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Galilean anomalies and their effect on hydrodynamics
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We study flavor and gravitational anomalies in Galilean theories coupled to torsional Newton-Cartan
backgrounds. We establish that the relativistic anomaly inflow mechanism with an appropriately
modified anomaly polynomial can be used to generate these anomalies. Similar to the relativistic case, we
find that Galilean anomalies also survive only in even dimensions. Further, these anomalies only
effect the flavor and rotational symmetries of a Galilean theory; in particular, the Milne boost
symmetry remains nonanomalous. We also extend the transgression machinery used in relativistic
fluids to Galilean fluids, and use it to determine how these anomalies affect the constitutive relations of a
Galilean fluid. Unrelated to the Galilean fluids, we propose an analogue of the off-shell second law of
thermodynamics for relativistic fluids, to include torsion and a conserved spin current in the vielbein
formalism. Interestingly, we find that even in the absence of spin current and torsion the entropy currents
in the two formalisms are different: while the usual entropy current gets a contribution from the
gravitational anomaly, the entropy current in the vielbein formalism does not have any anomaly-induced

part.
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I. NULL REDUCTION AND ANOMALIES

For most practical purposes, the world around us can
be regarded as nonrelativistic. So it is natural to ask how
various exotic results in relativistic theories can be
interpreted in the nonrelativistic limit. Taking this limit
(sending the speed of light ¢ — o0) however turns out to
be a notoriously nontrivial task. Except in a few special
cases, the nonrelativistic limit is either not well defined or
is not unique,” which forces the analysis to resort to
other methods. One such (and historically the first)
method is, rather than taking a limit of a relativistic
theory, to define nonrelativistic theories in their own right
guided by the symmetries. Nonrelativistic theories are
known to transform covariantly under the action of
“Galilean algebra.” This algebra2 is spanned by the
following generators:
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Continuity (mass operator) :

Time Translation :

=

Translations :

>
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Galilean Boosts:

<

Rotations: M,
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'For example, Maxwell’s electromagnetism is known to have
more than one nonrelativistic limits [1].

To be more precise, what we call Galilean algebra is generally
known as the Bargmann algebra which is the central extension of
Galilean algebra with the mass operator M. Galilean algebra sits
inside as a special case with M = 0.
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with the commutation relations

’ [H’Mab} :O’ [H’Ba]:_Pm
’ [Mab7Pc] = aach _ébcPaf
[MabvBc] = aacBb - échav

(1.1)

In this work we will be interested in studying properties
of Galilean theories, defined as theories respecting the
Galilean algebra. Note that this definition spans a larger
class of theories than just the nonrelativistic theories, as
every Galilean theory might not arise as a ¢ — oo limit of
a relativistic theory.

About a decade after the inception of general relativity it
was realized that the spacetimes with the Galilean isometry
group (called Galilean spacetimes) can also be packaged into
a nice covariant language: Newton-Cartan geometries [2,3].
Since then there has been a huge amount of development in
our understanding of how Galilean theories couple to
Newton-Cartan backgrounds [4—1 8].3 We recommend look-
ing at Sec. 2.1 of Ref. [14] for a short and self-contained
review of Newton-Cartan geometries, which will be exten-
sively used throughout this work. References [19-22] con-
tain some more recent work on Galilean physics which will
not be touched upon here.

It is far from the reach of a mortal being to compile an
exhaustive list of the work on nonrelativistic physics; please refer
to the mentioned works and references therein.
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There is another well-known way to approach non-
relativistic physics: null reduction [23-25]. It has been
known for a long time that the Galilean group can be
embedded into a Poincaré group that is one dimension
higher. Correspondingly, one can constrain the Poincaré
algebra in a certain way, and reduce it to the Galilean
algebra. To be more precise, consider generators of the five-
dimensional Poincaré algebra written in null coordinates”
(A, B=—-,+,1,2,3),

Spacetime Translations: Py,

Lorentz Transformations: M ,p, (1.2)

with the usual commutation relations,

[PA’PB] - 0,
[MAB’PC] = NacPp —npcPa,
[MAB’ MCD] =NacMpp —NapMpc — NpcMap + nppMsc-
(1.3)

We can check that a subset of these generators, those that
commute with null momenta P_ (a, b = 1, 2, 3),

P_, P+’ Pa’ Ma—’ Mab’ (14)
span the Galilean algebra (1.1), with P_ acting as a new
Casimir. M = P_ can be interpreted as a continuity
operator (with mass as its conserved charge), P, as trans-
lations, H = P as time translation, B, = M,_ as Galilean
boosts, and finally M, as rotations (look at Ref. [26] for an
extensive review). This is rather convenient as instead of
starting from a four-dimensional relativistic theory and
taking ¢ — oo, one can start with a five-dimensional
relativistic theory and reduce it over a light cone (introduce
a null Killing vector) to get a Galilean theory. This idea
(and its generalizations to higher and lower dimensions)
have been used readily in the literature to reproduce known
results and to get new insights into nonrelativistic physics.
Probably the most important of these results, in the current
context, was to reproduce (torsional) Newton-Cartan geom-
etries starting from a Bargmann structure (relativistic
manifold carrying a covariantly constant null Killing
vector) in one higher dimension [9,12,27-29]. Also, the
authors of Ref. [30] and many following them (e.g.,
Refs. [31,32]) established that reducing a relativistic fluid
on a light cone indeed gives the expected constitutive
relations of a Galilean fluid, which was discussed, e.g.,
in Ref. [33].

*We define the transformation to null coordinates as
£ 1(,0 4
Xt = ﬁ(x +x%).
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The authors of Ref. [32] realized that this mechanism
fails to reproduce the most generic Galilean theories. In
particular, the thermodynamics of a Galilean fluid gained
via null reduction is in a sense more restrictive than the
most generic Galilean fluids.” Further, the parity-violating
sector of the reduced fluid is highly restrictive and
survives only in a very special case of “incompressible
fluids kept in a constant magnetic field.” In Ref. [35], the
same authors provided a resolution to this issue, which
however is a little different from the usual spirit of null
reduction. Rather than performing null reduction of a
relativistic fluid, the authors suggested constructing a
theory of fluids coupled to Bargmann structures from
scratch, henceforth referred to as a Bargmann fluid or null
fluid.® In the process it was realized that there are certain
aspects of null fluids which arise just by the introduction
of null isometry and have no analogue in usual relativistic
fluids. Upon null reduction,” this null fluid gives rise to
the most generic Galilean fluid. In a sense null fluids can
be seen as a particular embedding of Galilean fluids into a
spacetime of one higher dimension. This approach is
more in line with the axiomatic approach to study
Galilean theories, but has the benefit that we have all
of the well-developed machinery of relativistic physics at
our disposal.

The aim of this paper is to address a similar issue, but
in a different setting: anomalies. Flavor and gravitational
anomalies for a nonrelativistic quantum field theory
(Lifshitz fermions) were discussed in Ref. [36] using
path integral methods. Reference [37], on the other hand,
took the conventional null reduction approach to this
problem, where the author started with an anomalous
relativistic theory and figured out its fate upon reduction.
There is however an issue with this approach: relativistic
anomalies® are known to exist only in even dimensions,
and hence this approach will essentially give anomalies
only in odd-dimensional Galilean theories. This is slightly

See Eq. IV. 121 of Ref. [32] and footnote (7) of Ref. [34] for
more details on this issue.

6Why A “null” fluid? A fluid is generally called “null” if the
corresponding fluid velocity is a null vector. Unlike usual
relativistic fluids, one can show that on a Bargmann structure
(with null Killing vector V), a null fluid (#u,, = 0) and a unit
normalized fluid (wWMw,, = —1) are related by merely a field
redefinition: u” =w¥ + VM The authors of Ref. [35]

2wV

found that writing a Bargmann fluid in terms of a “null fluid
velocity” is more natural from the point of view of a Galilean
fluid.

"Since the theory already has a null Killing field, null reduction
is defined as choosing a foliation transverse to the Killing field
and compactifying the null direction. As we shall discuss in
Sec. II C, doing this requires introducing a Galilean frame of
reference, or in other words, a preferred notion of time.

8The author of Ref. [37] considered both flavor/gravitational as
well as Weyl anomalies; however, in this work we will only be
concerned with the former.
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unpleasant, because if one is to look at Galilean theories
as a makeshift version of nonrelativistic theories which in
turn are the “low-velocity” limit of relativistic theories in
the same number of dimensions, one would expect them
to be anomalous only in even dimensions (see footnote 8).
Half of this problem can be solved by noting that all of the
anomalies found in Ref. [37] crucially depend on the
components of the higher-dimensional gauge field and
affine connection along the Killing direction (A., T,
where Ay, is the gauge field, '}, is the affine connection,
and the null Killing vector is chosen to be d..). It was noted
in Ref. [32] that these components act as sources in the
mass conservation Ward identity [look at the discussion
around Eq. (2.42)]. Since we do not know of any such mass
sources appearing in nature, it would be better to switch
these off (one can check that these mass sources
A_, TM, are well-defined gauge-covariant tensors). Doing
so will eliminate all the anomalies in odd-dimensional
Galilean theories. We call the Bargmann structures
with these mass sources set to zero as compatible
Bargmann structures or null backgrounds, following
Ref. [34]. The other half of the problem is however more
challenging: we need to find a consistent mechanism
to introduce anomalies in theories coupled to odd-
dimensional null backgrounds.

The basic idea to do this was illustrated in Ref. [34] using
U(1) anomalies. To motivate this let us consider the
simplest case of a four-dimensional flat relativistic theory
with a U(1) anomaly. Conservation of the corresponding
(covariant) current J# is given as

(1.5)

3 vpo
Ol =7 CWetroF, F,,,

where F,, is the field-strength tensor and C¥ s the
anomaly constant. Upon taking a nonrelativistic limit,
one would qualitatively expect the conservation law to
look like’

D, + 0;j = —6CHe, b, (1.6)

where e, b are the electric and magnetic fields, respectively.
This effect can be reproduced after null reduction of a five-
dimensional conservation law,

3 _
3MJM = Z C(4>€MNRSTVMFNRFST, (17)

Note that Eq. (1.6) is not just Eq. (1.5) expanded into
coordinates. When we take the ¢ — oo limit of 9,J/ = 0,J%/c+
0;J" we get 0,q+0;j', where g¢=1lim,_ . J°%/c and
ji=1lim._ . J'". For right-hand side we use the definitions
ik = Ok [, e; = lim,_ o, cFip, b' =1lim,_ $&7*F, and as-
sume C4 ~ O(c0).
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where V¥ is an arbitrary null vector with V_ = —1. Note
that F_y; = 0.Ay — OyA. = 0 when A_ = 0. Since one
index on e must be “~,” this responsibility lands on V,,
implying that the mentioned expression does not depend
on which VM is chosen (these statements will be made
more rigorous in Sec. III B). It was observed in Ref. [34]
that this anomaly can indeed be generated by the anomaly
inflow mechanism exactly in the same way as it works for
usual relativistic anomalies, but with a tweaked anomaly
polynomial. The authors there were interested in Abelian
anomalies and how they affect the hydrodynamics at the
level of constitutive relations. This work will generalize
these arguments to non-Abelian and gravitational anoma-
lies, and will give a more rigorous and transparent
mechanism to compute their contribution to Galilean
hydrodynamics using the transgression machinery of
relativistic fluids [38].

However, unlike Ref. [34], we would need to introduce
torsion into the game for a clearer analysis of the
gravitational sector. In Newton-Cartan geometries it is
known (see Ref. [14]) that torsionlessness imposes a
constraint dn = 0 on the time metric n = n,dx*. It has
been noted in Refs. [12,18,39] that lifting this constraint
off shell is necessary to study energy transport in
Galilean theories. A similar issue also showed up
in the context of Galilean hydrodynamics discussed in
Ref. [35], where the authors noted that on torsionless
Galilean backgrounds the second law of thermodynamics
fails to capture all the constraints obeyed by the transport
coefficients of a Galilean fluid. Since we will be
interested in off-shell physics to understand anomalies,
imposing torsionlessness would only make matters less
clear. Nevertheless, at the cost of some added technical-
ities, it will allow us to explore null reduction for theories
with a nonzero spin current, which as far as we can tell
has not been attempted.10 Reference [17] considered the
most generic Galilean theories on a torsional Newton-
Cartan background (without a conserved spin current),
which follows very nicely via null reduction. Notably,
the authors of Ref. [17] presented their results in a
“frame-independent” manner using an “extended
space representation” of the Galilean group; we will
show in Appendix B that this representation is nothing
but the theory on a null background seen prior to null
reduction.

It is worth noting here that the essence of null
reduction—whether usual or axiomatic—lies in the fact
that the sophisticated machinery of relativistic theories
can be used to say something useful about nonrelativistic
theories. This method however has its limitations; one

1%Some authors (including those of Ref. [12]) have considered
null reduction in the presence of torsion, but have not included a
spin connection as an independent background source.
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needs to be acquainted with the relativistic side of the
story to appreciate the construction. Although we review
whatever is required for this work, readers might find it
helpful to consult the relativistic results first, or from time
to time during the reading. The respective relativistic
references will be mentioned on the go.

Unrelated to Galilean fluids, we also make some
observations regarding the entropy current for a relativ-
istic fluid. Recently, an off-shell generalization of the
second law of thermodynamics was considered in
Ref. [40] in the context of torsionless relativistic hydro-
dynamics. The authors of Refs. [41,42] also proposed a
new Abelian U(1); symmetry in hydrodynamics associ-
ated with this off-shell statement, with entropy as its
conserved charge. We propose a natural generalization of
this off-shell statement of the second law in the vielbein
formalism, in the presence of torsion and a conserved spin
current. More interestingly, even in the absence of torsion
we find that the entropy current defined by the off-shell
second law in the vielbein formalism is different from
what is defined in the metric-like formalism (we call the
latter the Belinfante entropy current). The vielbein
entropy current does not have any anomaly-induced parts,
while the Belinfante entropy current has been shown to
get contributions from a gravitational anomaly [42].
A similar distinction between the two formalisms has
been known for the energy-momentum tensor as well:
while the vielbein formalism deals with an asymmetric
canonical energy-momentum (EM) tensor (which is
the Noether current of translations), the metric-like
formalism deals with a symmetric Belinfante EM tensor
(which couples to the metric in general relativity)
(see footnote 15 for related comments). Motivated by
this, and the fact that the vielbein entropy current does not
get contributions from an anomaly, we guess that it
should be in some sense more naturally related to the
fundamental U(1); symmetry of Refs. [41,42]. In passing
we would also like to note that the two entropy currents
are found to differ only off shell, and boil down to the
same thing upon imposing the equations of motion.
Further, for a spinless fluid'" the difference only survives
in the anomalous sector, and is precisely what accounts
for the vielbein entropy current being independent of
anomalies. Interested readers can jump directly to
Appendix D.

