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Curvature squared terms, when added to the Einstein-Hilbert action and treated nonperturbatively,
generically result in the propagation of an extra massive scalar state and an extra massive spin-2 ghost state.
Using the Stückelberg trick, we study the high-energy limit in which the mass of the spin-2 state is taken to
zero, with strong-coupling scales held fixed. The Stückelberg approach makes transparent the interplay
between the ghost graviton and the healthy graviton which allows the theory to evade the usual Λ3 strong
coupling scale of massive gravity and become renormalizable, at the expense of stability.
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I. INTRODUCTION

Einstein gravity, because it is nonrenormalizable [1,2], is
understood as a low energy effective field theory which will
be corrected at high energies. The low energy effect of these
corrections is expected to be captured by higher derivative
terms added to the Einstein-Hilbert action. The coefficients
of these higher derivative terms are determined by the high
energy physics. Without knowledge of this physics, they
are free parameters to be determined by experiment, and the
higher derivative terms they come with are only to be used
perturbatively to calculate low-energy observables in an
expansion in powers of the energy of the observable over
the energy scale of new physics [3,4].
Nevertheless, it has long been of interest to ignore the

requirement to treat such terms perturbatively, and to ask
what they have to say fully nonperturbatively. The moti-
vation is often to gain intuition about the effects Planck
physics might produce, or to display various pathologies
that a UV completion must ultimately overcome.
The leading higher derivative terms are those with four

derivatives. In four dimensions, of the four possible
dimension 4 curvature invariants, R2, RμνRμν, RμνρσRμνρσ,
□R, two of them, □R and the Gauss-Bonnet combination
RμνρσRμνρσ − 4RμνRμν þ R2, are total derivatives, leaving a
two dimensional space of possibilities which we may
parametrize in terms of R2 and the square of the Weyl
tensor,
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ð1:1Þ
Herem2,M2 are the mass scales of new physics, andM2

P is
the Planck mass scale.

This action has been studied regularly from the non-
perturbative viewpoint since the early work [5–10] (see e.g.
the recent work [11–19]). In particular, around its
Minkowski solution the theory propagates, in addition to
the massless graviton, a massive spin-2 degree of freedom
with mass square M2 and a massive scalar degree of
freedom with mass square m2. The theory has been argued
to be renormalizable, essentially due to the improved
∼1=k4 behavior of the propagator [5]. The traditional
problem, obstructing its status as a complete theory of
quantum gravity, is a ghost instability; around the same flat
background for which the theory is renormalizable, the
kinetic terms for the massless graviton and massive spin-2
have opposite signs, so one of themmust always be ghostly.
Here, with the motivations mentioned above, we will

continue the study of quadratic gravity in the nonlinear
regime. In particular, we will be interested in the high
energy limit in which the mass of the spin-2 mode goes to
zero while keeping various nonlinear scales fixed. In the
case of a pure massive spin-2, this limit is greatly simplified
using the Stückelberg formulation, in which new fields and
gauge symmetries are introduced in order to more easily
see the nonlinear dynamics of the longitudinal modes of the
massive spin-2 [20–24] (see [25,26] for reviews). In
particular, this formalism has been instrumental in finding
fully nonlinear theories [27] free [28] from Boulware-Deser
modes [29].
Since quadratic curvature gravity contains a massive

spin-2 mode, it is natural to expect that the Stückelberg
formulation will simplify the description of its dynamics.
Using the methods of [30,31], we will see that this is indeed
the case, and the Stückelberg approach provides a new,
clean and transparent way to see many of the known
features of quadratic curvature gravity. In the case of
generic interacting massive gravity, there is a natural strong
coupling scale Λ5 ∼ ðMPM4Þ1=5, and its generalizations in
higher and lower dimensions, which sets the scale of
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unitarity violation for the interactions of longitudinal
modes of the massive graviton. In the case of massive
gravity with no Boulware-Deser mode, this scale is raised
to Λ3 ∼ ðMPM2Þ1=3, and its generalization in other dimen-
sions. Wewill see that this higher scale emerges naturally in
the Stückelberg analysis of quadratic gravity, and that the
massive graviton propagated by quadratic gravity has no
extra non-linear degrees of freedom.
The interactions of the longitudinal mode, in the decou-

