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The variational approach to QCD in Coulomb gauge developed previously by the Tübingen group is
improved by enlarging the space of the quark trial vacuum wave functionals through a new Dirac structure
in the quark-gluon coupling. Our Ansatz for the quark vacuum wave functional ensures that all linear
divergences cancel in the quark gap equation resulting from the minimization of the energy calculated to
two-loop order. The logarithmic divergences are absorbed in a renormalized coupling which is adjusted to
reproduce the phenomenological value of the quark condensate. We also unquench the gluon propagator
and show that the unquenching effects are generally small and amount to a small reduction in the
midmomentum regime.
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I. INTRODUCTION

During the last two decades the infrared sector of QCD
was intensively studied both on the lattice and in the
continuum theory. Substantial insight into the two basic
features of the QCD vacuum, confinement and spontaneous
breaking of chiral symmetry (SBCS), has been gained
although a rigorous understanding of these two phenomena
is still lacking. Confinement is a property of the Yang-Mills
sector. Indeed, the order parameter of confinement, the
Wilson loop, is a purely gluonic observable, from which the
static quark potential can be extracted. SBCS takes place in
the quark sector: The quarks in the Dirac vacuum condense
similar as the electrons in a superconductor, and the first
microscopic explanations of the SBCS were based on
superconductor types of effective models like the Nambu–
Jona-Lasinio model [1–3]. Indeed, the order parameter of
SBCS is the quark condensate. However, by the Banks-
Casher relation [4] this order parameter is related to the level
density near zero virtuality of the quarks in the fluctuating
gluonic background. Consequently, SBCS is also caused
indirectly by the gluons.
Extensive lattice studies have shown that confinement

and SBCS are both caused by topologically nontrivial field
configurations like center vortices and magnetic monop-
oles; see Ref. [5] for a review. Indeed, when center vortices
or magnetic monopoles are removed by hand from the
ensemble of gauge field configurations the area law of the
Wilson loop and thus the confining part of the extracted
quark potential is lost [6,7]. At the same time the level
density of the quarks develops a gap near zero virtuality [8]
and, by the Banks-Casher relation, SBCS disappears. On
the other hand, when one projects the ensemble of gauge
field configurations on those containing center vortices,
the short distance Coulomb part of the static quark potential
disappears while the linearly rising confining part is pre-
served at all distances. At the same time the quark levels are
squeezed in the region around zero virtuality [9].

A seemingly different confinement scenario was pro-
posed by Gribov [10] and further developed by Zwanziger
[11], in which confinement manifests itself in an infrared
diverging ghost form factor. Extensive studies, both on the
lattice and in the continuum, have shown that this picture is
not realized in Landau gauge [12] (as originally assumed)
but only in Coulomb gauge [13–16]. Though confinement
is a gauge invariant phenomenon, it may manifest itself
differently in different gauges. In Coulomb gauge, not only
an infrared diverging ghost form factor but also a linearly
rising static quark potential (the so-called non-Abelian
Coulomb potential) is obtained. The infrared slope of this
potential is given by the so-called Coulomb string tension,
which is an upper bound to the Wilson string tension [17].
The Gribov-Zwanziger picture was mainly established
within the Hamiltonian approach to QCD in Coulomb
gauge by means of variational calculations [13–15,18] and
is also supported by lattice calculations [16,19]. Lattice and
continuum studies have shown that the Gribov-Zwanziger
confinement scenario is tightly related to the center vortex
and magnetic monopole pictures of confinement: Center
vortices and magnetic monopoles live on the so-called
Gribov horizon [19], i.e. are field configurations for which
the Faddeev-Popov determinant vanishes.When these center
vortices are removed from the Yang-Mills ensemble, the
ghost form factor becomes infrared finite and the non-
Abelian Coulomb potential is no longer linearly rising but
becomes infrared flat [19], i.e. the Coulomb string tension
disappears. Recently, it was also shown that the Coulomb
string tension is not related to the temporal Wilson string
tension but to the spatial string tension [20]. This also
explains why the Coulomb string tension does not disappear
above the deconfinement phase transition [21]. Furthermore,
within the Hamiltonian approach in Coulomb gauge it was
shown that the inverse of the ghost form factor can be
interpreted as the dielectric function of the Yang-Mills
vacuum [22]. An infrared diverging ghost form factor then

PHYSICAL REVIEW D 93, 065003 (2016)

2470-0010=2016=93(6)=065003(24) 065003-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.065003
http://dx.doi.org/10.1103/PhysRevD.93.065003
http://dx.doi.org/10.1103/PhysRevD.93.065003
http://dx.doi.org/10.1103/PhysRevD.93.065003


implies that the dielectric function vanishes in the infrared,
which makes the Yang-Mills vacuum a perfect color dielec-
tricum, i.e. a dual superconductor, which arises from the
condensation of magnetic monopoles. In this sense, the
Gribov-Zwanziger picture is also related to the magnetic
monopole picture of confinement.
Variational calculations within the Hamiltonian approach

in Coulomb gauge were initiated in Ref. [23], where a
Gaussian trial Ansatz was used for the Yang-Mills vacuum
wave functional. The same Ansatz was used in Ref. [18]
where also the first numerical calculations were carried out.
The approach developed by the Tübingen group [13–15]
differs from previous work in the choice of the trial wave
functional and more importantly in the treatment of the
Faddeev-Popov determinant as well as in the renormaliza-
tion; see Ref. [24] for more details. In fact, in previous work
the Faddeev-Popov determinant was not (properly)
included. However, it turns out that the Faddeev-Popov
determinant is crucial for the infrared properties of the
theory and for the Gribov-Zwanziger picture to be realized
[13–15]. Within our approach, we have obtained a decent
description of the infrared properties of QCD as, for
example, an infrared diverging gluon energy [13–15] (which
is a signal of gluon confinement and also supported by the
lattice calculation [16]), a linearly rising non-Abelian
Coulomb potential, an infrared finite running coupling
constant [15], a perimeter law for the ’t Hooft loop [25]
and an area law for theWilson loop [26]. For a recent review,
see Ref. [27].
The advantage of the Hamiltonian approach in Coulomb

gauge is that the gauge fixed Hamiltonian contains already
a confining four-quark interaction, which depends on the
fluctuating transversal gauge field by the so-called Coulomb
kernel; see Eqs. (11) and (12). If this kernel is replaced by its
Yang-Mills vacuum expectation value a confining quark
potential is obtained. Keeping from the gauge fixed QCD
Hamiltonian only this confining two-body interaction and
the free Dirac Hamiltonian of the quarks one obtains a
confining quarkmodel, which has been treated originally by
Finger and Mandula within a variational approach using for
the quark vacuum wave functional a BCS type of Ansatz
[28]. From this model one finds indeed SBCS but the quark
condensate turns out to be much too small compared to
the phenomenological values when realistic values for the
Coulomb string tension are used. The model was reconsid-
ered in [29] where the renormalization was improved and
also in Ref. [30] and was extended to nonzero current quark
masses in Ref. [31]. Similar studies of chiral symmetry
breaking within quark models with confining two-body
interactions were carried out in [32,33].
The variational approach to Yang-Mills theory developed

in Ref. [13,14] was extended in Refs. [34,35] to full QCD.
For the quark vacuum wave functional, a trial Ansatz was
used, which goes beyond the BCS type of state considered
previously in Refs. [28,29,31] by explicitly including the

coupling of the quarks to the spatial gluons. It was shown
that the inclusion of the quark-gluon coupling substantially
increases the amount of chiral symmetry breaking.
Unfortunately, in Ref. [34] a simplifying approximation
was used in the evaluation of the gluonic expectation value
of quark observables, which leads to the unrealistic
property that the form factor of the quark-gluon coupling
term in the wave functional depends only on one inde-
pendent momentum, while on general grounds, with the
overall momentum conservation taken into account, it
should depend on two independent momenta. In the present
paper, we will go beyond Ref. [35] and develop an
improved variational approach to QCD in Coulomb gauge.
The improvement is twofold: First, we will use a gener-
alized Ansatz for the quark vacuum wave functional, which
(compared to Ref. [35]) includes an additional quark-gluon
coupling term with a new Dirac structure. This term can be
motivated by perturbation theory and has the advantage that
it removes all linear UV divergences from the quark gap
equation. Second, we will abandon the approximation used
in Ref. [35] and calculate the expectation value of the QCD
Hamiltonian consistently to two-loop order.
The organization of this paper is as follows: In the next

section, we present the main features of the Hamilton
formulation of QCD in Coulomb gauge and fix our
notation. In Sec. III, we summarize the essential results
obtained within the variational approach in Coulomb gauge
for the Yang-Mills sector, which will serve as input for the
quark sector. Our trial Ansatz for the quark vacuum wave
functional is presented in Sec. IV. The quark propagator is
calculated in Sec. V for our trial wave functional and in
Sec. VI the vacuum energy is determined to two-loop order.
The equations of motion for the variational kernels of our
vacuum wave functional are derived in Sec. VII by
minimizing the energy. The UVanalysis of these equations
and their renormalization are carried out in Sec. VIII. In
Sec. IX, we study the physical implications of the coupling
of the quarks to the spatial gluons. Our numerical results
are presented in Sec. X. A short summary and our
conclusions are given in Sec. XI. Some mathematical
details are presented in appendixes.

II. HAMILTONIAN FORMULATION OF QCD IN
COULOMB GAUGE

Canonical quantization of QCD in Weyl, A0 ¼ 0, and
Coulomb gauge, ∇ · A ¼ 0, results in the following
Hamiltonian [34–36]

HQCD ¼ HYM þHQ þHC: ð1Þ
Here

HYM ¼ 1

2

Z
d3xðJ−1½A�ΠðxÞJ½A�ΠðxÞ þ B2ðxÞÞ

≡HE
YM þHB

YM ð2Þ
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is the gauge fixed Hamiltonian of the transversal compo-
nents of the gauge field A which satisfy Ak ¼ tklAl with the
transversal projector tklðxÞ ¼ δkl þ ∂kð−ΔÞ−1∂l. In Eq. (2),

Ba
kðxÞ ¼ εklm

�
∂lAa

mðxÞ −
g
2
fabcAb

l ðxÞAc
mðxÞ

�
ð3Þ

is the non-Abelian color magnetic field with bare coupling
constant g and structure constants fabc of the color group.
Furthermore,

Πa
kðxÞ ¼

δ

iδAa
kðxÞ

ð4Þ

is the canonical momentum operator conjugate to the
transversal gauge field in coordinate representation. It
represents the operator of the color electric field and fulfills
the canonical commutator relations

½Aa
kðxÞ;Πb

l ðyÞ� ¼ iδabtklðx − yÞ ð5aÞ

½Aa
kðxÞ; Ab

l ðyÞ� ¼ ½Πa
kðxÞ;Πb

l ðyÞ� ¼ 0: ð5bÞ

Finally,

J½A� ¼ detðĜ−1Þ ð6Þ

is the Faddeev-Popov determinant in Coulomb gauge,
where

ðĜ−1Þabðx; yÞ≡ ð−∇ · D̂Þabðx; yÞ ð7Þ

is the Faddeev-Popov operator with

D̂ab
k ðxÞ ¼ δab∂k − gfacbAc

kðxÞ ð8Þ

being the covariant derivative in the adjoint representation.
The second term in Eq. (1),

HQ ¼
Z

d3xψ†ðxÞ½α · ð−i∇þ gtaAaðxÞÞ þ βmQ�ψðxÞ

≡H0
Q þHA

Q; ð9Þ

is the Hamiltonian of the quarks in the background of the
fluctuating gauge field A. The quark field ψ satisfies the
usual equal time anticommutation relation

fψm
i ðxÞ;ψn

j
†ðyÞg ¼ δmnδijδðx − yÞ ð10aÞ

fψm
i ðxÞ;ψn

j ðyÞg ¼ 0: ð10bÞ

Furthermore, α, β in Eq. (9) are the usual Dirac matrices
and ta denotes the generator of the color group in the
fundamental representation. Finally, mQ is the bare quark
mass. In this paper, we will consider only one quark flavor

but the extension to several flavors with different quark
masses is straightforward.
Finally, the last term in Eq. (1) is the so-called Coulomb

term, which arises from the longitudinal part of the gluonic
kinetic energy after resolution of Gauß’s law in Coulomb
gauge and is given by

HC ¼ g2

2

Z
d3x

Z
d3yJ−1½A�ρaðxÞJ½A�F̂abðx; yÞρbðyÞ;

