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We use a recently obtained resummed quark propagator at finite temperature which takes into account
both the chromoelectric scale gT and the chromomagnetic scale g2T through the Gribov action. The electric
scale generates two massive modes whereas the magnetic scale produces a new massless spacelike mode in
the medium. Moreover, the nonperturbative quark propagator is found to contain no discontinuity in
contrast to the standard perturbative hard thermal loop approach. Using this nonperturbative quark
propagator and vertices constructed using the Slavnov-Taylor identity, we compute the nonperturbative
dilepton rate at vanishing three-momentum at one-loop order. The resulting rate has a rich structure at low
energies due to the inclusion of the nonperturbative magnetic scale. We also calculate the quark number
susceptibility, which is related to the conserved quark number density fluctuation in the deconfined state.
Both the dilepton rate and quark number susceptibility are compared with results from lattice quantum
chromodynamics and the standard hard thermal loop approach. Finally, we discuss how the absence of a
discontinuity in the imaginary part of the nonperturbative quark propagator makes the results for both
dilepton production and quark number susceptibility dramatically different from those in perturbative
approaches and seemingly in conflict with known lattice data.
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I. INTRODUCTION

The ongoing ultrarelativistic heavy-ion collision experi-
ments at the RHIC and LHC enable us to study the quark-
gluon plasma (QGP) which is a deconfined state of hadronic
matter generated at very high temperatures and/or densities.
Although the quark-gluon plasma may be strongly coupled
at low temperatures, at high temperature there is evidence
that resummed perturbation theory can be used to understand
the properties of the QGP. To perturbatively study the QGP
one needs to have an in-depth understanding of the various
collective modes. These collective modes can be roughly
classified into three types which are associated with different
thermal scales, namely the energy (or hard) scale T, electric
scale gT, and magnetic scale g2T, where g is the strong
coupling andT is the temperature of the system.Themajority
of studies in the literature have focused on the hard and
electric scales, since the magnetic scale is related to the
difficult nonperturbative physics of confinement.

Based on the hard-thermal-loop (HTL) resummations
[1–3], a reorganization of finite-temperature perturbation
theory called HTL perturbation theory (HTLpt) was devel-
oped over a decade ago [4]. HTLpt deals with the intrinsic
energy scale T as the hard scale and the electric scale gT as
the soft scale and has been extensively used to calculate
various physical quantities associated with the deconfined
state of matter. These quantities include the thermodynamic
potential and other relevant quantities associated with it
[4–23], photon production rate [24], dilepton production
rate [25,26], single quark and quark-antiquark potentials
[27,28], photon damping rate [29,30], fermion damping
rate [31,32], gluon damping rate [2,33], plasma instabilities
[34–36], jet energy loss [37–42], lepton asymmetry during
leptogenesis [43,44], and thermal axion production [45].
Although HTLpt seems to work well at a temperature of

approximately 2 Tc and above, where Tc ∼ 160 MeV is the
pseudocritical temperature for the QGP phase transition,
the time-averaged temperature of the QGP generated at the
RHIC and LHC energies is quite close to Tc. Near Tc, the
running coupling g is large and the QGP could therefore
be completely nonperturbative in this vicinity of the
phase diagram. In order to make some progress at these
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temperatures, it is necessary to consider the nonperturbative
physics associated with the QCD magnetic scale in order
to assess its role. Unfortunately, the magnetic scale is still
a challenge for the theoreticians to treat in a systematic
manner since, although its inclusion eliminates infrared
divergences, the physics associated with the magnetic scale
remains completely nonperturbative [46]. The fact that the
Oðg2TÞ correction to the Debye mass receives nonpertur-
bative contributions indicates that the background physics
is fundamentally nonperturbative [47]. The physics in the
magnetic sector is described by a dimensionally reduced
three-dimensional Yang-Mills theory and the nonperturba-
tive nature of the physics in this sector is related with the
confining properties of the theory.
Lattice QCD (LQCD) provides a first-principles-based

method that can take into account the nonperturbative
effects of QCD. Lattice QCD has been used to probe the
behavior of QCD in the vicinity of Tc, where matter
undergoes a phase transition from the hadronic phase
to the deconfined QGP phase. At this point, the QCD
thermodynamic functions and some other relevant quan-
tities associated with the fluctuations of conserved charges
at finite temperature and zero chemical potential have
been very reliably computed using LQCD (see e.g.
Refs. [48–55]). In addition, quenched LQCD has also been
used to study the structure of vector-meson correlation
functions. Such studies have provided critically needed
information about the thermal dilepton rate and various
transport coefficients at zero momentum [56–59] and finite
momentum [60].
Calculations in LQCD proceed by evaluating the

Euclidean time correlation function only for a discrete
and finite set of Euclidean times. To obtain the dilepton
rate, one needs to perform an analytic continuation of the
correlator from discrete Euclidean times to reconstruct the
vector spectral function in continuous real time. However,
this is an ill-posed problem. To proceed, the spectral
function and hence the dilepton rate in continuous real
time can be obtained from the correlator in discrete
Euclidean times through a probabilistic interpretation based
on the maximum entropy method (MEM) [61–63], which
requires an ansatz for the spectral function. Employing
a free-field spectral function as an ansatz, the spectral
function in the quenched approximation of QCD was
obtained earlier and found to approach zero in the low-
energy limit [59]. In the same work, the authors found that
the lattice dilepton rate approached zero at low invariant
masses [59]. In a more recent LQCD calculation with larger
lattice size, the authors used a Breit-Wigner (BW) form for
low energies plus a free-field form for high energies as their
ansatz for the spectral function [56]. The low-energy BW
form of their ansatz gave a finite low-energy spectral
function and low-mass dilepton rate. This indicates that
the computation of a low-mass dilepton rate in LQCD is
indeed a difficult task and it is also not very clear if there are

structures in the low-mass dilepton rate similar to those
found in the HTLpt calculation [25].
Given the uncertainty associated with the lattice com-

putation of dynamical quantities, e.g. spectral functions, the
dilepton rate, and transport coefficients, it is desirable to
have an alternative approach to include nonperturbative
effects that can be handled in a similar way as in resummed
perturbation theory. A few such approaches are available
in the literature: one approach is a semi-empirical way
to incorporate nonperturbative aspects by introducing a
gluon condensate1 in combination with the Green functions
in momentum space, which has been proposed in e.g.
Refs. [64–69]. In this approach, the effective n-point
functions are related by Slavnov-Taylor (ST) identities
which contain gluon condensates in the deconfined phase
as hinted from lattice measurements in pure-glue QCD
[70]. The dispersion relations with dimension-four gluon
condensates in medium exhibits two massive modes [64]
(a normal quark mode and a plasmino mode) similar to
HTL quark dispersion relations. This feature leads to sharp
structures (van Hove singularities, an energy gap, etc.) in
the dilepton production rates [66,71] at zero momentum,
qualitatively similar to the HTLpt rate [25].
Using quenched LQCD, Refs. [72,73] calculated the