This work is broadly categorized in five sections. The
remainder of the Introduction contains a summary of our
main results in Sec. I A. Section II starts off by extending
the null background construction of Ref. [34] to include
torsion, which is further used to derive the Ward identities
of a Galilean theory with a nontrivial spin current in

llBy “spinless” we mean that the theory does not contain an
independent conserved spin current (coupled to torsion).
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Sec. IIC. A review of the relativistic anomaly inflow
mechanism has been provided in Sec. III, which we modify
in Sec. III B to account for anomalies in the null/Galilean
backgrounds and derive the corresponding anomalous Ward
identities. Later, in Sec. IV we discuss how these anomalies
affect the constitutive relations of null/Galilean hydrody-
namics. Keeping in mind the technicality of this work, a
detailed walkthrough example for the simplest case of three-
dimensional null theories (two-dimensional Galilean
theories) is given in Sec. VA. These results are further
generalized to arbitrary higher dimensions in Sec. V B. In
Appendix A we present some of our results in the conven-
tional noncovariant basis for the benefit of readers not
acquainted with the Newton-Cartan language. Appendix B
is devoted to a comparison of null backgrounds to the
extended space representation of Ref. [17]. In Appendix C
we give some notations and conventions for differential
forms used throughout this work. Finally, in Appendix D we
comment on the entropy current in relativistic hydrody-
namics in the vielbein formalism.

A. Overview and results

Skipping all the technicalities, we start directly with the
results, keeping in mind that these results have been obtained
by null reduction of anomalies on null backgrounds. In the
following we denote indices on a Newton-Cartan (NC)
manifold M?ﬁl) by pv..., and on a flat spatial manifold
R(@ by a, b.... The NC structure is defined by a time metric
n,, a degenerate vielbein e, and a flat metric J,;,. Further,
we define a NC frame velocity v#, and by using it an “inverse”
vielbein e, satisfying v#n, + e/, = &, and e“ ¢,/ =
54;,. Indices on MNC  cannot be raised/lowered, while on

(d+1)
R they can be raised/lowered by 6, 8,,. MI(\;CH) indices
can be projected down to R(@ using e“,, e An NC
manifold is also equipped with a connection Fﬁﬂy, a spin

connection C“,, a~n0n-Abelian gauge field A,, and a

covariant derivative V,, associated with all of these. We also
define the spacetime dependence of the frame velocity (also

known as the boost connection) as ¢, = eV, 0"
Differential forms are denoted by bold symbols.

Similar to the relativistic case, we find that (flavor and
gravitational) anomalies on an even-dimensional NC back-
ground MI(\;% are governed by a (2n + 2)-dimensional
anomaly polynomial p(>"+2). However, here the anomaly
polynomial is written in terms of the Chern classes of the
gauge field strength F =dA +A AA =1F,,dx* A dx*
and the Pontryagin classes of NC spatial curvature
R, =dC* +C*. AN C¢p, = %R,w“bdx” Adx’. On the
other hand, the odd-dimensional Galilean theories are non-
anomalous (in the absence of any extra mass sources). In the
presence of anomalies, the conservation laws of the theory

are given as
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Mass Cons (Continuity)
Energy Cons (Time Translation)

Momentum Cons (Translations)
Temporal Spin Cons (Galilean Boosts) :jﬂrﬂ

Spatial Spin Cons (Rotations)

Charge Cons (Flavor Transformations)

whereV, =V, +1v"H,, —e,/T%,,. Here H,, is the tem-
poral torsion and T, is the spatial torsion. Along with
the conservation laws, the associated symmetries and
conserved quantities have been specified above. We see
that the mass current is exactly conserved. The energy/
momentum current is sourced by the power/force den-
sities (expressions can be found in Sec. II C) and pseudo-
power/force densities due to the spacetime dependence of
the frame velocity c,“. The temporal spin current is
sourced by the difference between the spatial mass current
and momentum density (for spinless theories it implies
equality of the two). Barring anomalies, the spatial spin
current is sourced by the antisymmetric part of the
momentum density (causing torque) and pseudotorque
density, while the charge current is exactly conserved.
In addition to these, the spatial spin and charge
currents are also sourced by gravitational12 o and
flavor ji; anomalies, respectively. These anomaly sources
can be determined from the anomaly polynomial
p(2n+2) as

In the study of Galilean hydrodynamics, we can construct
the sector of constitutive relations completely determined
by these anomalies, following the transgression machi-
nery developed to do that same job in relativistic fluids
[38]. To do this, we first need to define the hydrodynamic
shadow gauge field A=A- un and spin connection
C¢, =C% — [u,),n, where u is the flavor chemical
potential and [u,]“, is the spatial spin chemical potential.
We call the corresponding field strengths F and R“,, and
the anomaly polynomial made out of these is p2"+2.
Using these we define the transgression form,

"It should be noted that the gravitational anomaly appears as a
“spin anomaly” in Eq. (1.8). This is already familiar from the
respective relativistic version, where the gravitational anomaly in
a metric-like formulation appears as a Lorentz anomaly in the
vielbein formalism.
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V" =0,
1V, e = [power] — pric,,
j = [force], — p¥Cqs
1
5(,0 - p%),
j otab — p[ba] 4 2T;4[a b] + aﬁub’
V" =i (1.8)
|
VI = — A (pCrt2) — pmt2)) where? H = —dn.

It can be used to generate the anomalous sector of
constitutive relations; only nonzero contributions are

given as

av (2n41)- P
(€M)A = *T 8H ’
av (2n41)+ “

Haby - —
(6 )A *T aRba | ’
. av (2n+1)- p
(.]”)A = *T i aF °

We leave it for the reader to convince themselves that
these formulas are well defined. These constitutive
relations follow the second law of thermodynamics and
off-shell adiabaticity with a trivially zero entropy current.
We would like to caution the reader that these are merely
the contributions from anomalies to the constitutive
relations; there will be further contributions which are
independent of the anomalies and have not been discussed
here. We would like to mention that in this derivation of
the anomaly-induced constitutive relations, we rely on the
existence of an equilibrium partition function which
describes the fluid in the equilibrium configuration.
These ideas were discussed for a relativistic fluid in
Refs. [43—45] and were later adapted to Galilean fluids in
Refs. [15,16,34,35].

Explicit examples of the above results in case of the U(1)
and spin anomalies for two dimensions and a generalization
to 2n dimensions is given in Sec. V. But probably the most
important take-home message of this work is that one can
perform a consistent analysis of flavor and spin anomalies
for Galilean theories using guidelines laid out by the
relativistic construction. This should be taken as yet
another point in the favor of (or rather an advertisement
for) the axiomatic approach to null reduction: null back-
grounds [35].

It is not immediately clear why it is okay to divide by a two-
form H. One can however check that the numerator always
contains at least one power of H, which will cancel the H in the
denominator.
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II. GALILEAN THEORIES WITH
SPIN AND TORSION

The aim of this section is to extend the null background
construction of Refs. [34,35] to torsional backgrounds, and
derive the nonanomalous Ward identities for a Galilean
theory with a nonzero spin current. We will introduce
anomalies later in Sec. III. The construction is mainly based
on the work of Refs. [12,28] on torsional null reductions,
with certain modifications. We will be working in the
vielbein formalism, which is a more natural choice for a
spin system. Hence the language and expressions will be
slightly different from what has been seen in the earlier
work on null backgrounds [34] where authors focused on
the torsionless and spinless case.

A. Einstein-Cartan backgrounds

We start with a short review of the Einstein-Cartan
backgrounds, mostly to set up notation for our later dis-
cussion on the torsional null backgrounds. A more compre-
hensive introduction to this formalism can be found in, e.g.,
Ref. [46]. Consider a manifold M 4,), on which theories are
invariant under diffeomorphisms and (possibly non-Abelian)
flavor gauge group G. We denote the infinitesimal diffeo-
morphism and flavor variation parameters by

Ve = {&=EMoy, A(.f)} € TM(d+2) xg. (2.1
We have denoted the tangent bundle of M 4,5y as TM45),
and the Lie algebra corresponding to G as g¢. Indices on
M 42) are denoted by M,N,R,S....M 4, is endowed
with a metric ds> = Gy;ydx”dx", a g-valued gauge field
A = Aydx¥, and a metric compatible affine connection
I'R,;¢ which is not necessarily symmetric in its last two
indices. In the case of torsional geometries it is more natural
to shift to the vielbein formalism, which we describe in the
following. The condition of local flatness of a manifold
allows us to define a map between T./\/l(d+2> and (pseudo-
Riemannian) flat space R+ realized in terms of a
vielbein E4,, and its inverse E,M, restricted by

Guy = E*yE® v, G"N = E,MEgNntP,  (2.2)
where 77,45 is the flat Minkowski metric, and A, B, C, D...
denote indices on R(“*11)_ Indices on M 4, can be raised
and lowered by G,,y, and those on R“@+1:1) by y, 5. Indices
on M 42 and R(@*+D can also be interchanged using the
E*);. The vielbein has (d + 2)? components out of which
1(d + 2)(d + 3) are taken away by Eq. (2.2). The remaining
1(d + 1)(d + 2) components can be fixed by introducing an
additional SO(d + 1, 1) symmetry in the definition of the
vielbein: E4,, ~ O4zE5,,. Hence E*,, modded by diffeo-
morphisms and SO(d + 1,1) has the same physical
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information as Gy modded with only diffeomorphisms.

We also define a spin connection for fields living in R(¢+1-1)|

C'p = Chypdx™ = Eg¥ (BRI s — Oy Efg)dx™,  (2.3)

which has the same information as I'%,;s. So finally our
system can be described by the trio {E*);, CAy5, Ay}
modded by diffeomorphisms, flavor transformations, and
SO(d + 1, 1) rotations denoted by infinitesimal parameters,

we = {0y, [Ase)) 5. A} € TM (412

x80(d+1,1) xg. (2.4)

Here 30(d + 1, 1) denotes the Lie algebra of SO(d + 1, 1).
Wy is given a Lie algebra structure by defining a commutator
on it,

Vi &) = [l//fl’w«fz] = 55|W§2 = _6§2W§|’ (25)

where

0s, &y = £: & = —££, &) = =654,
8, [As(ep)' s = £6[Asey)' 5 + [Ase))* c[Ase)] 5
= [Asep) efAsie)] s — £5, (x5
= =8, [Asge) 5
O My = £ M) + [Ny Ayl = £ M)

Similarly, the action of y (denoted by &;) on an arbitrary
field ¢ (all indices suppressed) obeys an algebra:
[0z, 0¢,]9 = O, £, @- Under the action of y,, constituent
fields vary as

8B4y = £:E4 — [Ase) [ 3EP im0
= V&t + Ty — s 3EP .
5§CAMB = £§CAMB + VM[AE(é)]AB
= VM[VZ(é)]AB + EVRyp’ 5.

where &' = E* )M and £, denotes the Lie derivative along
EM_ The covariant derivative V,, is associated with all the
connections I'% 5, C4 /5, Ay, Which acts on a general field
@R A g transforming in the adjoint representation of the flavor
group as

VM(pRSAB = aM(pRSAB + FRMN(pNSAB - FNMS(pRNAB
+ Cuycp®sC — COuRs™c + [Ap. "5 5]

(2.8)
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and similarly on higher-rank objects. In Eq. (2.7) we have
defined"

Scaled flavor chemical potential : vz = A + ENAY,
Scaled spin chemical potential: [vy)]*p = [Age)*
+ ENCA g,

(2.9)

B

associated with yz. One can check that, despite appearing
noncovariant, these scaled chemical potentials transform
covariantly under the action of y,. We have also defined
curvatures of all the constituent fields,

1
Gauge Field Strength: F=dA +A AA :EFMNdxM AdxV,

Spacetime Curvature: R4y =dC4 5 +C4- A CCp

1
— ERMNAdeM A d)CN,
Spacetime Torsion: T4 =dE* +C4; AE?

1
= ETAMNdxM AN de.

(2.10)
One can check that all these quantities also transform
covariantly under the action of w.. It is interesting to
note that CA ), transforms as a 8o(d + 1, 1)-valued gauge
field. In terms of torsion it is possible to give an exact
expression for the connections, which we note for
completeness:

1
Rys = EGRN(aMGNS + 0sGyy — OnGys + Tyus

= Tusv — Tsun)s
1
Clyp = EﬂBDE[mS[z(Za[SEA]M] — Tgm)

+ Ecy BAN (205ECy — TCgy)]. (2.11)

A physical theory on M 4., can be described by a partition

function W[EA,,, C*15,A)] which is a functional of the
vielbein and connections. Under an infinitesimal variation of
the sources its response is captured by

oW = /{dXM} \/ |G|(TMA5EAM + ZMABécBMA

+ M 5A,), (2.12)

14By scaled we mean scaled with temperature: v = p(g) /9 ),
where pig) is the chemical potential and 9 is the temperature.
Note that at this point these quantities are just introduced for
computational convenience, and they will get a physical meaning
only in the presence of preferred symmetry data, e.g., when
spacetime admits an isometry.
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where X - Y = Tr[XY]for X, Y € gis the inner product on g.
TMA is the canonical energy-momentum tensor, EMAB is the
spin current (antisymmetric in its last two indices), and J¥ is
the charge current. Demanding the partition function to be
invariant under the action of y., we can find the Ward
identities'” related to these currents,

VuT"y = TByu T g + Ryp pEME 4 + Fypg - TV,
yMzMAB _ T[BA],

VJM = 0. (2.13)

HereV,, = V,; — TV yus has been introduced for brevity.

B. Null backgrounds

We are now ready to define null backgrounds. These
kinds of backgrounds and their Galilean interpretation
goes back to Refs. [9,12,28,48]. The idea of null back-
grounds is to somewhat tweak the procedure, so that we not
only get the correct symmetries, but also reproduce the
required background field content after reduction. As we
shall show, this even allows us to add anomalies in odd-
dimensional null backgrounds which naively does not look
possible.