ð11Þ

where the Coulomb kernel

F̂abðx; yÞ ¼
Z

d3zĜacðx; zÞð−ΔzÞĜcbðz; yÞ ð12Þ

is a highly nonlocal functional of the gauge field.
Furthermore,

ρðxÞ ¼ ρYMðxÞ þ ρQðxÞ ð13Þ

is the total color charge density, which besides the
quark part

ρaQðxÞ ¼ ψ†ðxÞtaψðxÞ ð14Þ

receives also a gluonic contribution given by

ρaYMðxÞ ¼ fabcAbðxÞ · ΠcðxÞ: ð15Þ

Note that the gluonic charge density (15) does not commute
with the Faddeev-Popov determinant.
The Hamiltonian (1) can be derived either by means of

Dirac’smethod of quantizing constraint systems or bymeans
of the functional integral approach [36]. Both methods yield
the same QCD Hamiltonian. Unfortunately, also the Gribov
problem is present in both approaches.
Since the total color charge density ρ (13) is the sum of a

quark and a gluon part, the Coulomb Hamiltonian (11) can
be expressed as

HC ¼ HYM
C þHINT

C þHQ
C ; ð16Þ

whereHYM
C andHQ

C depend exclusively on the charges of the
gauge field, ρYM, and the quark field, ρQ, respectively, while
HINT

C contains the coupling between both. Note that the
Faddeev-Popov determinant drops out from the quark part

HQ
C ¼ g2

2

Z
d3x

Z
d3yρaQðxÞF̂abðx; yÞρbQðyÞ: ð17Þ

For subsequent considerations, it will be convenient to
reshuffle the QCD Hamiltonian as

HQCD ¼ H̄YM þ H̄Q; ð18Þ
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where

H̄YM ¼ HYM þHYM
C ð19Þ

is the Hamiltonian of the pure Yang-Mills sector (i.e. H̄YM
does not contain the quark field) and

H̄Q ¼ HQ þHQ
C þHINT

C ð20Þ

describes the quark sector coupled to the gluons.
The aim of the Hamiltonian approach is to solve the

functional Schrödinger equation

HQCDjϕi ¼ Ejϕi ð21Þ

for the vacuum state of QCD. In the present paper, we
attempt this in an approximate fashion by exploiting the
variational principle. In analogy to the splitting (18) of the
QCD Hamiltonian, we write the QCD vacuum wave
functional in the factorized form

jϕ½A�i ¼ ϕYM½A�jϕQ½A�i; ð22Þ

where jϕQ½A�i is the wave functional of the Dirac sea of the
quarks in the background of the fluctuating gauge field A
and ϕYM½A� ¼ hAjϕYMi is the vacuum wave functional of
the Yang-Mills sector. The Ansatz (22) is, in principle,
exact, since the quark wave functional jϕQ½A�i depends
explicitly on the gluon field, and thus could capture the
entire quark-gluon interaction. Of course, in the actual
calculation we have to restrict the trial wave functionals to a
subspace of the whole Hilbert space. Note also that we have
chosen the coordinate representation for the Yang-Mills
part of the vacuum wave functional while for the fermionic
part we prefer to use the second quantized form of the Fock
space representation. In principle, we could also use a
coordinate representation for the quark wave functional,
which is defined in terms of Graßmann variables [37].
However, the mixed representation (22) turns out to be not
only sufficient but also quite convenient.1

The expectation value of an observable O½A;Π;ψ � in the
state (22) is given by

hO½A;Π;ψ �i ¼
Z

DAJ½A�ϕ�
YM½A�

× hϕQ½A�jO½A;Π;ψ �jϕQ½A�iϕYM½A�; ð23Þ

where the Faddeev-Popov determinant arises in the inte-
gration measure of the gauge field from the fixing to
Coulomb gauge. Here we have ignored the fact that due to

the presence of Gribov copies the integration over the
gauge field should be restricted to the first Gribov region or,
more precisely, the fundamental modular region. In the
present paper, we will concentrate on the determination of
the quark vacuum wave functional jϕQ½A�i using the results
obtained previously in the Yang-Mills sector as input. For
this purpose, we will briefly summarize these results in the
next section.

III. VARIATIONAL RESULTS FOR THE GLUON
SECTOR OF QCD

In Refs. [13–15], the gluon sector of QCD in Coulomb
gauge was treated in a variational approach using the
following Ansatz for the vacuum state

ϕYM½A� ¼ N YMJ−
1
2½A�

× exp

�
−
1

2

Z
d3x

Z
d3yAa

kðxÞωðx; yÞAa
kðyÞ

�
;

ð24Þ

whereN YM is a normalization factor fixed by the condition
hϕYMjϕYMi ¼ 1, J is the Faddeev-Popov determinant (6)
and ω is a variational kernel. Compared to a pure Gaussian,
this Ansatz with the preexponential factor included has the
advantage that the Faddeev-Popov determinant drops out
from the integration measure of the scalar product (23), and
as a consequence the static gluon propagator is given by

Dab
kl ðx; yÞ ¼ hAa

kðxÞAb
l ðyÞiYM ¼ 1

2
δabtklðx − yÞω−1ðx; yÞ;

ð25Þ

where h…iYM denotes the expectation value in the Yang-
Mills vacuum state ϕYM [Eq. (24)]. Furthermore, the Ansatz
(24) guarantees that Wick’s theorem holds so that all
gluonic expectation values h…iYM can, in principle, be
entirely expressed in terms of the gluon propagator (25). In
Ref. [13,14], the energy of the gluon sector hH̄YMiYM was
calculated up to two loops. This implies that for the
expectation value of the Coulomb kernel F̂ [Eq. (12)]
the factorization

hĜð−ΔÞĜiYM ≈ hĜiYMð−ΔÞhĜiYM ð26Þ

was used, where hĜiYM is the ghost propagator.
Furthermore, up to two-loop order in the energy it is
sufficient to replace the Faddeev-Popov determinant by the
Gaussian functional [38]

J½A� ¼ exp

�
−
Z

d3x
Z

d3yAa
kðxÞχabkl ðx;yÞAb

l ðyÞ
�

ð27Þ

where

1However, when the variational approach is formulated for
non-Gaussian trial states by means of the generalized Dyson-
Schwinger equations, the use of the coherent fermion state basis
of the Fock space in terms of Graßmann variables is essential.
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χabkl ðx; yÞ ¼ −
1

2

�
δ

δAa
kðxÞ

δ

δAb
l ðyÞ

ln J½A�
�

YM
ð28Þ

denotes the ghost loop, which in this context is referred to
as curvature. Minimizing the energy with respect to ω
results in a gluonic gap equation which contains only up to
one-loop terms. This equation together with the Dyson-
Schwinger equation for the ghost propagator can be solved
analytically both in the infrared and the ultraviolet by power
lawAnsätze. One finds that the gluon energy behaves like the
photon energy, ω ∼ p, for large momenta p → ∞, while it is
infrared diverging,ω ∼ 1=p forp → 0. These analytic results
are confirmed by the full numerical calculations which are
compared in Fig. 1 with lattice data. The gluon propagator
obtained in the variational approach [13,14] agrees nicely
with the lattice data in the infrared and in the ultraviolet but
misses some strength in the midmomentum regime. In this
regime, the variational results can be considerable improved
by using a non-Gaussian trial state which in the exponent
includes also terms cubic and quartic in the gauge field [39];
see Fig. 1. The most remarkable feature of the lattice data for
the gluon propagator is that its representation Eq. (25) can be
nicely fitted by the Gribov formula [10]

ωðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM4

G

p2

s
ð29Þ

with aGribovmass ofMG ≈ 880 MeV ≈ 2
ffiffiffi
σ

p
[16],where σ

is the Wilsonian string tension. From Eq. (17), it is seen that
the gluonic vacuum expectation value of the Coulomb kernel
F̂ [Eq. (12)]

g2hF̂abðx; yÞiYM ¼ δabVCðjx − yjÞ ð30Þ
represents a static color charge potential. At small
distances this potential can be calculated in perturbation
theory and one finds

VCðrÞ ⟶
r→0

−
αS
r
; αS ¼

g2

4π
ð31Þ

in agreement with asymptotic freedom. With the approxi-
mation (26) it was found [15] that at large distances this
potential rises linearly,

VCðrÞ⟶
r→∞

σCr; ð32Þ

with a coefficient σC referred to as Coulomb string tension.
This quantity can be shown [17] to be an upper bound to the
Wilson string tension σ extracted from the Wilson loop.
On the lattice one finds also a static non-Abelian Coulomb
potential growing linearly in the infrared with σC ¼ 2…4σ
[19,20,40]. The infrared analysis of the variational equations
of motion (gluon gap equation and ghost Dyson-Schwinger
equation) [15] shows that within the approximation (26)
the Coulomb string tension σC is related to the Gribov mass
MG by

σC ¼ π

NC
M2

G: ð33Þ

For NC ¼ 3 and π=NC ≈ 1, we obtain σC ≈M2
G, which

shows that there is a single mass scale in the gluon sector.
Furthermore,with the lattice resultMG ≈ 2

ffiffiffi
σ

p
[16]weobtain

for the Coulomb string tension σC ≈ 4σ, which is at the upper
border of the range found for σC on the lattice. It is alsoworth
mentioning that to the order of approximation considered the
bare coupling constant g drops out from the variational
equations ofmotionof thegluon sector so that these equations
are scale invariant and the physical scale has to be determined
by calculating somephysical observable. FollowingRef. [41]
we will use the Coulomb string tension σC measured on the
lattice to fix the scale.
Finally, as shown in Ref. [41] the Coulomb term is

completely irrelevant in the gluon sector, i.e. HYM
C can be

safely neglected. Furthermore, the interaction term HINT
C

contributes to hHQCDi only in higher than two-loop order
and will hence be neglected. On the other hand, the quark
part HQ

C (with the Coulomb kernel F̂ replaced by its
expectation value (30)) contributes already at the two-loop
level and has to be kept. We will later find that this term is
in fact quite important for the spontaneous breaking of
chiral symmetry. The Hamiltonian of the quark sector then
reads

H̄Q ¼ HQ þHQ
C ð34Þ

with the Coulomb kernel F̂ in HQ
C replaced by its gluonic

vacuum expectation value VC [Eq. (30)].

IV. THE QUARK WAVE FUNCTIONAL

Our trial Ansatz for the quark wave functional is an
extension of that used in Refs. [34,35]. Following these

FIG. 1. The static Coulomb gauge gluon propagator DðpÞ ¼
1=2ωðpÞ in momentum space. Crosses are lattice data, while the
dashed and full lines, respectively, refer to the results of the
variational approach with a Gaussian [13,14] and a non-Gaussian
[39] vacuum wave functional.
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references, we split the quark field operator ψ into its
positive and negative energy components

ψðxÞ ¼ ψþðxÞ þ ψ−ðxÞ ð35Þ

defined with respect to the bare Dirac vacuum j0i

ψþðxÞj0i ¼ 0 ¼ ψ†
−ðxÞj0i: ð36Þ

The bare Dirac vacuum consists of the filled negative
energy eigenstates of the bare Dirac Hamiltonian, which in
momentum space reads

hðpÞ ¼ α · pþ βmQ ð37Þ

and whose eigenvalues are given by �eðpÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

Q

q
. The positive and negative energy compo-

nents of the quark field can then be expressed as

ψ�ðxÞ ¼
Z

d3yΛ�ðx; yÞψðyÞ ð38Þ

with the orthogonal projectors (đ ¼ d=ð2πÞ)

Λ�ðx; yÞ ¼
Z

đ3p expðip · ðx − yÞÞΛ�ðpÞ;

Λ�ðpÞ ¼
1

2

�
1� hðpÞ

eðpÞ
�

ð39Þ

satisfying

Λþ þ Λ− ¼ 1; Λ2
� ¼ Λ�; Λ�Λ∓ ¼ 0: ð40Þ

From (10) it follows that the projected quark fields ψ� obey
the anticommutation relations

fψ�ðxÞ;ψ†
�ðyÞg ¼ Λ�ðx; yÞ; fψ�ðxÞ;ψ†∓ðyÞg ¼ 0

ð41aÞ

fψ�ðxÞ;ψ�ðyÞg ¼ 0; fψ�ðxÞ;ψ∓ðyÞg ¼ 0: ð41bÞ

In the following, we will consider only the limit of chiral
quarks, i.e.mQ ¼ 0. The extension of our Ansatz to massive
quarks would be, however, straightforward. The quark trial
vacuum state is chosen as the most general Slater deter-
minant which is not orthogonal to the bare vacuum j0i. By
Thouless’s theorem such a state can be expressed as

jϕQ½A�i ¼ exp

�
−
Z

d3x
Z

d3yψ†
þðxÞKðx; yÞψ−ðyÞ

�
j0i;