Landau-gauge quark propagator and its corresponding
spectral function by employing a two-pole ansatz corre-
sponding to a normal quark and a plasmino mode following
the HTL dispersion relations [25]. In a very recent approach
[74], a Schwinger-Dyson equation has been constructed
with the aforementioned Landau-gauge propagator
obtained using quenched LQCD [72,73] and a vertex
function related through the ST identity. Using this setup
the authors computed the dilepton rate from the deconfined
phase and found that it has the characteristic van Hove
singularities but does not have an energy gap.
In a very recent approach [75] quark propagation in a

deconfined medium including both electric- and magnetic-
mass effects has also been studied by taking into account
the nonperturbative magnetic screening scale by using the
Gribov-Zwanziger (GZ) action [76,77], which regulates the
magnetic IR behavior of QCD. Since the gluon propagator
with the GZ action is IR regulated, this mimics confine-
ment, making the calculations more compatible with results
of LQCD and functional methods [78]. Interestingly, the
resulting HTL-GZ quark collective modes consist of two
massive modes (a normal quark mode and a plasmino
mode) similar to the standard HTL dispersions along with a

1An important aspect of the phase structure of QCD is to
understand the effects of different condensates, which serve as
order parameters of the broken symmetry phase. These con-
densates are nonperturbative in nature and their connection with
bulk properties of QCD matter is provided by LQCD. The gluon
condensate has a potentially substantial impact on the bulk
properties, e.g., on the equation of state of QCDmatter, compared
to the quark condensate.
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new massless spacelike excitation which is directly related
to the incorporation of the magnetic scale through the
GZ action. This new quark collective excitation results in a
long-range correlation in the system, which may have
important consequences for various physical quantities
relevant for the study of deconfined QCD matter. In light
of this, we would like to compute the dilepton production
rate and the quark number susceptibility (QNS) associated
with the conserved number fluctuation from the deconfined
QGP using the nonperturbative GZ action.
This paper is organized as follows. In Sec. II we briefly

outline the setup for quark propagation in a deconfined
medium using the GZ action. In Sec. III we calculate
the nonperturbative dilepton rate and discuss the results.
Section IV describes the computation and results of non-
perturbative QNS. In Sec. V we summarize and conclude.

II. SETUP

We know that gluons play an important role in confine-
ment. In the GZ action [76,77] the issue of confinement is
usually tackled kinematically with the gluon propagator in
covariant gauge taking the form [76,77]

DμνðPÞ ¼
�
δμν − ð1 − ξÞP

μPν

P2

�
P2

P4 þ γ4G
; ð1Þ

where the four-momenta P ¼ ðp0; ~pÞ, ξ is the gauge
parameter, and γG is called the Gribov parameter. The
inclusion of the term involving γG in the denominator
moves the poles of the gluon propagator off the energy axis
so that there are no asymptotic gluon modes. Naturally, to
maintain the consistency of the theory, these unphysical
poles should not be considered in the exact correlation
functions of gauge-invariant quantities. This suggests that
the gluons are not physical excitations. In practice, this
means that the inclusion of the Gribov parameter results in
the effective confinement of gluons.
In QCD, the Gribov ambiguity typically results in

multiple gauge-equivalent copies and, as a result, it renders
perturbative QCD calculations ambiguous. However, the
dimensionful Gribov parameter appearing above can
acquire a well-defined meaning if the topological structure
of the SUð3Þ gauge group is made to be consistent with the
theory. Very recently, this has been argued and demon-
strated by Kharzeev and Levin [79] by taking into account
the periodicity of the θ vacuum [80] of the theory due to the
compactness of the SUð3Þ gauge group. The recent work of
Kharzeev and Levin indicates that the Gribov term can be
physically interpreted as the topological susceptibility of
pure Yang-Mills theory and that confinement is built into
the gluon propagator in Eq. (1), indicating nonpropagation
of color charges at long distances and screening of color
charges at long distances in the running coupling. This also
reconciles the original view Zwanziger had regarding γG
being a statistical parameter [77]. In practice, γG can be

self-consistently determined using a one-loop gap equation
and at asymptotically high temperatures it takes the
following form [75,81,82]:

γG ¼ D − 1

D
Nc

4
ffiffiffi
2

p
π
g2T; ð2Þ

where D is the dimension of the theory and Nc is the
number of colors.2 The one-loop running strong coupling,
g2 ¼ 4παs, is

g2ðTÞ ¼ 48π2

ð33 − 2NfÞ lnðQ
2
0

Λ2
0

Þ
; ð3Þ

where Nf is the number of quark flavors and Q0 is the
renormalization scale, which is usually chosen to be 2πT
unless specified. We fix the scale Λ0 by requiring that
αsð1.5 GeVÞ ¼ 0.326, as obtained from lattice measure-
ments [84]. For one-loop running, this procedure gives
Λ0 ¼ 176 MeV.
To study the properties of a hot QGP using (semi)

perturbative methods, the effective quark propagator is an
essential ingredient. After resummation, the quark propa-
gator can be expressed as

iS−1ðPÞ ¼P − ΣðPÞ; ð4Þ
where ΣðPÞ is the quark self-energy. One can calculate Σ
using the modified gluon propagator (1) in the high-
temperature limit to obtain [75]