We will call y; a compatible symmetry data if the scaled
chemical potentials associated with it defined in Eq. (2.9) are
identically zero. Now, a manifold M4, along with fields

{EA . CA 15, Ay} will be called a null background (or more
formally a compatible Bargmann structure) if it admits a
covariantly constant compatible null isometry generated by
Yy = {VMGM, [AX(V)]AB’ A(V)}’ i.e.,
1. the action of wy, is an isometry, B4, =
5VCAMB =6yAy =0;
2. Vis null, VMV, = 0;
3. V is covariantly constant, V,,V" = 0; and
4. yy iscompatible, vy =VM Ay +Ay) =0, [vs)]4 5=
VMCA g+ [As )]t =0.
Although this definition of null backgrounds is a little
different from that in Ref. [34], one can check that it
boils down to the same thing in the torsionless limit.
If we drop condition (4), i.e., compatibility, we would
be left with the definition of Bargmann structures [9]

"*Note that we can use the spin Ward identity to eliminate the
antisymmetric part of the canonical EM tensor in the
EM conservation equation. Doing this is particularly helpful
in torsionless theories where the new EM conservation
becomes V, TVY = FN™. ], Here we have defined the

symmetric Belinfante energy-momentum tensor, T?ZI)V = TWMN) 4

2VRZMN)R Ty this work, however, we will mostly talk in terms
of the canonical EM tensor as this is the Noether charge
corresponding to translations. Also, it is well known that
gravitational anomalies do not affect the canonical EM
conservation [47].
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extended to the vielbein formalism. They have some nice
properties:
TAMNVA:HMNEZG[MVN]i RMNABVA =0. (214)
Hence, if we are interested in a torsionless theory, we would
have to apply a constraint on V, which can be violated off
shell. The requirement of compatibility further imposes

VITA =V Fyny =VMRyn* =0, VMVyp=26yp

(2.15)

for any tensor ¢ transforming in an appropriate representa-
tion of g and 8o(d + 1, 1) (all indices suppressed). These
restrictions are in some sense the backbone of the null
background construction. First and foremost, they eliminate
the unphysical mass sources that would otherwise appear in
the mass conservation law after reduction. Hints of it were
originally found in Ref. [32] in an attempt at naive null
reduction of charged fluids. We will have more to say about it
later. As we shall see, these restrictions also allow for
anomalies in the odd-dimensional null backgrounds and
forbid them in even-dimensional ones. This is an important
feature, if we are to reproduce physically realizable anoma-
lies in Galilean theories in one lower dimension.

We demand that physical theories on null backgrounds
(referred to as null theories) are not invariant under the
action of any arbitrary y but only those which leave vy
invariant, i.e., [yy,y¢] = 0. This requirement ensures that
there is no dynamics along the isometry even off shell. The
new partition function variation can be written following
Eq. (2.12) as

SW = / (A} \/[G](TM ,5EA,, + SMA ,6CE,

+ M 5Ay + #48VA). (2.16)
Note the last term in this expression, which is valid since our
restriction does not forbid us from varying V4. The astute
reader might note that we could have absorbed that term into
TMA owing to the fact that 5V = 0, but we have a better
setup in mind. The conditions of a null background along
with the restrictions we have imposed imply that the null
theories are invariant under the following set of current
redefinitions:

TMA _, TMA 4 yMgA
EMAB N ZMAB + VMeéB,
JM o M 4 g yM (2.17)

#A S #0040,V (2.18)

where the @’s are arbitrary scalars transforming in appropriate
representations of g and 8o(d + 1, 1). The Ward identities on
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null backgrounds will also be slightly modified compared to
Eq. (2.13),'

NVuTy = TPy T g 4+ Ry ZME 4 + Fypg - IV,
yMzMAB _ T[BA] + #[AvB]’

YV, JM = 0. (2.19)

One can check that these equations are invariant under
the redefinitions (2.17). To interpret the new #* term, note
that the spin (angular momentum) conservation consists of
1(d 4 1)(d + 2) equations. However, as was pointed out in
the Introduction, after reduction the system only respects
%d (d — 1) equations corresponding to rotations and d equa-
tions corresponding to Galilean boosts. The job of #4 is then
to eliminate the remaining (d + 1) conservation equations.
Practically, it is best to fix an “off-shell gauge” §VA = 0,
which renders a new invariance in the spin current,

SMAB _, yMAB 4 My 5] (2.20)

and omits the remaining (d 4 1) components of the spin
conservation. Note that it will further restrict y; to obey
()] V2 = 0. From this point onward we will assume that
every symmetry data y satisfies these requirements, and will
term them vy compatible symmetry data. From this view-
point, the spin conservation in Eq. (2.19) must be true for
some #¥, hence ruling out components involving #¥ as they
carry no information.

On null backgrounds, by using yy we can also define
some more “thermodynamic” variables associated with v
similar to Eq. (2.9),

1
Temperature: 9 = -,
ENVy
. . My,
Scaled mass chemical potential : W = — 5 {‘NV ,
N

(2.21)

and by using it we can define chemical potentials from
scaled chemical potentials,

Hie = dev(e),

s = 9 e

Ha(e) = 9@ (&) (2.22)

These abstract definitions will be useful later.

16Following footnote 15, one might wonder what the respec-
tive Belinfante EM conservation law looks like for null
theories. Similar to the non-null case, one can use the spin
conservation in the EM conservation law, which will give
VM(T(th)V—#[NVM]) = FNM . J,. One can show that the #"

dependence can be removed by using the TM4 redefinition

(2.17), after which one recovers the standard Belinfante con-
servation law (given in footnote 15) even for null theories. The
Belinfante EM tensor, on the other hand, is left with redefinition
freedom, T?ng - T?’,ﬁ’)" +6,VMVN_ These were derived directly

for a spinless null theory in Ref. [35].
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C. Null reduction—Newton-Cartan backgrounds

Having obtained the Ward identities in the null back-
ground language, it is now time to see what they imply for
the Galilean theories. To do this we need to pick up a
foliation M4,y = S}, x M5 |, and compactify along the
isometry direction V. Following Ref. [34], we note that
since V is null, it is not possible to find a unique such
foliation without choosing a set of yy compatible time
data, yr = {T" 0y, [Asr))* 5. Ay }- This is tantamount to
choosing a preferred Gahlean frame of reference."’ HaV1ng
chosen yr, we can define such a foliation as My,

Sl x Ry x M » where we identify MNE i = Ry x M(Td>
as a degenerate Newton Cartan manlfold We define null
reduction as this choice of foliation and subsequent
compactification.

Newton-Cartan structure: Null reduction of a generic
torsional relativistic spacetime in the metric-like formu-
lation was first performed in Ref. [49,50]. Here we add to
their results a non-Abelian gauge field and present them in
the vielbein formalism. Using y we can define a null field
orthonormal to V as

V?:ll') = 19(T>TM + /’lw(T) VM,
such that V%)V@)M =0, and V%) Vy = —1. Here 97,
He(r) have been defined in Egs. (2.21) and (2.22). Without
loss of generality we choose a basis on M g,5), M=
{x~, x*} such that y,, = {0.,0,0}. On the other hand, on
R(@+11) we choose a basis x4 = {x~,x™, x?} such that V =
d_ and V() = 0. At this stage we choose a specific
representation of 7,5, B4}, and E,¥ that is compatible
with the mentioned basis,

(2.23)

0 -1 0 1 -B,
mp=1-1 0 0 |, E'=[0 n, [,
0 0 6, 0 e,
1 0
EM=| B o |, (2.24)
BIJelly ea”
such that
nvt =1, e'n, =0, e’ v =0,
e el = 6%, v'n, + e t'e, = &, (2.25)

This can be identified as the Newton-Cartan structure. We
can also define the NC degenerate metric by

""The authors of Ref. [17] proposed a formalism for Galilean
theories independent of the choice of frame. But on a closer look
it would be clear that they just discovered null backgrounds from
a different perspective. The Ward identities as described in
Ref. [17] are just the null background Ward identities with a
slight rearrangement; we give a comparison in Appendix B.
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by = € ,e8 54, W = ete, 5. (2.26)

Since there is no nondegenerate metric on MNC (d+1)° the

raising/lowering of p,v indices is not permltted.
However, a, b... indices can be raised/lowered using J,,.
The NC vielbein e, is not a “square matrix” and hence
does not furnish an invertible map between tensors on

./\/ll\il(il and R(?). However it can be used to project tensors

on/\/lC

(d+1)

» NC
“spatial tensors” on M (dt1)

to tensors on R, and tensors on R to

e, X! = X4,

Xoe = W XY,  Yge, =Y,  (2.27)

where h*, = h**h,,. The compatibility of null isometry
switches off many components of the connections: 'Y,

M + L
FﬂN, CNB, C ., C B> and A.. The remaining nonzero

components can be determined to be

_ « . a ~ _
C™ o = Cua» Chs =, I =cu,—V,B,

1
I, = v'o,n, + Eh‘“(aﬂhw +0,h

ou aahﬂu)

1
n(ﬂgy)ahﬂg + E (eaATam/ - Zea(yT“”)ghﬁ"),

1 a a
Clp = 5m, " + Zﬂhde[d|”[ (20,e ]ﬂ] -T%)

- Tcua)]'

:2"{

+ €0, e (20),¢¢ (2.28)

Here we have defined the spacetime dependence of the

frame velocity c,, = hwﬁﬂv” in terms of which frame
vorticity is given by Q,, = 2c¢y,,;. We say that a time data

(reference frame) yr is globally inertial if c,, = 0. We
choose the connections on /\/ll\i, (d+1) to be I wws Clup,and A,

and denote the associated covariant derivative by @M, acting
on a general field ¢”,%, transforming in the adjoint
representation of the flavor group as
vu(ppo'ab =0 (P/) “ +Fpuzx(pb6 b _Fyyo‘g”’ v b + Cayc(p/ ¢

- CLyh(pp “ + [A;u c b] ’ (229)

and similarly on higher-rank objects. The action of @” on
the NC structure can be found to be

Vﬂny =0,
V,h,, =-2c

Vel =0, Ve =0,
Ve, = —n,c,”. (2.30)

n u

u@p)»

One can check that V,, F’lw agrees with the most generic
NC covariant derivative and connection written down in
Ref. [17]. One can also perform the reduction of curvatures.
The surviving components of the gauge field strength are
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F,, which act as the NC gauge field strength. Similarly, the
surviving components of the torsion are the spatial torsion
T¢,, “mass torsion” T, ,, = =T~ ,,, and temporal torsion
H,, = —T%,. Finally, we have the surviving components of
the curvature,

Rﬂya+ = 26[,,@]" + 2C“Wbcv]b,

leub = 28[}4Cay]b + 2cu[”‘cccb]b’ (2.31)
which act as the NC temporal and spatial curvatures,
respectively. Both curvatures can also be combined into
a full NC curvature,

R,/ = ea'”(Rﬂ,J“+n(7 + R,w"beb(,). (2.32)
We define the raised NC volume element,
e’;”"' = Vet = —em- (2.33)

Again, since the volume element is defined with all indices
up, and there is no lowering operation, the corresponding
Hodge dual x; gives a map from differential forms to
completely antisymmetric contravariant tensor fields. It is
also possible to define a lowered volume element, but we
would not require it for our purposes. More details on NC
volume forms and Hodge duals can be found in Appendix C.
|

Mass Cons (Continuity)

Energy Cons (Time Translation)

PHYSICAL REVIEW D 93, 065007 (2016)

Conserved currents and Ward identities: Now we need
to decompose the currents in this basis,

X X X X
= ( ) =)
S N J

0 X X
B = x, B =[x 0 o |, (2.34)
X —rhd  gHab

Here we have denoted unphysical components by x which
can be eliminated using the redefinitions (2.17) and (2.20).
We identify p# as the mass current, €¢” as the energy current,
pt¢ as the momentum current, 7#¢ as the temporal spin
current, 6#“® as the spatial spin current, and finally j* as the
charge current. We can also project the x4 index in these
currents onto R to get the corresponding “spatial
currents.” On the other hand, we define various densities
as the projection of these currents along n,,,

p=mpt.  e=me  p®=n,p,

a __ a ab __ ab _ .
™ = n, ™, o —nﬂo" , q—nﬂ]".

" (2.35)

In terms of these, the physical components of the Ward
identities (2.19) can be expressed as

:yypﬂ =0,
:jﬂe” = [power]| — p*“c,,.

Momentum Cons (Translations): V,p*, = [force], — pc,4

1

Temporal Spin Cons (Galilean Boosts) :jﬂrﬂa ==(pa— Pa)

2

Spatial Spin Cons (Rotations) hY Lot = plbal + 21”[“cﬂb],

Charge Cons (Flavor Transformations) :jﬂ J* =0,

where V, =V, +1v"H,, — e,/T%,,. These are the (non-
anomalous) conservation laws of a Galilean theory with
spin current. The conserved quantities have been men-
tioned above (and the underlying symmetry). The temporal
conservation equation, which is slightly less familiar, is
akin to the Milne boost Ward identity of the torsionless
case, which states that the spatial mass current must be
equal to the momentum density (look, e.g., at Ref. [14] and
follow references therein). Here [power] and [force], are
power and force densities due to background fields,

[power] = —v*(H,,e" + T 0" + T, p"s + R, 7,
+ Ryyuap0* + Fuyp - 1),
[force], = e,"(H e + Ty,,p" + T, ply + R, T,
+ Ryuap + Fy - ), (2.37)

(2.36)

I
which act as the energy and momentum sources, respec-
tively. The terms coupling to ¢, in Eq. (2.36) are due to the
fact that the chosen Galilean frame (time data) is not
globally inertial and hence causes pseudopower, pseudo-
force, and pseudotorque.

