant” and “frame-independent” formalism of
Galilean physics, which appear pretty naturally from a five-
dimensional perspective. We refer the reader to Appendix B
for more comments on these issues.
All of the results presented here are in the Newton-

Cartan notation, which is the natural covariant prescription
for Galilean physics. In Appendix Awe present some of our
results in the conventional noncovariant notation, for the
benefit of readers who are not comfortable with the
Newton-Cartan language. In addition, seeing the results
in noncovariant form might help us relate it better to
everyday physics, where we are used to viewing time and
space separately.

IV. ANOMALOUS GALILEAN HYDRODYNAMICS

In previous sections we have obtained the anomalous
conservation laws for a null/Galilean theory with a nonzero
spin current. Here we want to study these theories in the
hydrodynamic limit—the near-equilibrium effective descrip-
tion of any quantum system. Before going to that, let usmake
some general comments about the hydrodynamics on
Einstein-Cartan backgrounds. We start by picking up a
collection of hydrodynamic fields which can be exactly
solved for by using the equations of motion of the theory.
Since there is an equation of motion for each symmetry data,
we choose the hydrodynamic fields to be a set of symmetry
data21 ψU ¼ fUM; ½ΛΣ�AB;Λg. The fluid (hydrodynamic
system) is characterized by conserved currents TMA,
ΣMAB, JM written as the most generic tensors made out of
these hydrodynamic fields ψU and background sources EA

M,
CA
MB, AM, arranged in a derivative expansion. These are

known as the constitutive relations of the fluid. The near
equilibrium assumption of hydrodynamics implies that
derivatives of the quantities are small compared to the
quantities themselves, which allows for a proper truncation
of the derivative expansion. The dynamics of these

constitutive relations in turn is governed by the conservation
laws (3.4). These constitutive relations are further subjected
to the second law of thermodynamics, i.e., the requirement of
an entropy current SM such that ̲ ∇̲MSM ≥ 0, whenever
equations of motion are satisfied. This requirement imposes
various constraints on the constitutive relations, and the job
of hydrodynamics is to monitor these constraints. Having
done so, one can in principle plug these constitutive relations
back into the equations of motion and solve for exact
“configurations” of the hydrodynamic fields, which is not
in the scope of hydrodynamics. A nice andmodern review of
relativistic hydrodynamics can be found inSec. I ofRef. [42].
Another notion which is inherent to any statistical system

is equilibrium. Equilibrium is the steady state of hydro-
dynamics, when the fluid has came in terms with the
background and has aligned itself accordingly, i.e. hydro-
dynamic variables ψU are completely determined in
terms of the background fields. In this state, the fluid
can be described by a partition functionWeqb written purely
in terms of the background data, and the equations of
motion are trivially satisfied [43–45]. Equilibrium is gen-
erally defined by a collection of symmetry data ψK ¼
fKM; ½ΛΣðKÞ�AB;ΛðKÞg which acts as an isometry on the
background. For our constitutive relations to be physical,
we will need to ensure that on introducing ψK they trivially
satisfy the equations of motion (3.4).
Please note that ψU is a set of variables we have picked up

to solve the system; like in any field theory, we could do an
arbitrary field redefinition of ψU without changing the
physics. This is known as the hydrodynamic redefinition
freedom. By convention ψU is defined to agree with ψK in
equilibrium at zero derivative order (this goes into the
definition of the fluid velocity, temperature, and chemical
potential in equilibrium), which fixes a huge amount of this
freedom. Further fixing of this freedom can be dealt with in
various different ways, which takes the name of hydro-
dynamic frames (amore thorough discussion on these frames
for null fluids can be found inRef. [34]).Herewewillwork in
the so-called equilibrium frame where ψU ¼ ψK exactly in
equilibrium, not just at zero derivative order. Note that this
does not fix the freedom completely; we can still perturb this
relation with anything that vanishes in equilibrium. For now
we conclude that on setting ψU ¼ ψK, i.e., on promoting ψU
to an isometry, the constitutive relations should identically
satisfy the equations of motion.
It was noted in Ref. [40] for relativistic fluids that it is

helpful to remove the clause “whenever equations of motion
are satisfied” from the second law requirement and upgrade it
to an off-shell statement [53], which for us will read

̲ ∇̲MSM þ UNð̲ ∇̲MTM
N − TA

NMTM
A − RNM

A
BΣMB

A

− FNM · JMÞ þ ½νΣ�BAð̲ ∇̲MΣMAB − T ½BA� − Σ⊥AB
H Þ

þ ν · ð̲ ∇̲MJM − J⊥HÞ ≥ 0: ð4:1Þ
21We drop the subscript ðUÞ for ψU and hope that it will be

clear from the context.

GALILEAN ANOMALIES AND THEIR EFFECT ON … PHYSICAL REVIEW D 93, 065007 (2016)

065007-15



This statement is slightly different fromwhat was considered
for the torsionless case in Ref. [40], but we verify its
equivalence with theirs in Appendix D.
Now we come back to null fluids—fluids on null

backgrounds. On null backgrounds, hydrodynamic data
ψU needs to be compatible with ψV , i.e., ½ψV;ψU� ¼ 0 and
½νΣ�ABVB ¼ 0. This makes sense because 1) the resulting
constitutive relations must follow the null isometry, and 2)
not all components of the spin conservation in Eq. (3.6) are
physical. Further, the constitutive relations are allowed to
depend on ψV as well. One can check that upon making
these tweaks, the off-shell second law (4.1) remains
unchanged. We can now go back and study the most
generic constitutive relations for null fluids, which have
been thoroughly considered in Ref. [34] for a charged
spinless torsionless null fluid with U(1) anomalies up to
leading order in derivatives. In this work, however, we are
only interested in the sector of hydrodynamics that is
governed and is completely determined by the anomalies.22

To accomplish this task in relativistic fluids, the authors of
Ref. [38] (see also Ref. [54]) proposed a mechanism based
on transgression forms, which allows us to “integrate” the
anomalous equations of motion (3.4) and directly figure out
the anomalous contribution to the constitutive relations. We
will attempt to extend this construction to null fluids.

A. Anomalous null fluids

We start by defining the hydrodynamic shadow gauge
field and spin connection,

Â ¼ Aþ μV; ĈA
B ¼ CA

B þ ½μΣ�ABV; ð4:2Þ

where μ, ½μΣ�AB are flavor and spin chemical potentials
associated with ψU defined in Eq. (2.22). One can check
that both ψU;ψV are compatible with this new gauge field
and spin connection, i.e.,

ν̂ ¼ UMÂM þ Λ ¼ 0;

½ν̂Σ�AB ¼ UMĈA
MB þ ½ΛΣ�AB ¼ 0;

ν̂ðVÞ ¼ VMÂM ¼ 0;

½ν̂ΣðVÞ�AB ¼ VMĈA
MB ¼ 0: ð4:3Þ

Recall that we have chosenΛðVÞ ¼ ½ΛΣðVÞ�AB ¼ 0 to be able
to define anomalies. We define the operation ð^Þ as
μ̂ ¼ μðA → Â;CA

B → ĈA
BÞ. One can check that the hatted

field strengths also follow the null background conditions
(2.14) and (2.15). We would like to import one result from
the transgression machinery without proof (see Sec. 11 of
Ref. [55] for more details), which implies that

Ið2nþ1Þ
CS − Îð2nþ1Þ

CS ¼ Vð2nþ1Þ
PCS

þ dVð2nÞ
ICS

; ð4:4Þ

where23

Vð2nþ1Þ
PCS

¼ V
H

∧ ðPð2nþ2Þ
CS − P̂ð2nþ2Þ

CS Þ;

Vð2nÞ
ICS

¼ V
H

∧ ðIð2nþ1Þ
CS − Îð2nþ1Þ

CS Þ: ð4:5Þ

One can check that these quantities are well defined. We
argue that the fluid in the equilibrium configuration can be
described by a (bulkþ boundary) partition function
Weqb ¼ Weqb

B þWeqb
M which has been discussed in the

preceding sections.24 Away from equilibrium, however,
the system is described by an effective action S ¼ SB þ SM
which, in equilibrium, boils down to Weqb. It is important
as Weqb is only defined in equilibrium. We claim that the
appropriate SB to generate the anomalous sector of the null
hydrodynamics is25

SB ¼ WB þ
Z
Bð2nþ2Þ

V ∧ Îð2nþ1Þ
CS

¼ −
Z
Bð2nþ2Þ

V ∧ ðIð2nþ1Þ
CS − Îð2nþ1Þ

CS Þ: ð4:6Þ

In equilibrium (ψU ¼ ψK) and on choosing transverse
gauge for ψK (i.e., ΛðKÞ ¼ ½ΛΣðKÞ�AB ¼ 0) the added piece
vanishes, as it does not have any leg along V, and we
recover the equilibrium partition function. Using Eq. (4.4)
we can decompose SB as

SB ¼
Z
Bð2nþ2Þ

Vð2nþ2Þ
P þ

Z
Mð2nþ2Þ

Vð2nþ1Þ
I ; ð4:7Þ

where we have identified

22In relativistic hydrodynamics it is known [52] that there are
certain coefficients which appear as independent constants in the
naive derivative expansion, but can be fixed in terms of anomaly
coefficients appearing at higher derivative orders by demanding
consistency of the Euclidean vacuum. Similar constants have also
showed up for Galilean fluids in Refs. [15,34], but their
connection to the anomaly is not yet clear. Here however we
do not consider these contributions.