ΣðPÞ ¼ ðigÞ2CF

XZ
fKg

γμSfðKÞγνDμνðP − KÞ

≈ −ðigÞ2CF

X
�

Z
∞

0

dk
2π2

k2
Z

dΩ
4π

×
~n�ðk; γGÞ
4E0

�

"
iγ0 þ k̂ · γ

iP0 þ k − E0
� þ p·k

E0
�

þ iγ0 − k̂ · γ
iP0 − kþ E0

� − p·k
E0
�

#
; ð5Þ

where ⨋fKg is a fermionic sum-integral, SfðKÞ is the bare
quark propagator, and

~n�ðk; γGÞ≡ nB
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � iγ2G

q �
þ nFðkÞ;

E0
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � iγ2G

q
; ð6Þ

where nB and nF are Bose-Einstein and Fermi-Dirac
distribution functions, respectively. The modified thermal

2Equation (2) is a one-loop result. In the vacuum, the two-loop
result has been determined [83] and the Gribov propagator form
(1) is unmodified. Only γG itself is modified to take into account
the two-loop correction. To the best of our knowledge, this would
hold also at finite temperature.
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quark mass in the presence of the Gribov term can also be
obtained as

m2
qðγGÞ ¼

g2CF

4π2
X
�

Z
∞

0

dk
k2

E0
�
~n�ðk; γGÞ: ð7Þ

Using the modified quark self-energy given in Eq. (5), it is
now easy to write down the modified effective quark
propagator in the presence of the Gribov term as

iS−1ðPÞ ¼ A0γ0 − Asγ · p̂; ð8Þ
where, keeping the structure typically used within the HTL
approximation, A0 and As are defined as [75]

A0ðω;pÞ

¼ω−2g2CF

ð2πÞ2
X
�

Z
dkk ~n�ðk;γGÞ½Q0ð ~ω�

1 ;pÞþQ0ð ~ω�
2 ;pÞ�;

Asðω;pÞ

¼pþ2g2CF

ð2πÞ2
X
�

Z
dkk ~n�ðk;γGÞ½Q1ð ~ω�

1 ;pÞþQ1ð ~ω�
2 ;pÞ�:

ð9Þ
Here the modified frequencies are defined as ~ω�

1 ≡
E0
�ðωþ k − E0

�Þ=k and ~ω�
2 ≡ E0

�ðω − kþ E0
�Þ=k. The

Legendre functions of the second kind, Q0 and Q1, are

Q0ðω; pÞ≡ 1

2p
ln
ωþ p
ω − p

; ð10Þ

Q1ðω; pÞ≡ 1

p
ð1 − ωQ0ðω; pÞÞ: ð11Þ

Using the helicity representation, the modified effective
fermion propagator can also be written as

iSðPÞ ¼ 1

2

ðγ0 − γ · p̂Þ
Dþ

þ 1

2

ðγ0 þ γ · p̂Þ
D−

; ð12Þ

where D� are obtained as

Dþðω; p; γGÞ ¼ A0ðω; pÞ − Asðω; pÞ

¼ ω − p − 2g2CF

ð2πÞ2
X
�

Z
dkk ~n�ðk; γGÞ

× ½Q0ð ~ω�
1 ; pÞ þQ1ð ~ω�

1 ; pÞ
þQ0ð ~ω�

2 ; pÞ þQ1ð ~ω�
2 ; pÞ�;

D−ðω; p; γGÞ ¼ A0ðω; pÞ þ Asðω; pÞ

¼ ωþ p − 2g2CF

ð2πÞ2
X
�

Z
dkk ~n�ðk; γGÞ

× ½Q0ð ~ω�
1 ; pÞ −Q1ð ~ω�

1 ; pÞ
þQ0ð ~ω�

2 ; pÞ −Q1ð ~ω�
2 ; pÞ�: ð13Þ

Solving for the zeros of D−1
� ðP; γGÞ gives the dispersion

relations for the collective excitations in the medium. In
Fig. 1 we show the resulting dispersion relations for three
different values of the Gribov parameter γG. In the absence
of the Gribov term (i.e., γG ¼ 0), there are two massive
modes corresponding to a normal quark mode qþ with
energy ωþ and a long-wavelength plasmino mode q− with
energy ω− that quickly approaches free massless propa-
gation in the high-momentum limit. These two modes are
similar to those found in the HTL approximation [25]. With
the inclusion of the Gribov term, there is a massless mode
qG with energy ωG, in addition to the two massive modes,
qþ and q− [75]. The extra mode qG is due to the presence of
the magnetic screening scale. This new massless mode is
lightlike at large momenta.3 In this context, we note that in
Ref. [69], such an extra massive mode with a significant
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FIG. 1. Plot of the dispersion relations for different values of γG. In the parentheses, the first one represents a collective excitation
mode whereas the second one is the corresponding energy of that mode.

3The slope of the dispersion relation for this extra massless
spacelike mode qG exceeds unity in some domain of momentum.
Thus, the group velocity, dωG=dp, is superluminal for the
spacelike mode qG and approaches the light cone
(dω=dp ¼ 1) from above at high momentum. Since the mode
is spacelike, there is no causality problem. Instead, this represents
anomalous dispersion in the presence of the GZ action which
converts Landau damping into amplification of the spacelike
dispersive mode.
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spectral width was observed near Tc in the presence of
dimension-four gluon condensates [69] in addition to the
usual propagating quark and plasmino modes. The exist-
ence of this extra mode could affect lattice extractions of
the dilepton rate since even the most recent LQCD results
[72,73] assumed that there were only two poles (a quark
mode and a plasmino mode) inspired by the HTL
approximation.
In the HTL approximation (γG ¼ 0) the propagator

contains a discontinuity in the complex plane stemming
from the logarithmic terms in Eq. (13) due to spacelike
momentum ω2 < p2. Apart from two collective excitations
originating from the in-medium dispersion as discussed
above, there is also a Landau cut contribution in the spectral
representation of the propagator due to the discontinuity in
spacelike momentum. On the other hand, for γG ≠ 0 the
individual terms in Eq. (13) possess discontinuities at
spacelike momentum but are canceled out when all terms
are summed owing to the fact that the poles come in
complex-conjugate pairs. As a result, there is no disconti-
nuity in the complex plane.4 This results in the disappear-
ance of the Landau cut contribution in the spectral
representation of the propagator in the spacelike domain.
It appears as if the Landau cut contribution in the spacelike
domain for γG ¼ 0 is replaced by a massless spacelike
dispersive mode in the presence of the magnetic scale
(γG ≠ 0). So the spectral function corresponding to the
propagator D−1