pling limit in which the mass is sent to zero with the strong
coupling scale held fixed, are described by a cubic galileon.
We find, however, that the nonlinear galileon terms are
proportional to D − 4, and hence vanish in the four
dimensional case. In this case, there is no higher strong
coupling scale and the theory becomes manifestly renor-
malizable in the massless limit. This provides a new way to
understand the renormalizability of the theory in four
dimensions. With a single massive graviton, or a ghost-
free bigravity theory such as those of [32,33], it is
impossible to raise the strong coupling beyond the Λ3

scale [34]. But allowing a relative ghost between the kinetic
terms makes this possible, as quadratic curvature gravity
demonstrates. The Stückelberg approach makes it easy to
see how the ghost and nonghost graviton interplay and
cancel at higher energies in order to render the theory
renormalizable.

II. LINEAR ACTION AND DEGREES
OF FREEDOM

The Stückelberg trick works by restoring the gauge
invariance broken by the mass terms of massive fields.
In the case of quadratic curvature gravity, the theory is
already diffeomorphism invariant and there is no obvious
broken symmetry to restore. But the theory propagates
two gravitons, so we should really think of it as a
bimetric theory, with the massive graviton due to a broken
second diffeomorphism-like invariance. Thus to apply the
Stückelberg trick, we must first rewrite the theory in its
natural bimetric form, and then restore the second diffeo-
morphism-like symmetry.
Like any higher order theory (with the exception of

certain degenerate cases such as [35], which we have
excluded by demanding the presence of the Einstein-
Hilbert term), (1.1) can be cast into ordinary two derivative
form via the introduction of auxiliary variables. We start by
removing the R2 term through the introduction of a
dimension 2 auxiliary scalar ϕ,
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The ϕ equation of motion fixes ϕ ¼ R, which upon
substitution into (2.1) recovers (1.1). We next perform a
Weyl field redefinition (which does not effect the Weyl
invariant C2 term)

gμν →
3m2

ϕþ 3m2
gμν; ð2:2Þ

followed by a field redefinition

ϕ ¼ 3m2ðeψ − 1Þ; ð2:3Þ

[so that (2.2) reads gμν → e−ψgμν] which leaves a canonical
scalar ψ in Einstein frame
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Next we want to eliminate the Weyl squared part, which
we accomplish through the introduction of a symmetric
dimensionless auxiliary tensor field fμν,
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�
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where Gμν is the Einstein tensor of gμν, and indices are
always moved with gμν. The fμν equations of motion can be
solved to give fμν ¼ 1

M2 ðRμν − 1
6
RgμνÞ, which when

plugged into (2.5) recovers (2.4). The theory is now
manifestly second order in derivatives.
This two derivative action is the easiest starting point

from which to see the linear spectrum of fluctuations at the
Lagrangian level. Expanding to second order in fluctua-
tions around the background gμν ¼ ημν, fμν ¼ 0, ψ ¼ 0,
with the metric fluctuation defined as gμν ¼ ημν þ hμν, we
have the flat space linear action

S2 ¼ M2
P

Z
d4x −

3

4
ðð∂ψÞ2 þm2ψ2Þ þ 1

8
hμνðEhÞμν

−
1

2
fμνðEhÞμν −

1

2
M2ðfμνfμν − f2Þ; ð2:6Þ

where ðEhÞμν ≡□hμν − ημν□h − 2∂ðμ∂ρhνÞρ þ ∂μ∂νhþ
ημν∂ρ∂σhρσ is the standard graviton kinetic operator. We
may diagonalize the tensor kinetic terms with the field
redefinition

hμν ¼ 2ðh0μν þ fμνÞ; ð2:7Þ

after which we have
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2
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with the (in)famous relative minus sign between the two
tensor modes. The degrees of freedom are
(1) a massive scalar field ψ , with mass squared m2,
(2) a massless spin-2 field h0ab,
(3) a massive (ghost) spin-2 field fab, with mass

squared M2.
We can make the massive spin-2 healthy, at the expense of
making the massless spin-2 and scalar ghostly, by flipping
the overall sign of the action, but we cannot remove all the
instabilities.1

III. STÜCKELBERG

In this section we will generalize to D dimensions in
order to illustrate cancellations that occur for D ¼ 4. The
scalar ψ plays no role in what follows and merely comes for
the ride, so we will temporarily drop it, starting with the
fourth order action containing only the massless and
massive spin-2 degrees of freedom,
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The two derivative form is
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�
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After using the fμν equations of motion to set
fμν ¼ 1

M2 ðRμν − 1
2ðD−1ÞRgμνÞ, we recover (3.1).