23See footnote 13.
24In making this statement, we are implicitly relying on the

existence of an equilibrium partition function which describes the
fluid in the equilibrium configuration. These ideas were discussed
for a relativistic fluid in Refs. [43–45] and were later adopted to
Galilean fluids in Refs. [15,16,34,35].

25It was argued in Ref. [56] that while this effective action is
appropriate to give solutions to the off-shell second law of
thermodynamics, the minimization of this action with respect to
dynamic fields does not give the correct dynamics. To get the
correct dynamics we need to further modify this action in the
Schwinger-Keldysh formalism, which we do not touch upon
here.
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Vð2nþ2Þ
P ¼ V

H
∧ ðPð2nþ3Þ − P̂ð2nþ3ÞÞ

¼ −V ∧ V
H

∧ ðPð2nþ2Þ
CS − P̂ð2nþ2Þ

CS Þ;

Vð2nþ1Þ
I ¼ V

H
∧ ðIð2nþ2Þ − Îð2nþ2ÞÞ

¼ V ∧ V
H

∧ ðIð2nþ1Þ
CS − Îð2nþ1Þ

CS Þ: ð4:8Þ

The bulk term in Eq. (4.7) is manifestly symmetry
invariant, and the full S is symmetry invariant by definition;
hence, if we decompose SM ¼ Sn-a þ SM;anom with the first
piece being totally symmetry invariant we can infer

SM;anom ¼ −
Z
Bð2nþ2Þ

V ∧ Îð2nþ1Þ
CS : ð4:9Þ

SM;anom will generate the anomalous sector of the con-
sistent currents. On the other hand, for the full effective
action we will be left with S ¼ Sanom þ Sn-a where

Sanom ¼
Z
Bð2nþ2Þ

Vð2nþ2Þ
P : ð4:10Þ

Sanom will generate the anomalous sector of the covariant
currents.
Constitutive relations: In light of our discussion above,

we should be able to generate the anomalous sector of
covariant currents by varying Sanom. We will get

δSanom ¼
Z
Bð2nþ2Þ

ðδA ∧ ·⋆ð2nþ2ÞJH − δÂ ∧ ·⋆ð2nþ2ÞĴH

þ δCA
B ∧ ⋆ð2nþ2ÞΣH

B
A − δĈA

B ∧ ⋆ð2nþ2ÞΣ̂H
B
AÞ

þ
Z
Mð2nþ1Þ

ðδA ∧ ·⋆JP þ δCA
B ∧ ⋆ΣP

B
A

þ δV ∧ ⋆EPÞ; ð4:11Þ

where we have defined

⋆EP ¼ ∂Vð2nþ2Þ
P

∂H
¼ V

H∧2 ∧ ½P̂ð2nþ3Þ −Pð2nþ3Þ

−H ∧ ⋆ð2nþ2Þðμ · ĴH þ ½μΣ�ABΣ̂H
B
AÞ�;

⋆ΣP
A
B ¼ ∂Vð2nþ2Þ

P

∂RB
A

¼ V
H

∧ ⋆ð2nþ2ÞðΣH
A
B − Σ̂H

A
BÞ;

⋆JP ¼ ∂Vð2nþ2Þ
P

∂F ¼ V
H

∧ ⋆ð2nþ2ÞðJH − ĴHÞ; ð4:12Þ

and the Hall currents have been defined in Eq. (3.13). Since
Sanom is invariant under the symmetries by construction, we

can find a set of Bianchi identities that these currents must
follow,

̲ ∇̲MðTM
NÞA ¼ TA

NMðTM
AÞA þ RNK

A
BðΣMB

AÞA
þ FNMðJMÞA − VNðμ · Ĵ⊥H þ ½μΣ�ABΣ̂⊥BA

H Þ;
̲ ∇̲MðΣMABÞA ¼ ðT ½BA�ÞA þ Σ⊥AB

H − Σ̂⊥AB
H þ #½AVB�;

̲ ∇̲MðJMÞA ¼ J⊥H − Ĵ⊥H; ð4:13Þ

where we have defined the anomalous “class” of constit-
utive relations,

ðTMAÞA¼EM
PV

A; ðΣMABÞA ¼ΣMAB
P ; ðJMÞA ¼ JMP :

ð4:14Þ

One can check that on plugging in ψU ¼ ψK , the hatted
Hall currents vanish as they do not have any leg along K
and V simultaneously. Consequently the Bianchi identities
(4.13) reduce to the equations of motion (3.6). In other
words the currents ðTMAÞA, ðΣMABÞA, ðJMÞA identically
satisfy the equations of motion in the equilibrium configu-
ration, as required.
We would like to remind the reader that V was added as

an arbitrary choice of frame and the anomaly polynomial
was invariant under a ψT redefinition which shifts V. The
currents we have constructed should then also be invariant
under a ψT redefinition. One can check that under a ψT
redefinition the currents in Eq. (4.12) shift by a closed
form. By definition the currents always have this ambi-
guity, and hence we do not change the physics. In hydro-
dynamics the most natural choice of ψT to define anomalies
is to set ψT ¼ ψU.
Adiabaticity and entropy current: To claim that the

currents we have constructed are physical, we must find
a ðSMÞA which satisfies the off-shell second law (4.1). The
anomalous sector is bound to be parity violating, implying
that no scalar expression can be guaranteed to be positive
definite. This turns Eq. (4.1) into a more stringent
condition,

̲ ∇̲MðSMÞA þ UN ½̲ ∇̲MðTM
NÞA − TA

NMðTM
AÞA

− RNM
A
BðΣMB

AÞA − FNM · ðJMÞA�
þ ½νΣ�BA½̲ ∇̲MðΣMABÞA − ðT ½BA�ÞA − Σ⊥AB

H �
þ ν · ð̲ ∇̲MðJMÞA − J⊥HÞ ¼ 0; ð4:15Þ

known as the adiabaticity equation [41]. By putting the
constitutive relations directly into this expression we can get

∇MðSMÞA ¼ 0: ð4:16Þ

Hence it suffices to choose an identically zero anomaly-
induced entropy current ðSMÞA ¼ 0 to satisfy the adiabaticity
equation. We would like to comment here that the vanishing
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of the anomaly-induced entropy current does not rely on the
background being null; it is equally true for the usual
Einstein-Cartan backgrounds as well. See Appendix D for
more comments on the relativistic entropy current.
Equilibrium partition function: In the beginning of this

section we argued that at equilibrium, fluid can be
described by a partition function written purely in terms
of the background data. We will now attempt to find such
an equilibrium partition function. We start by computing
the variation of the boundary effective action SM;anom given
in Eq. (4.9),

δSM;anom ¼
Z

fdxMg
ffiffiffiffiffiffiffi
jGj

p
½ðTMAÞAδEAM þ fðΣMABÞA

− ΣMAB
BZ gδCBMA þ fðJMÞA − JMBZg · δAM�

þ
Z

fdxMg
ffiffiffiffiffiffiffi
jGj

p
½Σ̂MAB

BZ δĈBMA þ ĴMBZ · δÂM�:

ð4:17Þ

In equilibrium and choosing transverse gauge for ψK, i.e.,
ΛðKÞ ¼ ½ΛΣðKÞ�AB ¼ 0, the terms in the last line vanish.
Hence we can define the equilibrium boundary partition
function as

Weqb
M;anom ¼ SM;anomjψU¼ψK

¼ −
Z
Mð2nþ1Þ

V
H

∧ ðIð2nþ2Þ − Îð2nþ2ÞÞjψU¼ψK
:

ð4:18Þ

Putting it together with WB, we can get the equilibrium
partition function for the full theory. In practice, however, if
one knows the expressions for the Bardeen-Zumino cur-
rents, it suffices to have the boundary partition function to
generate the covariant currents.