ð42Þ

where the (gauge field dependent) kernel K is a matrix in
the indices of the quark fields, i.e. in Lorentz and color

space and, when different flavors are included, also in
flavor space. The use of a Slater determinant allows the
application of Wick’s theorem, which facilitates the evalu-
ation of the quark expectation value considerably. The
norm of the fermionic wave functional (42) is given by [35]

I½A�≡ hϕQ½A�jϕQ½A�i ¼ det

�
1 K

K† −1

�
¼ detð1þ K†KÞ;

ð43Þ

where the first (functional) determinant is defined in the
complete Hilbert space of the Dirac Hamiltonian (37),
while the second one is defined in the subspace of negative
energy eigenfunctions only. Note that the fermion deter-
minant I½A� [Eq. (43)] explicitly depends on the gauge field
A and is therefore nontrivial. The kernel K connects the
positive with the negative energy subspace of the (single
particle) Hilbert space of the Dirac Hamiltonian (37) and is
chosen in the form

Kðx; yÞ ¼ βSðx; yÞ þ g
Z

d3z½Vðx; y; zÞ

þ βWðx; y; zÞ�α · AaðzÞta; ð44Þ

where S, V and W are variational kernels, which, by
translational invariance, depend only on the coordinate
differences. For V ¼ W ¼ 0, our Ansatz jϕQ½A�i [Eq. (42)]
reduces to the BCS-type wave functional considered in
Refs. [28,29,31]. For the BCS wave functional, the
quark-gluon coupling term of the Dirac Hamiltonian, HA

Q

[Eq. (9)], escapes the expectation value. Such a wave
functional does, however, already produce spontaneous
breaking of chiral symmetry but not of sufficient amount. It
yields, for σC ¼ 2σ, a quark condensate hψ̄ψi of about
ð−165 MeVÞ3 which is significantly smaller than the
phenomenological value of [42]

hψ̄ðxÞψðxÞiphen ¼ ð−235 MeVÞ3: ð45Þ

For W ¼ 0, the wave functional (42) corresponds to the
Ansatz considered in Refs. [34,35], where it was shown that
the inclusion of the explicit coupling of the quarks to the
gluons by the term proportional to V gives a substantial
improvement compared to the BCS-type wave functional
(V ¼ W ¼ 0). Here we go one step further and include also
the coupling term proportional to W. As we will show
below this term does not only improve the previous
variational calculation because of the enlarged space of
trial states but has the principle advantage that all linear
ultraviolet divergences disappear from the gap equation for
the scalar kernel S. Furthermore, the presence of this kernel
can be motivated by perturbation theory on top of a BCS
vacuum state; see Appendix B.
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It is convenient to include the fermion determinant I
[Eq. (43)] in our Ansatz for the Yang-Mills part ϕYM of the
vacuum wave functional (22) in the same way as the
Faddeev-Popov determinant J. Therefore, we choose
the following Ansatz

ϕYM½A� ¼ N I−
1
2½A�J−1

2½A� ~ϕYM½A�; ð46aÞ

~ϕYM½A� ¼ exp

�
−
1

2

Z
d3x

Z
d3yAa

kðxÞωðx; yÞAa
kðyÞ

�
;

ð46bÞ

which differs from (24) only by the presence of the fermion
determinant. Again, ω is the variational kernel to be
determined by minimizing the ground state energy. In
terms of the functional (46), the expectation value of an
arbitrary operator O [Eq. (23)] reads

hO½A;Π;ψ �i ¼ jN j2
Z

DA ~ϕ�
YM½A�h ~O½A;Π;ψ �iQ ~ϕYM½A�

ð47Þ
where we have introduced the transformed operator

~O½A;Π;ψ �≡ J
1
2½A�I12½A�O½A;Π;ψ �J−1

2½A�I−1
2½A� ð48Þ

and the fermionic expectation value

hOiQ ¼ I−1hϕQjOjϕQi: ð49Þ

For an operator O which is independent of the canonical
momentum Π, O ¼ ~O holds and both the Faddeev-Popov
and the fermion determinants disappear from the expect-
ation value (47) implying that Wick’s theorem holds in the
form

hO½A;ψ �i ¼
	
exp

�
1

2

Z
d3x

Z
d3y

δ

δAa
kðxÞ

Dab
kl ðx;yÞ

δ

δAb
l ðyÞ

�
× hO½A;ψ �iQ


����
A¼0

: ð50Þ

If, however, the operator O explicitly depends on the
canonical momentum operator, the Faddeev-Popov deter-
minant J and the fermion determinant I remain in the
expectation value (47), (48) and the functional derivative
imposed by the momentum operator Π ¼ δ=iδA has to be
carried out before Wick’s theorem can be applied.

V. STATIC QUARK PROPAGATOR AND
CHIRAL CONDENSATE

Since our quark wave functional is a Gaussian in the
fermion fields Wick’s theorem holds and as a consequence

pure fermionic expectation values can be expressed in
terms of the static quark propagator

Gmn
ij ðx; yÞ ¼ 1

2
h½ψm

i ðxÞ;ψn
j
†ðyÞ�i: ð51Þ

For the fermionic expectation value of the quark bilinear in
the state jϕQ½A�i [Eq. (42)], one finds [35]

hψþ;iðxÞψ†
þ;jðyÞiQ ¼ ðΛþ½1þ KK†�−1ΛþÞijðx; yÞ; ð52aÞ

hψ†
−;iðxÞψ−;jðyÞiQ ¼ ðΛ−½1þ K†K�−1Λ−Þjiðy; xÞ; ð52bÞ

hψ−;iðxÞψ†
þ;jðyÞiQ¼ðΛ−½1þK†K�−1K†ΛþÞijðx;yÞ; ð52cÞ

hψþ;iðxÞψ†
−;jðyÞiQ ¼ðΛþ½1þKK†�−1KΛ−Þijðx;yÞ: ð52dÞ

Unfortunately, the evaluation of the bosonic expectation
value is a bit more involved and cannot be carried out
without further approximations. This is because the fer-
mionic two-point functions always contain a term like

½1þ KK†�−1 ¼
X∞
n¼0

ð−1ÞnðKK†Þn ð53Þ

which is an infinite series in the gauge field A so that its
bosonic expectation value cannot be evaluated in closed
form. For calculating the ground state energy up to two-
loop order, it is sufficient to expand the exponential in (50)
in a Taylor series up to leading order yielding

hO½A;ψ �i≈ hO½A¼ 0;ψ �iQþ
1

2

Z
d3x

×
Z

d3y
δ

δAa
kðxÞ

Dab
kl ðx;yÞ

δ

δAb
l ðyÞ

hO½A;ψ �iQjA¼0:

ð54Þ

For the static quark propagator

Gmn
ij ðx; yÞ ¼ δmn

Z
đ3p expðip · ðx − yÞÞGijðpÞ ð55Þ

in momentum space, we find then after somewhat lengthy
calculations (see Appendix C),

GðpÞ ¼ PðpÞ
2

½1 − S2ðpÞ − IαðpÞ�α · p̂

þ PðpÞ½SðpÞ − IβðpÞ�β ð56Þ

where p̂ ¼ p=p and
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IαðpÞ ¼ CFg2
Z

đ3q
PðpÞPðqÞ
ωðjpþ qjÞ ½V

2ðp; qÞXðp; qÞð1þ 2SðpÞSðqÞ − S2ðpÞÞ þW2ðp; qÞYðp; qÞð1 − 2SðpÞSðqÞ − S2ðpÞÞ�

ð57Þ

IβðpÞ ¼
CF

2
g2

Z
đ3q

PðpÞPðqÞ
ωðjpþ qjÞ ½V

2ðp; qÞXðp; qÞð2SðpÞ − SðqÞ þ S2ðpÞSðqÞÞ

þW2ðp; qÞYðp; qÞð2SðpÞ þ SðqÞ − S2ðpÞSðqÞÞ�: ð58Þ

Here we have replaced the variational kernels by their
respectivemomentumspace representation (seeAppendixA)
and, furthermore, introduced the abbreviations

PðpÞ ¼ 1

1þ S2ðpÞ ð59Þ

Xðp; qÞ ¼ 1 − ½p̂ · dðpþ qÞ�½q̂ · dðpþ qÞ� ð60Þ

Yðp; qÞ ¼ 1þ ½bp · dðpþ qÞ�½q̂ · dðpþ qÞ� ð61Þ

as well as the Casimir factor CF ¼ ðN2
C − 1Þ=2NC. Neglect-

ing the coupling of the quarks to the transversal gluons,
V ¼ W ¼ 0, the propagator (56) reduces to the BCS result
obtained in Ref. [29]. However, even when we include the
coupling term ∼V but ignore the additional coupling term
∼W, our quark propagator differs from that of Ref. [35]
although, in that case, the trial Ansätze for the quark wave
functional agree. The reason is that, in Ref. [35], a simplify-
ing approximation was used in the evaluation of the gluonic
expectation value of fermionic objects: In the denominators
of the quark propagator (52), the kernelK†Kwas replaced by
its (gluonic) vacuum expectation value hK†Ki. In the present
paper, we abandoned this approximation and strictly carried
out the calculation to two-loop order. The results obtained in
thisway are also consistentwith those obtained in theDyson-
Schwinger approach [43] and in perturbation theory, as we
will see later.
Due to the fact that our quark wave functional is a Slater

determinant, the static quark propagator (56) can be
brought to the quasiparticle form

GðpÞ ¼ ZðpÞ α · pþ βMðpÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2ðpÞ

p ð62Þ

with an effective (running) mass

MðpÞ ¼ 2p½SðpÞ − IβðpÞ�
1 − S2ðpÞ − IαðpÞ

ð63Þ

and a field renormalization factor

ZðpÞ ¼ PðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − S2ðpÞ − IαðpÞ�2 þ 4½SðpÞ − IβðpÞ�2

q
:

ð64Þ
If one neglects the coupling of the quarks to the gluons the
two loop integrals vanish, Iα ¼ Iβ ¼ 0, and we recover the
result of Ref. [29]

MðpÞ ¼ 2pSðpÞ
1 − S2ðpÞ ; ZðpÞ ¼ 1: ð65Þ

From this expression it is already clear that a nonvanishing
scalar kernel S implies a nonzero effective quark mass
function and thus spontaneous breaking of chiral sym-
metry. Indeed, the order parameter of spontaneous breaking
of chiral symmetry, the quark condensate, can be expressed
by means of the static quark propagator (51) as

hψ̄ðxÞψðxÞi ¼ −trðβGðx; xÞÞ: ð66Þ
Inserting here the explicit form of the propagator (62), we
find

hψ̄ðxÞψðxÞi ¼ −2NC

Z
đ3p

ZðpÞMðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2ðpÞ

p : ð67Þ

Obviously, the quark condensate vanishes when no effec-
tive mass is generated, i.e. for M ¼ 0.

VI. GROUND STATE ENERGY

Below we evaluate the expectation value of the QCD
Hamiltonian (18) in our trial state (22) [with Eqs. (42) and
(46)]. The calculations will be carried out consistently to
two-loop level.
Since the quark wave functional depends explicitly on

the gauge field it is mandatory to take the fermionic
expectation value before the bosonic one. We begin with
the expectation value of the Dirac Hamiltonian HQ.