One could have taken a slightly different approach to get
these Ward identities and performed null reduction at the
level of the partition function (2.16) itself,

oW = /{dx”}\/ ly|(p*6B, — €n, + p*,6e°, + 27"5c,,

+ 01, 5CP  + - SA,), (2.38)

where y,, = h,, +n,n, and y = dety,, = —G. The sym-
metry data y breaks up in the NC basis as
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l//?c ={Awe =-¢", & Al =09 w

Aot = [Axe)%. At (2.39)

The variation of various constituent fields under the action
of l//?c (also denoted as 6;) can be obtained via null

.18
reduction,

6By = £:By + 9, Am(e) + [Ave) s
= 0w + 8T =&+ vaglae®s:
Oen, =4£en, =0, —EH,,,
Bgey =Hee®y = [Nog]pe”u— (Mg 'n
_ 6/4‘5“ + §+Cﬂa +ETY,
b

f

= o] “pe”u = )" nys
S¢Cua = ££Cua+ (0u[Aep))a = CualAeig)]s) + [Aoie)] acun
= 6,4 o))+ Wo(e)) aCup = E Ruprsa
8:C = £:C% + (0, [Ag(e) % + Cc[ Ao

—C [ Ase))e) = Vultoe)ls +E Ry,
0:A, =£:A,+ 8ﬂA(§) + [Aﬂ’ A(é)]

=V, +EF,, (2.40)

Looking at these expressions we can identify Ay as the
continuity parameter, & as the spacetime translation
parameter, [A;)], as the Galilean boost parameter,
[As(5]% as the rotation parameter, and A as the flavor
parameter. It is further noteworthy that é* = n,&* and & =
e?, 8" serve as time translation and space translation
parameters, respectively. Demanding the invariance of
Eq. (2.38) under all of these parameters, one can recover
the Ward identities (2.36). One can compare these results to
those of Ref. [17].

In the first equation of Eq. (2.40) we have defined the
scaled total mass chemical potential associated with y: as

g = M) + & B, = EMV 7). It differs from the scaled
mass chemical potential @) defined in Eq. (2.21) by a

“kinetic” part, UM@g) = W) — ﬁ@V&ﬂV(:)a. Following

"Note that fixing V¥ or VA is not a “gauge fixing,” as
transformations shifting these are not part of our symmetries on

null backgrounds. On the other hand, fixing V?T) is a gauge fixing

which can be violated off shell. If we fix this gauge even off shell
we would miss the corresponding temporal spin conservation
equation.
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Eq. (2.22) we can also define the total mass chemical

potential as uyi(e) = Seaue) = Haote) ~ 5 V(o) Viera-

We would like to note that mass, being exactly conserved,
is a consequence of compatibility. Otherwise the respective
conservation equation would look something like

__@”pu =T TV g+ Ry pZMP 4 + F oy - IV
= TMA (EBM[VZ(V)]AB - EANVMVN)

- ZMBAVM[V):(V)]AB —-JM. 6Ml/(V)- (2.42)

One can clearly see that V, VY, [vgy)]* 5, and vy, source
this conservation. One of the prime reasons for imposing
compatibility is to get rid of these mass sources.
Comparing our analysis to the torsionless case of Ref. [34],
one would note that the authors there also imposed a
“T-redefinition” invariance in the theory, which leads to a
Galilean boost transformation upon reduction. Note that on
defining y* =[A,(z)]“e,*, our Galilean boost transformation,

OclyBu =Wy Oelgt =", Oyl ==2wyn,), (2.43)
boils down to the (infinitesimal) 7-redefinition transforma-
tion of Ref. [34]. Hence for us imposing the 7" redefinition is
redundant. Actually, even in Ref. [34], imposing the T
redefinition was redundant, as the authors noted that the
corresponding Ward identity is trivially satisfied for theories
obtained by null reduction. It was helpful however to have this
transformation there, because Galilean currents are not boost
invariant and there was no nontrivial inherent symmetry of the
partition function to keep track of these transformations. It is
worth noting that the Galilean boost transformation (2.43) is
same as the “Milne boost” transformation [11] encountered in
the metric-like formulation of Newton-Cartan backgrounds.

III. GALILEAN FLAVOR AND
SPIN ANOMALIES

In the previous section we used null reduction to obtain
Ward identities for a Galilean theory with a nontrivial spin

19Although we will not be using it in this work, it is interesting
to differentiate two types of mass chemical potentials. Consider
that our system has a preferred symmetry data y . Naively p,
corresponds to the first law of thermodynamics written in terms of
the internal energy E, while p; corresponds to the first law in
terms of the total energy E, = E + %Ru“ u, (where u* = V‘(IU);

subscripts (U) have been dropped),

dE = 8dS + p,dR + [ux]? ,d[Qs]* 5 + p - O,
dE o = 9dS + pydR + u'd(Ru,) + [us]® 4d[Os]* 5 + u - Q-
(2.41)

When working with the total energy as a thermodynamic
variable, the thermodynamics becomes frame dependent and
the first law has a term corresponding to the work done due to the
momentum density Ru, as well. The notation used here can be
found in Ref. [34].
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current. Now we would like to take this a step ahead and
ask, how are these identities modified in the presence of
flavor and gravitational anomalies? We will give away the
suspense right away, because the following story is quite
technical. As one would expect, the flavor anomaly in
null theory translates to the flavor anomaly in Galilean
theory as well, while the gravitational anomaly manifests
itself purely through the spatial spin conservation. The
other four of the six conservation laws in Eq. (2.36)
remain nonanomalous. In the formulation of anomalies in
Cartan language it is not surprising; it is known that the
gravitational anomaly acts as a Lorentz anomaly in this
formalism and only violates the spin conservation [47].
What is surprising is that we did not find any anomalies in
the temporal spin conservation (or correspondingly the
Milne boost Ward identity). We do not claim that this
anomaly cannot be introduced by other means or that we
are not missing anything, but the fact that the number of
anomaly coefficients in our treatment and that of a
relativistic theory match exactly (in fact, they both are
determined by the same anomaly polynomial) gives us
some confidence in our results.

A. Anomaly inflow on Einstein-Cartan
backgrounds

In relativistic theories anomaly inflow has been by far
the most efficient way to understand flavor and gravita-
tional anomalies [51]. We would like to take a step back
and first describe the anomaly inflow mechanism for
generic Einstein-Cartan theories. The extension to null
theories will then be more transparent and straightfor-
ward. A good discussion on anomaly inflow for torsion-
less relativistic theories can be found in Sec. II of
Ref. [52]. We consider that our manifold of interest
M(d+2) lives on the boundary of a bulk manifold

B(443). Bulk coordinates are denoted with a bar, and

we choose a basis x” = {x*, xM}, where x* corresponds
to depth into the bulk. All of the field content E*5;, A,

C'y5 is extended down into the bulk with the
requirement that all L components vanish at the
boundary.

Now we keep our theory of interest on M ,,), whose
generating functional W,, is not necessarily invariant
under the symmetries of the theory, i.e., it is anomalous.
In the bulk we keep some theory with the generating
functional Wy, which is invariant under all the sym-
metries up to some nontrivial boundary terms. The full
theory described by W = W, + Wy is assumed to be
invariant under all the symmetries. It is actually this
nontrivial boundary term in Wjy which induces the
anomaly in the boundary theory, hence the name
anomaly inflow. Note that in the absence of anomalies
Wg=0= W = W,, which was discussed in the last
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section. Let us assume for now that we have figured
out such a Wpg, and parametrize its infinitesimal
variation as”

Wy = / {457} /|Gary | (TH A0 57 + SHAP6C5 14

+ / {dxM}\/|G|(TMASE 1y,

+ 2§/ P6Chpa + Ty - 6Ay).

+ I 5A5;)
(3.1)

It is generally known that Wy is topological and hence
does not depend on the metric/vielbein, but we keep it
here just for the sense of generality; we will see that the
respective terms vanish when we put in the allowed
expression for Wg. The Hall currents in the bulk must be
manifestly symmetry covariant by the definition of Wp.
The boundary Bardeen-Zumino currents on the other
hand are symmetry noncovariant. The variation of W,
will generate the consistent currents which due to the
anomaly are not symmetry covariant either,

W, = / (A6} /[GI(THASE 1y + EHABSC 01,

+ M 5AY). (3.2)

Since the full partition function W should be symmetry
invariant, we can read off the symmetry-covariant, covar-
iant currents in the boundary,

MA MA MA MAB _ yMAB | vMAB
T TC0n§ + TBZ ’ Z ZCOH§ + ZBZ ’

M :chvtl)ns +JBZ (33)

By demanding that W is invariant under all symmetries of
the theory, we will get the anomalous Ward identities for
these currents,

VT y =T T 4+ Ryp 5ZM8
'V, SMAB — TIBA] | 5 LAB

a+Fyy - I +Tiine

(3.4)

We verify that the bulk Hall currents source the anomaly
in the boundary theory. Note that the gravitational
anomaly purely manifests itself as a Lorentz anomaly
in the spin conservation equation. On the other hand, the
Hall currents themselves must satisfy the nonanomalous
Ward identities (2.13) in the bulk, which will be trivial if
Wy is chosen properly. Now depending on the field
content of the theory one will have to construct the most
generic allowed Wy and read off the Hall currents from

“*Note that SO(d + 1, 1) transformations leave the flat metric
n4p invariant, and hence it can commute freely through variations.
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there. This would determine the most generic anomalies
that can occur in the respective theory which can be
modeled using the anomaly inflow mechanism. In the
notation of differential forms Wpy is given by the
integration of a full rank form I(@+3),

Wy = / [+,
B4y

The requirement that its variation should be symmetry
invariant up to a boundary term can be recast into the
requirement that P4 = dI'?*3) should be symmetry
invariant. P4+ is called the anomaly polynomial, which
encodes all the nontrivial information about the anomaly.
It is evident that P4 needs to be closed, symmetry
invariant, and should not be expressible as the exterior
derivative of a symmetry-invariant form. For example, on

usual backgrounds (not null), P?**4 is given by the

Chern-Simons anomaly polynomial P(CZS" ™ for even-

dimensional boundary theories, and no such term is
possible in odd dimensions. ’P(Cz; ™ s a “polynomial”
made out of Chern classes of F and Pontryagin classes of
R. See, e.g., Ref. [52] for more details.

(3.5)

Mass Cons (Continuity)

Energy Cons (Time Translations)
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B. Anomaly inflow on null/Newton-Cartan
backgrounds

Now we come back to our case of interest: null back-
grounds. We follow the above procedure, except that the
bulk B3 is now required to possess a compatible null
isometry yy, which translates itself to a compatible null
isometry on the boundary M4, since all the L compo-
nents vanish. The variation of Wy in Eq. (3.1) remains
unchanged under a y, compatible variation, except that all
the currents now follow the redefinitions specified in
Egs. (2.17) and (2.20). Consequently, we can find the
anomalous Ward identities for null backgrounds,

NVuT"y =TAuuT" s+ Ry sZMB 4 + Fpg - IM + Ty,
yMzMAB _ T[BA] + ZﬁAB +#[A VB] ,

VM =3 (3.6)

for some #". These are the same as the non-null Ward
identities except that, just like the nonanomalous case,
some components of the spin current conservation have
been discarded using the spin current redefinition (2.20).

The physical components of these laws can be expressed
after reduction as anomalous Galilean conservation laws,

V' = pi.
Ve

= [power| — p*®c,, + i,
p ! H

Momentum Cons (Translations) :_@u p*, = [force], — pc,q + Piias

~ 1
Temporal Spin Cons (Galilean Boosts): V, 744 = — (p* — p*) + 13;*,

2

Spatial Spin Cons (Rotations): V,c#® = plbal 4 2g#lac Pl 4 gleb,

Charge Cons (Flavor Transformations): V,j* = jf,

where we have decomposed the Hall currents as

Tho= (—pk —eh pia )
W =i
0 X X
B = | x 0 it (3.8)
la Lab

X —Ty oy

We hence see that in principle the anomaly inflow can
destroy all the conservation laws. It is now the form of
P4+4) which will determine how many of these anomalies
are permissible and in what number of dimensions.

On even-dimensional (d =2n) null backgrounds the
allowed anomaly polynomial takes the usual Chern-Simons

(3.7)

structure of relativistic theories P2 +4) = ’P(CQS'Z ) which
is made up of Chern classes of F' and Pontryagin classes of
R. Note however that neither F nor R have a leg along V,

and hence ’P(Czsn ) s identically zero. The corresponding
I s might still have a leg along V since 1yA, 1,C5 # 0 for a
general null theory. But one can check that the correspond-
ing L components of the (dual) Hall currents again have no
leg along V and hence the Ward identities become non-
anomalous. This suggests that we cannot get anomalies
in an even-dimensional null theory, and hence odd-
dimensional Galilean theories are anomaly free.

At this point we would like to point out some subtle
differences from the analysis of Ref. [37]. In the cited
reference the author did not impose compatibility of the
isometry, and hence F, R do have a leg along V. This results
in anomalous conservation laws that crucially depend on
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Vy)» |vso)* p—additional fields which are otherwise
switched off by compatibility. As we mentioned in the
Introduction, we have chosen to switch off these fields as
they serve as “mass sources” in the Galilean theory, and we
do not see these sources in the nonrelativistic theories that
occur in nature.

Now we shift our attention to the more interesting case of
odd-dimensional (d = 2n — 1) null backgrounds. One can
check that with the field content at hand, it is not possible to
naively construct an anomaly polynomial. Following
Ref. [34], however, we note that we can remedy this
problem by introducing the auxiliary time data w1 that was
used to perform null reduction in Sec. I C. Using the
corresponding V(T) defined in Eq. (2.23), we can write the
only allowed anomaly polynomial,

(2n+2)
V

rP(2n+3) _ /\ PCS ,

(3.9)
where V(7 = V7)) dx™. Although this expression has an
explicit dependence on w7, one can show that it is invariant
under any arbitrary redefinition of ;. This follows
from the fact that a change in VmM does not have any
leg along V, due to the normalization property
S(Virm VM) = VM8V 1)) = 0. For this reason we drop
the subscript (7) from V(7 from this point onward.
Readers should convince themselves that there are no more
terms which can be written in the anomaly polynomial.
However, we have a problem: the anomaly polynomial in
Eqg. (3.9) is not exact,

P = _d(V ALy +dV A IZTD. (3.10)
Hence for I"+2) (and hence Wjy) to be well defined, the
second term must vanish. In general however it does not, as

I(CZS" ™ can have a leg along V. In fact, it can be shown that
1 (Czs" D does not have a leg along V if and only if iy is in the

transverse gauge, i.e.,

Awy = [Agw))*p =0. (3.11)
Some comments are in order. Different choices of yy
represent different null theories, as we are not allowed to
perform transformations which alter these (we demanded that
the partition function be invariant only under yy-preserving
transformations). Hence this mechanism can only generate
anomalies in null theories with null isometry in transverse
gauge; otherwise, the last term in Eq. (3.10) will not vanish
and we would not be able to define a Wy. Note that in
conventional null reduction, one generally chooses yy =
{0.,0, 0} which by choice satisfies the transversality require-
ment. Modulo this subtlety, we can find

J(2n+2) —

—V AIZY, (3.12)
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Computing its variation, one can find the Hall and Bardeen-
Zumino currents defined in Eq. (3.1),

L o . 8’P (2n+2)
T™A — 0, * (2042 TAB _ =V A ,

" ( ) " aRBA

o a,P (2n+2)
*onp2 du =V A ——— 8F ) Th, =0,
81(2n+l) . 8I(Zn+l)

*XAB — N—— ==V A L.