B. Null reduction—anomalous Galilean fluids

Having obtained the constitutive relations for anomalous
null fluids, it is now time to perform null reduction
and extract the Galilean results. To see this we can
directly break up the anomaly-induced constitutive rela-
tions ðTMAÞA, ðΣMABÞA, ðJMÞA into the basis given in
Eq. (2.34). A straightforward computation will yield trivial
identifications,

ðρμÞA¼ 0; ðpμaÞA ¼ 0; ðτμaÞA ¼ 0; ðsμÞA¼ 0;

ðϵμÞA¼Eμ
P ; ðσμabÞA ¼Σμab

P ; ðjμÞA ¼ JμP : ð4:19Þ

We have also included an entropy current ðsμÞA ¼ ðSμÞA
here which of course is trivially zero. For the record we
write down the off-shell second law of thermodynamics for
Galilean fluids,

̲ ̲~∇μsμ þ νM̲̲~∇μρ
μ −

1

ϑ
ð̲ ̲~∇μϵ

μ − ½power� þ pμacμaÞ

þ 1

ϑ
uað̲ ̲~∇μpμ

a − ½force�a þ ρμcμaÞ

þ ½ντ�a
�
̲ ̲~∇μτ

μa −
1

2
ðρa − paÞ

�

þ ½νσ�bað̲ ̲~∇μσ
μab − p½ba� − 2τμ½acμb� − σ⊥ab

H Þ
þ ν · ð̲ ̲~∇μjμ − j⊥HÞ ≥ 0; ð4:20Þ

where uμ ¼ Vμ
ðUÞ [defined in Eq. (2.23)] and ua ¼ eaμuμ is

the spatial velocity of the fluid. ϑ is the temperature, νM ¼
ϖ − 1

2ϑ u
aua is the total mass chemical potential, ϖ is the

mass chemical potential, ½ντ�a ¼ ½νΣ�−a is the boost chemi-
cal potential, ½νσ�ab ¼ ½νΣ�ab is the spatial spin chemical
potential, and ν is the flavor chemical potential associated
with the fluid data ψU [the respective definitions can be
found in Eqs. (2.9) and (2.21)]. A version of this off-shell
second law of thermodynamics for Galilean fluids in a
metric-like formalism was first written down in Ref. [15].
This expression will be greatly simplified if we choose
ψT ¼ ψU, i.e., choose to describe the fluid in its local rest
frame, because then ua ¼ 0,

̲ ̲~∇μsμ þ ϖ̲̲~∇μρ
μ −

1

ϑ
ð̲ ̲~∇μϵ

μ − ½power� þ pμacμaÞ

þ ½ντ�a
�
̲ ̲~∇μτ

μa −
1

2
ðρa − paÞ

�

þ ½νσ�bað̲ ̲~∇μσ
μab − p½ba� − 2τμ½acμb� − σ⊥ab

H Þ
þ ν · ð̲ ̲~∇μjμ − j⊥HÞ ≥ 0: ð4:21Þ

It should be apparent that on putting in the equations of
motion it simply gives the second law of thermodynamics,
̲ ̲~∇μsμ ≥ 0. If one does not prefer to perform reduction to
get ðϵμÞA, ðjμÞA, ðσμabÞA, these can be generated directly
from the Newton-Cartan transgression form,

Vð2nþ1Þ
p ¼ −

n
H

∧ ðpð2nþ2Þ − p̂ð2nþ2ÞÞ; ð4:22Þ

where pð2nþ2Þ is the NC anomaly polynomial defined at the
end of Sec. III B, and the hatted fields are

Â ¼ A − μn; Ĉa
b ¼ Ca

b − ½μσ�abn: ð4:23Þ

In terms of these, the anomaly-induced constitutive rela-
tions can be generated as
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ðjμÞA ¼ �↑
�∂Vð2nþ1Þ

p

∂F
�μ
; ðσμabÞA ¼ �↑

�∂Vð2nþ1Þ
p

∂Rba

�μ
;

ðϵμÞA ¼ �↑
�∂Vð2nþ1Þ

p

∂H
�μ
: ð4:24Þ

To write the equilibrium partition function in Newton-
Cartan language we can use the natural time data in
equilibrium ψT ¼ ψK ¼ ψU. Hence, using Eq. (4.18) we
can find

Weqb
anom ¼ −

Z
MK

ð2nÞ

n
H

∧ ðið2nþ1Þ − îð2nþ1ÞÞjψU¼ψK
; ð4:25Þ

where dið2nþ1Þ ¼ pð2nþ2Þ; ið2nþ1Þ is just Ið2nþ1Þ
CS after reduc-

tion. Please refer to Appendix C for conventions on
reducing the integral.
This concludes the main abstract results of this work. We

have been able to construct flavor and gravitational
anomalies in the Galilean theories, and find their effect
on the Galilean hydrodynamics. We explicitly constructed
the sector of fluid constitutive relations that is totally
determined in terms of anomalies. These constitutive
relations obey the second law of thermodynamics with a
trivially zero entropy current. We also found the equilib-
rium partition function which generates these constitutive
relations in the equilibrium configuration.

V. EXAMPLES

The entire discussion of this work until now has been
very abstract. We will now try to illustrate it with a few
examples. In the following we will only discuss the case of
an Abelian gauge field for simplicity. In Sec. VA we
start with a thorough walkthrough example for three-
dimensional null theories (two-dimensional Galilean the-
ories), where we perform each and every step as was done
in the main work. We hope it will help the reader to
understand the procedure more clearly. Later in Sec. V B
we present the results for the arbitrary dimensional case up
to next-to-leading order in derivatives.

A. Walkthrough: One spatial dimension

Let us go step by step for the case of three-dimensional
null backgrounds. The corresponding five-dimensional
anomaly polynomial contains squared F and R,

Pð5Þ ¼ V ∧ ðCð2ÞF∧2 þ Cð2Þ
g RA

B ∧ RB
AÞ; ð5:1Þ

from which we can read off the expression for Ið4Þ,

Ið4Þ ¼ −V ∧
�
Cð2ÞA ∧ Fþ Cð2Þ

g

�
CA

B ∧ RB
A

−
1

3
CA

B ∧ CB
C ∧ CC

A

��
: ð5:2Þ

From here we can define the bulk partition function
WB ¼ R

Bð4Þ
Ið4Þ, and compute its variation [see Eq. (3.5)],

δWB¼
Z
Bð4Þ

2ðCð2ÞδA∧V∧FþCð2Þ
g δCA

B∧V∧RB
AÞ

−
Z
Mð3Þ

ðCð2ÞδA∧V∧AþCð2Þ
g δCA

B∧V∧CB
AÞ:

ð5:3Þ

Now using Eq. (3.1) or Eq. (3.13), we can find the Hall and
Bardeen-Zumino currents,

⋆ð4ÞJH ¼ ∂Pð5Þ

∂F ¼ 2Cð2ÞV ∧ F

⇒ JMH ¼ Cð2ÞϵN RSMVNFRS;

⋆ð4ÞΣAB
H ¼ ∂Pð5Þ

∂RBA

¼ 2Cð2Þ
g V ∧ RAB

⇒ ΣMAB
H ¼ Cð2Þ

g ϵN RSMVNRRS
AB;

⋆JBZ ¼ ∂Ið4Þ
∂F ¼ −Cð2ÞV ∧ A

⇒ JMBZ ¼ Cð2ÞϵNRMVNAR;

⋆ΣAB
BZ ¼ ∂Ið4Þ

∂RBA
¼ −Cð2Þ

g V ∧ CAB

⇒ ΣMAB
BZ ¼ Cð2Þ

g ϵNRMVNCA
R
B: ð5:4Þ

The anomalous sources in Eq. (3.6) are hence given as

Σ⊥AB
H ¼ −Cð2Þ

g ϵMRSVMRRS
AB;

J⊥H ¼ −Cð2ÞϵMNRVMFNR: ð5:5Þ

Here we have defined the volume element of the boundary
manifold as ϵ⊥MNR ¼ ϵMNR. After null reduction we can
trivially read off the anomalous sources for the NC
conservation laws (3.7),

σ⊥ab
H ¼ −Cð2Þ

g εμν↑ Rμν
ab; j⊥H ¼ −2Cð2Þεμν↑ Fμν: ð5:6Þ

Hydrodynamics: We want to generate the fluid constit-
utive relations which are compatible with the anomalies
described above. As described in the main text, it can be
done by using a transgression form [Eq. (4.8)],
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Vð4Þ
P ¼ V

H
∧ ðPð5Þ − P̂ð5ÞÞ

¼ −V ∧ V ∧ ½2Cð2ÞμFþ 2Cð2Þ
g ½μΣ�ABRB

A

þ ðCð2Þμ2 þ Cð2Þ
g ½μΣ�AB½μΣ�BAÞH�: ð5:7Þ

From its derivatives we can find the various currents
defined in Eq. (4.12),

⋆JP ¼−2Cð2ÞμV ∧V

⇒ JMP ¼ 2Cð2ÞμϵRSMVRVS;

⋆ΣAB
P ¼−2Cð2Þ

g ½μΣ�ABV ∧V

⇒ΣMAB
P ¼ 2Cð2Þ

g ½μΣ�ABϵRSMVRVS;

⋆EP ¼−ðCð2Þμ2þCð2Þ
g ½μΣ�AB½μΣ�BAÞV ∧V

⇒EM
P ¼ðCð2Þμ2þCð2Þ

g ½μΣ�AB½μΣ�BAÞϵRSMVRVS: ð5:8Þ

Using Eq. (4.14) we can trivially get the anomalous sector
of the constitutive relations from here. These constitutive
relations satisfy the adiabaticity equation (4.15) with zero
entropy current, and at equilibrium also satisfy the anoma-
lous equations of motion (3.6). Upon null reduction we can
get the anomalous contribution to the Galilean constitutive
relations from here; the only surviving quantities are

ðϵμÞA¼ðCð2Þμ2þCð2Þ
g ½μσ�ab½μσ�baÞενμ↑ nν;