The action (2.5) has ordinary diffeomorphism invari-
ance, under which fμν (and ψ) transforms as an ordinary
tensor. But it is really a two-tensor theory propagating a
massive spin-2 mode. A massive spin-2 propagates vector
and scalar longitudinal modes, so following [22], we
should introduce a second diffeomorphism-like symmetry
and a U(1) in order to make all the physics manifest. We do
this through the Stückelberg replacement

fμν → fμν þ∇μ
~Vν þ∇ν

~Vμ; ~Vμ ¼ Vμ þ ∂μπ: ð3:3Þ

We have introduced two new fields Vμ and π, along with
two new gauge symmetries with gauge parameters Λμ

and Λ,

δfμν ¼ ∇μΛν þ∇νΛμ; δVμ ¼ −Λμ þ ∂μΛ; δπ ¼ Λ:

ð3:4Þ

The action (3.2) now takes the form
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ffiffiffiffiffiffi
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�
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where Fμν¼∇μ
~Vν−∇ν

~Vμ¼∇μVν−∇νVμ is the Maxwell
field strength of Vμ. All covariant derivatives and index
movements are with respect to gμν.
The full nonlinear degree of freedom counting is now

manifest [30,31]. The theory has been cast into two
derivative form with purely first class gauge symmetries,
so the degree of freedom count is ðnumber of fieldsÞ−
2ðnumber of gauge symmetriesÞ. The gauge strikes twice
because one field will be a Lagrange multiplier which
enforces the gauge constraint. For example, in D ¼ 4 we
have 25 fields (two symmetric tensors with 10 components
each, one vector with 4 components, and one scalar) and 9
gauge symmetries [two diffeomorphisms with 4 compo-
nents each, and a Uð1Þ], which leaves 25−2 ·9¼7 degrees
of freedom, the correct number for a massless graviton and
a massive graviton. Thus there is no Boulware-Deser like
[29] extra degree of freedom associated with the massive
spin-2. Later on when we study the decoupling limits and
massless limits of the theory, we will find that the degree of
freedom count in these limits is the same as for the full
theory, so we will know that these limits are accurately
capturing all the degrees of freedom of the theory.

IV. DECOUPLING LIMIT

After canonically normalizing the fields (note that the
kinetic term for π comes from mixing with fμν),

ðhμν; fμνÞ ∼
1

M
D
2
−1

P

ðĥμν; f̂μνÞ; Vμ ∼
1

M
D
2
−1

P M
V̂μ;

π ∼
1

M
D
2
−1

P M2
π̂; ð4:1Þ

we can read off the strong coupling scale from any given
interaction term. The lowest possible scales are those

1Some approaches toward the ghost problem are to break
Lorentz invariance [36], sacrifice unitarity [37], try to quantize in
a nonstandard fashion [38], or try to argue that something cuts off
the infinite phase space integral in the decay rate of the vacuum,
making the vacuum long-lived enough to be acceptable [39].
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coming from π self-interactions or interactions with one V
and the rest π, but these are not present in (3.5). The lowest
scale present in (3.5) is

ΛDþ2
D−2

¼ ðM 4
D−2MPÞ

D−2
Dþ2; ð4:2Þ

coming from self-interactions with one h or f and the rest
π’s. We will be interested in taking the decoupling limit

M → 0; MP → ∞; ΛDþ2
D−2

fixed: ð4:3Þ

This is a high energy limit in which the massive graviton is
becoming massless with the leading strong coupling scale
held fixed.
The action in this limit reduces to the flat space action

S ¼ MD−2
P

Z
dDx

�
1

8
hμνðEhÞμν −

1

2
fμνðEhÞμν

−
1

2
M2F2

μν − 2M2fμνð∂μ∂νπ − ημν□πÞ

þ 2M2RL
μνðhÞ∂μπ∂νπ

�
; ð4:4Þ

where RL
μνðhÞ is the linearized Ricci tensor. The gauge

symmetries in the decoupling limit reduce to their linear
versions,

δhμν ¼ ∂μξν þ ∂νξν;