BZ \4 OR ) *Jpz 14 oF

(3.13)

We verify that 7¥ 4, T2 vanish. It immediately follows that
the mass, energy, and momentum conservations are non-
anomalous. Also the (Milne) boost Ward identity stays
nonanomalous as the matrix indices of Z¥48 come from
Rz which have a zero contraction along V. Again this
follows from the compatibility of the isometry, and is not true
for the considerations of Ref. [37], which is why they found a
Milne anomaly. These statements can be recast as

P =g =pit=15=0, (3.14)
which follows directly from null reduction. The only laws that
become anomalous are hence the spin and charge conserva-
tion. Explicit expressions for their Hall currents follow from

reduction,

. ap(2n+2) . ap(2n+2)
[T [ SF |- o= (o] (319)
Here we have formally denoted ’P 2152 a5 pn+2) after

reduction; the distinction is purely notauonal *4 1s the Hodge
dual associated with the raised Newton-Cartan volume
element &4; refer to Appendix C for more details. Putting
Egs. (3.14) and (3.15) back into Eq. (2.36), we can get the
anomalous Ward identities for Galilean theories.

Before closing this section, we would like to make some
comments on the even-dimensional case. One might worry
that we can use yr to define anomalies in even dimensions
as well. However one can check that the only possible
symmetry-covariant anomaly polynomial we can write
involving yr is

P — v AV A PR, (3.16)
where V = V,,dx". This anomaly polynomial is however
not an exact form,

P — VAV ALZT) —H AV AT

FVAAV ATEY. (3.17)
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The last term can be removed just like before by going to
the transverse gauge, but the second to last term cannot. We
hence see that the current formalism does not allow for
anomalous even-dimensional null theories. From this point
onward we will assume that our null background is odd-
dimensional, and hence set d = 2n — 1.

With this we conclude our discussion of generic anoma-
lous Galilean theories. Using the construction of null
backgrounds, we have found a set of conservation laws
which determine the dynamics of these theories in terms of
a set of currents. These laws have already been well
explored in the literature, but the fact that they follow
by trivially choosing a basis in a higher-dimensional null
theory is to be appreciated. Going along the lines of
Ref. [17], it appears to us that null backgrounds are the
true “covariant” and ‘“frame-independent” formalism of
Galilean physics, which appear pretty naturally from a five-
dimensional perspective. We refer the reader to Appendix B
for more comments on these issues.

All of the results presented here are in the Newton-
Cartan notation, which is the natural covariant prescription
for Galilean physics. In Appendix A we present some of our
results in the conventional noncovariant notation, for the
benefit of readers who are not comfortable with the
Newton-Cartan language. In addition, seeing the results
in noncovariant form might help us relate it better to
everyday physics, where we are used to viewing time and
space separately.

IV. ANOMALOUS GALILEAN HYDRODYNAMICS

In previous sections we have obtained the anomalous
conservation laws for a null/Galilean theory with a nonzero
spin current. Here we want to study these theories in the
hydrodynamic limit—the near-equilibrium effective descrip-
tion of any quantum system. Before going to that, let us make
some general comments about the hydrodynamics on
Einstein-Cartan backgrounds. We start by picking up a
collection of hydrodynamic fields which can be exactly
solved for by using the equations of motion of the theory.
Since there is an equation of motion for each symmetry data,
we choose the hydrodynamic fields to be a set of symmetry
data® wy = {UM,[As)* 5, A}. The fluid (hydrodynamic
system) is characterized by conserved currents TM4,
TMAB M written as the most generic tensors made out of
these hydrodynamic fields v, and background sources E},,
C4y» Ay, arranged in a derivative expansion. These are
known as the constitutive relations of the fluid. The near
equilibrium assumption of hydrodynamics implies that
derivatives of the quantities are small compared to the
quantities themselves, which allows for a proper truncation
of the derivative expansion. The dynamics of these

*'We drop the subscript (U) for y; and hope that it will be
clear from the context.
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constitutive relations in turn is governed by the conservation
laws (3.4). These constitutive relations are further subjected
to the second law of thermodynamics, i.e., the requirement of
an entropy current S¥ such that V,,S” > 0, whenever
equations of motion are satisfied. This requirement imposes
various constraints on the constitutive relations, and the job
of hydrodynamics is to monitor these constraints. Having
done so, one can in principle plug these constitutive relations
back into the equations of motion and solve for exact
“configurations” of the hydrodynamic fields, which is not
in the scope of hydrodynamics. A nice and modern review of
relativistic hydrodynamics can be found in Sec. I of Ref. [42].

Another notion which is inherent to any statistical system
is equilibrium. Equilibrium is the steady state of hydro-
dynamics, when the fluid has came in terms with the
background and has aligned itself accordingly, i.e. hydro-
dynamic variables y; are completely determined in
terms of the background fields. In this state, the fluid
can be described by a partition function W4 written purely
in terms of the background data, and the equations of
motion are trivially satisfied [43—45]. Equilibrium is gen-
erally defined by a collection of symmetry data ywx =
{KM, [As(x)]*5. A(k)} which acts as an isometry on the
background. For our constitutive relations to be physical,
we will need to ensure that on introducing yx they trivially
satisfy the equations of motion (3.4).

Please note that y/; is a set of variables we have picked up
to solve the system; like in any field theory, we could do an
arbitrary field redefinition of yw; without changing the
physics. This is known as the hydrodynamic redefinition
freedom. By convention y; is defined to agree with yx in
equilibrium at zero derivative order (this goes into the
definition of the fluid velocity, temperature, and chemical
potential in equilibrium), which fixes a huge amount of this
freedom. Further fixing of this freedom can be dealt with in
various different ways, which takes the name of hydro-
dynamic frames (a more thorough discussion on these frames
for null fluids can be found in Ref. [34]). Here we will work in
the so-called equilibrium frame where y;; = w exactly in
equilibrium, not just at zero derivative order. Note that this
does not fix the freedom completely; we can still perturb this
relation with anything that vanishes in equilibrium. For now
we conclude that on setting y;; = y, i.€., on promoting v,
to an isometry, the constitutive relations should identically
satisfy the equations of motion.

It was noted in Ref. [40] for relativistic fluids that it is
helpful to remove the clause “whenever equations of motion
are satisfied” from the second law requirement and upgrade it
to an off-shell statement [53], which for us will read

VuS" + U Ny Ty — TAyy T s — Ryp* 521584
— Fyur - M) + 5] o (V) ZMAB — TIBAT _ 5LAB)

+v- VM =TJ) > 0. (4.1)
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This statement is slightly different from what was considered
for the torsionless case in Ref. [40], but we verify its
equivalence with theirs in Appendix D.

Now we come back to null fluids—fluids on null
backgrounds. On null backgrounds, hydrodynamic data
wy needs to be compatible with vy, i.e., [wy,wy| = 0 and
[vg]5VE = 0. This makes sense because 1) the resulting
constitutive relations must follow the null isometry, and 2)
not all components of the spin conservation in Eq. (3.6) are
physical. Further, the constitutive relations are allowed to
depend on yy as well. One can check that upon making
these tweaks, the off-shell second law (4.1) remains
unchanged. We can now go back and study the most
generic constitutive relations for null fluids, which have
been thoroughly considered in Ref. [34] for a charged
spinless torsionless null fluid with U(1) anomalies up to
leading order in derivatives. In this work, however, we are
only interested in the sector of hydrodynamics that is
governed and is completely determined by the anomalies.”
To accomplish this task in relativistic fluids, the authors of
Ref. [38] (see also Ref. [54]) proposed a mechanism based
on transgression forms, which allows us to “integrate” the
anomalous equations of motion (3.4) and directly figure out
the anomalous contribution to the constitutive relations. We
will attempt to extend this construction to null fluids.

A. Anomalous null fluids

We start by defining the hydrodynamic shadow gauge

field and spin connection,

A=A+pv. Cl'p = Chp+ [usl'pV, (42)

where u, [us]p are flavor and spin chemical potentials

associated with y; defined in Eq. (2.22). One can check

that both y;, yy are compatible with this new gauge field
and spin connection, i.e.,

U= UMAM + A = O,
[ﬁZ]AB = UMCAMB + [AZ]AB =0,
ﬁ(v) - VMAM - O,

[ﬁz(v)]AB - VM@AMB =0. (4-3)

Recall that we have chosen Ay = [Agy)]* 3 = 0to be able

to define anomalies. We define the operation (') as
=u(A - A,C"; - C*p). One can check that the hatted

In relativistic hydrodynamics it is known [52] that there are
certain coefficients which appear as independent constants in the
naive derivative expansion, but can be fixed in terms of anomaly
coefficients appearing at higher derivative orders by demanding
consistency of the Euclidean vacuum. Similar constants have also
showed up for Galilean fluids in Refs. [15,34], but their
connection to the anomaly is not yet clear. Here however we
do not consider these contributions.
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field strengths also follow the null background conditions
(2.14) and (2.15). We would like to import one result from
the transgression machinery without proof (see Sec. 11 of
Ref. [55] for more details), which implies that

I 15T =ve pavy, (44)
where”
n V n n
V;CSH = (’P2 +2) ,Pz +2) )’
wm  V 2041 2t
Vied = g AU =1, (4.5)

One can check that these quantities are well defined. We
argue that the fluid in the equilibrium configuration can be
described by a (bulk 4+ boundary) partition function
wed — Wil 4 WP which has been discussed in the
preceding sections. 4 Away from equilibrium, however,
the system is described by an effective action S = Sz + S
which, in equilibrium, boils down to W¢?”. It is important
as W¢? is only defined in equilibrium. We claim that the
appropriate Sp to generate the anomalous sector of the null
hydrodynamics is

S = Wi+ / V A J2D
8(271+7)

:—/ VA 78y (4.6)
B(Zn+2)

In equilibrium (yy = wg) and on choosing transverse
gauge for wg (i.e., Ax) = [Agx)*p = 0) the added piece
vanishes, as it does not have any leg along V, and we
recover the equilibrium partition function. Using Eq. (4.4)
we can decompose Sy as

SB:/ vgn+2)+/ v§2n+l)’
B2 Mni)

where we have identified

(4.7)

“See footnote 13.

In making this statement, we are implicitly relying on the
existence of an equilibrium partition function which describes the
fluid in the equilibrium configuration. These ideas were discussed
for a relativistic fluid in Refs. [43—45] and were later adopted to
Gahlean fluids in Refs. [15,16,34,35].

1t was argued in Ref. [56] that while this effective action is
appropriate to give solutions to the off-shell second law of
thermodynamics, the minimization of this action with respect to
dynamic fields does not give the correct dynamics. To get the
correct dynamics we need to further modify this action in the
Schwinger-Keldysh formalism, which we do not touch upon
here.
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v(2”+2) _ K A (P(2n+3)

2 _ o _ ﬁ(2n+3))

X7 V n n
VA=A (’P2 +2) Pczs”),

H
n |4 7
v;Z +1) _ ﬁ A (1(2,1+2) _I(2n+2))
= V n +(2n
=VA 7/ (IgSH) —Igs+1)). (4.8)

The bulk term in Eq. (4.7) is manifestly symmetry
invariant, and the full S is symmetry invariant by definition;
hence, if we decompose S q = Sy.a + St anom With the first
piece being totally symmetry invariant we can infer

S \anom = — / VAT, (4.9)
B2

SManom Will generate the anomalous sector of the con-
sistent currents. On the other hand, for the full effective
action we will be left with S = S, + Sh.a Where

(2n+2)
Sanom = / v .
B2

Sanom Will generate the anomalous sector of the covariant
currents.

Constitutive relations: In light of our discussion above,
we should be able to generate the anomalous sector of
covariant currents by varying S,,om.- We will get

(4.10)

8Sanom = 4 (A A *pi2)du — A A '*(2n+2)jH
(2n+2)
+38C5 A *(2n+2)2HEZ - 5CAE A *(2n+2)iHBZ)

+ / (6A A xJp +6C 5 A xZp8,
M(2n+l)

+ 6V A *Ep), (4.11)
where we have defined
a (2n+42)
*EP = v
- OH
|4 75(2n+3) (2n+3)
= HAZ A [P - P
—H A %0 (1 Ju + [us) 5% )],
<9V (2n+2) V )
*Tplp = 8RB = H A *(2n+2)(ZHAB - ZHAB)’
av (2n+42) 1% R
*Jp = —F —a’ * (2n2) (I = Ju)s (4.12)

and the Hall currents have been defined in Eq. (3.13). Since
Sanom 18 Invariant under the symmetries by construction, we

Vi (248), = (7104
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can find a set of Bianchi identities that these currents must
follow,

T ) + Ry 5(EME ) A

- Vy(u- T+ [IJE]ABZLBA)7
Na+ ZEAB — S3AB 4 #lAyB]
VM), =1 - I (4.13)

EM(TMN)A = TANM(
+ Fyu(JM)5

where we have defined the anomalous “class” of constit-
utive relations,

MA\ _ pMy/A
(TY) = ERVA,

(SHAB), =SB (M) =T,

(4.14)

One can check that on plugging in y;; = wg, the hatted
Hall currents vanish as they do not have any leg along K
and V simultaneously. Consequently the Bianchi identities
(4.13) reduce to the equations of motion (3.6). In other
words the currents (TM4),, (ZMAB),, (JM), identically
satisfy the equations of motion in the equilibrium configu-
ration, as required.

We would like to remind the reader that V was added as
an arbitrary choice of frame and the anomaly polynomial
was invariant under a y; redefinition which shifts V. The
currents we have constructed should then also be invariant
under a yy redefinition. One can check that under a y,
redefinition the currents in Eq. (4.12) shift by a closed
form. By definition the currents always have this ambi-
guity, and hence we do not change the physics. In hydro-
dynamics the most natural choice of y; to define anomalies
is to set wr = yy.