� for γG ≠ 0 has only pole contributions.
As a result, one has

ρG�ðω;pÞ¼
ω2−p2

2m2
qðγGÞ

½δðω∓ωþÞþδðω�ω−Þþδðω�ωGÞ�;

ð14Þ

where Dþ has poles at ωþ, −ω−, and −ωG and D− has
poles at ω−, −ωþ, and ωG with a prefactor,
ðω2 − p2Þ=2m2

qðγGÞ, as the residue.
At this point we would like to mention that the non-

perturbative quark spectral function obtained using the
quark propagator analyzed in the quenched LQCD calcu-
lations of Refs. [72–74] and utilizing gluon condensates in
Refs. [64–66,69,71] also forbids a Landau cut contribution
since the effective quark propagators in these calculations
do not contain any discontinuities. This stems from the fact
that the quark self-energies in Refs. [64–66,69,71] do not
have any imaginary parts whereas in Refs. [72–74] an
ansatz of two quasiparticles was employed for the spectral
function based on the LQCD quark propagator analyzed
in the quenched approximation. The spectral function

obtained with the Gribov action (14) also possesses only
pole contributions but no Landau cut. As a result, this
approach completely removes the quasigluons responsible
for the Landau cut that should be present in a high-
temperature quark-gluon plasma. This is similar to findings
in other nonperturbative approaches [64–66,71–74]. We
will return to the consequences of the absence of the
Landau cut in the results and conclusions sections.
Returning to the problem at hand, the spectral density

in Eq. (14) at vanishing three-momentum (p≡ j~pj ¼ 0)
contains three delta function singularities corresponding to
the two massive modes and one new massless Gribov
mode. To proceed, one needs the vertex functions in the
presence of the Gribov term. These can be determined by
explicitly computing the hard-loop limit of the vertex
function using the Gribov propagator. One can verify, after
the fact, that the resulting effective quark-gluon vertex
function satisfies the necessary ST identity

ðP1 − P2ÞμΓμðP1; P2Þ ¼ S−1ðP1Þ − S−1ðP2Þ: ð15Þ
The temporal and spatial parts of the modified effective
quark-gluon vertex can be written as

Γ0 ¼ aGγ0 þ bGγ · p̂;
Γi ¼ cGγi þ bGp̂iγ0 þ dGp̂iðγ · p̂Þ; ð16Þ

where the coefficients are given by

aG¼ 1−2g2CF

ð2πÞ2
X
�

Z
dkk ~n�ðk;γGÞ

1

ω1−ω2

½δQ�
01þδQ�

02�;

bG¼−
2g2CF

ð2πÞ2
X
�

Z
dkk ~n�ðk;γGÞ

1

ω1−ω2

½δQ�
11þδQ�

12�;

cG¼ 1þ2g2CF

ð2πÞ2
X
�

Z
dkk ~n�ðk;γGÞ

×
1

3ðω1−ω2Þ
½δQ�

01þδQ�
02−δQ�

21−δQ�
22�;

dG¼ 2g2CF

ð2πÞ2
X
�

Z
dkk ~n�ðk;γGÞ

1

ω1−ω2

½δQ�
21þδQ�

22�;

with

δQ�
n1 ¼ Qnð ~ω�

11; pÞ −Qnð ~ω�
21; pÞ for n ¼ 0; 1; 2;

ω�
m1 ¼ E0

�ðωm þ k − E0
�Þ=k for m ¼ 1; 2;

ω�
m2 ¼ E0

�ðωm − kþ E0
�Þ=k for m ¼ 1; 2:

Similarly, the four-point function can be obtained by
computing the necessary diagrams in the hard-loop limit
and it satisfies the following generalized ST identity:

PμΓμνð−P1;P1;−P2;P2Þ ¼ ΓνðP1 −P2;−P1;P2Þ
− Γνð−P1 −P2;P1;P2Þ: ð17Þ

4Starting from the Euclidean expression (5), we have numeri-
cally checked for discontinuities and found none. We found some
cusp-like structures at complex momenta, but Σ was found to be
C0 continuous everywhere in the complex plane.
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III. ONE-LOOP DILEPTON PRODUCTION WITH
THE GRIBOV ACTION

The dilepton production rate for a dilepton with energyω
and three-momentum ~q is related to the discontinuity of the
photon self-energy ΠμνðQÞ as [85]

dR
dωd3q

¼ α

12π3Q2

1

eβω − 1

1

2πi
DiscΠμ

μðQÞ: ð18Þ

At one-loop order, the dilepton production rate is related to
the two diagrams shown in Fig. 2, which can be written as

Πμ
μðQÞ ¼ 5

3
e2
X
p0

Z
d3p
ð2πÞ3 fTr½SðPÞΓμðK;Q;−PÞSðKÞΓμð−K;−Q;PÞ� þ Tr½SðPÞΓμ

μð−P;P;−Q;QÞ�g; ð19Þ

where K ¼ P −Q. The second term in Eq. (19) is due to the tadpole diagram shown in Fig. 2 which, in the end, does not
contribute since Γμ

μ ¼ 0. However, the tadpole diagram is essential to satisfy the transversality condition, QμΠμνðQÞ ¼ 0

and thus gauge invariance and charge conservation in the system.
Using the n-point functions computed in Sec. II and performing traces, one obtains

Πμ
μð~q ¼ 0Þ ¼ 10

3
e2T

X
p0

Z
d3p
ð2πÞ3

�� ðaG þ bGÞ2
Dþðω1; p; γGÞD−ðω2; p; γGÞ

þ ðaG − bGÞ2
D−ðω1; p; γGÞDþðω2; p; γGÞ

�

−
� ðcG þ bG þ dGÞ2
Dþðω1; p; γGÞD−ðω2; p; γGÞ

þ ðcG − bG þ dGÞ2
D−ðω1; p; γGÞDþðω2; p; γGÞ

�

− 2c2G

�
1

Dþðω1; p; γGÞDþðω2; p; γGÞ
þ 1

D−ðω1; p; γGÞD−ðω2; p; γGÞ
��

: ð20Þ

The discontinuity can be obtained by the Braaten-Pisarski-Yuan (BPY) prescription [25]