δfμν ¼ ∂μΛν þ ∂νΛμ;

δVμ ¼ ∂μΛ;

δπ ¼ 0; ð4:5Þ

with ξμ the diffeomorphism parameter. It is easy to see that
(4.4) is invariant under these.
We can decouple the scalar and diagonalize the kinetic

terms by making the field redefinition

hμν → 2ðh0μν þ f0μνÞ −
4

D − 2
M2ημνπ;

fμν → f0μν −
2

D − 2
M2ημνπ

− 2M2

�
∂μπ∂νπ −
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�
; ð4:6Þ

after which the action becomes

S ¼ MD−2
P
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�
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ð4:7Þ

The only interaction is the final term in (4.7), which
is a cubic galileon interaction2 [41,42]. For D ≠ 4, this
describes the nonlinear high-energy dynamics of the
longitudinal mode of the massive graviton. It is straightfor-
ward to see that the 4 particle amplitude for π scattering is
nonvanishing and violates perturbative unitarity at the scale
ΛDþ2

D−2
, so the theory is perturbatively nonrenormalizable at

this intermediate scale. Any physics lost in the decoupling
limit cannot enter until a higher scale parametrically
suppressed by MP, so as long as M ≪ MP, so that the
decoupling limit makes sense, there is a regime in which
perturbative unitarity is violated. For D ¼ 3, (3.1) reduces
to the case of new massive gravity [43] (studied using the
methods here in [30]), which was argued to be non-
renormalizable in [44]. Quadratic gravity for D > 4 has
also been argued to be nonrenormalizable [45].
For D ¼ 4, however, the galileon interaction term

vanishes, a signal that the true strong coupling scale is
higher. For this case, we must search for nontrivial
operators at higher scales.

V. MASSLESS LIMIT

As we will see now, in D ¼ 4 there is in fact no higher
intermediate scale for which there are nontrivial interaction
terms, and thus there is no obstruction to taking a straight
M → 0 limit with MP held fixed.
To see this, fix D ¼ 4 in (3.5) and make the field

redefinition

fμν → f0μν þ
1

2
gμν − 2M2

�
~Vμ

~Vν −
1

2
gμν ~V

2

�
; ð5:1Þ

after which the action has the following finite and smooth
limit as M2 → 0 with the canonically normalized fields
held fixed,

S ¼ M2
P

Z
d4x

ffiffiffiffiffiffi
−g
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μν þ 3M4ð∂πÞ2

þ f0μν
�
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þ 2M4ð∇μπ∇νπ þ 1

2
gμνð∂πÞ2Þ

��
: ð5:2Þ

The gauge symmetries in the massless limit reduce to
ordinary diffeomorphisms for gμν, fμν, Vμ and π along with
the massless limit of the second set of symmetries (3.4)
expressed in terms of f0μν,

2The galileon has a well-known global symmetry
π → π þ cþ bμxμ, for constants c, bμ where xμ is the spacetime
coordinate, stemming from the fact that π always appears with
two derivatives in (3.3). The D ¼ 3 case is special in that the
galileon interaction in (4.4) has an enhanced shift symmetry [40].
It is not yet clear what the gravitational origin of this might be.
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δfμν¼∇μΛνþ∇νΛμ−2M2ð∇μπΛνþ∇νπΛμ−gμν∇ρπΛρÞ;
δVμ¼∂μΛ;

δπ¼0: ð5:3Þ

The action (5.2) is invariant under these transformations.
Noting that Gμν½e2M2πgμν� ¼ Gμν − 2M2ð∇μ∇νπ −

gμν□πÞ þ 2M4ð∇μπ∇νπ þ 1
2
gμνð∂πÞ2Þ, we can simplify

(5.2) by a making a conformal transformation

gμν → e−2M
2πgμν; ð5:4Þ

after which it becomes
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Z
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ffiffiffiffiffiffi
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f0μνGμν −
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2
M2F2

μν þ 3M4e−2M
2πð∂πÞ2

�
; ð5:5Þ

and the gauge symmetry (5.3) becomes (taking Λμ to be
independent of the metric)

δfμν ¼ ∇μΛν þ∇νΛμ;

δVμ ¼ ∂μΛ;