A. Quark energy

The Dirac Hamiltonian (9) consists of two parts, one
describing a free Dirac particle and the other containing
the coupling between quarks and transversal gluons. The
expectation value of the free Dirac Hamiltonian can be
expressed by the quark Green function
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hH0
Qi ¼ −NC

�δ3ð0Þ
Z

đ3ptrðα · pGðpÞÞ; ð68Þ

where �δ3ð0Þ ¼ R
d3x is the (infinite) spatial volume

(�δ ¼ 2πδ). With the explicit form (62) we find

hH0
Qi ¼ −2NC

�δ3ð0Þ
Z

đ3p
p2ZðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2ðpÞ

p : ð69Þ

Here G, M and Z are functionals of the variational kernels
S, V andW [see Eqs. (62), (63) and (64)]. Using the explicit
expression for these quantities one finds for hH0

Qi a
somewhat lengthy expression, which is given in
Eq. (D1) of Appendix D. The obtained expression for
hH0

Qi allows, however, for a direct interpretation in terms of
Feynman diagrams given in Fig. 2.
Let us also mention that there is no need to subtract the

energy of the trivial vacuum, hHQCDijS¼V¼W¼0, because
this would only shift the vacuum energy by an irrelevant
constant.
The evaluation of the coupling term hHA

Qi is more
involved due to the presence of the gauge field in HA

Q

but can be straightforwardly carried out to two loops. One
finds then the following expression

hHA
Qi¼−ðN2

C−1Þ�δ3ð0Þg2
Z

đ3p

×
Z

đ3q
Vðp;qÞ

ωðjpþqjÞPðqÞPðpÞð1þSðqÞSðpÞÞXðp;qÞ

− ðN2
C−1Þ�δ3ð0Þg2

Z
đ3p

×
Z

đ3q
Wðp;qÞ
ωðjpþqjÞPðqÞPðpÞðSðpÞþSðqÞÞYðp;qÞ;

ð70Þ

which is diagrammatically illustrated in Fig. 3.
The quark contribution to the Coulomb energy hHQ

Ci can
be straightforwardly evaluated by using Wick’s theorem in
the quark sector. Due to the replacement of the Coulomb
kernel F̂ [Eq. (12)] by its expectation value VC [Eq. (30)],
which is correct to two-loop order, we are left here with a

quark two-body operator ψ†ψψ†ψ, whose fermionic
expectation value leads to terms of the form
hψ†ψiQhψψ†iQ. Furthermore, up to two loops the remain-
ing gluonic expectation value can be taken for each fermion
contraction hψψ†iQ separately, which produces a static
quark propagator (51). Exploiting the fact that the quark
propagator is a color singlet and that trta ¼ 0 one arrives at
the following result

hHQ
Ci ¼

1

8
tam1m2

tam3m4

Z
d3x

Z
d3yVCðjx − yjÞ

× ½δm1m4δm2m3δiiδ
3ð0Þδ3ðx − yÞ

− 4trðGm4m1ðy; xÞGm2m3ðx; yÞÞ�: ð71Þ
Inserting here the explicit expression for the static quark
propagator (56) and confining oneself to two-loop terms
yields

hHQ
Ci ¼

N2
C − 1

4
�δ3ð0Þ

Z
đ3p

Z
đ3qVCðjp − qjÞ

× ½1 − PðpÞPðqÞð4SðpÞSðqÞ
þ ð1 − S2ðpÞÞð1 − S2ðqÞÞp̂ · q̂Þ�: ð72Þ

The same result is found for the BCS wave functional
(V ¼ W ¼ 0). This is because the quark-gluon coupling
vertices in our trial wave functional (42), (44) contribute
only loop terms to the static quark propagator [see
Eq. (56)], which, when kept, would produce three-loop
terms in hHQ

Ci. The quark contribution to the Coulomb
energy (72) is diagrammatically illustrated in Fig. 4.

B. Energy of transversal gluons

We continue with the contribution of the kinetic energy
of the transversal gluons HE

YM; see Eq. (2). Although the

FIG. 2. Diagrammatic representation of the expectation value of
the free Dirac Hamiltonian (69). We denote the free Dirac
operator by a crossed circle and the vector kernels V and W
by a labeled square. Straight and curly lines stand, respectively,
for the quark and gluon propagator.

FIG. 4. Diagrammatic representation of the expectation value of
the fermionic part of the color Coulomb potential (72). The
double line stands for the Coulomb kernel VC [Eq. (30)].

FIG. 3. Diagrammatic representation of the expectation value of
the quark-gluon coupling, hHA

Qi (70). The filled dot stands for the
bare quark-gluon vertex in the Hamiltonian HA

Q.
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operator HE
YM does not contain the quark field, the quarks

do contribute to its expectation value due to the action of
the momentum operator on the gauge field in the quark
wave functional; see Eqs. (42) and (44). Furthermore, the
momentum operator does not commute with the fermion
determinant (43). As a consequence the transformed
operator ~HE

YM [Eq. (48)] becomes nontrivial2

~HE
YM ¼ 1

2

Z
đ3p

�
Πa

kðpÞΠa
kð−pÞ− ½Πa

kðpÞ ln I�Πa
kð−pÞ

−
1

4
½Πa

kðpÞ lnJ�½Πa
kð−pÞ lnJ�

þ 1

4
½Πa

kðpÞ ln I�½Πa
kð−pÞ ln I�−

1

2
½Πa

kðpÞΠa
kð−pÞ lnJ�

−
1

2
½Πa

kðpÞΠa
kð−pÞ ln I�

�
: ð73Þ

Obviously this transformed operator has a much more
complicated structure than the original one. This is the price
we have to pay for the elimination of the Faddeev-Popov
and quark determinants from the gluonic integration
measure of the scalar product; see Eq. (47). The evaluation
of the expectation value of ~HE

YM [Eq. (73)] is quite involved
and sketched in Appendix D. Up to two-loop order, one
finds the following expression:

hHE
YMi ¼

N2
C − 1

2
�δ3ð0Þ

Z
đ3p

ðωðpÞ − χðpÞÞ2
ωðpÞ

þ N2
C − 1

2
�δ3ð0Þg2

Z
đ3p

×
Z

đ3qPðpÞPðqÞV2ðp; qÞXðp; qÞ

þ N2
C − 1

2
�δ3ð0Þg2

Z
đ3p

×
Z

đ3qPðpÞPðqÞW2ðp; qÞYðp; qÞ ð74Þ

Here χðpÞ ¼ δabtrtðpÞχabðpÞ=ð2ðN2
C − 1ÞÞ is the scalar

curvature. The first term in Eq. (74) arises from the
Yang-Mills part of the vacuum wave functional and was
already obtained in Ref. [13,14]. The last two terms give
the quark contributions which are diagrammatically rep-
resented in Fig. 5.
The potential energy of the transversal gluons HB

YM
[Eq. (2)] is a functional of the gauge field A only. As a
consequence the quarks do not contribute to hHB

YMi which
is hence given by the expression obtained in Ref. [13,14]
for the Yang-Mills sector

hHB
YMi ¼

N2
C − 1

2
�δ3ð0Þ

Z
đ3p

p2

ωðpÞ þ
NCðN2

C − 1Þ
16

�δ3ð0Þg2

×
Z

đ3p
Z

đ3q
3− ðp̂ · q̂Þ2
ωðpÞωðqÞ : ð75Þ

Finally, we calculate the expectation value of the purely
gluonic part of the Coulomb term, HYM

C . Although this
operator contains the momentum operator Π the quarks do
not contribute to two-loop order, and we obtain the same
result as in pure Yang-Mills theory [13,14]

hHYM
C i ¼ NCðN2

C − 1Þ
16

�δ3ð0Þ
Z

đ3p
Z

đ3qVCðjp − qjÞ

×
ðωðpÞ − χðpÞ − ωðqÞ þ χðqÞÞ2

ωðpÞωðqÞ ð1þ ðp̂ · q̂Þ2Þ:

ð76Þ

C. Total energy

As already mentioned before, the mixed Coulomb term
HINT

C does not contribute to two-loop order. The total
vacuum energy is thus given by

hHQCDi ¼ hH̄YMi þ hH̄Qi; ð77Þ

where the various contributions to the gluon energy

hH̄YMi ¼ hHE
YMi þ hHB

YMi þ hHYM
C i ð78Þ

are given by Eqs. (74), (75) and (76), while the contribution
to the energy of the quarks interacting with the gluons

hH̄Qi ¼ hH0
Qi þ hHA

Qi þ hHQ
Ci ð79Þ

are given by Eqs. (69) [see also Eq. (D1)], (70) and (72).
At this point it is worth to compare the present result
with that of previous work. If one neglects the coupling
between quarks and transversal gluons, V ¼ W ¼ 0,
hH̄YMi becomes the vacuum energy of the Yang-Mills
sector obtained in Ref. [13,14] and hH̄Qi reduces to the
vacuum energy of the model considered in Ref. [29]. When
the quark-gluon coupling term ∼V is included but the other

FIG. 5. Diagrammatic representation of the fermionic contri-
butions to the expectation value of the kinetic energy of the
transversal gluons (74).

2Notice that canonical momentum operators inside of square
brackets do not act on terms which stand outside of the respective
bracket.
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coupling term ignored,W ¼ 0, one recovers the result of the
Dyson-Schwinger approach of Ref. [43], which differs,
however, from the result of Ref. [35] due to further
simplifying approximations used there; see above. Finally,
when both quark-gluon coupling terms are included in the
quark wave functional but the trivial solution of the gap
equationS ¼ 0 is assumedone recovers from hH̄Qi the quark
energy in second-order perturbation theory [44].

VII. VARIATIONAL EQUATIONS

Our Ansatz for the vacuum functional [(22) with (42) and
(46)] contains four variational kernels ω, S, V and W,
which we will determine in the following according to the
variational principle. From δhHQCDi=δSðkÞ ¼ 0 we find
the following integral equation

kSðkÞ ¼ IQCðkÞ þ IQVVðkÞ þ IQWWðkÞ þ IQVQðkÞ
þ IQWQðkÞ þ IQEðkÞ; ð80Þ

to which we will refer as quark gap equation. Here

IQCðkÞ ¼
CF

2

Z
đ3pVCðjp − kjÞPðpÞ

× ½SðpÞð1 − S2ðkÞÞ − SðkÞð1 − S2ðpÞÞp̂ · k̂�
ð81Þ

is the contribution from the Coulomb term HQ
C which is

illustrated in Fig. 6. Only this term survives when the
coupling of the quarks to the transversal gluons in the
vacuum wave functional is switched off (V ¼ W ¼ 0).
Furthermore,

IQVVðkÞ ¼ −
CF

2
g2

Z
đ3p

V2ðp; kÞ
ωðjpþ kjÞXðp; kÞPðpÞ

× fkPðkÞSðkÞ½−3þ S2ðkÞ�
þ pPðpÞSðkÞ½−1þ S2ðpÞ�
þ kPðkÞSðpÞ½1 − 3S2ðkÞ�
þ pPðpÞSðpÞ½1 − S2ðkÞ�g ð82Þ

and

IQWWðkÞ ¼ −
CF

2
g2

Z
đ3p

W2ðp; kÞ
ωðjpþ kjÞYðp; kÞPðpÞ

× fkPðkÞSðkÞ½−3þ S2ðkÞ�
þ pPðpÞSðkÞ½−1þ S2ðpÞ�
− kPðkÞSðpÞ½1 − 3S2ðkÞ�
− pPðpÞSðpÞ½1 − S2ðkÞ�g ð83Þ

result from the two-loop contribution of the free Dirac
operator to the vacuum energy. These terms are graphically
illustrated in Fig. 7. The quark-gluon coupling in the Dirac

Hamiltonian gives rise to the two diagrams shown in Fig. 8
with either a V or a W vertex. Their contributions to the
quark gap equation (80) read

IQVQðkÞ ¼
CF

2
g2

Z
đ3p

Vðp; kÞ
ωðjpþ kjÞXðp; kÞPðpÞ

× ½SðpÞð1 − S2ðkÞÞ − 2SðkÞ� ð84Þ

IQWQðkÞ ¼
CF

2
g2

Z
đ3p

Wðp; kÞ
ωðjpþ kjÞYðp; kÞPðpÞ

× ½1 − S2ðkÞ − 2SðkÞSðpÞ�: ð85Þ

Finally,

IQEðkÞ ¼
CF

2
g2SðkÞ

Z
đ3pV2ðp; kÞXðp; kÞPðpÞ

þ CF

2
g2SðkÞ

Z
đ3pW2ðp; kÞYðp; kÞPðpÞ ð86Þ

arises from the quark contribution to the kinetic energy of
the transversal gluons [see the last two terms on the rhs of
Eq. (74)] and is illustrated in Fig. 9.
Neglecting the coupling between quarks and transversal

gluons, V ¼ W ¼ 0, the quark gap equation (80) reduces to
the one obtained with a BCS Ansatz for the vacuum wave
functional [29].

FIG. 6. Diagrammatic representation of the contribution (81) of
the Coulomb potential to the quark gap equation.

FIG. 8. Diagrammatic representation of the contribution of the
quark-gluon coupling in the Dirac Hamiltonian to the quark gap
equation, (a) Eq. (84) and (b) Eq. (85).