ðσμabÞA¼ 2Cð2Þ
g ½μσ�abενμ↑ nν; ðjμÞA¼ 2Cð2Þμενμ↑ nν: ð5:9Þ

Finally we can write an equilibrium partition function

Weqb
anom which generates these currents in the equilibrium

configuration. Using Eq. (4.18) we can directly find

Weqb
anom ¼ −

Z
Mð3Þ

V
H

∧ ðIð4Þ − Îð4ÞÞ

¼ −
Z
Mð3Þ

V ∧ V ∧ ðCð2ÞμAþ Cð2Þ
g ½μΣ�ABCB

AÞ

¼
Z

d3x
ffiffiffiffiffiffiffi
jGj

p
ϵMNRVMVNðCð2ÞμAR

þ Cð2Þ
g ½μΣ�ABCB

RAÞ: ð5:10Þ

This can be written in the NC language as

Weqb
anom ¼

Z
Mð2Þ

n ∧ ðCð2ÞμAþ Cð2Þ
g ½μσ�abCb

aÞ

¼
Z

d3x
ffiffiffiffiffi
jγj

p
εμν↑ nμðCð2ÞμAν þ Cð2Þ

g ½μσ�abCb
νaÞ:

ð5:11Þ

B. Arbitrary odd spatial dimensions up to
subsubleading order

Before proceeding with this example we should clarify
the usage of “subsubleading” or “second nontrivial”
derivative order for null/Galilean fluids derived from
relativistic fluids in Ref. [57]. One can check that in the
partition function or constitutive relations of a (2nþ 1)-
dimensional null fluid, the first nontrivial contribution from
the parity-odd sector comes at (n − 1) derivatives, which is
generally known as the “leading parity-odd derivative
order.” Correspondingly n derivatives are called subleading
while (nþ 1) derivatives are called subsubleading. It is also
trivial to check that the anomaly polynomial always has
two more derivatives than the partition function or con-
stitutive relations. In the anomalous sector one can check
that the first nontrivial contribution comes at the leading
order (flavor anomaly) while no contribution comes at the
subleading order. Hence the “second nontrivial correction”
comes at the “subsubleading order.”
Coming back to our example, one can check that up to

subsubleading order Pð2nþ3Þ and Ið2nþ2Þ (for n > 1) are
given as

Pð2nþ3Þ¼V∧ðCð2nÞF∧ðnþ1ÞþCð2nÞ
g F∧ðn−1Þ∧RA

B∧RB
AÞ;

Ið2nþ2Þ¼−V∧A∧ðCð2nÞF∧nþCð2nÞ
g F∧ðn−2Þ∧RA

B∧RB
AÞ:

ð5:12Þ

It is worth noting that the contribution from anomalies
terminates at subsubleading order in three spatial dimen-
sions (d ¼ 3, n ¼ 2), and hence these expressions are exact
for n ¼ 2. From here we can get the Hall currents

Σ⊥AB
H ¼ −2Cð2nÞ

g ⋆½V ∧ F∧ðn−1Þ ∧ RAB�;
J⊥H ¼ −ðnþ 1ÞCð2nÞ⋆½V ∧ F∧n�

− ðn − 1ÞCð2nÞ
g ⋆½V ∧ F∧ðn−2Þ ∧ RA

B ∧ RB
A�
ð5:13Þ

that provide anomalies in Eq. (3.6). The results can be
trivially transformed to Newton-Cartan language,

σ⊥ab
H ¼ −2Cð2nÞ

g �↑ ½F∧ðn−1Þ ∧ Rab�;
j⊥H ¼ −ðnþ 1ÞCð2nÞ �↑ ½F∧n�

− ðn − 1ÞCð2nÞ
g �↑ ½F∧ðn−2Þ ∧ Ra

b ∧ Rb
a�; ð5:14Þ

which provide anomalies in Eq. (3.7).
Hydrodynamics: Using the anomaly polynomial one can

find the constitutive relations for the anomalous sector of
hydrodynamics,
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JMP ¼ ðnþ 1ÞCð2nÞ Xn
m¼1

nCmμ
m⋆½V ∧ V ∧ F∧ðn−mÞ ∧ H∧ðm−1Þ�M

þ ðn − 1ÞCð2nÞ
g

	Xn−2
m¼1

n−2Cmμ
m⋆½V ∧ V ∧ F∧ðn−2−mÞ ∧ RA

B ∧ RB
A ∧ H∧ðm−1Þ�M

þ
Xn−2
m¼0

n−2Cmμ
m½μΣ�AB⋆½V ∧ V ∧ F∧ðn−2−mÞ ∧ ð2RB

A þ ½μΣ�BAHÞ ∧ H∧m�M


;

ΣMAB
P ¼ 2Cð2nÞ

g

	Xn−1
m¼1

n−1Cmμ
m⋆½V ∧ V ∧ F∧ðn−1−mÞ ∧ RAB ∧ H∧ðm−1Þ�M

þ
Xn−1
m¼0

n−1Cmμ
m½μΣ�AB⋆½V ∧ V ∧ F∧ðn−1−mÞ ∧ H∧m�M



;

EM
P ¼

Xn−1
m¼0

μmðnþ1Cmþ2Cð2nÞμ2 þ n−1CmC
ð2nÞ
g ½μΣ�AB½μΣ�BAÞ⋆½V ∧ V ∧ F∧ðn−1−mÞ ∧ H∧m�M

þ Cð2nÞ
g

	Xn−1
m¼2

n−1Cmμ
m⋆½V ∧ V ∧ F∧ðn−1−mÞ ∧ RA

B ∧ RB
A ∧ H∧ðm−2Þ�M

þ2
Xn−1
m¼1

n−1Cmμ
m½μΣ�AB⋆½V ∧ V ∧ F∧ðn−1−mÞ ∧ RB

A ∧ H∧ðm−1Þ�M


: ð5:15Þ

The anomalous sector of constitutive relations in terms of these are given by Eq. (4.14), while the entropy current is zero.
Again, by a trivial choice of basis these results can be transformed to the Newton-Cartan basis; the only nonzero constitutive
relations are

ðjμÞA ¼ ðnþ 1ÞCð2nÞXn
m¼1

nCmμ
m �↑ ½n ∧ F∧ðn−mÞ ∧ H∧ðm−1Þ�μ

þ ðn − 1ÞCð2nÞ
g

	Xn−2
m¼1

n−2Cmμ
m �↑ ½n ∧ F∧ðn−2−mÞ ∧ Ra

b ∧ Rb
a ∧ H∧ðm−1Þ�μ

þ
Xn−2
m¼0

n−2Cmμ
m½μσ�ab �↑ ½n ∧ F∧ðn−2−mÞ ∧ ð2Rb

a þ ½μσ�baHÞ ∧ H∧m�μ


;

ðσμabÞA ¼ 2Cð2nÞ
g

	Xn−1
m¼1

n−1Cmμ
m �↑ ½n ∧ F∧ðn−1−mÞ ∧ Rab ∧ H∧ðm−1Þ�μ

þ
Xn−1
m¼0

n−1Cmμ
m½μσ�ab �↑ ½n ∧ F∧ðn−1−mÞ ∧ H∧m�μ



;

ðϵμÞA ¼
Xn−1
m¼0

μmðnþ1Cmþ2Cð2nÞμ2 þ n−1CmC
ð2nÞ
g ½μσ�ab½μσ�baÞ �↑ ½n ∧ F∧ðn−1−mÞ ∧ H∧m�μ

þ Cð2nÞ
g

	Xn−1
m¼2

n−1Cmμ
m �↑ ½n ∧ F∧ðn−1−mÞ ∧ Ra

b ∧ Rb
a ∧ H∧ðm−2Þ�μ

þ2
Xn−1
m¼1

n−1Cmμ
m½μσ�ab �↑ ½n ∧ F∧ðn−1−mÞ ∧ Rb

a ∧ H∧ðm−1Þ�μ


: ð5:16Þ

Finally we can write an equilibrium partition function Weqb
anom which generates these currents in the equilibrium

configuration; for null fluids,
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Weqb
anom ¼ −

Z
Mð2nþ1Þ

V ∧ V ∧ A ∧
	Xn

m¼1

nCmCð2nÞμmF∧ðn−mÞ ∧ H∧ðm−1Þ

þCð2nÞ
g

Xn−2
m¼1

n−2Cmμ
mF∧ðn−2−mÞ ∧ H∧ðm−1Þ ∧ RA

B ∧ RB
A

þCð2nÞ
g

Xn−2
m¼0

n−2Cmμ
m½μΣ�ABF∧ðn−2−mÞ ∧ H∧m ∧ ð2RB

A þ ½μΣ�BAHÞ


; ð5:17Þ

and for Galilean fluids,

Weqb
anom ¼ −

Z
Mð2nÞ

n ∧ A ∧
	Xn

m¼1

nCmCð2nÞμmF∧ðn−mÞ ∧ H∧ðm−1Þ

þCð2nÞ
g

Xn−2
m¼1

n−2Cmμ
mF∧ðn−2−mÞ ∧ H∧ðm−1Þ ∧ Ra

b ∧ Rb
a

þCð2nÞ
g

Xn−2
m¼0

n−2Cmμ
m½μσ�abF∧ðn−2−mÞ ∧ H∧m ∧ ð2Rb

a þ ½μσ�baHÞ


: ð5:18Þ

This finishes our discussion about anomalies in generic
even-dimensional Galilean fluids up to subsubleading order
in the derivative expansion. The one spatial dimensional case
was discussed separately in Sec. VA for illustrative pur-
poses. The one-dimensional case is also qualitatively differ-
ent from higher dimensions, because only in this special case
do we get a pure gravitational anomaly term in the anomaly
polynomial up to subsubleading order. Three and higher
spatial dimensional cases are qualitatively similar as we
illustrated above. For physically interesting results one might
want to put n ¼ 2 and recover three spatial dimensional
results, which are found to be in agreement with the path
integral calculation of Ref. [36].