DiscT
X
p0

f1ðp0Þf2ðq0 − p0Þ ¼ 2πið1 − eβωÞ
Z

dω1

Z
dω2nFðω1ÞnFðω2Þδðω − ω1 − ω2Þρ1ðω1Þρ2ðω2Þ; ð21Þ

which, after some work, allows one to determine the dilepton rate at zero three-momentum

dR
dωd3q

ð~q ¼ 0Þ ¼ 10α2

9π4
1

ω2

Z
∞

0

p2dp
Z

∞

−∞
dω1

Z
∞

−∞
dω2nFðω1ÞnFðω2Þδðω − ω1 − ω2Þ

×

�
4

	
1 − ω2

1 − ω2
2

2pω



2

ρGþðω1; pÞρG−ðω2; pÞ

þ
	
1þ ω2

1 þ ω2
2 − 2p2 − 2m2

qðγGÞ
2pω



2

ρGþðω1; pÞρGþðω2; pÞ

þ
	
1 − ω2

1 þ ω2
2 − 2p2 − 2m2

qðγGÞ
2pω



2

ρG−ðω1; pÞρG−ðω2; pÞ
�
: ð22Þ

Using Eq. (14) and considering all physically allowed processes by the in-medium dispersion, the total contribution can
be expressed as

P− Q

Q

P

FIG. 2. The self-energy (left) and tadpole (right) diagrams at one-loop order.
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dR
dωd3q

����
pp
ð~q ¼ 0Þ ¼ 10α2

9π4
1

ω2

Z
∞

0

p2dp

×

�
δðω − 2ωþÞn2FðωþÞ

	
ω2þ − p2

2m2
qðγGÞ



2
�
1þ ω2þ − p2 −m2

qðγGÞ
pω

�
2

þ δðω − 2ω−Þn2Fðω−Þ
	
ω2− − p2

2m2
qðγGÞ



2
�
1 − ω2− − p2 −m2

qðγGÞ
pω

�
2

þ δðω − 2ωGÞn2FðωGÞ
	
ω2
G − p2

2m2
qðγGÞ



2
�
1 − ω2

G − p2 −m2
qðγGÞ

pω

�
2

þ 4δðω − ωþ − ω−ÞnFðωþÞnFðω−Þ
	
ω2þ − p2

2m2
qðγGÞ


	
ω2− − p2

2m2
qðγGÞ




×
�
1 − ω2þ − ω2−

2pω

�
2

þ δðω − ωþ þ ω−ÞnFðωþÞnFð−ω−Þ
	
ω2þ − p2

2m2
qðγGÞ


	
ω2− − p2

2m2
qðγGÞ




×

�
1þ ω2þ þ ω2− − 2p2 − 2m2

qðγGÞ
2pω

�
2
�
: ð23Þ

By inspecting the arguments of the various energy-con-
serving δ functions in Eq. (23) one can understand the
physical processes originating from the poles of the
propagator. The first three terms in Eq. (23) correspond
to the annihilation processes of qþq̄þ → γ�, q−q̄− → γ�,
and qGq̄G → γ�, respectively. The fourth term corresponds
to the annihilation of qþq̄− → γ�. On the other hand, the
fifth term corresponds to a process, qþ → q−γ�, where a qþ
mode makes a transition to a q− mode along with a virtual

photon. These processes involve soft quark modes (qþ, q−,
and qG and their antiparticles) which originate by cutting
the self-energy diagram in Fig. 2 through the internal lines
without a “blob.” The virtual photon, γ�, in all these five
processes decays to a lepton pair and can be visualized from
the dispersion plot as displayed in Fig. 3. The momentum
integration in Eq. (23) can be performed using the standard
delta function identity

δðfðxÞÞ ¼
X
i

δðx − xiÞ
jf0ðxÞjx¼xi

; ð24Þ

where xi are the solutions of fðxiÞ ¼ 0.
The contribution of various individual processes to the

dilepton production rate in the presence of the Gribov term
are displayed in the Fig. 4. Note that in this figure and in
subsequent figures showing the dilepton rate, the vertical
axis shows the dimensional late dilepton rate dR=d4p ¼
dN=d4xd4p and the horizontal axis is scaled by the thermal
quark mass as to make it dimensionless. In Fig. 4 we see
that the transition process, qþ → q−γ�, begins at the energy
ω ¼ 0 and ends up with a van Hove peak5 where all of
the transitions from the qþ branch are directed towards
the minimum of the q− branch. The annihilation
process involving the massless spacelike Gribov modes,
qGq̄G → γ�, also starts at ω ¼ 0 and falls off very quickly.
The annihilation of the two plasmino modes, q−q̄− → γ�,
opens up with again a van Hove peak at ω ¼ 2× the
minimum energy of the plasmino mode. The contribution

q
q

q q

q G
q G

q
q

q

q

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

p mq G

m
q

G

FIG. 3. Various dilepton processes which originate from the
in-medium dispersion with the Gribov term.

5A van Hove peak [86,87] appears where the density of states
diverges as f0ðxÞjx¼x0 ¼ 0 since the density of states is inversely
proportional to f0ðxÞ.
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of this process decreases exponentially. At ω ¼ 2mqðγGÞ,
the annihilation processes involving usual quark modes,
qþq̄þ → γ�, and that of a quark and a plasmino mode,
qþq̄− → γ�, begin. However, the former one (qþq̄þ → γ�)
grows with the energy and would converge to the usual
Born rate (leading-order perturbative rate) [88] at high mass
whereas the latter one (qþq̄− → γ�) initially grows at a very
fast rate, but then decreases slowly and finally drops very
quickly. The behavior of the latter process can easily be
understood from the dispersion properties of the quark and
plasmino mode. Summing up, the total contribution of all
these five processes is displayed in Fig. 5. This is compared
with the similar dispersive contribution when γG ¼ 0 [25],
comprising the processes qþ → q−γ�, qþq̄þ → γ�,
q−q̄− → γ� and qþq̄− → γ�. We note that when γG ¼ 0,
the dilepton rate contains both van Hove peaks and an
energy gap [25]. In the presence of the Gribov term
(γG ≠ 0), the van Hove peaks remain, but the energy gap
disappears due to the annihilation of new massless Gribov
modes, qGq̄G → γ�.
In Fig. 6 we compare the rates obtained using various