FIG. 7. Diagrammatic representation of the contribution of the
free Dirac Hamiltonian to the quark gap equation, (a) Eq. (82) and
(b) Eq. (83).
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The variation with respect to the vector kernel V, δhHQCDi=δVðk; k0Þ ¼ 0, leads to an equation which can be explicitly
solved for Vðk; k0Þ yielding

Vðk; k0Þ ¼ 1þ SðkÞSðk0Þ
kPðkÞð1 − S2ðkÞ þ 2SðkÞSðk0ÞÞ þ k0Pðk0Þð1 − S2ðk0Þ þ 2SðkÞSðk0ÞÞ þ ωðjkþ k0jÞ : ð87Þ

This result differs drastically from the one obtained in
Ref. [35], where an integral equation for V was obtained
which could not be explicitly solved. Furthermore, the
vector kernel obtained there depends only on a single
momentum argument. However, the quark-gluon vertex
connecting three fields should, after taking into account
overall momentum conservation, depend on two (indepen-
dent) momentum arguments, as the vertex (87) does.
Finally, for the trivial solution of the gap equation,

S ¼ 0, the expression (87) reduces to the perturbative
result [44]

V0ðk; k0Þ ¼
1

kþ k0 þ ωðjkþ k0jÞ : ð88Þ

Minimization of the energy density with respect to the
second vector kernel W yields an equation which can,
again, be solved directly:

Wðk; k0Þ ¼ SðkÞ þ Sðk0Þ
kPðkÞð1 − S2ðkÞ − 2SðkÞSðk0ÞÞ þ k0Pðk0Þð1 − S2ðk0Þ − 2SðkÞSðk0ÞÞ þ ωðjkþ k0jÞ : ð89Þ

As expected, the kernel W also depends on two momenta.
Although the structure of this equation is similar to the one
for the kernel V [Eq. (87)] there is an essential difference:
The kernelW [Eq. (89)] vanishes in the chirally symmetric
phase S ¼ 0 and is therefore only nonperturbatively real-
ized, while the other vector kernel V [Eq. (87)] reduces for
S ¼ 0 to the perturbative expression (88).
Finally, for the bosonic kernel ω we obtain from

δhHQCDi=δωðkÞ ¼ 0 the following integral equation

ω2ðkÞ ¼ ω2
YMðkÞ þ IYMVV ðkÞ þ IYMWWðkÞ þ IYMVQ ðkÞ þ IYMWQðkÞ

ð90Þ

where

ω2
YMðkÞ ¼ k2 þ χ2ðkÞ þ IYMT þ IYMC ðkÞ ð91Þ

is the contribution from the gluonic energy hH̄YMi with

IYMT ¼ 2NC

3
g2

Z
đ3p

1

ωðpÞ ð92Þ

being the gluonic tadpole and

IYMC ðkÞ ¼ NC

4

Z
đ3pVCðjp − kjÞð1þ ðp̂ · k̂Þ2Þ ðωðpÞ − χðpÞ þ χðkÞÞ2 − ω2ðkÞ

ωðpÞ ð93Þ

being the contribution from the gluonic Coulomb term hHYM
C i. Equation (91) is obtained as gluonic gap equation when the

quark sector is ignored [13,14]. The quark contributions to the gluon gap equation (90) arise from the two-loop
contributions of the free Dirac Hamiltonian (9) to the vacuum energy

FIG. 9. Diagrammatic representation of the contribution of the
kinetic energy of the transversal gluons to the quark gap equation.
(a) and (b) correspond, respectively, to the first and second term
on the rhs of Eq. (86).

FIG. 10. Diagrammatic representation of the contributions of
the free Dirac Hamiltonian to the gluon gap equation, (a) Eq. (94)
and (b) Eq. (95).
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IYMVV ðkÞ ¼ 2g2
Z

đ3pV2ðp; k − pÞXðp; k − pÞpP2ðpÞPðjk − pjÞð1 − S2ðpÞ þ 2SðpÞSðjk − pjÞÞ ð94Þ

IYMWWðkÞ ¼ 2g2
Z

đ3pW2ðp; k − pÞYðp; k − pÞpP2ðpÞPðjk − pjÞð1 − S2ðpÞ − 2SðpÞSðjk − pjÞÞ ð95Þ

illustrated in Fig. 10, and from the quark-gluon coupling in the Dirac Hamiltonian (9) resulting in the one-loop contributions

IYMVQ ðkÞ ¼ −2g2
Z

đ3pVðp; k − pÞXðp; k − pÞPðpÞPðjk − pjÞð1þ SðpÞSðjk − pjÞÞ ð96Þ

IYMWQðkÞ ¼ −2g2
Z

đ3pWðp; k − pÞYðp; k − pÞPðpÞPðjk − pjÞðSðpÞ þ Sðjk − pjÞÞ ð97Þ

which are diagrammatically illustrated in Fig. 11. Note that
the quark contribution to the kinetic energy of the trans-
versal gluons hHE

YMi [the last two terms in Eq. (74)] does
not contribute to the gluonic gap equation, while it does
contribute to the quark gap equation (80).
Neglecting the quark-gluon coupling in the Ansatz for

the vacuum wave functional, V ¼ W ¼ 0, the gluonic gap
equation (90) agrees with the result from pure Yang-Mills
theory; see Eq. (91).
A fully unquenched calculation would now necessitate to

solve the system of coupled integral equations for the scalar
quark kernel S and the bosonic kernel ω, (80) and (90),
while the vectorial kernels V and W can simply be
expressed in terms of these two kernels; see (87) and
(89). This goes beyond the scope of the present paper and
will be subject of further research. Here we focus on the
quark sector and confine ourselves mainly to a quenched
calculation using the previously obtained results for the
Yang-Mills sector as input.3 To be more precise, for the
gluon energy ω we will use Gribov’s formula (29) which
nicely fits the (quenched) lattice data. Furthermore, the true
Coulomb potential (30) obtained in the variational
approach [15] can be approximated to good accuracy by
the sum of a linearly rising potential and an ordinary
Coulomb potential, which reads in momentum space

VCðpÞ ¼
8πσC
p4

−
4παS
p2

¼ VIR
C ðpÞ þ VUV

C ðpÞ: ð98Þ

In accordance with lattice calculations, we choose the
Coulomb string tension as

σC ¼ 2σ ð99Þ
with σ ¼ ð440 MeVÞ2 being the Wilson string tension.

VIII. UV ANALYSIS AND RENORMALIZATION

In the quenched approximation, only the quark gap
equation for the scalar kernel S remains to be solved while
the vector kernels are explicitly available in terms ofω and S;

see Eqs. (87) and (89). The loop integrals in the quark gap
equation contain UV divergences and theUVanalysis carried
out in Appendix E reveals the following UV behavior: All
loop integrals on the rhs of the quark gap equation (80)
contain linear and logarithmic UV divergences except for the
one arising from the Coulomb term, IQC [Eq. (81)], which is
only logarithmically divergent. The logarithmic divergence
arises here from theCoulombpotentialVUV

C ; seeEq. (98). The
linear divergences areknown to cancel by gauge invariance, at
least in covariant perturbation theory. In fact, adding the linear
divergent contributions in the quark gap equation (80)we find
that they exactly cancel. To be more precise, this strict
cancellation is a direct consequence of the inclusion of the
vector kernel W into the Ansatz for the vacuum wave
functional [Eqs. (42) and (44)]. Without this kernel, the
quark gap equation would contain both a logarithmic and a
linear UV divergence, which makes the inclusion of W not
only a quantitative but also a qualitative improvement of the
variational Ansatz. Due to the strict cancellation of the linear
UV divergences, the quark gap equation (80) contains only
logarithmic divergences. The logarithmically divergent terms
of the gap equation (80) sum up to

CF

3π2
g2kSðkÞ lnΛ

μ
ð100Þ

where Λ is the UV cutoff and μ is an, so far, arbitrary
momentum scale. As can be seen from this expression, the
remaining logarithmic UV divergences are multiplied by a
factor g2 and can hence be absorbed in a renormalized
coupling

~g2ðμÞ ¼ g2 ln
Λ
μ
: ð101Þ

FIG. 11. Diagrammatic representation of the contributions of
the quark-gluon coupling in the Dirac Hamiltonian to the gluon
gap equation, (a) Eq. (96) and (b) Eq. (97).

3We will, however, consider the unquenching of the gluon
propagator; see Sec. IX B.
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The renormalized coupling ~g is assumed to be finite so that the
bare coupling g vanishes for Λ → ∞ like 1=

ffiffiffiffiffiffiffiffi
lnΛ

p
. Ignoring

terms which vanish forΛ → ∞with ~g2ðμÞ ¼ const < ∞ the
renormalized quark gap equation reduces to

kSðkÞ
�
1 −

CF

3π2
~g2ðμÞ

�
¼ CF

2

Z
đ3pVIR

C ðjp − kjÞPðpÞ

× ½SðpÞð1 − S2ðkÞÞ
− SðkÞð1 − S2ðpÞÞp̂ · k̂�: ð102Þ

This equation is considerably simpler than the unrenormal-
ized gap equation (80). The whole effect of the quark gluon
coupling aswell as theUVpart of theCoulomb potentialVUV

C
[Eq. (98)] are now captured by the term multiplied by the
renormalized coupling constant. In fact, the quark-gluon
coupling and VUV

C equally contribute to the renormalized
gap equation. When the renormalized coupling constant ~g is
set to zero Eq. (102) reduces to the gap equation of Ref. [29].
If the confining part of the non-Abelian Coulomb

potential is neglected, VIR
C ¼ 0, the gap equation (102)

has only the trivial solution S ¼ 0. This result is in
agreement with the empirical findings of Ref. [35] that
there is no spontaneous breaking of chiral symmetry when
VIR
C is neglected. Although the quark-gluon coupling term

alone cannot trigger spontaneous breaking of chiral sym-
metry it considerably increases the strength of the sym-
metry breaking as can be read off from Eq. (102) and as will
later on be confirmed by the numerical calculation. The rhs
of Eq. (102) is independent of ~g, while on the lhs a nonzero
~g reduces the factor multiplying kSðkÞ and thus increases S,
which also increases the quark condensate (see below).
Renormalizing the static quark propagator (56) in the

same way as the gap equation (80) (see Appendix E), we
find for the renormalized propagator

GrenðpÞ¼
1

2

�
1−

CF

8π2
~g2ðμÞ

�
PðpÞ½ð1−S2ðpÞÞα · p̂þ2SðpÞβ�

¼
�
1−

CF

8π2
~g2ðμÞ

�
α ·pþβMðpÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2ðpÞ

p : ð103Þ

Like the unrenormalized propagator (56) it has the quasi-
particle form (62) with an effective (running) massM given
by Eq. (65) and the constant field renormalization factor

ZðpÞ ¼ 1 −
CF

8π2
~g2ðμÞ: ð104Þ

From the renormalized quark propagator (103) we find the
renormalized quark condensate

hψ̄ðxÞψðxÞi ¼ −4NC

�
1 −

CF

8π2
~g2ðμÞ

� Z
đ3pPðpÞSðpÞ:

ð105Þ

Obviously, the quark condensate vanishes for the trivial
solution S ¼ 0 of the gap equation. Furthermore, from the
renormalized quark propagator (103) we can conclude that
the (anti)particle occupation numbers are given by4

has;mren †ðpÞas;mren ðpÞi ¼ �δ3ð0ÞPðpÞS2ðpÞ ð106Þ

and

ð1 − hbs;mren †ðpÞbs;mren ðpÞiÞ ¼ �δ3ð0ÞPðpÞ; ð107Þ

respectively, where a (b) is the annihilation operator for a
(anti)quark in momentum space; see Appendix A. Note that
we have, at this point, replaced the quark field ψ in terms of
the field renormalization factor Z by the renormalized
quantity ψ ren in order to obtain the physical occupation
numbers, i.e. a†ren, b†ren generate properly normalized
one-particle states. Furthermore, from Eqs. (59), (106)
and (107), one can read off immediately that ha†renareni ¼
hb†renbreni holds.
The momentum scale μ introduced above in the context

of the renormalized coupling (101) is completely arbitrary
and can be chosen at will. However, in the quark gap
equation (102) there is a physical scale inherited from the
gluon sector: the Coulomb string tension σC; see Eq. (98). It
is convenient to identify the arbitrary scale μ with

ffiffiffiffiffiffi
σC

p
.

This choice of μ removes the Coulomb string tension from
the gap equation when the latter is expressed in dimension-
less variables. The only undetermined quantity in our
variational equations of motion is then the renormalized
coupling ~g at the scale μ ¼ ffiffiffiffiffiffi

σC
p

.

IX. PHYSICAL IMPLICATIONS OF THE
QUARK-GLUON COUPLING

Below we investigate the immediate consequences of the
quark-gluon coupling in our approach on both the quark
and the gluon sector.