VI. CONCLUSIONS AND FURTHER DIRECTIONS

In this work we examined the effect of flavor and
gravitational anomalies on Galilean theories with a spin
current, coupled to a torsional Newton-Cartan background.
In particular it is to be noted that we primarily studied
anomalous theories on torsional null backgrounds, from
where the aforementioned system is just a choice of basis
(null reduction) away. It strengthens our belief that null
theories are just an embedding of Galilean theories into a
higher-dimensional spacetime, which are closer to their
relativistic cousins, are frame independent, and are easier to
handle compared to Newton-Cartan backgrounds. The
transition from null to Galilean (Newton-Cartan) theories
is essentially trivial.
We used the anomaly inflow mechanism prevalent in

relativistic theories, with slight modifications, to construct
these anomalies. We found that after null reduction the
anomalies only contribute to the spatial spin and charge
conservation equations, and only in even dimensions. In
other words only the rotational and flavor symmetry of the

Galilean theory becomes anomalous. This is in contrast
with the results of Ref. [37] where Galilean boost symmetry
was also seen to be anomalous. As we mentioned in the
Introduction and in the main work, the discrepancy can be
attributed to the presence of extra background fields in
Ref. [37] which have been explicitly switched off in our
null background construction. It is interesting to note that
the Galilean anomaly polynomial pð2nþ2Þ is structurally the
same as the relativistic anomaly polynomial Pð2nþ2Þ

CS , and
hence the number of anomaly coefficients on both sides
match. Owing to this, the structure of the Hall currents that
enter the conservation laws is also quite similar in both
cases. Hence the results we have obtained promise to be
genuine nonrelativistic anomalies and not just the mani-
festation of (stronger) Galilean invariance.
Unrelated to the Galilean theories, we found that in the

Cartan formulation of relativistic fluids there exists a more
natural definition of the entropy current which does not get
any anomalous contributions. On the other hand the
Belinfante (usual) entropy current used, e.g., in Ref. [42]
gets contributions from the gravitational anomaly. See
Appendix D for more comments on this issue.
We also studied the anomalous sector of null/Galilean

hydrodynamics, in which we explicitly wrote down the
constitutive relations which are completely determined in
terms of anomalies. For this we used the transgression
machinery developed to do the same task in relativistic
hydrodynamics. There have been no surprises in this
computation; everything went more or less smoothly for
null theories, as it did for relativistic theories. The entropy
current in Galilean theories is independent of anomalies
as well. From a different perspective, it illustrates that
the null background construction allows us to use rather
sophisticated and developed relativistic machinery directly
in nonrelativistic physics, which is encouraging.
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It opens up an arena in which to introduce set results
from relativistic theories into null theories and see if we can
say something new and useful about the Galilean theories
from there. An immediate question that comes to mind is
regarding the transcendental contribution to hydrodynam-
ics from anomalies. In relativistic hydrodynamics the
authors of Ref. [52] showed that there are certain constants
in the fluid constitutive relations that are left undetermined
by the second law of thermodynamics, but can be related to
the anomaly coefficients by requiring the consistency of yjr
Euclidean vacuum. Similar constants have also been found
for Galilean theories in Refs. [15,34]. It would be nice to
see if these constants can be associated with the Galilean
anomalies found in this work. Being a little more ambi-
tious, one can hope for a complete classification of Galilean
hydrodynamic transport following its relativistic counter-
part suggested recently in Refs. [41,42]. It will also be
interesting to see if the Weyl anomaly analysis of Ref. [37]
remains unchanged when the additional mass sources have
been switched off.
For now we will leave the reader with these questions

and possibilities, in the hope that we will be able to unravel
new and interesting nonrelativistic physics using null
backgrounds. If there is one thing the reader should take
away from this work, we would recommend the following
approach: if we are interested in a problem pertaining to
Galilean physics which we know how to solve in the
relativistic case, a good way ahead would be to formulate
the problem in terms of null theories, do the computation
there, and perform a trivial null reduction to get the
Galilean results.
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APPENDIX A: RESULTS IN A
NONCOVARIANT BASIS

In this appendix we express some of the results discussed
in the main text in a conventional noncovariant notation.
We pick up a basis xM ¼ fx∼; t; xig on Mðdþ2Þ such that
ψV ¼ f∂∼; 0; 0g and ψT ¼ f∂t; 0; 0g. ~x ¼ fxig spans the
spatial slice MT

ðdÞ. This is equivalent to choosing the

Newton-Cartan decomposition but with vi ¼ ΛðTÞ ¼
½ΛΣðTÞ�AB ¼ 0. On Rðdþ1;1Þ on the other hand we choose
the same basis as before, xA ¼ fx−; xþ; xag, such that
V ¼ ∂−, VðTÞ ¼ ∂þ. In this basis various NC background
fields can be decomposed as

nμ ¼
�

e−Φ

e−Φai

�
; vμ ¼

�
eΦ

0

�
; Bμ ¼

�
Bt

Bi

�
;

eaμ ¼
�

0

eai

�
; eaμ ¼

�−aa
eai

�
;

hμν ¼
�
0 0

0 gij

�
; hμν ¼

�
akak −aj

−ai gij

�
: ðA1Þ

Here the spatial metric has been defined as

gij ¼ δabeaiebj; gij ¼ δabeaiebj: ðA2Þ

Spatial indices can be raised and lowered by gij and can be
swapped using the spatial vielbein eai. However in the
following we will explicitly work in the i; j… indices. One
can check that after this choice of basis we are only allowed
to perform ~x-dependent transformations, except boosts
which are completely fixed. On trivially decomposing
the Newton-Cartan expressions into xμ ¼ ft; xig, our
theory will be manifestly covariant against all these trans-
formations except time translations t → tþ ξtð~xÞ, some-
times referred to as Kaluza-Klein (KK) gauge
transformations. These transformations act on the back-
ground fields as

δKKai ¼ ξt∂taiþ∂iξ
t; δKKBi¼ ξt∂tBiþBt∂iξ

t; ðA3Þ

whereas they act on general contra-covariant tensors as

δKKXt ¼ ξt∂tXt − Xi∂iξ
t; δKKXt ¼ ξt∂tXt;

δKKXi ¼ ξt∂tXi; δKKXi ¼ ξt∂tXi þ Xt∂iξ
t; ðA4Þ

and similarly for higher-rank tensors. The theory can be
made manifestly covariant under KK transformations as
well by working with corrected tensors,

X́t ¼ e−ΦðXt þ aiXiÞ; X́t ¼ eΦXt;

X́i ¼ Xi; X́i ¼ Xi − aiXt; ðA5Þ

and similarly for higher-rank tensors. These are the well-
known Kaluza-Klein covariant fields.26 Under the flat time
approximation, i.e., Φ ¼ ai ¼ 0 this correction becomes
trivial. One can check that the NC contraction can be
expanded in this format as

AμBμ ¼ ÁtB́t þ ÁiB́i; ðA6Þ

which will be helpful later. Now we can decompose various
components of connections in this basis as

26The original Kaluza-Klein transformation only involves the
KK gauge field ai. The factors of eΦ can be thought of as redshift
factors due to the time component of the time metric nμ.
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cμt ¼ 0; ćij ¼
1

2
∂́tgji þ

1

2
Ώij þ T́ðijÞt;

άi ¼ ćti ¼ Ώti; Γ́t
tt ¼ −∂́tΦ; Γ́t

tj ¼ e−Φ∂́taj;

Γ́t
it ¼ −∂́iΦ; Γ́t

ij ¼ e−Φ∂́iaj:

Γ́k
tt ¼ Ώt

k; Γ́k
it ¼ ćik; Γ́k

tj ¼ ćjk − T́k
jt:

Γ́k
ij ¼

1

2
gklð∂́iglj þ ∂́jgli − ∂́lgijÞ þ

1

2
ðT́k

ij − 2T́ðijÞ
kÞ:
ðA7Þ

Here we have also defined the corrected coordinate
derivatives ∂́i ¼ ∂i − ai∂t, ∂́t ¼ eΦ∂t. In equilibrium
(i.e., ∂tφ ¼ 0∀ϕ) or when the time is flat, we can recover
∂́i ¼ ∂i, ∂́t ¼ ∂t. We define the covariant derivative ∇́i

associated with the corrected derivative27 ∂́i and connec-
tions Γ́j

ik and Ái, which act on a general tensor φi
j

transforming in the adjoint representation of the flavor
group, as

∇́iφ
j
k ¼ ∂́iφ

j
k þ Γ́j

ilφ
l
k − Γ́l

ikφ
j
l þ ½Ái;φj

k�; ðA9Þ

and similarly on higher-rank objects. We also define a “time
covariant derivative” ∇́t associated with ∂́t and connections
Γ́j

tk and Át, acting on φi
j naturally,

∇́tφ
i
j ¼ ∂́tφ

i
j þ Γ́i

tkφ
k
j − Γ́k

tjφ
i
k þ ½Át;φi

j�; ðA10Þ

and similarly on higher-rank objects. One can check that
both of these derivatives behave tensorially on the spatial
slice and are KK gauge invariant. More importantly both of
these preserve the spatial metric gij. There is no essential
need to work with these corrected quantities, but we do so
because the statements are manifestly KK gauge invariant
and look nicer.
Using a similar decomposition and the KK-corrected

expressions for various currents, we can reduce the con-
servation equations (3.7) into the noncovariant basis as

Mass Cons∶̲ ̲∇́tρ þ̲ ̲∇́iρ́
i ¼ 0;

Energy Cons∶̲ ̲∇́tϵ þ̲ ̲∇́iϵ́
i ¼ ½power� − ṕiάi − ṕijćij;

Momentum Cons∶̲ ̲∇́tṕi þ̲ ̲∇́jṕj
i ¼ ½force�i − ράi − ρ́jćji;

Temporal Spin Cons∶̲ ̲∇́tτ́
i þ̲ ̲∇́jτ́

ji ¼ 1

2
ðρ́i − ṕiÞ;

Spatial Spin Cons∶̲ ̲∇́tσ́
ij þ̲ ̲∇́kσ́

kij ¼ ṕ½ji� þ 2τ́½iάj� þ 2τ́k½ićkj� þ σ́⊥ij
H ;

Charge Cons∶̲ ̲∇́tq þ̲ ̲∇́ij́
i ¼ j⊥H ; ðA11Þ

where ̲ ̲∇́i ¼ ∇́i − T́j
ji þ H́ti and ̲ ̲∇́t ¼ ∇́t þ Γ́i

ti. It
is worth noting that the corrected time component of the
mass current ρ́t is just the mass density ρ, and similarly for
all other currents. If we are to expand the covariant
derivatives in these equations, the nice-looking expressions
will turn notoriously bad, so we do not attempt that here.
Rather, we invite the readers to qualitatively access the

form of these equations and convince themselves that
these are what we expect for a Galilean system. Similarly
the [power] and [force] densities can also be decomposed
as

½power� ¼ éi · j́
iþ��� ; ½force�i ¼ éi ·qþ β́ij · j́

jþ��� ;
ðA12Þ

where éi ¼ F́it is the electric field, β́ij ¼ F́ij is the dual
magnetic field, and � � � corresponds to similar terms coming
from all other field-current pairs.
On the other hand, noncovariant expressions for the

anomalous sector of the hydrodynamic constitutive rela-
tions follow trivially from Eq. (4.19). The only nonzero
contributions are given as28

27One might be lured (e.g., in Ref. [34]) to define the covariant
derivative with respect to the original derivative ∂i and the more
conventional affine connection,

γkij ¼ Γ́k
ij −

1

2
ak∂tgij þ gklaði∂tgjÞl

¼ 1

2
gklð∂iglj þ ∂jgli − ∂lgijÞ þ

1

2
ðT́k

ij − 2T́ðijÞ
kÞ; ðA8Þ

which however will not be KK gauge invariant. The results hence
will be messy and will carry extra time derivatives of the metric.
Therefore we will refrain from doing so. Obviously both of these
covariant derivatives are same in the flat time case or in
equilibrium.

28We have assumed that the same ψT is being used for
reduction and to describe the anomaly polynomial. Had they
been different, the currents would shift by a total derivative.
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ðϵ́iÞA ¼ Ei
P ; ðσ́ijkÞA ¼ Σijk

P ; ðj́iÞA ¼ JiP : ðA13Þ

The expressions for the rhs can be obtained from Eq. (4.24).

APPENDIX B: COMPARISON
WITH GERACIE et al. [17]

The authors of Ref. [17] have prescribed a nice covariant
frame-independent description of Galilean physics in terms
of an “extended space representation.” The extended space
is basically a one-dimensional-higher flat space which
allows for a nice frame-independent embedding of the
Galilean group. On a closer inspection, however, it would
be clear that the extended space is nothing but the vielbein
space of null theories. To demonstrate this we pick up a
basis on Mðdþ2Þ (but do not perform null reduction, which
would otherwise require us to choose time data ψT and
hence will introduce frame dependence), xM ¼ fx∼; xμg
such that V ¼ ∂∼. We can then express the anomalous null
conservation laws as

ð ~∇μ − Tν
νμÞjμρ ¼ 0;

EA
νð ~∇μ − Tν

νμÞTμ
A − TA

νμTμ
A ¼ Rνμ

A
BΣ

μB
A þ Fνμ · Jμ;

ð ~∇μ − Tν
νμÞΣμAB ¼ −T ½AB� þ Σ⊥AB

H þ #½AVB�;

ð ~∇μ − Tν
νμÞjμq ¼ J⊥H: ðB1Þ

In this and only this section ~∇μ is associated with Γρ
μσ ,

CA
μB, Aμ and the vielbein has been used to transform

indices. The results are presented to make them look as
close as possible to Eqs. (5.8)–(5.10) of ref. [17]. The
authors however did not consider anomalies, and did not
report the full spin conservation. Only the boost part of the
spin conservation is reported in Eq. (5.13) of Ref. [17]
which is identical to our corresponding conservation
in Eq. (3.7).
If one looks at these equations and at the currents

appearing in them, one would realize that all the unphysical
degrees of freedom have been eliminated (except the spin
conservation equations). Therefore the EM tensor and
charge current as they appear in Ref. [17] only carry
physical information. At the cost of some unphysical
degrees of freedom (and a consistent prescription to
eliminate them) we have been able to transform this set
of equations into a nice covariant higher-dimensional null
theory.
We would like to note that the authors of Ref. [17] have

also used their construction to study (2þ 1)-dimensional
Galilean fluids. The same results (for the torsionless case)
were gained from “null fluids” in Ref. [34] and a detailed
comparison can be found in their last appendix.

APPENDIX C: CONVENTIONS OF
DIFFERENTIAL FORMS

In this appendix we will recollect some results about
differential forms, and will set notations and conventions
used throughout this work. An m-rank differential form
μðmÞ on a (dþ 2)-dimensional manifold Mðdþ2Þ can be
written in a coordinate basis as

μðmÞ ¼ 1

m!
μM1M2…Mm

dxM1 ∧ dxM2 ∧ … ∧ dxMm; ðC1Þ

where μ is a completely antisymmetric tensor. On Mðdþ2Þ,
the volume element is given by a full rank form,

ϵðdþ2Þ ¼ 1

ðdþ 2Þ! ϵM1M2…Mdþ2
dxM1 ∧ dxM2 ∧ … ∧ dxMdþ2 ;

ðC2Þ

where ϵ is the totally antisymmetric Levi-Civita symbol
with value ϵ0;1;2;…;dþ1 ¼

ffiffiffiffiffiffiffijGjp
and G ¼ det GMN . Using it,

the Hodge dual is defined to be a map from m-rank
differential forms to (dþ 2 −m)-rank differential forms,

⋆½μðmÞ� ¼ 1

ðdþ 2 −mÞ!
�

1

m!
μM1…MmϵM1…MmN1…Ndþ2−m

�

× dxN1 ∧ … ∧ dxNdþ2−m: ðC3Þ

One can check that ⋆⋆μðmÞ ¼ sgnðGÞð−Þmðd−mÞ, and

μðmÞ ∧ ⋆½νðmÞ� ¼ 1

m!
μM1…MmνM1…Mm

ϵðdþ2Þ: ðC4Þ

We define the ∧ product of two differential forms as

μðmÞ ∧ νðrÞ ¼ 1

ðmþ rÞ!
�ðmþ nÞ!

m!r!
μ½M1…Mm

νN1…Nr�

�

× dxM1 ∧ … ∧ dxN1 ∧ …: ðC5Þ

For multiple differential forms we can find

μðmÞ ∧ νðrÞ ∧ … ∧ ρðsÞ

¼ 1

ðmþ rþ � � � þ sÞ!

×

�ðmþ rþ � � � þ sÞ!
m!r!…s!

μ½M1…Mm
νN1…Nr

ρR1…Rs�Þ

× dxM1 ∧ … ∧ dxN1 ∧ … ∧ dxR1 ∧ …; ðC6Þ

GALILEAN ANOMALIES AND THEIR EFFECT ON … PHYSICAL REVIEW D 93, 065007 (2016)

065007-25



⋆½μðmÞ ∧ νðrÞ… ∧ ρðsÞ�

¼ 1

ðdþ 2 −m − r… − sÞ!