Adiabaticity and entropy current: To claim that the
currents we have constructed are physical, we must find
a (8M), which satisfies the off-shell second law (4.1). The
anomalous sector is bound to be parity violating, implying
that no scalar expression can be guaranteed to be positive
definite. This turns Eq. (4.1) into a more stringent
condition,

Vu(S")a + Uy (TYy)a = T um(TY ) a
— Ryw* s (EMP 0)a = Fvp - (JM) 4]
+ [vs]paMar (TMAB) , — (T1PA)), —
+v- Wy (IM)s = T5) =0,

i
(4.15)

known as the adiabaticity equation [41]. By putting the
constitutive relations directly into this expression we can get

Vy(SY), = 0. (4.16)
Hence it suffices to choose an identically zero anomaly-

induced entropy current (S7),, = 0 to satisfy the adiabaticity
equation. We would like to comment here that the vanishing
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of the anomaly-induced entropy current does not rely on the
background being null; it is equally true for the usual
Einstein-Cartan backgrounds as well. See Appendix D for
more comments on the relativistic entropy current.

Equilibrium partition function: In the beginning of this
section we argued that at equilibrium, fluid can be
described by a partition function written purely in terms
of the background data. We will now attempt to find such
an equilibrium partition function. We start by computing
the variation of the boundary effective action Sy yyom given
in Eq. (4.9),

S samam = [ 10} VIGIT) 10y + {(249),
— 7P }6Chua + {(IM) A — T8z} - 6AY]
+ /{dxM}\/@[iglﬁq%éBMA + T4y - 64y
(4.17)

In equilibrium and choosing transverse gauge for y, i.e.,
Ak) = [Agx))*p = 0, the terms in the last line vanish.
Hence we can define the equilibrium boundary partition
function as

eqb _
W M anom = SM@HOIHL//UZW

_ _/ X A (I(2n+2) _j(2n+2))|
Yu=yk*
Mo

(4.18)

Putting it together with Wy, we can get the equilibrium
partition function for the full theory. In practice, however, if
one knows the expressions for the Bardeen-Zumino cur-
rents, it suffices to have the boundary partition function to
generate the covariant currents.

B. Null reduction—anomalous Galilean fluids

Having obtained the constitutive relations for anomalous
null fluids, it is now time to perform null reduction
and extract the Galilean results. To see this we can
directly break up the anomaly-induced constitutive rela-
tions (TM4),, (ZMAB),, (JM), into the basis given in
Eq. (2.34). A straightforward computation will yield trivial
identifications,

(P")a=0, (#)4=0,

b
(6") 5 = 2/73& ]

(P”)A =0,

(G”)A:Eg»

(s#)a=0,
(j”)A = J/;r (4.19)

We have also included an entropy current (s#), = (S¥)4
here which of course is trivially zero. For the record we
write down the off-shell second law of thermodynamics for
Galilean fluids,
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. - 1~
y,us” + I/MYWO” - 5_&#6” - [pOWGI’] + plmc;m)
1 ~
+ 5 ua_&ﬂp”a - [fOI'CC}a + pﬂcua)

~ 1
+ [Vela @ﬂf"“ —5 0= p“)>
+ [Ua]ba&”(’ﬂab _ p[bu] _ ZTﬂ[acﬂh] _ Uﬁab)

+u- N, —ik) 20, (4.20)

where u* = V’(‘w [defined in Eq. (2.23)] and u“ = e“,u" is
the spatial velocity of the fluid. J is the temperature, vy =
w — %&u“ua is the total mass chemical potential, w is the
mass chemical potential, [v,], = [vg]~, is the boost chemi-
cal potential, [v,]?, = [vg]?, is the spatial spin chemical
potential, and v is the flavor chemical potential associated
with the fluid data y; [the respective definitions can be
found in Eqgs. (2.9) and (2.21)]. A version of this off-shell
second law of thermodynamics for Galilean fluids in a
metric-like formalism was first written down in Ref. [15].
This expression will be greatly simplified if we choose
W = Yy, 1.e., choose to describe the fluid in its local rest
frame, because then u% = 0,

- - 1 -~
yﬂs” + @ﬂpﬂ - 5_&#6” - [pOWSI‘] + plmc;m)

+ [vela @,ﬂ”“ - % (p? = p“)>

4 [I/a]ba_&ﬂgﬂuh _ p[ba] _ ZTM[aCﬂb] _ glj{_ab)

+uv- N, - ) 2 0. (4.21)

It should be apparent that on putting in the equations of
motion it simply gives the second law of thermodynamics,
V,s# > 0. If one does not prefer to perform reduction to

get (¢")5, (j*)a» (6#%"),, these can be generated directly
from the Newton-Cartan transgression form,

@ntl)y _ I (2n+2) _ & (2n+2)
= A - 4.22
Vi = A (p pE). (422)
where p?"*2) is the NC anomaly polynomial defined at the

end of Sec. III B, and the hatted fields are

A

A=A—-un,  C% =C%—u,]%n. (4.23)

In terms of these, the anomaly-induced constitutive rela-
tions can be generated as
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. avZVH—l . av2n+1
En=n 2 =[P

av (2n+1) :|

(€")p = *4 [ SH (4.24)

To write the equilibrium partition function in Newton-
Cartan language we can use the natural time data in
equilibrium wr = wg = yy. Hence, using Eq. (4.18) we
can find

b n . (21 2(2n
web » I A (1(2 +1) _ 7 +1))|WU:WK, (4.25)
()
where di(?"+1) = p21+2); 1@+ g just Igsn 1 after reduc-

tion. Please refer to Appendix C for conventions on
reducing the integral.

This concludes the main abstract results of this work. We
have been able to construct flavor and gravitational
anomalies in the Galilean theories, and find their effect
on the Galilean hydrodynamics. We explicitly constructed
the sector of fluid constitutive relations that is totally
determined in terms of anomalies. These constitutive
relations obey the second law of thermodynamics with a
trivially zero entropy current. We also found the equilib-
rium partition function which generates these constitutive
relations in the equilibrium configuration.

V. EXAMPLES

The entire discussion of this work until now has been
very abstract. We will now try to illustrate it with a few
examples. In the following we will only discuss the case of
an Abelian gauge field for simplicity. In Sec. VA we
start with a thorough walkthrough example for three-
dimensional null theories (two-dimensional Galilean the-
ories), where we perform each and every step as was done
in the main work. We hope it will help the reader to
understand the procedure more clearly. Later in Sec. VB
we present the results for the arbitrary dimensional case up
to next-to-leading order in derivatives.

A. Walkthrough: One spatial dimension

Let us go step by step for the case of three-dimensional
null backgrounds. The corresponding five-dimensional
anomaly polynomial contains squared F' and R,

PO =V A (COF?2 + CPRA; ARBS),  (5.1)

from which we can read off the expression for I (4),
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4= VA [C(Q)A AF+CP <CA A RE;

——CA A CBs A CC )] (5.2)

From here we can define the bulk partition function
Wg = f5<4> I™, and compute its variation [see Eq. (3.5)],

6WB—/ 2(CASANV AF+CP5C 5 AV ARES)
B
—/ (COSANV AA+CS8C AV ACE,).
M)
(5.3)

Now using Eq. (3.1) or Eq. (3.13), we can find the Hall and
Bardeen-Zumino currents,

= =2CAV AF
T a
= M — C<2)€NE§M_NFE§,
—— 9PV DN
B = =2CY'V A RAB
4)&H g
() aREA
(2) NRsmy; AB
:ZlgAB Cg NRSM NREEAB’
or®
= Jg = C<2)€NRMVNAR
or® -
e Sl N
BZ 8RBA )
— SMAB — CNRMY, CA B (5.4)

The anomalous sources in Eq. (3.6) are hence given as

Z#I_AB _ —C_S,Z) €MRSVM RRSAB’

J]J_I' = —C(2)€MNRVMFNR. (55)
Here we have defined the volume element of the boundary
manifold as eMVR = ¢MNR - After null reduction we can
trivially read off the anomalous sources for the NC
conservation laws (3.7),

o = —CE R, i = =200 F

w- (5.6)

Hydrodynamics: We want to generate the fluid constit-
utive relations which are compatible with the anomalies
described above. As described in the main text, it can be
done by using a transgression form [Eq. (4.8)],
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14 .
Vi =2 A (PO —PO)
— —V AV A RCOUF +2C7 [us) 5RE;

+ (COp? + CP [us A 5lus)P)H). (5.7)

From its derivatives we can find the various currents
defined in Eq. (4.12),

*Jp=-2COuV AV
= JP =2CDuetMy Vs,
*X2P = 2C [IJZ]ABV AV
= TMAB 2C( )Dl [ABERSMY V.
xEp=—(Cu’ + C s plus]®
(COp?+ C [/42] slpsl”

DV AV

= E% — ) RSMVRVS. (58)

Using Eq. (4.14) we can trivially get the anomalous sector
of the constitutive relations from here. These constitutive
relations satisfy the adiabaticity equation (4.15) with zero
entropy current, and at equilibrium also satisfy the anoma-
lous equations of motion (3.6). Upon null reduction we can
get the anomalous contribution to the Galilean constitutive
relations from here; the only surviving quantities are

(6) = (COW2 +C37 ) o) )&

a 2 ab .V .
(0"0) = 2C5 [ | m,. () =2CC weT n,. (5.9)

Finally we can write an equilibrium partition function

Wzﬂgm which generates these currents in the equilibrium
configuration. Using Eq. (4.18) we can directly find

eab / Yon @@ — i)
anom M(‘;)H

— _/ VAV A (COA + CPus]A 5CB )
Mgz

- /d3x \G|€MNRVMVN(C<2)P‘AR

+ CEIZ) U‘Z]ABCBRA)' (510)

This can be written in the NC language as

b / n A (COuA + CP ], C")
Mz

/ /T n,

,“A +C [/"o-] bcbua)

(5.11)
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B. Arbitrary odd spatial dimensions up to
subsubleading order

Before proceeding with this example we should clarify
the usage of “subsubleading” or ‘“second nontrivial”
derivative order for null/Galilean fluids derived from
relativistic fluids in Ref. [57]. One can check that in the
partition function or constitutive relations of a (2n + 1)-
dimensional null fluid, the first nontrivial contribution from
the parity-odd sector comes at (n — 1) derivatives, which is
generally known as the “leading parity-odd derivative
order.” Correspondingly n derivatives are called subleading
while (n + 1) derivatives are called subsubleading. It is also
trivial to check that the anomaly polynomial always has
two more derivatives than the partition function or con-
stitutive relations. In the anomalous sector one can check
that the first nontrivial contribution comes at the leading
order (flavor anomaly) while no contribution comes at the
subleading order. Hence the “second nontrivial correction”
comes at the “subsubleading order.”

Coming back to our example, one can check that up to
subsubleading order P?"*3) and I?"*2) (for n > 1) are
given as

'P(2n+3) VA(c(Zn F/\(n+l)+c(2”)FA n— 1)/\RA /\RB )
1072 =V AA A (CCMF 4 CPYFA=2) ARA S ARP).

(5.12)

It is worth noting that the contribution from anomalies
terminates at subsubleading order in three spatial dimen-
sions (d = 3, n = 2), and hence these expressions are exact
for n = 2. From here we can get the Hall currents

SEAB = 2CPM %[V A FA=Y A RAB),
Ji = —(n+ 1)CPI*[V A F
— (n=1)CP%[V A FA0=2) A RAg A RE
(5.13)

that provide anomalies in Eq. (3.6). The results can be
trivially transformed to Newton-Cartan language,

O.JH_ab _ _2Cg2”) %4 [ A(n—1) A Rab]’
jii = —(n + 1)CC sy [FV]
— (= D)C 5y [P0 A RY AR, (5.14)

which provide anomalies in Eq. (3.7).

Hydrodynamics: Using the anomaly polynomial one can
find the constitutive relations for the anomalous sector of
hydrodynamics,
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T8 = (n+1)CC N nCo s [V AV A FA) A HA DM
m=1
n=2 -
+(n- I)Cézn){Z”‘ZCmﬂm*[V AV A FNo=2=m) A RA A RE, A HNm=D]M

m=1

n—2
+ 2,1 s px [V AV A P2 A QR 4 (] H) A HN”]M},
m=0

n—1
ZgAB _ 2C§2n){z n—lcmﬂm*[v AV A FAn=1-m) A RAB A H/\(m—l)]M

m=1

n—1
_|_Zn—lcmlum[ﬂz]AB*{V AV A F/\(n—l—m) A H/\m]M}’
m=0

n—1

m(n n n— 2n — nel—m m
ES =" ("1 y CP + 1€ s s P ) # [V AV A A1) o gAm
m=0

n—1
+ CS}Z"){Z n_lcmﬂm*[v AV A FA(n—1-m) /\RAB A RBA A HA(m—Z)}M
m=2
n—1 -
12510, 1 [us)A g* [V AV A FA=1=m) A RE A HA<'"—1)]M}. (5.15)
m=1

The anomalous sector of constitutive relations in terms of these are given by Eq. (4.14), while the entropy current is zero.
Again, by a trivial choice of basis these results can be transformed to the Newton-Cartan basis; the only nonzero constitutive
relations are

(jﬂ)A — (I’l + l)C(2n) chmﬂm %1 [n A F/\(n—m) A H/\(m—l)]/,t

m=1

n—2
+ (I’l _ 1>Cé2ﬂ){2n—2Cmﬂm %4 [n A FA(n—Z—m) A Rab A Rba A HA(m—l)]ﬂ

m=1
n—2
D I A FN A QR g H) A HT
m=0
n—1
(Gyab)A — 2C£(]2"){Z n_lcmﬂm o [n A FA(=1-m) A pab A H/\(m—l)]u
m=1

n—1
+ZI1—1CmMIn[”0]ab %4 [n A F/\(n—l—m) A [IAm]M}7
m=0

n—1
m(n n n— 2n a n—1-m m
(€)a = D H" (712 CCO2 4+ 771, O )5 [ )?,) 4 I A FAC=1=m) A AT
m=0

n—1
+ C;Zn){z n_lcmﬂm *4 [n A FA(=1-m) A R, A Rba A H/\(m—z)]y
m=2
n—1
2> 1" ), xy [ A AT ARP A HW-U]/'}. (5.16)
m=1

Finally we can write an equilibrium partition function Wb, which generates these currents in the equilibrium
configuration; for null fluids,
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m=1
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W‘;ggm — _/ VAVAAA {Z nCmc(Zn)ﬂmFA(n—m) A HAm=1)
My

n—-2

—I—Cg Zn ZCm//LmFA" =2-m) A fA(m=1) /\RA /\RB

n—2

02 R0 R ) (5.17)

=0

3

and for Galilean fluids,

n
zggm = —/ nAAA {Z”CmC(Z")ﬂmF/\(n—m) A HNm=1)
Man

m=1
n—2

+C(2n) Zn—ZCqumF/\(n—Z—m) A HA(m—l) A Rab A Rba

m=1
n—2

+C2 > 122G, 1" ) FA A HA A (2R, + (),

m=0

This finishes our discussion about anomalies in generic
even-dimensional Galilean fluids up to subsubleading order
in the derivative expansion. The one spatial dimensional case
was discussed separately in Sec. VA for illustrative pur-
poses. The one-dimensional case is also qualitatively differ-
ent from higher dimensions, because only in this special case
do we get a pure gravitational anomaly term in the anomaly
polynomial up to subsubleading order. Three and higher
spatial dimensional cases are qualitatively similar as we
illustrated above. For physically interesting results one might
want to put n =2 and recover three spatial dimensional
results, which are found to be in agreement with the path
integral calculation of Ref. [36].