A. Scaling properties of the quark sector

For the numerical solution of the gap equation (102), it is
more convenient to express it in terms of the mass function
M [Eq. (65)]. This yields

MðkÞ
�
1 −

CF

3π2
~g2ðμÞ

�
¼ 4πCF

Z
đ3p

MðpÞ −MðkÞ p·kk2
jp − kj4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2ðpÞ

p : ð108Þ

4Note that there is no summation over spin and color indices on
the lhs and that the given expressions yield the total number of
occupied states. To obtain the respective densities, one has to
omit the spatial volume factor �δ3ð0Þ.
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Note that the two-loop approximation breaks downwhen the
renormalized coupling constant exceeds the critical value

~gc ¼
ffiffiffiffiffiffiffi
3π2

CF

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6π2NC

N2
C − 1

s
: ð109Þ

However, the critical values ~gc ≈ 6.28 for SUð2Þ and ~gc ≈
4.71 for SUð3Þ are well above the value required to
reproduce the phenomenological value of the quark con-
densate (see Eq. (122) below), so that the collapse does not
occur for realistic values of the renormalized coupling.
Denoting the IR limit of the mass function by m ¼

Mðp ¼ 0Þ and the respective quantities for vanishing
coupling by a superscript “0”, we find from the gap
equation (108) the following, very useful scaling properties:

MðpÞ ¼ m
m0

M0ðm0p=mÞ; ð110Þ

where

m ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − CF ~g2ðμÞ

3π2

q ð111Þ

holds. From these relations follows that it is sufficient to
solve the gap equation (108) only for the case of a vanishing
coupling ~g ¼ 0 yielding the functionM0. The solutionM of
Eq. (108) for arbitrary coupling ~g is then obtained from the
scaling relation (110). By means of this relation also the
quark condensate hψ̄ψiwith quark-gluon coupling included
can be related to that for ~g ¼ 0, hψ̄ψi0: Using Eq. (65) to
trade the scalar kernel S in Eq. (105) for themass functionM
and using subsequently the scaling relation (110)we find the
following scaling relation for the quark condensate

hψ̄ðxÞψðxÞi ¼ 1 − CF
8π2

~g2ðμÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − CF

3π2
~g2ðμÞ

q
3
hψ̄ðxÞψðxÞi0: ð112Þ

Inserting here for the renormalized quark-gluon coupling ~g
at the scale μ ¼ ffiffiffiffiffiffi

σC
p

the value (122) determined in Sec. X,
we find the relation

hψ̄ðxÞψðxÞi ¼ ð1.42Þ3hψ̄ðxÞψðxÞi0; ð113Þ

thus, the quark-gluon coupling increases the quark con-
densate by 42%.

B. Unquenching the gluon propagator

Below we solve the unquenched gluon gap equation (90)
in a simplified way. This equation has the generic form

ω2ðkÞ ¼ ω2
YMðkÞ þ ω2

QðkÞ; ð114Þ

where ωYM, defined by Eq. (91), is the expression one finds
from the pure Yang-Mills sector [13,14] and

ω2
QðkÞ ¼ IYMVV ðkÞ þ IYMWWðkÞ þ IYMVQ ðkÞ þ IYMWQðkÞ ð115Þ

is the quark contribution, which consists of several one-
loop terms defined by Eqs. (94) to (97). Assuming for the
scalar quark kernel S a sufficiently fast vanishing UV
asymptotics one can work out the UV behavior of these
loop integrals (see Appendix E) and finds that they are
quadratic plus logarithmic divergent

ω2
QðkÞ ¼ −

g2

6π2

�
Λ2 −

1

2
ðω2ðkÞ þ k2Þ lnΛ

μ

�
þ finite terms:

ð116Þ

The quadratic UV divergence is thus independent of the
external momentum k. Such an UV divergence also occurs
in the Yang-Mills sector, i.e. in ωYM (91) and can therefore
be removed by the known renormalization procedure of the
Yang-Mills sector, i.e. by the counterterm ∼A2 [45]. Like in
the quark gap equation, the (logarithmic) UV divergence is
here multiplied by a factor g2 and can be absorbed into the
renormalized coupling constant ~g (101). Dropping all terms
which vanish for Λ → ∞ for finite ~g, we arrive at the
unquenched renormalized gluon gap equation

ω2ðkÞ ¼ ω̄2
YMðkÞ þ

~g2ðμÞ
12π2

ðω2ðkÞ þ k2Þ; ð117Þ

where ω̄YM is the renormalized version of ωYM (91); see
Ref. [45]. Equation (117) can be solved for ω yielding

ω2ðkÞ ¼
�
~g2ðμÞ
12π2

k2 þ ω̄2
YMðkÞ

��
1 −

~g2ðμÞ
12π2

�−1
: ð118Þ

To obtain a first estimate of the effect of unquenching on
the gluon propagator we use for the quenched (renormal-
ized) gluon energy ω̄YM the Gribov formula (29). The
resulting gluon propagator 1=ð2ωÞ is shown in Fig. 12
together with the quenched Gribov propagator. The

FIG. 12. The static gluon propagatorDðpÞ ¼ 1=2ωðpÞ as given
by (118) for an effective coupling of ~gð ffiffiffiffiffiffi

σC
p Þ ¼ 3.586 (full line)

and for the Gribov formula (dashed line).
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unquenching leads to a decrease of the gluon propagator in
the midmomentum regime but the effect of unquenching is
small. A similar result was obtained in Ref. [35] where the
unquenching was done in the same way.

X. NUMERICAL RESULTS

By the above derived scaling relation (110) we have
reduced the numerical calculation to the case with vanish-
ing quark-gluon coupling ~g ¼ 0. The numerical solution of
the remaining quark gap equation (108) (with ~g ¼ 0) can be
performed by standard methods; see e.g. Ref. [46]. The
resulting mass function for vanishing coupling can be
nicely fitted by

M0
fitðpÞ ¼

m0

1þ ap2A þ 2bp2B ð119Þ

with the optimized fit parameters

m0 ¼ 0.165508 a ¼ 4.59935 b ¼ 1.26155

A ¼ 0.985198 B ¼ 2.27051: ð120Þ

From this fit we read-off the UV power-law behavior
Mðp → ∞Þ ∼ p−4.54 which, according to (110), holds for
arbitrary strengths of the quark-gluon coupling. This UV
exponent differs somewhat from the value ð−4Þ found in
Refs. [35,46]5 which, however, has almost no effect on the
quantities calculated below since the UV part is highly
suppressed.
We adjust the renormalized effective coupling constant ~g

such that the phenomenological value

hψ̄ðxÞψðxÞiphen ¼ ð−235 MeVÞ3 ð121Þ

is reproduced. This requires for σC ¼ 2σ an effective
coupling constant of

~gð ffiffiffiffiffiffi
σC

p Þ ¼ 3.586: ð122Þ

When the coupling of the quarks to the gluons is neglected
one obtains (for the same value of the Coulomb string
tension) for the quark condensate the substantially smaller
value

hψ̄ðxÞψðxÞi0 ¼ ð−165 MeVÞ3: ð123Þ
Using for the renormalized coupling constant ~g the value
(122) obtained from the phenomenological quark conden-
sate one finds the solution of the gap equation (108) shown
in Fig. 13(a). The IR mass is given by m ≈ 180 MeV. For
the sake of comparison, Fig. 13(a) shows also the solution
M0 of the gap equation for vanishing quark-gluon coupling
~g ¼ 0. The effective mass is then considerably smaller. This

FIG. 13. (a) Mass function for an effective coupling strength of ~gð ffiffiffiffiffiffi
σC

p Þ ¼ 3.586 (full curve) compared to the result obtained with a
BCS Ansatz neglecting the coupling (dashed curve). The Coulomb string tension is set to σC ¼ 2σ. (b) Scalar kernel for an effective
coupling strength of ~gð ffiffiffiffiffiffi

σC
p Þ ¼ 3.586 (full curve) compared to the result neglecting the coupling (dashed curve).

FIG. 14. Density of occupied quark states according to
Eq. (106). The straight line shows the results for the quark-
gluon coupling ~gð ffiffiffiffiffiffi

σC
p Þ ¼ 3.586 while the dashed one is for

~g ¼ 0.

5The numerical extraction of the UV exponent from the
solution is quite subtle and depends sensitively on the actual
momentum interval used.
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refers in particular to its IR value m0 ≈ 120 MeV.
Figure 13(b) shows the corresponding results for the scalar
kernel S, which can be calculated from Eq. (65) once M is
known. The IR value Sðp ¼ 0Þ ¼ 1 is obtained independ-
ently of the value of the quark-gluon coupling constant
~g as one can also extract analytically from the gap
equation. Neglecting the quark-gluon coupling consider-
ably decreases S in the midmomentum regime. It is this
momentum regime which dominantly contributes to the
spontaneous breaking of chiral symmetry, i.e. to the quark
condensate [see Eq. (105)]. This is also found in lattice
investigations [47].
With the scalar kernel S at our disposal we are also able

to determine the quark occupation number Eq. (106). The
resulting curve is shown in Fig. 14. One can clearly observe
that the inclusion of the quark-gluon coupling significantly
increases the occupation number in the midmomentum
regime. Note that the same result holds for the occupation
number of antiquarks [see Eq. (107) and the discussion
following thereafter].
Finally, we explicitly evaluate the vector kernels V

[Eq. (87)] and W [Eq. (89)] using the scalar kernel S
obtained above and the Gribov formula (29) as input for
the gluon energy. The results are plotted in Fig. 15 for the
case that the moduli of the twomomentum arguments agree.
Although the shape of both form factors is similar they
differ in the size (note the different scales used in Figs. 15(a)
and 15(b), respectively): V is considerably larger than W.
Furthermore, for p ¼ q the kernel Wðp; qÞ drops off more
rapidly in the UV (p ¼ q → ∞) than Vðp; qÞ. This can be
also read off from the explicit analytic expressions given in
Eqs. (87) and (89). From these expressions it also follows
that W is, in general, much more sensitive to the detailed
behavior of the scalar kernel S than V (which is not
surprising for W being purely nonperturbative). Keeping
one momentum argument, say q, fixed both vector form
factors vanish like 1=p for p → ∞.

XI. SUMMARY AND CONCLUSIONS

In this paper, the variational approach to QCD originally
developed in Refs. [13–15] for the Yang-Mills sector and
extended in Refs. [34,35] to full QCD has been further
developed and essentially improved in several regards: First
we included the UV part VUV

C of the color Coulomb
potential in the treatment of the quark sector which was
not the case in Refs. [34,35]. This additional contribution
turns out to have the same effect on the renormalized gap
equation as the quark-gluon coupling. Second, we have
abandoned a simplifying approximation used in Ref. [35]
and calculated the vacuum energy density consistently to
two-loop order. The resulting expressions are consistent
with the results obtained by using Dyson-Schwinger
equations to carry out the variational approach [43] and
also with perturbation theory [44]. Third, we have included
an additional Dirac structure (with a new variational kernel)
into the fermionic vacuum wave functional, thereby
enlarging the space of trial states which improves the
variational results. This new Dirac structure in the quark
wave functional can be motivated by treating the quark-
gluon coupling of the QCD Hamiltonian in perturbation
theory on top of the nontrivial BCS state obtained in a
mean-field treatment of the non-Abelian Coulomb inter-
action. By including this new quark-gluon coupling term
in the trial vacuum state all linear UV divergences are
eliminated from the quark gap equation. The remaining
logarithmic UV divergence has been absorbed into a
renormalized coupling constant. In the resulting renormal-
ized gap equation, the total quark-gluon coupling becomes
manifest in a rescaling of the effective (momentum depen-
dent) quark mass. By using this scaling property physical
quantities like the quark condensate can be related to their
values when the quark-gluon coupling is switched off. In
this way, we could analytically show that the inclusion of
the quark-gluon coupling in the vacuum wave functional

FIG. 15. The vector kernels (a) Vðp; qÞ and (b) Wðp; qÞ for an effective coupling strength of ~gð ffiffiffiffiffiffi
σC

p Þ ¼ 3.586 as function of the
modulus p ¼ q and z ¼ cos∢ðp; qÞ.
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leads to a substantial increase in the quark condensate and
the effective quark mass. In our Hamiltonian approach to
QCD in Coulomb gauge, the quark sector inherits a scale
from the gluon sector. This is given by the Coulomb
string tension σC, which also determines the Gribov
mass MG ≈ σC. Choosing the renormalized coupling at
this scale to reproduce the phenomenological value of the

quark condensate, hψ̄ψi ¼ ð−235 MeVÞ3, requires a value
of ~gð ffiffiffiffiffiffi

σC
p Þ ¼ 3.586.