×

�
1

m!r!…s!
μM1…νN1……ρR1…ϵM1…N1…R1…���S1…

�

× dxS1 ∧ …: ðC7Þ

We define the interior product with respect to a vector field
X of a differential form as

ιXμðmÞ ¼ 1

ðm − 1Þ! ðX
Mμ½MN1…Nm−1�ÞdxN1 ∧ … ∧ dxNm−1 :

ðC8Þ

One can check the following two useful identities:

ιX⋆½μðmÞ� ¼ ⋆½μðmÞ ∧ X�;
⋆½ιXμðmÞ� ¼ ð−Þm−1X ∧ ⋆½μðmÞ�: ðC9Þ

Given a one-form Yð1Þ and a vector field X such that
ιXYð1Þ ¼ 1, any differential form μðmÞ can be decomposed as

μðmÞ ¼ ιXðYð1Þ ∧ μðmÞÞ þ Yð1Þ ∧ ιXμðmÞ: ðC10Þ

This is in particular helpful when μðdþ2Þ is a full rank form,

μðdþ2Þ ¼ Yð1Þ ∧ ιXμðdþ2Þ: ðC11Þ

The exterior derivative of a differential form is defined to be

dμðmÞ ¼ 1

ðmþ 1Þ!
× ½ðmþ 1Þ∂ ½M1

μM2…Mmþ1��dxM1 ∧ … ∧ dxMpþ1 :

ðC12Þ

One can check the useful relation

⋆dμðdþ1Þ ¼ ð−Þdþ1̲ ∇̲M⋆½μðdþ1Þ�M;
d⋆½μð1Þ� ¼ ⋆̲̲∇Mμ

M: ðC13Þ

The Lie derivative of a differential form satisfies

£XμðmÞ ¼ ιXdμðmÞ þ dðιXμðmÞÞ: ðC14Þ

Integration of a full rank form is defined as

Z
Mðdþ2Þ

μðdþ2Þ ¼ sgnðGÞ
Z

fdxMg
ffiffiffiffiffiffiffi
jGj

p ⋆½μðdþ2Þ�

¼ sgnðGÞ
Z

fdxMg
ffiffiffiffiffiffiffi
jGj

p 1

ðdþ 2Þ!
× ϵM1…Mdþ2μM1…Mdþ2

: ðC15Þ

Here the raised Levi-Civita symbol has the value
ϵ0;1;2;…;dþ1 ¼ sgnðGÞ= ffiffiffiffiffiffiffijGjp

. Integration of an exact full
rank form is given by an integration on the boundary,

Z
Mðdþ2Þ

dμðdþ1Þ ¼
Z
∂Mðdþ2Þ

μðdþ1Þ; ðC16Þ

where given a unit vector N normal to the boundary, the
volume element on the boundary is defined
as ιNϵðdþ2Þ ¼ ⋆N.

1. Newton-Cartan differential forms

We decompose a vector and a one-form onMðdþ2Þ in the
NC basis,

XM∂M ¼ ðX∼ − BμXμÞ∂∼ þ Xμð∂μ þ Bμ∂∼Þ;
YMdxM ¼ Y∼ðdx∼ − BμdxμÞ þ ðYμ þ BμY∼Þdxμ: ðC17Þ

One can check that these results are written in a basis that
transforms “nicely” from the NC perspective, which tells us
that

VMYM¼Y∼; YμþBμY∼; VMXM¼X∼−XμBμ; Xμ

ðC18Þ

are quantities that transform nicely. As is quite apparent, the
first and last quantities do not depend on the explicit choice
of ψT but the middle ones do. A similar analysis can be
done for all tensor fields in the theory. Note that if YM

satisfies ιVY ¼ VMYM ¼ 0, the one-form becomes purely
NC. On the other hand, if VMXM ¼ 0 the vector field
becomes purely NC. This motivates us to define a NC
differential form to be a differential form onMðdþ2Þ which
does not have a leg along V, i.e., ιVμðmÞ. Such a differential
form can be expanded as

μðmÞ ¼ 1

m!
μμ1μ2…μmdx

μ1 ∧ dxμ2 ∧ … ∧ dxμm: ðC19Þ

On the other hand we define a NC “differential contra-
form” as a totally antisymmetric contravariant tensor in
Mðdþ2Þ which has zero contraction with VM. In the basis
∂ 0
μ ¼ ∂μ þ Bμ∂∼ it can be expanded as
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μ½m� ¼ 1

m!
μμ1μ2…μm∂ 0

μ1 ∧ ∂ 0
μ2 ∧ … ∧ ∂ 0

μm: ðC20Þ

It is clear that though the basis depends on the choice
of ψT , the components of the contra-form are independent
of it. On a manifold with a nondegenerate metric
there exists a map between these two quantities, but for
us these two shall be distinct. We can also define a spatial
differential form/contra-form with the requirement that it
should not have any leg along V and V. In this case there
exists a map between these two quantities realized by pμν

and pμν.

Correspondingly there are three volume elements,

ε½dþ1�
↑ ¼ ½⋆V�♯ ¼ 1

ðdþ1Þ!ðVMϵ
Mμ1…μdþ1Þ∂ 0

μ1 ∧…∧∂ 0
μdþ1

;

εðdþ1Þ
↓ ¼⋆V¼ 1

ðdþ1Þ!ðV
MϵMμ1…μdþ1

Þdxμ1 ∧…∧ dxμdþ1 ;

εðdÞ ¼⋆½V ∧V� ¼ 1

d!
ðVMVNϵMNμ1…μdÞdxμ1 ∧…∧ dxμd :

ðC21Þ
In the main text we have primarily used the first one.
Correspondingly, there are three Hodge duals that provide
maps from forms to contra-forms, contra-forms to forms,
and a self-inverse map between spatial forms, respectively,

�↑½μðmÞ� ¼ ⋆½V ∧ μðmÞ�♯ ¼ 1

ðdþ 1 −mÞ!
�

1

m!
μμ1…μmε

μ1…μmν1…νdþ1−m
↑

�
∂ 0
ν1 ∧ … ∧ ∂ 0

νdþ1−m
;

�↓½μ½m�� ¼ ⋆½V ∧ μ♭ðmÞ� ¼ 1

ðdþ 1 −mÞ!
�

1

m!
μμ1…μmε↓μ1…μmν1…νdþ1−m

�
dxν1 ∧ … ∧ dxνdþ1−m;

�½μðmÞ� ¼ ⋆½V ∧ u ∧ μðmÞ� ¼ 1

ðd −mÞ!
�

1

m!
μμ1…μmεμ1…μmν1…νd−m

�
dxν1 ∧ … ∧ dxνd−m: ðC22Þ

One can check that �� ¼ −sgnðGÞð−Þmðd−mÞ and �↓�↑ ¼ �↑�↓ ¼ −sgnðGÞð−Þmðdþ1−mÞ. Finally we need to define an
integration for NC full rank forms and contra-forms,

Z
Mðdþ1Þ

μðdþ1Þ ¼ sgnðGÞ
Z
Mðdþ2Þ

V ∧ μðdþ1Þ ¼ sgnðγÞ
Z

fdxμg
ffiffiffiffiffi
jγj

p
�↑ ½μðdþ1Þ�;

Z
Mðdþ1Þ

μ½dþ1� ¼ sgnðGÞ
Z
Mðdþ2Þ

V ∧ μ♭ðdþ1Þ ¼ sgnðγÞ
Z

fdxμg
ffiffiffiffiffi
jγj

p
�↓ ½μ½dþ1��; ðC23Þ

where γμν ¼ pμν þ nμnν and γ ¼ det γμν ¼ −G. Obviously a full rank spatial form would be zero. The rest of the notations
and conventions follow from our relativistic discussion.

2. Noncovariant differential forms

Choosing a noncovariant basis given in Appendix A, a vector and a one-form can be decomposed as

XM∂M ¼ −eΦðX t þ BtX∼Þ∂∼ − eΦX∼ðBt∂∼ þ ∂tÞ þ X ið∂i − ai∂t þ ðBi − aiBtÞ∂∼Þ;
YMdxM ¼ Y∼ðdx∼ − BμdxμÞ þ ðY∼Bt þ YtÞðdtþ aidxiÞ þ gijYjdxi: ðC24Þ

It immediately follows that a spatial differential form (Yt ¼ Y∼ ¼ 0) is indeed a pure differential form on the spatial slice.
Such a form can be expanded in the coordinate basis as

μðmÞ ¼ 1

m!
μi1i2…imdx

i1 ∧ dxi2 ∧ … ∧ dxim: ðC25Þ

Since there exists an invertible metric gij on this slice, there is a map between forms and contra-forms. One can check that
the volume element εðdÞ defined before is indeed a full rank form on the spatial slice and can be written in this setting as

εðdÞ ¼ ⋆½V ∧ V� ¼ 1

d!
ðVMVNϵMNi1…idÞdxi1 ∧ … ∧ dxid : ðC26Þ

The Hodge dual � associated with it serves as the Hodge dual operation on the spatial slice. Finally a full rank spatial form
can be integrated on a spatial slice,
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Z
MðdÞ

μðdÞ ¼ sgnðGÞ
Z
Mðdþ2Þ

eΦV ∧ V ∧ μðdÞ

¼ sgnðgÞ
Z

fdxμg
ffiffiffiffiffi
jgj

p
� ½μðdÞ�: ðC27Þ

Here g ¼ det gij ¼ e2Φγ ¼ −e2ΦG. Other conventions and
notations are the same as in the relativistic case.