δπ ¼ 0: ð5:6Þ

This action describes the high energy dynamics of quad-
ratic gravity in four dimensions.
If quadratic gravity is renormalizable, there should be no

nontrivial nonrenormalizable operators present at any scale,
evenMP. We will now argue that this is indeed the case for
(5.5). Upon expanding3 gμν¼ημνþhμν, f0μν ¼ 1

2
ημν þ δfμν

and then diagonalizing the two graviton kinetic terms with
the redefinition,

hμν ¼ ~hμν þ ~fμν; δfμν ¼ ~fμν −
1

2
~hμν; ð5:7Þ

the action expanded around flat space reads

S¼M2
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3

8
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1

2
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�
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þLð≥1Þ
V;π ½ ~hþ ~f;V;π�

�
: ð5:8Þ

Here
ffiffiffiffiffiffi−gp

Gð≥2Þμν½h� stands for the terms of order h2 and
higher obtained from expanding the Einstein tensor and

metric determinant, and Lð≥1Þ
V;π ½h; V; π� the terms of order h

and higher obtained from expanding the minimally coupled
V and π Lagrangians.
We see that the scalar and vector couple only to the

combination ð ~hþ ~fÞμν. Since ~h and ~f have equal and
opposite propagators, and equal couplings to V, π, we can
see that there will be a cancellation in pairs among all
Feynman diagrams with external V, π lines. For each
diagram with an internal ~h, there is an equal and opposite
one in which the internal ~h is replaced by an internal ~f. This
is the mechanism by which the theory becomes renorma-
lizable; the bad high energy behavior of the graviton
cancels against the bad high energy behavior of the ghost.
This leads us to suspect that the action (5.5) is in fact a free

action in disguise, as wewill now argue. The key observation
is that the kinetic terms for ~h; ~f are invariant under an
internal SOð1; 1Þ symmetry, so making the following field
redefinition, depending on some parameter α,

 
~hμν
~fμν

!
¼
�
cosh α sinh α

sinhα coshα

� ~hðαÞμν

~fðαÞμν

!
; ð5:9Þ

the kinetic terms remain invariant and the action (5.8)
becomes

S ¼ M2
P

Z
d4x

�
3

8
~hðαÞμνðE ~hðαÞÞμν −

3

8
~fðαÞμνðE ~fðαÞÞμν

−
1

2
M2F2

μν þ 3M4e−2M
2πð∂πÞ2

þ
�
~f −

1

2
~h

�
μν

ffiffiffiffiffiffi
−g

p
Gð≥2Þμν½eαð ~hðαÞ þ ~fðαÞÞ�

þ Lð≥1Þ
V;π ½eαð ~hðαÞ þ ~fðαÞÞ; V; π�

�
: ð5:10Þ

Now take the limit4 α → −∞. All the gravitational inter-
actions, i.e. the final two lines of (5.10), scale away, and we
are left with the flat-space action of the first line

S ¼ M2
P

Z
d4x

3

8
~hðαÞμνðE ~hðαÞÞμν −

3

8
~fðαÞμνðE ~fðαÞÞμν

−
1

2
M2F2

μν þ 3M4e−2M
2πð∂πÞ2: ð5:11Þ

This is a completely free theory (the scalar self-
interactions can be absorbed with a field redefinition

3Note that in this massless limit there is now a moduli space of
solutions f0μν ¼ cημν, gμν ¼ ημν for constant c, which is not
present away from the massless limit. To keep the solution which
exists away from the massless limit, we take c ¼ 1

2
corresponding

to the background where fμν ¼ 0.

4Note that we do not need the strict limit, we only need to
argue that the S-matrix elements can be made manifestly smaller
than any given value and hence must vanish, and so we do not
need to worry about (5.9) becoming ill-defined.
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π → − 1
M2 logðM2πÞ), thus the high energy dynamics of the

theory is trivial, illustrating why the theory is renormalizable.
We see clearly the role that the ghost graviton plays in
making this work. At high energies, the ghost graviton
interactions cancel precisely the standard gravitational inter-
actions, rendering the theory asymptotically free.
If we bring back the scalar field ψ from Sec. II, keeping

its massm2 fixed as we scaleM → 0, and remembering the
conformal transformation (5.4), we find, after scaling