Using for the quenched gluon propagator the lattice
results, which can be nicely fitted by the Gribov formula,
and renormalizing the full unquenched gluon gap equation
consistently with the quark gap equation, we have shown
that the unquenched gluon propagator is somewhat reduced
in the midmomentum regime compared to the quenched
one but the effect is quite small.
Since our approach is based on the variational principle

we can, in principle, improve it by implementing further
terms in the Ansatz for our trial vacuum state. This will
enlarge the part of the Hilbert space included and hence
improve the approximation used. At the same time we can
also go to higher than second-order loop terms in the
evaluation of the vacuum energy. This can, in principle, be
systematically done but gets technically involved as one
goes beyond two-loops.
The results obtained in the present paper are quite

encouraging for further applications of the present
approach. We plan to extend it to finite temperatures and
baryon densities to study the deconfinement and chiral
phase transitions. In a first application, we will then
calculate the quark contribution to the effective potential
of the Polyakov loop extending the approach of Ref. [48] to
full QCD.
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APPENDIX A: MOMENTUM REPRESENTATION

Due to translational invariance of the vacuum, it is
convenient to carry out the actual calculations in momen-
tum space. Thereby, it will be convenient to expand the
quark field ψ in terms of the eigenspinors u, v of the free
Dirac Hamiltonian of chiral quarks

h0ðpÞ ¼ α · p: ðA1Þ

We choose the eigenspinors such that they satisfy the
eigenvalue equation

α · pusðpÞ ¼ pusðpÞ; α · pvsð−pÞ ¼ −pvsð−pÞ
ðA2Þ

and are normalized according to

us†ðpÞutðpÞ ¼ vs†ð−pÞvtð−pÞ ¼ 2pδst ðA3aÞ

us†ðpÞvtð−pÞ ¼ vs†ð−pÞutðpÞ ¼ 0: ðA3bÞ

Here s ¼ �1 denotes the double of the spin projection. The
spinors satisfy the relations

βusðpÞ ¼ svsð−pÞ ðA4aÞ

βvsð−pÞ ¼ susðpÞ ðA4bÞ

γ5usðpÞ ¼ susðpÞ ðA5aÞ

γ5vsð−pÞ ¼ −svsð−pÞ ðA5bÞ

from which we can conclude

ūsðpÞutðpÞ≡ us†ðpÞβutðpÞ ¼ 0 ðA6aÞ

v̄sð−pÞvtð−pÞ ¼ 0: ðA6bÞ

For the outer product of the spinors, one finds6

usðpÞus†ðpÞ ¼ 1

2
pð½1þ α · p̂� þ sγ5½1þ α · p̂�Þ ðA7aÞ

vsð−pÞvs†ð−pÞ¼ 1

2
pð½1−α · p̂�− sγ5½1−α · p̂�Þ ðA7bÞ

usðpÞvs†ð−pÞ¼ 1

2
pðsβ½1−α · p̂�−βγ5½1−α · p̂�Þ ðA7cÞ

vsð−pÞus†ðpÞ ¼ 1

2
pðsβ½1þ α · p̂� þ βγ5½1þ α · p̂�Þ

ðA7dÞ

while the matrix elements of the Dirac operator are given by

us†ðpÞα · qutðpÞ ¼ 2pqðp̂ · q̂Þδst ðA8aÞ

vs†ð−pÞα · qvtð−pÞ ¼ −2pqðp̂ · q̂Þδst ðA8bÞ

us†ðpÞα · qvsð−pÞ ¼ 0 ðA8cÞ

vs†ð−pÞα · qusðpÞ ¼ 0: ðA8dÞ

6Note that there is no summation over the spin index.
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In terms of these eigenspinors, the quark field can be
expanded as

ψmðxÞ ¼
Z

đ3p
1ffiffiffiffiffiffi
2p

p expðip · xÞðas;mðpÞusðpÞ

þ bs;m†ð−pÞvsð−pÞÞ; ðA9Þ

where as (bs) is the annihilation operator of a (anti)quark in
a state with spin projection s=2 ¼ �1=2. With the nor-
malization (A3) of the eigenspinors the fermionic anti-
commutation relations (10) are fulfilled when the a, b
satisfy the relations

fas;mðpÞ; at;n†ðqÞg ¼ fbs;mðpÞ; bt;n†ðqÞg
¼ δstδmn�δ3ðp − qÞ ðA10Þ

with all other anticommutators vanishing. With the expan-
sion (A9) and the orthonormality relation of the Dirac
eigenmodes our quark vacuum wave functional (42)
acquires the form

jϕQ½A�i

¼ exp
�
−
Z

đ3p
Z

đ3qKst;mnðp;qÞas;m†ðpÞbt;n†ðqÞ
�
j0i;

ðA11Þ

where the kernel K in momentum space is related to that in
the coordinate representation by

Kst;mnðp; qÞ ¼ 1

2
ffiffiffiffiffiffi
pq

p us†ðpÞ
Z

d3x

×
Z

d3y expð−ip · x − iq · yÞKmnðx; yÞvtðqÞ

¼ δmnδst�δðpþ qÞsSðpÞ

þ g
1

2
ffiffiffiffiffiffi
pq

p tamnus†ðpÞðVðp; qÞ

þ βWðp; qÞÞαkvtðqÞAa
kðpþ qÞ: ðA12Þ

The Fourier transforms of the variational kernels S, V and
W contained in our trial Ansatz (44) are hereby given by

SðpÞ ¼
Z

d3x expð−ip · xÞSðxÞ ðA13Þ

Vðp;qÞ¼
Z

d3x
Z

d3yexpð−ip ·x− iq · yÞVðxþ z;yþ z;zÞ

ðA14Þ
Wðp; qÞ ¼

Z
d3x

Z
d3y expð−ip · x − iq · yÞ

×Wðxþ z; yþ z; zÞ ðA15Þ

and are assumed to be scalar functions. In order to obey the
correct behavior under spatial transformations, these ker-
nels have to fulfill the relations SðpÞ ¼ SðpÞ, Vðp; qÞ ¼
Vð−p;−qÞ and Wðp; qÞ ¼ Wð−p;−qÞ, respectively. Note
that contrary to the scalar kernel S, the vector kernels V
and W have dimension of inverse momentum. In order to
simplify our calculations, we will assume all kernels to be
real valued functions and the vector kernels additionally to
be symmetric, i.e. Vðp;qÞ¼Vðq;pÞ andWðp;qÞ¼Wðq;pÞ,
respectively.

APPENDIX B: PERTURBATIVE MOTIVATION
OF THE ANSATZ FOR THE FERMIONIC

VACUUM STATE

In [44], QCD in Coulomb gauge was treated in
Rayleigh-Schrödinger perturbation theory up to order g2

in the coupling, and the known results of covariant
perturbation theory were reproduced. The perturbative
results of Ref. [44] yield a quark vacuum wave functional
of the form of our Ansatz (42) and (44), however, with
S ¼ 0 and W ¼ 0. The result obtained for the vector
kernel V agrees with the UV limit (88) of our variational
result (87) as one expects due to asymptotic freedom.
However, perturbation theory does not produce nonvan-
ishing scalar and vector form factors, S and W. As we
have seen in the body of the paper both form factors are
nonperturbative features. In particular, the variational
result (89) for W disappears in the chirally symmetric
phase S ¼ 0. In order to get information on the kinematic
structure of the vector form factor W, we treat the quark-
gluon coupling in Rayleigh-Schrödinger perturbation
theory using, however, as the unperturbed quark vacuum
wave functional not the bare (perturbative) vacuum j0i but
the BCS state j0iBCS given by Eq. (42) with V ¼ W ¼ 0
and S ≠ 0 determined from the gap equation (102) with
~g ¼ 0. In this sense, the BCS wave functional represents
an approximate solution of the functional Schrödinger
equation for the Hamiltonian

H̄0
Q ≡H0

Q þHQ
C ðB1Þ

in the mean-field approximation. What is left out in H̄0
Q is

the quark-gluon coupling HA
Q,

H̄Q ¼ H̄0
Q þHA

Q; ðB2Þ

whose effect we will now study in perturbation theory on
top of the BCS ground state jϕQ½A ¼ 0�i≡ j0iBCS which
is in momentum space given by
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j0iBCS ¼ exp

�
−s

Z
đ3pSðpÞas;m†ðpÞbs;m†ð−pÞ

�
j0i;

ðB3Þ
see Eqs. (A11) and (A12). Therefore, the “bare” QCD
vacuum state which we consider now as starting point for
perturbation theory reads j0iQCD ¼ j0iYM ⊗ j0iBCS
where the bosonic part j0iYM is chosen similar to
Ref. [44], i.e. by Eq. (46) with ωðpÞ replaced by the
photon energy p. The perturbative vacuum state is hence
given by

j0ipert ∼ j0iQCD þ gj0i1QCD þ g2j0i2QCD þOðg3Þ ðB4Þ

with the corrections j0iiQCD being orthogonal to the
unperturbed state j0iQCD,

QCDh0j0iiQCD ¼ 0 ∀ i: ðB5Þ

Rewriting the gauge fixed QCD Hamiltonian (1) as a
series in powers of the coupling g,

HQCD ¼ H0 þ gH1 þ g2H2 þOðg3Þ; ðB6Þ

the (first-order) perturbative corrections to the vacuum
j0iQCD is given by

j0i1QCD ¼ −
X
N

hNjH1j0iQCD
EN − E0

jNi ðB7Þ

with jNi denoting a N-particle state with energy EN and
E0 being the (bare) vacuum energy. Note that the bare
vacuum is not an eigenstate of the bare Hamiltonian H0

(this would be given by j0iYM ⊗ j0i) but of the mean
field Hamiltonian given by the sum of H0 and the
(fermionic) effective single particle part of H2 (the
fermionic part of g2H2 represents the Coulomb term
HQ

C (17)), as can be seen explicitly after performing a
Bogoljubov transformation. In the quark sector, (B7)
gives the only relevant correction to the BCS wave
functional since the relevant contribution from H2 is
already included in the choice of the fermionic
vacuum, Eq. (B3). The first-order correction H1 to
the unperturbed Hamiltonian is given by the quark-
gluon coupling

H1 ¼
Z

d3xψ†ðxÞα · AaðxÞtaψðxÞ: ðB8Þ

Inserting the expansion (A9) for the quark fields into
(B8), we find that the only nonvanishing contribution to

the correction (B7) comes from states containing one
gluon, one quark and one antiquark, i.e.

jNi ∼ Aa
kð−p1Þas;m†ðp2Þbt;n†ðp3Þj0iQCD: ðB9Þ

With this wave function we can easily calculate the
matrix element in the numerator of (B7) yielding7

hNjH1j0iQCD ∼ −tamntklðp1Þ
1

2p1

�δðp1 þ p2 þ p3Þ

×
1

2
ffiffiffiffiffiffiffiffiffiffi
p2p3

p Pðp2ÞPðp3Þ

× us†ðp2Þð½1þ Sðp2ÞSðp3Þ�αl
þ ½Sðp2Þ þ Sðp3Þ�βαlÞvtðp3Þ ðB10Þ

where tklðpÞ ¼ δkl − p̂kp̂l is the transversal projector in
momentum space. From Eq. (B10) we can already read-
off the (Dirac) structure of the corrections to the bare
vacuum. Inserting (B10) together with (B9) into (B7),
we find for the fermionic part of the (perturbative) wave
functional

j0iQpert ∼
�
1þ g

Z
d3x

Z
d3y

Z
d3zψ†

þðxÞ½fðx; y; zÞ

þ gðx; y; zÞβ�α · AaðzÞtaψ−ðyÞ
�
j0iBCS ðB11Þ

where we have switched to the coordinate space repre-
sentation for the sake of comparison with our Ansatz
(42). Equation (B11) exhibits precisely the (Dirac)
structure of the quark-gluon coupling assumed in our
Ansatz (42) for the vacuum wave functional. Let us also
mention that the S dependence of the numerator of
(B10) perfectly agrees with the one obtained for the
vector kernels from the variational principle; see
Eqs. (87) and (89). Note, furthermore, that the results
obtained here reduce to the ones of Ref. [44] when the
limit S → 0 is considered. Particularly, the additional
term with the Dirac structure βαi vanishes in this limit
and can therefore not be recovered in perturbation
theory starting from the bare fermionic vacuum j0i.