approximations: the leading-order perturbative (Born) rate

[88], the quenched LQCD rate [56,59], and with and
without the Gribov term. The nonperturbative rate with
the Gribov term shows important structures compared to
the Born rate at low energies. But when compared to the
total HTLpt rate6 it is suppressed in the low-mass region
due to the absence of the Landau cut contribution for
γG ≠ 0. It seems as if the higher-order Landau cut con-
tribution due to spacelike momenta for γG ¼ 0 is replaced
by the soft process involving spacelike Gribov modes in the
collective excitations for γG ≠ 0. We also note that the
dilepton rate [74] using the spectral function constructed
with the two-pole ansatz by analyzing the LQCD propa-
gator in the quenched approximation [72,73] shows a
similar structure as that found here for γG ≠ 0. On the
other hand, such a structure at low mass is also expected in
the direct computation of the dilepton rate from LQCD in
the quenched approximation [56,59]. However, a smooth
variation of the rate was found at low mass. The compu-
tation of the dilepton rate in LQCD involves various
intricacies and uncertainties. This is because, as noted in
Sec. I, the spectral function in continuous time is obtained
from the correlator in the finite set of discrete Euclidean
time using a probabilistic MEM method [61–63] with a
somewhat ad hoc continuous ansatz for the spectral
function at low energy and also fundamental difficulties
in performing the necessary analytic continuation in
LQCD. Until LQCD overcomes the uncertainties and
difficulties in the computation of the vector spectral
function, one needs to depend, at this juncture, on the
prediction of the effective approaches for the dilepton rate
at low mass in particular. We further note that at high
energies the rate for both γG ¼ 0 and γG ≠ 0 is higher
than the lattice data and Born rate. This is a consequence
of using the HTL self-energy also at high energies/
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d

d
3 q

pp
q

0

With Gribov �ΓG�T� �0 �

Without Gribov �ΓG �0�Total quasiparticle

contribution

FIG. 5. Comparison of dilepton production rates involving
various quasiparticle modes with and without the inclusion of γG.
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FIG. 6. Comparison of various dilepton production rates from
the deconfined matter.
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d
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q
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q q

q q

q q
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FIG. 4. The dilepton production rates corresponding to quasi-
particle processes in Fig. 3.

6Since the HTL spectral function (i.e., γG ¼ 0) has both a pole
and a Landau cut contribution, the HTLpt rate [25] contains an
additional higher-order contribution due to the Landau cut
stemming from spacelike momenta.
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momentumwhere the soft-scale approximationbreaks down.
Nevertheless, the low mass rate obtained here by employing
the nonperturbative magnetic scale (γG ≠ 0) in addition to
the electric scale allows for a model-based inclusion of the
effect of confinement and the result has a somewhat rich
structure at low energy compared to that obtained using only
the electric scale (γG ¼ 0) as well in LQCD.
We make some general comments concerning the

dilepton rate below. If one looks at the dispersion plots
in Fig. 1 for γG ¼ 0, one finds that ω− falls off exponen-
tially and approaches the light cone, whereas ωþ does not
fall off exponentially to the light cone, but instead behaves
as ½pþm2

qðTÞ=p� for large p. On the other hand, in the
presence of γG ≠ 0 both ω− and ωG approach the light cone
very quickly, but again ωþ has a similar asymptotic
behavior as before. This feature of ωþ makes the dilepton
rate at large ω in Fig. 6 saturated for both γG ¼ 0 and
γG ≠ 0, because the dominant contribution comes from the
annihilation of two ωþ’s as discussed in Fig. 4. In general,
the total dilepton rate in Fig. 6, behaves as ∼ expð−ω=TÞ
for γGðTÞ ¼ 0 due to the Landau damping contribution
coming from the quasigluons in a hot and dense medium.
As the Landau cut contribution is missing in the γGðTÞ ≠ 0
case, one finds a leveling off at low ω. In other words, since
the Landau damping contribution is absent for γGðTÞ ≠ 0,
the rate approaches that of the pole-pole contribution for
γG ¼ 0 as shown in Fig. 5, except in the mass gap region.
We further note that the LQCD rate [56] matches the
Born rate at large ω simply because a free spectral function
has been assumed for large ω. On the other hand
the LQCD spectral function [56] at low ω is sensitive to
the prior assumptions and, in such a case, the spectral
function extracted using MEM [61–63] analyses should be
interpreted carefully with a proper error analysis [61]. Since
the MEM analyses are sensitive to the prior assumption,
but are not very sensitive to the structure of the spectral
function at small ω, the error is expected to be significant at

small ω. The existence of fine structures such as van Hove
singularities at small ω cannot be excluded based on the
LQCD rate [56] at this moment in time.

IV. ONE-LOOP QUARK NUMBER
SUSCEPTIBILITY WITH THE GRIBOV ACTION

We now turn to the computation of the QNS including
the Gribov term. The QNS can be interpreted as the
response of the conserved quark number density, n with
infinitesimal variation in the quark chemical potentials
μþ δμ. In QCD thermodynamics it is defined as the
second-order derivative of the pressure P with respect to
the quark chemical potential, μ. But again, using the
fluctuation-dissipation theorem, the QNS for a given quark
flavor can also be defined from the time-time component
of the current-current correlator in the vector channel
[6,8,89,90]. The QNS is in general expressed as

χqðTÞ ¼
∂n
∂μ

����
μ→0

¼ ∂2P
∂2μ

����
μ→0

¼
Z

d4xhJ0ð0; ~xÞJ0ð0; ~0Þi

¼ β

Z
∞

−∞
dω
2π

−2
1 − e−βω

ImΠ00ðω; ~0Þ; ð25Þ

where J0 is the temporal component of the vector current
and Π00 is the time-time component of the vector correlator
or self-energy with external four-momentaQ≡ ðω; ~qÞ. The
above relation in Eq. (25) is known as the thermodynamic
sum rule [89,90] where the thermodynamic derivative with
respect to the external source, μ is related to the time-time
component of the static correlation function in the vector
channel.
In order to compute the QNS we need to calculate the

imaginary part of the temporal component of the two
one-loop diagrams given in Fig. 2. The contribution of the
self-energy diagram is