APPENDIX D: COMMENTS ON THE
RELATIVISTIC ENTROPY CURRENT

In this appendix we wish to make some comments on the
entropy current for a relativistic fluid. To be notationally
consistent with some recent works in this direction (e.g.,
Ref. [42]), in this section we consider the relativistic
manifold Mð2nÞ to be 2n dimensional, and denote indices
on it by μ; ν…. On the local flat space Rð2n−1;1Þ, however,
we denote the indices by α; β…. This setup is equipped
with a vielbein eαμ, an affine connection Γλ

μν, a spin
connection Cα

μβ ¼ eβρðΓν
μρeαν − ∂μeaρÞ, and a non-

Abelian gauge field Aμ. Correspondingly we have a torsion
tensor Tα

μν, a Riemann curvature tensor Rμν
α
β, and a gauge

field strength Fμν. μ; ν… indices can be raised/lowered by
the metric gμν, α; β… indices can be raised/lowered by the
flat metric ηαβ, while both type of indices can be inter-
changed by the vielbein. The covariant derivative on the
other hand is given by ∇μ which is associated with all
the connections. We take the fluid data to be
ψβ ¼ fβμ; ½ΛΣðβÞ�μν;ΛðβÞg. In terms of it we define the
fluid temperature T ¼ ð−βμβμÞ−1=2, fluid velocity
uμ ¼ Tβμ, scaled chemical potential ν ¼ Λβ þ βμAμ,
chemical potential μ ¼ Tν, scaled spin chemical potential
½νΣ�αβ ¼ ½ΛΣ�αβ þ βμCα

μβ, and spin chemical potential
½μΣ�αβ ¼ T½νΣ�αβ. Finally we have a canonical EM tensor
Tμ

α, a spin current Σμα
β, a charge current Jμ, an entropy

current JμS, a Belinfante EM tensor Tμν
ðbÞ, and a Belinfante

(usual) entropy current JμSðbÞ.
We wrote an off-shell generalization for the second law

of thermodynamics in Cartan formalism in Sec. IV, which
in the aforementioned notation will become

̲ ∇̲μJ
μ
S þ βνð̲ ∇̲μTμ

ν − Tα
νμTμ

α − Rνμ
α
βΣ

μβ
α − Fνμ · JμÞ

þ ½νΣ�βαð̲ ∇̲μΣμαβ − T ½βα� − Σ⊥αβ
H Þ

þ ν · ð̲ ∇̲μJμ − J⊥HÞ ≥ 0; ðD1Þ

where ̲ ∇̲μ ¼ ∇μ − Tν
νμ. Σ

⊥αβ
H , J⊥H are the anomalous Hall

currents, which are determined in terms of an anomaly

polynomial Pð2nþ2Þ
CS as

⋆ð2nþ1ÞΣH
αβ¼∂Pð2nþ2Þ

CS

∂Rβα
; ⋆ð2nþ1ÞJH¼

∂Pð2nþ2Þ
CS

∂F : ðD2Þ

On imposing the equations of motion (3.4) (after the
appropriate change of notation) this will boil down to
the second law of thermodynamics̲∇̲μJ

μ
S ≥ 0. To compare

this statement with that of Ref. [40] we make a field
redefinition,

½νΣ�μν → ½ν0Σ�μν ¼ ½νΣ�μν þ eα½μδβeαν� ¼ ∇½νβμ� þ T½μν�ρβρ;

ðD3Þ

where δβ is the diffeomorphism, spin, and flavor trans-
formation associated with ψβ. This field redefinition does
not spoil our equilibrium frame as the perturbation vanishes
on promoting ψβ to an isometry. Further, by setting the
torsion to zero this statement boils down to the statement
appearing in Ref. [40],

∇μJ
μ
SðbÞ þ βνð∇μT

μν
ðbÞ − Fνμ · Jν −∇μΣ

⊥νμ
H Þ

þ ν · ð∇μJμ − J⊥HÞ ≥ 0; ðD4Þ

where we have defined the Belinfante EM tensor,

Tμν
ðbÞ ¼ TðμνÞ þ 2∇ρΣðμνÞρ: ðD5Þ

We have also defined the Belinfante entropy current,29

JμSðbÞ ¼ JμS þ βνð∇ρΣρμν þ T ½μν� − Σ⊥μν
H Þ; ðD6Þ

which is a more natural quantity to use when working with
the Belinfante EM tensor Tμν

ðbÞ. Note that the two entropy

currents differ only off shell and boil down to the same
thing when the spin equation of motion,

∇ρΣρμν ¼ T ½νμ� þ Σ⊥μν
H ; ðD7Þ

is imposed. For comparison with Ref. [42] we will be
interested in relativistic fluids without a spin current. In the
absence of anomalies we could achieve this by setting
Σρμν ¼ T ½μν� ¼ 0, but anomalies would not allow us to
make this simple choice. Nevertheless, we can define
spinless fluids as configurations for which Σρμν, T ½μν� are
totally determined in terms of the anomalies.
The transgression form business does not change much

in the vielbein formalism. The end result is that we can
define certain quantities in terms of the anomaly poly-
nomialPð2nþ2Þ

CS and hatted connections Â ¼ Aþ μu, Ĉα
β ¼

Cα
β þ ½μΣ�αβu [refer to the discussion around Eq. (12.25) of

Ref. [42] for more details],

29The motive for calling JMSðbÞ the Belinfante entropy current is
primarily to distinguish it from JMS , and second to relate it more
closely to the Belinfante EM tensor TMN

ðbÞ . We could not find any
existing name in the literature for this quantity.
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⋆Σαβ
P ¼ u

du
∧
�∂Pð2nþ2Þ

∂Rβα
−
∂P̂ð2nþ2Þ

∂R̂βα

�
;

⋆JP ¼ u
du

∧
�∂Pð2nþ2Þ

∂F −
∂P̂ð2nþ2Þ

∂F̂
�
;

⋆qP ¼ −
u
du

∧
�
Pð2nþ2Þ

CS − P̂CS þ du

∧
�
½μΣ�αβ

∂P̂ð2nþ2Þ

∂R̂α
β

þ μ ·
∂P̂ð2nþ2Þ

∂F̂
��

: ðD8Þ

In terms of these, the anomalous sector of the constitutive
relations is given as

ðTμαÞA ¼ qμPu
α þ qαPu

μ;

ðΣμαβÞA ¼ Σμαβ
P ;

ðJμÞA ¼ JμP : ðD9Þ
These currents follow the Bianchi identities,30

̲ ∇̲μðTμ
νÞA ¼ Tα

νμðTμ
αÞA þ Rνμ

α
βðΣμβ

αÞA þ Fνμ · ðJμÞA
− uνðμ · Ĵ⊥H þ ½μΣ�αβΣ̂⊥βα

H Þ

þ 1ffiffiffiffiffiffi−gp δβð
ffiffiffiffiffiffi
−g

p
TqPνÞ;

̲ ∇̲μðΣμαβÞA ¼ Σ⊥αβ
H − Σ̂⊥αβ

H ;

̲ ∇̲μðJμÞA ¼ J⊥H − Ĵ⊥H: ðD10Þ

By plugging these constitutive relations into the off-shell
adiabaticity equation we can get a relation for the entropy
current,

̲ ∇̲μðJμSÞA ≥ 0: ðD11Þ

Hence the off-shell second law can be satisfied with a
trivially zero entropy current,

JμS ¼ 0: ðD12Þ

In other words, the entropy current JμS does not get any
contribution from anomalies. On the other hand, using
Bianchi identities in Eq. (D6), we can read off the
anomalous Belinfante entropy current,

ðJμSðbÞÞA ¼ βνΣ̂
⊥νμ
H ; ðD13Þ

which is what was found in Refs. [42,54]. Note that Σ̂⊥νμ
H is

by definition antisymmetric in its last two indices, and
differs from Ref. [42] by a factor of 2. Hence we have
established that the entropy current in the vielbein formal-
ism JμS does not get a contribution from anomalies, while
the Belinfante entropy current does. Recall that a similar
situation appears for the EM tensor as well; while the
canonical EM tensor Tμα that appears in the vielbein
formalism is the Noether current of translations, the
symmetric Belinfante EM tensor Tμν

ðbÞ that appears in the

metric-like formalism couples to the metric in general
relativity but does not correspond to any Noether current.
Hence from the point of view of symmetries, the canonical
EM tensor is a more natural quantity. On the same lines we
guess that the vielbein entropy current will be more
naturally associated with the fundamental Uð1ÞT symmetry
introduced in Ref. [42], as opposed to the Belinfante
entropy current. The former being independent of anoma-
lies seems to strengthen this natural guess. However one
will have to do the explicit computation of Uð1ÞT trans-
formations in the presence of torsion to give any weight to
this claim.
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