APPENDIX C: EXPLICIT CALCULATION OF
THE STATIC QUARK PROPAGATOR

Using the fermionic anticommutator (10) and the expan-
sion (A9) of the quark field, the static quark propagator (51)
can be expressed as

7The matrix element decomposes into one bosonic and one
fermionic part. Both of them can be evaluated in the same way as
the ones occurring in the body of this paper.
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Gm1m2

ij ðx; yÞ þ 1

2
δm1m2δijδðx − yÞ ¼ hψm1

i ðxÞψm2

j
†ðyÞi

¼
Z

đ3p1

Z
đ3p2

1

2
ffiffiffiffiffiffiffiffiffiffi
p1p2

p ðhas1;m1ðp1Þas2;m2†ðp2Þius1i ðp1Þus2j †ðp2Þ expðip1 · x − ip2 · yÞ

þ has1;m1ðp1Þbs2;m2ðp2Þius1i ðp1Þvs2j †ðp2Þ expðip1 · xþ ip2 · yÞ
þ hbs1;m1†ðp1Þas2;m2†ðp2Þivs1i ðp1Þus2j †ðp2Þ expð−ip1 · x − ip2 · yÞ
þ hbs1;m1†ðp1Þbs2;m2ðp2Þivs1i ðp1Þvs2j †ðp2Þ expð−ip1 · xþ ip2 · yÞÞ: ðC1Þ

The fermionic expectation values of the quark two-point functions were given in Eq. (52) in coordinate space. After Fourier
transformation one finds e.g.

has1;m1ðp1Þas2;m2†ðp2ÞiQ ¼ ½1þ KK†�−1s1s2;m1m2ðp1; p2Þ: ðC2Þ

The bosonic expectation value of this quantity is taken by using Eq. (54),

has1;m1ðp1Þas2;m2†ðp2Þi ¼ ½1þ KK†�−1s1s2;m1m2ðp1; p2ÞjA¼0

þ 1

4

Z
đ3q

δ

δAa
kðqÞ

tklðqÞ
1

ωðqÞ
δ

δAa
l ð−qÞ

½1þ KK†�−1s1s2;m1m2ðp1; p2ÞjA¼0: ðC3Þ

With

ðKK†Þs1s2;m1m2ðp1; p2ÞjA¼0 ¼ δs1s2δm1m2�δ3ðp1 − p2ÞS2ðp1Þ; ðC4Þ
we find for the leading-order contribution

½1þ KK†�−1s1s2;m1m2ðp1; p2ÞjA¼0 ¼ δs1s2δm1m2�δ3ðp1 − p2ÞPðp1Þ: ðC5Þ
For the next to leading-order contribution, we obtain after a short calculation

δ

δAa
kðqÞ

δ

δAa
l ð−qÞ

½1þ KK†�−1s1s2;m1m2ðp1; p2ÞjA¼0

¼ Pðp1ÞPðp2Þ
Z

đ3p3Pðp3Þ
δðKK†Þs1s3;m1m3ðp1; p3Þ

δAa
kðqÞ

δðKK†Þs3s2;m3m2ðp3; p2Þ
δAa

l ð−qÞ
����
A¼0

þ Pðp1ÞPðp2Þ
Z

đ3p3Pðp3Þ
δðKK†Þs1s3;m1m3ðp1; p3Þ

δAa
l ð−qÞ

δðKK†Þs3s2;m3m2ðp3; p2Þ
δAa

kðqÞ
����
A¼0

− Pðp1ÞPðp2Þ
δ2ðKK†Þs1s2;m1m2ðp1; p2Þ

δAa
kðqÞδAa

l ð−qÞ
: ðC6Þ

Inserting here for the variational kernel the explicit form (A12) and carrying out the functional derivatives δ=δA,
the Dirac and color structure of these expressions can be worked out using the relations of Appendix A. One finds
eventually

has1;m1ðp1Þas2;m2†ðp2Þi ¼ δs1s2δm1m2�δ3ðp1 − p2ÞPðp1Þ
�
1 −

1

2
Iαðp1Þ

�
ðC7Þ

where Iα is defined in Eq. (57). Inserting now Eq. (C7) back into Eq. (C1) eventually enables us to calculate the
outer product uu† of the eigenspinors yielding an expression given in terms of Dirac matrices; see Appendix A.
Performing a similar calculation for the remaining two-point functions in (C1) yields finally the expression given in
Eq. (56).
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APPENDIX D: GROUND STATE ENERGY REVISITED

1. Expectation value of the free Dirac Hamiltonian

Inserting the explicit expression for the quark propagator (56) into Eq. (68) and taking the trace yields the following
expression for the expectation value of the free Dirac Hamiltonian:

hH0
Qi ¼ 2NC

�δ3ð0Þ
Z

đ3ppð1 − 2PðpÞÞ þ N2
C − 1

2
�δ3ð0Þg2

Z
đ3p

Z
đ3q

V2ðp; qÞ
ωðjpþ qjÞPðpÞPðqÞXðp; qÞ

× ½pPðpÞð1 − S2ðpÞ þ 2SðpÞSðqÞÞ þ qPðqÞð1 − S2ðqÞ þ 2SðpÞSðqÞÞ�

þ N2
C − 1

2
�δ3ð0Þg2

Z
đ3p

Z
đ3q

W2ðp; qÞ
ωðjpþ qjÞPðpÞPðqÞYðp; qÞ

× ½pPðpÞð1 − S2ðpÞ − 2SðpÞSðqÞÞ þ qPðqÞð1 − S2ðqÞ − 2SðpÞSðqÞÞ� ðD1Þ

2. Expectation value of the kinetic energy

In order to calculate the expectation value of ~HE
YM (73), we consider first those terms of ~HE

YM which explicitly contain the
Faddeev-Popov determinant J. Using the approximation (27), the functional derivatives induced by the canonical
momentum operator Π can be easily carried out yielding expressions whose fermionic expectation value is trivial while the
bosonic one can be calculated in terms of Wick’s theorem (50) leading to the result

−
1

8

�Z
đ3p½Πa

kðpÞ ln J�½Πa
kð−pÞ ln J�

�
¼ N2

C − 1

2
�δ3ð0Þ

Z
đ3p

χ2ðpÞ
ωðpÞ ðD2aÞ

−
1

4

�Z
đ3p½Πa

kðpÞΠa
kð−pÞ ln J�

�
¼ −ðN2

C − 1Þ�δ3ð0Þ
Z

đ3pχðpÞ: ðD2bÞ

For the evaluation of the expectation value of those parts of
~HE
YM (73) which do not contain the Faddeev-Popov

determinant J, it is convenient to carry out an integration
by parts,8Z

DA ~ϕ�
YM½A�f½A�Πg½A� ~ϕYM½A�

¼ −
Z

DA½Π ~ϕ�
YM½A�f½A��g½A� ~ϕYM½A�: ðD3Þ

From the expectation value of the second term on the rhs of
Eq. (73) one obtains then the relation

2

Z
đ3p

Z
DA ~ϕYM½A�½Πa

i ðpÞ ln I½A��½Πa
i ð−pÞ ~ϕYM½A��

¼ −
Z

đ3p
Z

DA ~ϕ2
YM½A�½Πa

i ð−pÞΠa
i ðpÞ ln I½A��

ðD4Þ

where I½A� ¼ hϕQ½A�jϕQ½A�i and ~ϕYM ¼ ~ϕ�
YM (which fol-

lows directly from our Ansatz (46) for a real valued kernel

ω) have been used. With the help of this relation it is
possible to write the expectation value of those parts of
~HE
YM (73) which do not contain J in the form

hHE
YMijJ¼0 ¼ −

1

2
jN j2

Z
đ3p

Z
DA½Πa

kðpÞ ~ϕYM½A��

× ½Πa
kð−pÞ ~ϕYM½A��

−
1

2
jN j2

Z
đ3p

Z
DA ~ϕ2

YM½A�I−1½A�

× ½Πa
kðpÞhϕQ½A�j�½Πa

kð−pÞjϕQ½A�i�

þ 1

8
jN j2

Z
đ3p

Z
DA ~ϕ2

YM½A�½Πa
kðpÞ ln I½A��

× ½Πa
kð−pÞ ln I½A��: ðD5Þ

The further evaluation of this is straightforward: After
carrying out the functional derivatives induced by Π, the
(purely bosonic) first term on the rhs of Eq. (D5) can be
expressed in terms of the gluon propagator (25) while the
(fermionic) second and third terms yield the product of four
quark fields which can be treated similar to the expectation
value of the fermionic part HQ

C of the Coulomb term; see
Sec. VI in the body of the paper. Finally, we obtain for the

8Notice that this is only possible in the first two terms on the
rhs of Eq. (73).
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expectation value of those terms not containing the
Faddeev-Popov determinant

hHE
YMijJ¼0 ¼

N2
C − 1

2
�δ3ð0Þ

Z
đ3pωðpÞ

þ N2
C − 1

2
�δ3ð0Þg2

Z
đ3p

×
Z

đ3qPðpÞPðqÞV2ðp; qÞXðp; qÞ

þ N2
C − 1

2
�δ3ð0Þg2

Z
đ3p

×
Z

đ3qPðpÞPðqÞW2ðp; qÞYðp; qÞ: ðD6Þ

If we add now (D2) to this expression, we end up with the
result given in Sec. VI, Eq. (74).

APPENDIX E: UV EXPANSION

1. Quark gap equation

For expanding the integrands on the rhs of Eq. (80) in a
Taylor series, we need an assumption for the UV behavior
of the gluon energy ω and the scalar kernel S. For the first,
we can conclude immediately from Gribov’s formula (29)
ωðp → ∞Þ ¼ p while for the latter Sðp → ∞Þ → 0 should
hold because of asymptotic freedom (in previous work a
behavior of S ∼ p−5 was obtained in the limit of a vanishing
quark-gluon coupling [29,35,46]). Therefore, we will
assume the scalar kernel to vanish sufficiently fast for
not being involved in any UV divergence, i.e. SðpÞ ≈ 0.
Note that we will use the UV form of S and ω only for
functions depending on the loop momentum p.
As an illustration, in the followingwe demonstrate the basic

steps for the UV analysis of the fourth integral on the rhs of
Eq. (80), IQVQ [Eq. (84)]. Introducing ξ¼k=p≪1 and z¼p̂·k̂,
we find for the vector kernel V [Eq. (87)] the expansion

Vðp; kÞ ¼ 1þ SðpÞSðkÞ
pPðpÞð1 − S2ðpÞ þ 2SðpÞSðkÞÞ þ kPðkÞð1 − S2ðkÞ þ 2SðpÞSðkÞÞ þ ωðjpþ kjÞ

≈ ½pþ kPðkÞð1 − S2ðkÞÞ þ ωðjpþ kjÞ�−1
≈ ½pþ kPðkÞð1 − S2ðkÞÞ þ ðp2 þ k2 þ 2pkzÞ1=2�−1

≈
1

2p

�
1 −

1

2
ξðPðkÞð1 − S2ðkÞÞ þ zÞ þOðξ2Þ

�
ðE1Þ

and in a similar fashion for the remaining contributions

1

ωðjpþ kjÞ ¼
1

p
½1 − ξzþOðξ2Þ� ðE2Þ

Xðp; kÞ ¼ 1 − z − ξð1 − z2Þ þOðξ2Þ: ðE3Þ

After inserting this into the integral (84) we end up with9

IQVQðkÞ ≈ −
CFμ

2ð2πÞ3 g
2SðkÞ

Z
Λ=μ

dp
Z

1

−1
dz

Z
2π

0

dφp

	
1 − z − ξ

�
1þ 3

2
z −

5

2
z2 þ 1

2
PðkÞð1 − S2ðkÞÞð1 − zÞ

�

¼ −

CF

8π2
g2SðkÞ

	
2Λ − k

�
1

3
þ PðkÞð1 − S2ðkÞÞ

�
ln
Λ
μ
þOð1=ΛÞ



: ðE4Þ

Performing the same analysis for the other integrals on
the rhs of the gap equation (80) we find for the contribu-
tions containing the vector kernel V the (divergent) UV
behavior

CF

16π2
g2SðkÞ

�
−2Λþ k ln

Λ
μ

�
−
2

3
þ 4PðkÞ

��
ðE5Þ

and for those containing the vector kernel W

CF

16π2
g2SðkÞ

�
2Λþ k ln

Λ
μ

�
10

3
− 4PðkÞ

��
: ðE6Þ

Note that in the sum of these two terms the linear
divergence exactly cancels. Adding finally the UV
divergence stemming from the UV part of the Coulomb
kernel (98),9We consider the integral only up to the cutoff Λ=μ.
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CF

6π2
g2kSðkÞ lnΛ

μ
; ðE7Þ

we end up with the divergent factor given in Eq. (100).

2. Quark propagator

Analogously to the UV analysis of the gap equation one
can also consider the UV limit of the loop integrals Iα
[Eq. (57)] and Iβ [Eq. (58)], contained in the static quark

propagator (56). One finds the (logarithmically divergent)
UV behavior

IαðpÞ ¼
CFg2

8π2
ð1 − S2ðpÞÞ lnΛ

μ
þ finite terms ðE8Þ

IβðpÞ ¼
CFg2

8π2
SðpÞ lnΛ

μ
þ finite terms: ðE9Þ
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