Πs
00ðQÞ ¼ NfNcT

X
p0

Z
d3p
ð2πÞ3 Tr½SðPÞΓ

0ðK;Q;−PÞSðKÞΓ0ð−K;−Q;PÞ�; ð26Þ

where K ¼ P −Q. After performing the traces of the self-energy diagram, one obtains

Πs
00ð~q ¼ 0Þ ¼ 2NfNcT

X
p0

Z
d3p
ð2πÞ3

� ðaG þ bGÞ2
Dþðω1; p; γGÞD−ðω2; p; γGÞ

þ ðaG − bGÞ2
D−ðω1; p; γGÞDþðω2; p; γGÞ

�
; ð27Þ

where

aG þ bG ¼ 1 − 2g2CF

ð2πÞ2
X
�

Z
dkk ~n�ðk; γGÞ

1

ω
½Q0ð ~ω�

11; pÞ þQ1ð ~ω�
11; pÞ þQ0ð ~ω�

21; pÞ −Q1ð ~ω�
21; pÞ

þQ0ð ~ω�
12; pÞ þQ1ð ~ω�

12; pÞ þQ0ð ~ω�
22; pÞ −Q1ð ~ω�

22; pÞ�

¼ 1þ 1

ω
½Dþðω1; p; γGÞ þD−ðω2; p; γGÞ − ω1 − ω2�

¼ 1 − ω1 þ ω2

ω
þDþðω1; p; γGÞ þD−ðω2; p; γGÞ

ω
; ð28Þ
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and

aG − bG ¼ 1 − 2g2CF

ð2πÞ2
X
�

Z
dkk ~n�ðk; γGÞ

1

ω
½Q0ð ~ω�

11; pÞ −Q1ð ~ω�
11; pÞ þQ0ð ~ω�

21; pÞ þQ1ð ~ω�
21; pÞ

þQ0ð ~ω�
12; pÞ −Q1ð ~ω�

12; pÞ þQ0ð ~ω�
22; pÞ þQ1ð ~ω�

22; pÞ�

¼ 1þ 1

ω
½D−ðω1; p; γGÞ þDþðω2; p; γGÞ − ω1 − ω2�

¼ 1 − ω1 þ ω2

ω
þD−ðω1; p; γGÞ þDþðω2; p; γGÞ

ω
; ð29Þ

where D∓ðω; p; γGÞ were defined in Eq. (13). We write only those terms of Eq. (27) which contain discontinuities

ðaG þ bGÞ2
Dþðω1; p; γGÞD−ðω2; p; γGÞ

¼ ð1 − ω1þω2

ω Þ2
Dþðω1; p; γGÞD−ðω2; p; γGÞ

þ 1

ω2

�
Dþðω1; p; γGÞ
D−ðω2; p; γGÞ

þ D−ðω2; p; γGÞ
Dþðω1; p; γGÞ

�
;

ðaG − bGÞ2
D−ðω1; p; γGÞDþðω2; p; γGÞ

¼ ð1 − ω1þω2

ω Þ2
D−ðω1; p; γGÞDþðω2; p; γGÞ

þ 1

ω2

�
D−ðω1; p; γGÞ
Dþðω2; p; γGÞ

þDþðω2; p; γGÞ
D−ðω1; p; γGÞ

�
: ð30Þ

Calculating the discontinuity using the BPY prescription given in Eq. (21), one can write the imaginary part of Eq. (27) as

ImΠs
00 ¼ 4NcNfπð1 − eβωÞ

Z
d3p
ð2πÞ3

Z
dω1

Z
dω2δðω − ω1 − ω2ÞnFðω1ÞnFðω2Þ

×

�	
1 − ω1 þ ω2

ω



2

ρGþðω1; pÞρG−ðω2; pÞ þ
C1ρ

Gþðω2; pÞ þ C2ρ
G−ðω2; pÞ

ω2

�
; ð31Þ

with

C1 ¼ ImD−ðω1; pÞ ¼ 0;

C2 ¼ ImDþðω1; pÞ ¼ 0: ð32Þ
The tadpole part of Fig. 2 can now be written as

Πt
00ðQÞ ¼ NfNcT

X
p0

Z
d3p
ð2πÞ3 Tr½SðPÞΓ00ð−P;P;−Q;QÞ�: ð33Þ

The four-point function Γ00 at zero three-momentum can be obtained using Eq. (17) giving

Γ00 ¼ −ðeGγ0 þ fGp̂ · ~γÞ;

eG ¼ 2g2cF
ð2πÞ2

X
�

Z
dkk ~n�ðk; γGÞ

1

ðω1 − ω2Þ
½δQ�

01 þ δQ�
02 þ δQ�0

01 þ δQ�0
02�;

fG ¼ 2g2cF
ð2πÞ2

X
�

Z
dkk ~n�ðk; γGÞ

1

ðω1 − ω2Þ
½δQ�

11 þ δQ�
12 þ δQ�0

11 þ δQ�0
12�; ð34Þ

where

δQ�0
n1 ¼ Qnð ~ω�

11; pÞ −Qnð ~ω�0
21; pÞ for n ¼ 0; 1; 2;

~ω�0
21 ¼ E0

�ðω0
2 þ k − E0

�Þ=k;
~ω�0
22 ¼ E0

�ðω0
2 − kþ E0

�Þ=k;
ω0
2 ¼ ω1 þ ω:

Proceeding in a similar way as in the self-energy diagram, the contribution from the tadpole diagram is
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ImΠt
00 ¼ −4NcNfπð1 − eβωÞ

Z
d3p
ð2πÞ3

Z
dω1

Z
dω2δðω − ω1 − ω2Þ

nFðω1ÞnFðω2Þ
ω2

× ½C1ρ
Gþðω2; pÞ þ C2ρ

G−ðω2; pÞ� ¼ 0: ð35Þ
The total imaginary contribution of the temporal part shown in Fig. 2 can now be written as

ImΠ00 ¼ ImΠs
00 þ ImΠt

00

¼ 4NcNfπð1− eβωÞ
Z

d3p
ð2πÞ3

Z
dω1

Z
dω2δðω−ω1 −ω2ÞnFðω1ÞnFðω2Þ

�	
1−ω1 þω2

ω



2

ρGþðω1; pÞρG−ðω2;pÞ
�
:

ð36Þ
It is clear from Eqs. (31) and (35) that the tadpole contribution in Eq. (35) exactly cancels with the second term of Eq. (31)
even if C1 and C2 are finite, e.g., for the HTL case (γG ¼ 0) [6,8]. At finite γG, the form of the sum of self-energy and
tadpole diagrams remains the same, even though the individual contributions are modified.
Putting this in the expression for the QNS in Eq. (25), we obtain

χqðTÞ ¼ 4NcNfβ

Z
d3p
ð2πÞ3

Z
∞

−∞
dω

Z
dω1

Z
dω2δðω − ω1 − ω2ÞnFðω1ÞnFðω2Þ

�	
1 − ω1 þ ω2

ω



2

ρGþðω1; pÞρG−ðω2; pÞ
�

¼ 4NcNfβ

Z
d3p
ð2πÞ3

�	
ω2þ − p2

2m2
qðγGÞ



2

nFðωþÞnFð−ωþÞ

þ
	
ω2− − p2

2m2
qðγGÞ



2

nFðω−ÞnFð−ω−Þ þ
	
ω2
G − p2

2m2
qðγGÞ



2

nFðωGÞnFð−ωGÞ
�

¼ χppq ðTÞ ð37Þ
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FIG. 7. The QNS scaled with free values is compared with and without the inclusion of γG. In each case a band appears due to the
choice of the two renormalization scales as 2πT and 4πT. The various symbols correspond to LQCD data from various groups labeled as
WB [48], BNL-BI(B) and BNL-BI(u) [50,51], and TIFR [55].
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where we represent the total χqðTÞ as χppq ðTÞ since there is
only the pole-pole contribution for γG ≠ 0. However for
γG ¼ 0 there will be pole-cut [χpcq ðTÞ] and cut-cut [χccq ðTÞ]
contributions in addition to the pole-pole contribution
because the spectral function contains the pole partþ
Landau cut contribution of the quark propagator.
In Fig. 7 we present the different contributions of the

QNS scaled with the corresponding free values with and
without the Gribov term. We, at first, note that the running
coupling in Eq. (3) is a smooth function of T around and
below Tc. We have extended to low temperatures as an
extrapolation of our high-temperature result even though
our treatment is strictly not valid below Tc. Now from the
first panel of Fig. 7, the pole-pole contribution to the QNS
with the Gribov action is increased at low T, compared to
that in the absence of the Gribov term. This improvement at
low T is solely due to the presence of the nonperturbative
Gribov mode in the collective excitations. However, at high
T both contributions become almost the same as the Gribov
mode disappears. There are no pole-cut (pc) or cut-cut (cc)
contributions for γGðTÞ ≠ 0, compared to that for γG ¼ 0.
The pc and cc contributions in the absence of the magnetic
scale are displayed in the second and third panels. As a
result, we find that the QNS in the presence of the magnetic
scale contains only the pp contribution due to collective
excitations originating from the in-medium dispersion
whereas, in the absence of the magnetic scale, the QNS
is enhanced due to an additional higher-order Landau cut
(i.e., pole-cutþ cut-cut) contribution as shown in the fourth
panel. When compared with LQCD data from various
groups [48,50,51,55], the QNS in the presence of the
magnetic scale lies around (10–15)% below the LQCD
results whereas that in the absence of the magnetic scale
is very close to LQCD data. This is expected due to the
additional higher-order Landau cut contribution in the
absence of the magnetic scale as discussed earlier. This also
suggests that it is necessary to include higher-loop orders in
the QNS in the presence of the magnetic scale, which is
beyond the scope of this paper. However, we hope to carry
out this nontrivial task in the near future.

V. CONCLUSIONS AND OUTLOOK

In this paper we considered the effect of the inclusion
of magnetic screening in the context of the Gribov-
Zwanziger picture of confinement. In covariant gauge,
this was accomplished by adding a mass-like parameter,
the Gribov parameter, to the bare gluon propagator result-
ing in the nonpropagation of gluonic modes. Following
Ref. [75] we obtained the resummed quark propagator
taking into account the Gribov parameter. A new key
feature of the resulting resummed quark propagator is that
it contains no discontinuities. In the standard perturbative
hard-thermal-loop approach there are discontinuities at

spacelike momentum associated with Landau damping
which seem to be absent in the GZ-HTL approach.
Using the resulting quark propagator, we evaluated the
spectral function, finding that it only contains poles for
γG ≠ 0. We then used these results to compute (1) the
dilepton production rate at vanishing three-momentum
and (2) the quark number susceptibility. For the dilepton
production rate, we found that, due to the absence of
Landau damping for γG ≠ 0, the rate contains sharp
structures, e.g. van Hove singularities, which do not seem
to be present in the lattice data. That being said, since the
lattice calculations used a perturbative ansatz for the
spectral function when performing their MEM analysis
[61] of the spectral function, it is unclear how changing the
underlying prior assumptions about the spectral function
would affect the final lattice results. Moreover, the error
analysis for the spectral function with the MEM prescrip-
tion [62] has to be done more carefully than it was done in
the LQCD calculation [56]. Since the result is sensitive to
the prior assumptions, the error seems to become large and
as a result no conclusion can be drawn for fine structures at
low mass dileptons from the LQCD result. For the quark
number susceptibilities, we found that, again due to the
absence of Landau damping for γG ≠ 0, the results do not
agree well with available lattice data. This can be contrasted
with a standard HTLpt calculation, which seems to describe
the lattice data quite well with no free parameters. It is
possible that higher-order loop calculations could improve
the agreement between the Gribov-scenario results and the
lattice data; however, the success of HTLpt compared to
lattice data as well as nonperturbative model calculations
suggests that at T ≳ 200 MeV the electric sector alone
provides an accurate description of QGP thermodynamics.
Nevertheless, the present HTLpt results pose a serious
challenge to the Gribov scenario for only the inclusion of
magnetic mass effects in the QGP. The absence of quasi-
gluons responsible for the Landau cut makes the results for
both dilepton production and the quark number suscep-
tibility dramatically different from those in perturbative
approaches. We conclude that the results with the present
GZ action are in conflict with those in perturbative
approaches due to the absence of the Landau cut contri-
bution in the nonperturbative quark propagator.
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