VI. CONCLUSIONS AND FURTHER DIRECTIONS

In this work we examined the effect of flavor and
gravitational anomalies on Galilean theories with a spin
current, coupled to a torsional Newton-Cartan background.
In particular it is to be noted that we primarily studied
anomalous theories on torsional null backgrounds, from
where the aforementioned system is just a choice of basis
(null reduction) away. It strengthens our belief that null
theories are just an embedding of Galilean theories into a
higher-dimensional spacetime, which are closer to their
relativistic cousins, are frame independent, and are easier to
handle compared to Newton-Cartan backgrounds. The
transition from null to Galilean (Newton-Cartan) theories
is essentially trivial.

We used the anomaly inflow mechanism prevalent in
relativistic theories, with slight modifications, to construct
these anomalies. We found that after null reduction the
anomalies only contribute to the spatial spin and charge
conservation equations, and only in even dimensions. In
other words only the rotational and flavor symmetry of the

)}. (5.18)

Galilean theory becomes anomalous. This is in contrast
with the results of Ref. [37] where Galilean boost symmetry
was also seen to be anomalous. As we mentioned in the
Introduction and in the main work, the discrepancy can be
attributed to the presence of extra background fields in
Ref. [37] which have been explicitly switched off in our
null background construction. It is interesting to note that

the Galilean anomaly polynomial p>**?) is structurally the

same as the relativistic anomaly polynomial P, 2n+2), and

hence the number of anomaly coefficients on both sides
match. Owing to this, the structure of the Hall currents that
enter the conservation laws is also quite similar in both
cases. Hence the results we have obtained promise to be
genuine nonrelativistic anomalies and not just the mani-
festation of (stronger) Galilean invariance.

Unrelated to the Galilean theories, we found that in the
Cartan formulation of relativistic fluids there exists a more
natural definition of the entropy current which does not get
any anomalous contributions. On the other hand the
Belinfante (usual) entropy current used, e.g., in Ref. [42]
gets contributions from the gravitational anomaly. See
Appendix D for more comments on this issue.

We also studied the anomalous sector of null/Galilean
hydrodynamics, in which we explicitly wrote down the
constitutive relations which are completely determined in
terms of anomalies. For this we used the transgression
machinery developed to do the same task in relativistic
hydrodynamics. There have been no surprises in this
computation; everything went more or less smoothly for
null theories, as it did for relativistic theories. The entropy
current in Galilean theories is independent of anomalies
as well. From a different perspective, it illustrates that
the null background construction allows us to use rather
sophisticated and developed relativistic machinery directly
in nonrelativistic physics, which is encouraging.
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It opens up an arena in which to introduce set results
from relativistic theories into null theories and see if we can
say something new and useful about the Galilean theories
from there. An immediate question that comes to mind is
regarding the transcendental contribution to hydrodynam-
ics from anomalies. In relativistic hydrodynamics the
authors of Ref. [52] showed that there are certain constants
in the fluid constitutive relations that are left undetermined
by the second law of thermodynamics, but can be related to
the anomaly coefficients by requiring the consistency of yjr
Euclidean vacuum. Similar constants have also been found
for Galilean theories in Refs. [15,34]. It would be nice to
see if these constants can be associated with the Galilean
anomalies found in this work. Being a little more ambi-
tious, one can hope for a complete classification of Galilean
hydrodynamic transport following its relativistic counter-
part suggested recently in Refs. [41,42]. It will also be
interesting to see if the Weyl anomaly analysis of Ref. [37]
remains unchanged when the additional mass sources have
been switched off.

For now we will leave the reader with these questions
and possibilities, in the hope that we will be able to unravel
new and interesting nonrelativistic physics using null
backgrounds. If there is one thing the reader should take
away from this work, we would recommend the following
approach: if we are interested in a problem pertaining to
Galilean physics which we know how to solve in the
relativistic case, a good way ahead would be to formulate
the problem in terms of null theories, do the computation
there, and perform a trivial null reduction to get the
Galilean results.
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APPENDIX A: RESULTS IN A
NONCOVARIANT BASIS

In this appendix we express some of the results discussed
in the main text in a conventional noncovariant notation.
We pick up a basis x* = {x~,#,x'} on M4, such that
wy ={0.,0,0} and yy = {9,,0,0}. X = {x'} spans the
spatial slice M(Td>. This is equivalent to choosing the
Newton-Cartan decomposition but with v/ = Aqy =
[As(r)]*5 = 0. On R on the other hand we choose
the same basis as before, x* = {x~,x*,x%}, such that
V=0 V(T) = 0,. In this basis various NC background
fields can be decomposed as

PHYSICAL REVIEW D 93, 065007 (2016)
(o) o=(0) 2=(5)
n, = . vt = s = .
. e_q)a[ 0 s Bi
() ()
eai eal

0 0 aka, —al
h/w = s h = . A I (Al)
0 g —a' gY
Here the spatial metric has been defined as
9ij = 5ab€aiehj» gij = 5ahe¢zieb‘i- (A2)

Spatial indices can be raised and lowered by g;; and can be
swapped using the spatial vielbein e¢“;. However in the
following we will explicitly work in the i, j... indices. One
can check that after this choice of basis we are only allowed
to perform Xx-dependent transformations, except boosts
which are completely fixed. On trivially decomposing
the Newton-Cartan expressions into x* = {f,x'}, our
theory will be manifestly covariant against all these trans-
formations except time translations ¢ — 7 + & (X), some-
times referred to as Kaluza-Klein (KK) gauge
transformations. These transformations act on the back-
ground fields as

Sxxa;=¢&0a;+0,¢,

SkxB; =¢'0,B;+B,0;&', (A3)

whereas they act on general contra-covariant tensors as

Sgr X' = E0,X" = X'9,&, Sxx X, = £'0,X,,

SkxX' = £'0,X", SkxXi = &'0,X; + X0, (A4)
and similarly for higher-rank tensors. The theory can be
made manifestly covariant under KK transformations as
well by working with corrected tensors,

X'=e (X' +aX), X =eX,
X =X, X, =X, —aX, (AS5)
and similarly for higher-rank tensors. These are the well-
known Kaluza-Klein covariant fields.?® Under the flat time
approximation, i.e., ® = a; = 0 this correction becomes
trivial. One can check that the NC contraction can be
expanded in this format as

A*B, = A'B, + A'B,, (A6)
which will be helpful later. Now we can decompose various
components of connections in this basis as

*The original Kaluza-Klein transformation only involves the
KK gauge field a;. The factors of e® can be thought of as redshift

factors due to the time component of the time metric n,,.
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R 1. .
cu =0, Cij = Eatgji + EQij + Tiijyes
G=¢i=Q, Iy=-00, TI';=e")a,,
,tlt —alé, ftij =€ (I)alaj.
fklt = /zkv 1I‘kit = élk’ li‘ktj - éjk - Tkﬂ‘
, 1 , , , 1 . ,
I = Egkl(aiglj + 0591 — 019i;) + 3 (Th; = 2T,)").

(A7)

Here we have also defined the corrected coordinate
derivatives 0; = 8; — a;0,, 0, =¢%0,. In equilibrium
(i.e., 9,0 = 0V ¢) or when the time is flat, we can recover
é,- =0, (i = 0,. We define the covariant derivative V,»
associated with the corrected derivative®’ 3,~ and connec-
tions I/ & and Ai, which act on a general tensor ¢’ j

transforming in the adjoint representation of the flavor
group, as

Mass Cons: V,p +V,5' =0,

PHYSICAL REVIEW D 93, 065007 (2016)

Vighe = 0’ + T 0o =T g/ + [Ai, o], (A9)

and similarly on higher-rank objects. We also define a “time
covariant derivative” V, associated with 9, and connections
IV, and A,, acting on ¢/ ; naturally,

vt(/’ij = 8tC”ij + I’ﬁlzk@kj - r"ktj§0ik + [sz (Pij]’ (A10)
and similarly on higher-rank objects. One can check that
both of these derivatives behave tensorially on the spatial
slice and are KK gauge invariant. More importantly both of
these preserve the spatial metric g;;. There is no essential
need to work with these corrected quantities, but we do so
because the statements are manifestly KK gauge invariant
and look nicer.

Using a similar decomposition and the KK-corrected
expressions for various currents, we can reduce the con-
servation equations (3.7) into the noncovariant basis as

Energy Cons: V,e +V,é = [power| — p'é; — PUé;,

Momentum Cons: V,p; +_Vjpj,» = [force];, — p&; — p/é i,

Temporal Spin Cons: V,# +V fo

Lo
2(/) P,

L Lij

Spatial Spin Cons: V,6 +V, 6% = plil 4 2¢ligl 4 2¢Kli¢, ) 4 6517,

Charge Cons:V,q +V,;j' = jf.

where _V,- = Vi - Tjji + I:I,,- and _Vt e V, +1,. It
is worth noting that the corrected time component of the
mass current p' is just the mass density p, and similarly for
all other currents. If we are to expand the covariant
derivatives in these equations, the nice-looking expressions
will turn notoriously bad, so we do not attempt that here.
Rather, we invite the readers to qualitatively access the

7TOne might be lured (e.g., in Ref. [34]) to define the covariant
derivative with respect to the original derivative 9; and the more
conventional affine connection,

, 1
i = Fkij - Eakatgij + gMa;0.g)
1 | p
= Egkl(aiglj + 091 — 019;) + 5 (Tkij - 2T(ij)k)’ (A8)
which however will not be KK gauge invariant. The results hence
will be messy and will carry extra time derivatives of the metric.
Therefore we will refrain from doing so. Obviously both of these
covariant derivatives are same in the flat time case or in

equilibrium.

(A1)

form of these equations and convince themselves that
these are what we expect for a Galilean system. Similarly
the [power] and [force] densities can also be decomposed
as

A

[power] =¢;-ji 4, [force]i:éi'Q+Bij'jj+"'v

(A12)

where é; = F i+ 1s the electric field, ﬁij =F ij is the dual
magnetic field, and - - - corresponds to similar terms coming
from all other field-current pairs.

On the other hand, noncovariant expressions for the
anomalous sector of the hydrodynamic constitutive rela-
tions follow trivially from Eq. (4.19). The only nonzero
contributions are given as

®We have assumed that the same wr is being used for
reduction and to describe the anomaly polynomial. Had they
been different, the currents would shift by a total derivative.
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Zi i 2ij ijk G i
(€')a = Ep, (67)a = X5, (J)a=Jp. (Al3)

The expressions for the rhs can be obtained from Eq. (4.24).

APPENDIX B: COMPARISON
WITH GERACIE et al. [17]

The authors of Ref. [17] have prescribed a nice covariant
frame-independent description of Galilean physics in terms
of an “extended space representation.” The extended space
is basically a one-dimensional-higher flat space which
allows for a nice frame-independent embedding of the
Galilean group. On a closer inspection, however, it would
be clear that the extended space is nothing but the vielbein
space of null theories. To demonstrate this we pick up a
basis on M 4, (but do not perform null reduction, which
would otherwise require us to choose time data w7 and
hence will introduce frame dependence), x™ = {x~, x*}
such that V = 0.. We can then express the anomalous null
conservation laws as

(V, =T, =0,

EA(V, = TY,,)T¢y = TA, T#y = R,A S, + F,, - J9,

(V, =T, ) 248 = —TWB| | 50AB | glayB]

(6/4 - Tyw)jg = JIJ»I_' <B1)

In this and only this section Vﬂ is associated with 7,
CA”B, A, and the vielbein has been used to transform
indices. The results are presented to make them look as
close as possible to Eqgs. (5.8)—(5.10) of ref. [17]. The
authors however did not consider anomalies, and did not
report the full spin conservation. Only the boost part of the
spin conservation is reported in Eq. (5.13) of Ref. [17]
which is identical to our corresponding conservation
in Eq. (3.7).

If one looks at these equations and at the currents
appearing in them, one would realize that all the unphysical
degrees of freedom have been eliminated (except the spin
conservation equations). Therefore the EM tensor and
charge current as they appear in Ref. [17] only carry
physical information. At the cost of some unphysical
degrees of freedom (and a consistent prescription to
eliminate them) we have been able to transform this set
of equations into a nice covariant higher-dimensional null
theory.

We would like to note that the authors of Ref. [17] have
also used their construction to study (2 + 1)-dimensional
Galilean fluids. The same results (for the torsionless case)
were gained from “null fluids” in Ref. [34] and a detailed
comparison can be found in their last appendix.
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APPENDIX C: CONVENTIONS OF
DIFFERENTIAL FORMS

In this appendix we will recollect some results about
differential forms, and will set notations and conventions
used throughout this work. An m-rank differential form
u™ on a (d+ 2)-dimensional manifold M 442y can be
written in a coordinate basis as

1

) = bt ., M A A A A daMe(CL)

where y is a completely antisymmetric tensor. On M 4,),
the volume element is given by a full rank form,

1
(d+2)!