π →
π

2M2
; ð5:12Þ

that the α → −∞ limiting action becomes the flat space
action

S ¼ M2
P

Z
d4x

�
3

4
e−πð∂πÞ2 − 3

4
e−πð∂ψÞ2

−
3

4
m2e−2ðψþπÞðeψ − 1Þ2

�
; ð5:13Þ

in addition to the free vector and two free gravitons. Now
we see a relative ghost sign between the scalar ψ coming
from the original R2 term and the scalar π coming from the
longitudinal mode of the massive graviton. The potential in
(5.13) has a moduli space of vacua along the line ψ ¼ 0,
π ¼ c parametrized by the constant c. The ψ field has mass
m2

ψ ¼ m2e−2c along this line whereas π remains massless.
Equation (5.13) is a sigma model with two-dimensional

Minkowski target space in a Milne slicing. We can canon-
icalize the kinetic terms by going to flat field space
coordinates via the field redefinition

π ¼ − log ð ~π2 − ~ψ2Þ; ψ ¼ log

�
~π þ ~ψ

~π − ~ψ

�
; ð5:14Þ

after which (5.13) becomes

S ¼ 3M2
P

Z
d4xð∂ ~πÞ2 − ð∂ ~ψÞ2 þm2 ~ψ2ð ~π − ~ψÞ2: ð5:15Þ

This allows us to analytically continue the range of field
space; the region covered by ðπ;ψÞ corresponds to the
region ~π2 > ~ψ2, ~π > 0. The moduli line of vacua ψ ¼ 0
corresponds to the line ~ψ ¼ 0, with our original vacuum
ðπ ¼ 0;ψ ¼ 0Þ corresponding to ð ~π ¼ 1; ~ψ ¼ 0Þ, and the
point c → ∞ where the fields become massless corre-
sponding to the origin ð ~π ¼ 0; ~ψ ¼ 0Þ. In addition, there is
a new line of vacua given by ~π ¼ ~ψ, which is not covered
by the original π, ψ coordinates.
The action (5.15) contains only renormalizable inter-

actions, with mass terms of order ∼m2 and couplings of
order∼m2=M2

P. Thus, even with R
2 terms, we see explicitly

the absence of strong coupling scales in the quadratic

gravity decoupling limit, reflecting the renormalizability of
the theory.
As with the gravitons, the scalar kinetic terms in (5.15)

have an internal SOð1; 1Þ symmetry. Our original vacuum
at ð ~π ¼ 1; ~ψ ¼ 0Þ is not invariant under this action, but we
can simplify the description of the S-matrix about the
massless ð ~π ¼ 0; ~ψ ¼ 0Þ vacuum by making the following
field redefinition,

�
~ψ

~π

�
¼
�
cosh α sinh α

sinh α cosh α

��
~ψ ðαÞ

~πðαÞ

�
: ð5:16Þ

The kinetic terms remain invariant and the action (5.15)
becomes, in the limit α → ∞,

S¼ 3M2
P

Z
d4xð∂ ~πðαÞÞ2 − ð∂ ~ψ ðαÞÞ2 − 1

4
m2ð ~πðαÞ2 − ~ψ ðαÞ2Þ2:

ð5:17Þ

VI. SUMMARY AND CONCLUSIONS

Using the Stückelberg trick, we have studied the non-
linear dynamics of quadratic curvature gravity in the limit
in which the mass of the second graviton goes to zero. The
Stückelberg fields account for the longitudinal modes of the
massive graviton. In dimensions D ≠ 4, the nonlinear
dynamics are described by a cubic galileon term, becoming
strongly coupled at the scale ΛDþ2

D−2
associated with a non-

linear massive graviton with no Boulware-Deser mode. In
D ¼ 4, the galileon term vanishes, and the theory never
becomes strongly coupled, becoming a renormalizable
theory in the massless limit. The ghostly second graviton
is crucial in making this happen, and the Stückelberg trick
makes transparent the mechanism by which it works.
Though we have studied only quadratic curvature

gravity, there is no obstruction in principle to applying
this kind of Stückelberg analysis to all varieties of higher-
order gravitational Lagrangians, and simplifying the non-
linear dynamics of the theory in the high-energy limit (as in
e.g. [31]). It need only be ensured that the Stückelberg
fields faithfully represent the true degrees of freedom of the
theory.
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