(d+2)

€ Entymy. My, dXM A dxM2 A LA dxMae,

(€2)

where ¢ is the totally antisymmetric Levi-Civita symbol
with value €y 15 411 = \/|E| and G = det G,y . Using it,
the Hodge dual is defined to be a map from m-rank
differential forms to (d 4+ 2 — m)-rank differential forms,

M,..M

1 1
* ] = @2=m) (Qﬂ "’€M]H.MMN1...N4+2_m>

X dxM A LA dxNaseom, (C3)

One can check that »xu(™) = sgn(G)(=)"(¢=")  and

1

”(m) A *[V(m)] :—'/lelM
nm:

(d+2)

"‘I/M].”Mme . (C4)

We define the A product of two differential forms as

ﬂ<m> A V(r) =

1 ((m+n)!

(m+r)!\ m!r!
xdxMo A oA deN AL

/l[M,...MmVNl,..N,]>

(C5)
For multiple differential forms we can find
um AV A A pl)

1
(m+r+---+s)!

(m+r+---+s)!
. m!r!...s!

HKm,..M,VUN,..N.PR, ...Rx]>

XdxMi A oA dXNT A LA AR AL (C6)
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* [ AV A pl)]
1
d+2-m—r...—s)!

1
x pMi N R
mlr!...s! o B0

X dxSt AL (C7)

We define the interior product with respect to a vector field
X of a differential form as

1

lxﬂ(m> = m (XM/J[MNIWNM_]])dXNI VANPVAN d)CN’"_] .
(C8)
One can check the following two useful identities:
k™) = x [ A X,
*ig™] = (<)X A+l (C9)

Given a one-form Y") and a vector field X such that
1Y) = 1, any differential form g can be decomposed as
utm =1 (Y /\”(m)) + YW A eu™ . (C10)

(d+2)

This is in particular helpful when p is a full rank form,

pd+D) =y A g pld+2), (C11)

The exterior derivative of a differential form is defined to be

1
(m) — __ —
du (m+1)!
X [(m + l)a[MlﬂMz...M,,,H]]dxM] VANRPVAN dpr“.
(C12)
One can check the useful relation
*dﬂ(dﬂ) _ (—)‘HEM*V‘(‘HI)]M,
dxp )] = 87, . (C13)
The Lie derivative of a differential form satisfies
Lxp™ = 1edp™) 4 d(1p™). (C14)

Integration of a full rank form is defined as
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//\/l(d+z)”(d+2) - Sgn(G)/{dXM} |G|*v‘(d+2)]
:Sgn(G)/{dxM}\/rG" 1

(d+2)!

M.

X € (C15)

Mo
KM, .. Mgy

Here the raised Levi-Civita symbol has the value
€012 dtl = 5on(G)/+/|G|. Integration of an exact full
rank form is given by an integration on the boundary,

dﬂ(aurl) — / ”(d+l)
Marz) OM(412)

where given a unit vector N normal to the boundary, the
volume element on the boundary is defined

as 1y€l9t?) = xN.

(C16)

1. Newton-Cartan differential forms

We decompose a vector and a one-form on M) in the
NC basis,

XMPy = (X~ — B,X*")0. + X*(d, + B,0.),

Yy dxM = Y_(dx~ - B,dx*) + (Y, + B,Y.)dx*.  (C17)

One can check that these results are written in a basis that
transforms “nicely” from the NC perspective, which tells us
that

VMyM:yN, yﬂ+Bﬂy~, VMXM:XN—X”B”, XH
(C18)

are quantities that transform nicely. As is quite apparent, the
first and last quantities do not depend on the explicit choice
of yr but the middle ones do. A similar analysis can be
done for all tensor fields in the theory. Note that if ),
satisfies 1,y = VM), = 0, the one-form becomes purely
NC. On the other hand, if V,;X¥ = 0 the vector field
becomes purely NC. This motivates us to define a NC
differential form to be a differential form on M .,y which

does not have a leg along V, i.e., 1iyu™. Such a differential
form can be expanded as

1

pim) = ot Ptz

dx't Adx*2 Ao AdiFe. (C19)
On the other hand we define a NC “differential contra-
form” as a totally antisymmetric contravariant tensor in
M 442y which has zero contraction with V. In the basis

0, = 0, + B,0. it can be expanded as
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1
plm = %szmﬂma;] NOp Ao AD,, . (C20)

It is clear that though the basis depends on the choice
of yr, the components of the contra-form are independent
of it. On a manifold with a nondegenerate metric
there exists a map between these two quantities, but for
us these two shall be distinct. We can also define a spatial
differential form/contra-form with the requirement that it
should not have any leg along V and V. In this case there
exists a map between these two quantities realized by p*”
and p,,.
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Correspondingly there are three volume elements,

d - I -
S[T o - {*V]n - (d+ 1)' (VMGMHIMMMI)QZI ARTIEA al/ldﬂ’
1
e(ldﬂ) =xV= @) (VMepry, g, JAXFT A LA doctan,

1

() — vV —
e =x[VA ]_d!

(VM‘_/NeMNMI_“”d)dX”I Ao Adxta,

(C21)

In the main text we have primarily used the first one.
Correspondingly, there are three Hodge duals that provide
maps from forms to contra-forms, contra-forms to forms,
and a self-inverse map between spatial forms, respectively,

#4[1™] = #[V A gt = g;ﬂ)a AN,

Vat1-m’

S
(d+ 1= m)t \ gt Frtn
1

1
*W‘[m]] = *[V /\”b(m)] = <d+ 1— m)‘ (%/’Lmmﬂmelfl~~/4m”1~-~1/d+1—m>dxbl A A dxydﬂim’

1 1
# ] = [V AuAp™] = d—m <—/,lﬂl"'Mmé‘”].H”’nyl..‘yd_m>dxl/' A oo A dxban, (C22)

m!

One can check that =+ = —sgn(G)(—)"@™ and #¥x; = %% = —sgn(G)(—)"¢*1=™)_ Finally we need to define an
integration for NC full rank forms and contra-forms,

/ ”(d+1) — Sgn(G)/ V /\ﬂ(d+1) — Sgn(}/) /{dxﬂ},/l}/l *T w<d+1)}’
Mz Maia)

[ e —sen@) [ v agen —sentr) [{av b« e, (c23)
Mgz Mar2)
where y,, = p,, + n,n, and y = dety,, = —G. Obviously a full rank spatial form would be zero. The rest of the notations
and conventions follow from our relativistic discussion.
2. Noncovariant differential forms
Choosing a noncovariant basis given in Appendix A, a vector and a one-form can be decomposed as
XMaM = _C(I)(Xt + B,XN)aN - eq)XN(BtaN + 8t) + Xi<0i - a,@, + (Bl - aiB,)aN),
YyudaxM =Y _(dx~ = B,dx*) + (V.B, + V,)(dt + a;dx’) 4 g;;)/dx". (C24)

It immediately follows that a spatial differential form (), = Y. = 0) is indeed a pure differential form on the spatial slice.
Such a form can be expanded in the coordinate basis as

1

ﬂ(m> — %lui]izmimdxil A dxiz VANV, dxi"’. (CZS)

Since there exists an invertible metric g;; on this slice, there is a map between forms and contra-forms. One can check that
the volume element £(¢) defined before is indeed a full rank form on the spatial slice and can be written in this setting as

eld — *[V A } = _(VMVNGMNil...id)dxll A oo A dxle,

7 (C26)

The Hodge dual * associated with it serves as the Hodge dual operation on the spatial slice. Finally a full rank spatial form
can be integrated on a spatial slice,
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/ '@ = sgn(G) / eV AV Au
M) Mias2)
= sen(g) [ {&}v/Ig < W

Here g = detg,; = e**y = —e*®G. Other conventions and
notations are the same as in the relativistic case.

(C27)

APPENDIX D: COMMENTS ON THE
RELATIVISTIC ENTROPY CURRENT

In this appendix we wish to make some comments on the
entropy current for a relativistic fluid. To be notationally
consistent with some recent works in this direction (e.g.,
Ref. [42]), in this section we consider the relativistic
manifold M,,) to be 2n dimensional, and denote indices
on it by y,v.... On the local flat space R(?"~D) however,
we denote the indices by «, f.... This setup is equipped
with a vielbein e”,, an affine connection F’IW, a spin
connection C%,; = ez’ (I",,e%, —0,e?,), and a non-
Abelian gauge field A,. Correspondingly we have a torsion
tensor T% s @ Rlemann curvature tensor R,,,,"’ P and a gauge
field strength F,,. u,v... indices can be raised/lowered by
the metric g,,, a, f... indices can be raised/lowered by the
flat metric 7,5, while both type of indices can be inter-
changed by the vielbein. The covariant derivative on the
other hand is given by V, which is associated with all
the connections. We take the fluid data to be
wy = {p", [Agp),s Ay} In terms of it we define the
fluid temperature T = (—p*B,)~/2, fluid velocity
ut =Tp*, scaled chemical potential v = A/; +prA,,
chemical potential 4 = T, scaled spin chemical potential
[s]®p = [As]®s + #C%,p, and spin chemical potential
[us]®s = Tvg]®;. Finally we have a canonical EM tensor
T*,, a spin current 35, a charge current J*, an entropy
current J%, a Belinfante EM tensor T’(‘Z), and a Belinfante

(usual) entropy current ]’S‘(b).

We wrote an off-shell generalization for the second law
of thermodynamics in Cartan formalism in Sec. [V, which
in the aforementioned notation will become

yﬂjg + ﬂ”_(zﬂT”y -T?, T” — RW”/}Z - W . J”)
4 [1/2] & Eﬂa/} T[/ia] _ Iﬁ“ﬁ)

+v- VM=) 20, (D1)

whereV, =V, -T",,. Z#’ﬂ , Ji; are the anomalous Hall
currents, which are determined in terms of an anomaly

polynomial 'P @n+2)
8’P (2n+2) opr?)
*(2n+l)ZHaﬁ_ aRﬁa . *anrndu :57;.- (D2)
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On imposing the equations of motion (3.4) (after the
appropriate change of notation) this will boil down to
the second law of thermodynamicsyuj” > 0. To compare
this statement with that of Ref. [40] we make a field
redefinition,

vﬂy] +T[;w ﬂ ’
(D3)

[DE]MD - [I//Z}ﬂ [IJE]/U/ + ellbléﬂe -

where 6 is the diffeomorphism, spin, and flavor trans-
formation associated with . This field redefinition does
not spoil our equilibrium frame as the perturbation vanishes
on promoting yy to an isometry. Further, by setting the
torsion to zero this statement boils down to the statement
appearing in Ref. [40],

Y, Jow + BV, Tl — BT, =V, 207
+v- (V' =T5) >0, (D4)
where we have defined the Belinfante EM tensor,
TP(‘Z) = T 1 2VPZ(MV)P. (D5)

We have also defined the Belinfante entropy current,”

4
Ty =I5 + (V20 + T — %) (D6)
which is a more natural quantity to use when working with
the Belinfante EM tensor T’(‘Z). Note that the two entropy

currents differ only off shell and boil down to the same
thing when the spin equation of motion,

V, 3z = Tl s, (D7)
is imposed. For comparison with Ref. [42] we will be
interested in relativistic fluids without a spin current. In the
absence of anomalies we could achieve this by setting
Spuv = Tl — 0, but anomalies would not allow us to
make this simple choice. Nevertheless, we can define
spinless fluids as configurations for which X*#*, T are
totally determined in terms of the anomalies.

The transgression form business does not change much
in the vielbein formalism. The end result is that we can
define certain quantities in terms of the anomaly poly-
nomlal ’P(C *2) and hatted connections A = A + u, C”/j

C%j + [uz] pu [refer to the discussion around Eq. (12.25) of
Ref. [42] for more details],

*The motive for calling J¥ <(p the Belinfante entropy current is
primarily to distinguish it from J#, and second to relate it more

closely to the Belinfante EM tensor T?” gv We could not find any

existing name in the literature for this quantity.
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u 8P(2n+2) 81"3(2n+2)
*Z%j = — A ( - ~ > 9

du 8Rﬂa aR/}a

u (9P gplns
“Ir =g " ( oF  oF >

2n+2 2
pu— d

*qp du |:P PCS + du

87"3(2n+2) aﬁ(2n+2)
A(Wﬂ%em% e )] ow

In terms of these, the anomalous sector of the constitutive
relations is given as

(T") = qpu” + qipu”,
(zrer), = =7,
(J")a = Tp.

These currents follow the Bianchi identities,30

(D9)

V() n =TT ) g + Ry 5(ZP0) g + Fup - (9)4
( JH + [/‘Z]a/;zl a)
% (\/_TQ’PI/)
9,2, = 2 54

V()5 =T = T (D10)
By plugging these constitutive relations into the off-shell
adiabaticity equation we can get a relation for the entropy
current,

*Upon using the definition of the Belinfante EM tensor from
Eq. (D5), and setting the torsion to zero, these Bianchi identities
reproduce the ones given in Ref. [42].
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Y, (14), 2 0. (D11)

Hence the off-shell second law can be satisfied with a
trivially zero entropy current,
Js=0. (D12)
In other words, the entropy current J does not get any
contribution from anomalies. On the other hand, using
Bianchi identities in Eq. (D6), we can read off the
anomalous Belinfante entropy current,
&Ly,
(‘]’;(b))A = g2y (D13)
which is what was found in Refs. [42,54]. Note that XL””
by definition antisymmetric in its last two 1ndlces, and
differs from Ref. [42] by a factor of 2. Hence we have
established that the entropy current in the vielbein formal-
ism J% does not get a contribution from anomalies, while
the Belinfante entropy current does. Recall that a similar
situation appears for the EM tensor as well; while the
canonical EM tensor 7#% that appears in the vielbein
formalism is the Noether current of translations, the

symmetric Belinfante EM tensor 77, that appears in the

metric-like formalism couples to the metric in general
relativity but does not correspond to any Noether current.
Hence from the point of view of symmetries, the canonical
EM tensor is a more natural quantity. On the same lines we
guess that the vielbein entropy current will be more
naturally associated with the fundamental U(1) symmetry
introduced in Ref. [42], as opposed to the Belinfante
entropy current. The former being independent of anoma-
lies seems to strengthen this natural guess. However one
will have to do the explicit computation of U(1); trans-
formations in the presence of torsion to give any weight to
this claim.
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