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Benefiting from the index spinorial formalism, the Killing spinor equation is integrated in six-
dimensional spacetimes. The integrability conditions for the existence of a Killing spinor are worked out
and the Killing spinors are classified into two algebraic types; in the first type the scalar curvature of the
spacetime must be negative, while in the second type the spacetime must be an Einstein manifold. In
addition, the equations that define Killing-Yano (KY) and closed conformal Killing-Yano (CCKY) tensors
are expressed in the index notation and, as consequence, all nonvanishing KY and CCKY tensors that can
be generated from a Killing spinor are made explicit.
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I. INTRODUCTION

It is unanimous that a great source of difficulty in general
relativity, supergravity and string theories arises from the
nonlinear equations that plague these theories. Therefore,
any method that could circumvent the problems of inte-
grating a nonlinear equation deserve ample attention in
these contexts. Probably, the most fruitful way of obtaining
exact solutions for the equations of motion for these
theories comes from the use of symmetries. Indeed,
continuous symmetries lead to conserved charges which,
in turn, can generate simpler equations of motion and
enable the separability of partial differential equations. An
important example of this fact is given by the use of Killing
vectors and Killing-Yano (KY) tensors to integrate field
equations in curved backgrounds. Killing tensors and KY
tensors are generally referred to as hidden symmetries, as
they generate symmetry transformations in the phase space,
as a whole, in contrast to Killing vectors, which generate
symmetries of the space [1]. It turns out that Kerr-NUT-(A)
dS spacetime, in arbitrary dimension, admits a closed
conformal Killing-Yano (CCKY) tensor of rank 2 [2],
from which one can generate just the right number of KY
tensors necessary in order to fully integrate the geodesic
equation [3], as well as Klein-Gordon [4] and Dirac
equations [5] in such background. Killing-Yano tensors
are also of special relevance in supersymmetric theories,
since they can generate extra supersymmetries, as is
illustrated by the problem of a spinning particle in a curved
spacetime [6,7]. Moreover, KY tensors constitute true
quantum symmetries, since they generate differential oper-
ators that commute with the Dirac operator [8]. For an
analysis of how a KY tensor transforms under the action of
a string duality, see Ref. [9].
In this context, spacetimes admitting Killing spinors are

of particular interest, since by means of the bilinears
constructed from a single Killing spinor it is possible to

generate a whole tower of KY tensors. Therefore, it is
of great importance to find explicit expressions for
metrics admitting Killing spinors. With these motivations
in mind, the main goal of this article is to use the spinorial
index formalism to classify and obtain six-dimensional
Lorentzian metrics of spacetimes possessing Killing spin-
ors. Although it is definitely possible to attain several
interesting results about spinors using the usual abstract
notation and without fixing the dimension, it is a matter of
fact that many practical results regarding manipulations of
spinors depend strongly on the dimension. Since the index
spinorial notation takes fully into account the dimensional
specificities, this approach generally constitutes a powerful
tool. Indeed, in order to set the index spinorial notation one
needs to analyze the fundamental representation of the
group SinðRp;qÞ, whose features heavily depend on the
dimension. Moreover, the use of the latter approach avoids
the manipulation of the rather clumsy Fierz identities. The
major example of the power of the spinorial index notation
is provided by the considerable amount of results obtained
by Penrose in four-dimensional general relativity by means
of the two-component spinor formalism [10].
Killing spinors are intimately related to the notion of a

holonomy group, since they can be defined as the spinors
whose projective lines are invariant under the action of the
holonomy group of a particular spinorial connection.
Therefore, a natural question that can be posed is: which
Riemannian holonomy groups are compatible with the
existence of a Killing spinor? The answer has first been
worked out for the case of covariantly constant spinors
[11,12], also called parallel spinors, namely spinors that are
in the kernel of the action of the holonomy group. In such a
case, it turns out that the Riemannian holonomy group must
be special. Differently, in the case of nonparallel Killing
spinors, the Riemannian holonomy group is not necessarily
special, since neither the Killing spinor nor its projective
line is invariant by a parallel transport using the spinorial
extension of the Levi-Cività connection. Nevertheless, it
turns out that, in some cases, a nonparallel Killing spinor on*carlosbatistas@df.ufpe.br
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a manifoldM can be identified with a parallel spinor on the
cone over M [13] and, therefore, the cone over M has
special holonomy [14]. This theme is of great interest in the
high energy community, inasmuch as the holonomy groups
and G-structures play an important role in supergravity and
string theories [15]. Moreover, spaces possessing Killing
spinors are of primary relevance for the latter theories, since
compactifications in such spaces preserve part of the
supersymmetry [16].
Besides the holonomy approach, several other routes

have been adopted in order to integrate the Killing spinor
equation. Specially in supergravity theory and string theory,
in which cases the assumed connection differs from the
usual Levi-Cività connection, and its spinorial extension,
by terms that depend on the matter fields of these theories.
In particular, these supercovariant derivatives are, gener-
ally, endowed with torsion. In these theories, the Killing
spinors are not related to the Riemannian holonomy group,
but rather to the holonomy group of the new connection,
which can be trickier to analyze [17]. With no ambition of
being exhaustive, in this paragraph we mention some
attempts of integrating the Killing spinor equation and
classifying its solutions in such context. Reference [18] has
made use of the spinorial index formalism in order to find
four-dimensional spacetimes of minimal supergravity. In
Ref. [19], the Killing spinor equation of minimal gauged
supergravity has been integrated in Lorentzian spaces of
dimension four using Fierz identities in order to generate
several algebraic and differential identities involving
bilinears of the Killing spinor. An analogous procedure in
four-dimensional spaces of split signature has been put
forward in [20]. Similar approaches, using the bilinears built
from the Killing spinors along with the Fierz relations, have
also been used to find solutions of minimal supergravity
in five dimensions [21], whereas the six-dimensional case
has been considered in [22]; see also [23]. Concerning
eleven-dimensional spacetimes, Gillard et al. [24] searched
for solutions of the Killing spinor equation by represent-
ing spinors in terms of differential forms. An elegant
approach using group-theoretical tools to integrate the
Killing spinor equation in symmetricmanifoldswas adopted
in Ref. [25].
From a theoretical point of view it is unquestionable, the

importance of quantizing the gravitational interaction so
that it fits together with the three interactions of the
standard model in a single scheme. At this moment, it
seems that the most promising theory that is along this track
is string theory. Indeed, the latter theory naturally has a
spin-2 massless particle in its spectrum; i.e., the graviton is
an unavoidable outcome of string theory. Nevertheless, one
huge drawback is that the vacuum state in string theory is
not unique, and finding the vacuum that is coherent with
our experimental observations proved to be an amazingly
difficult task. Due to the several analytic advantages of
having a global supersymmetry, the most studied vacuums

are those that have at least part of the total supersymmetry
of the theory. This is where the Killing spinors come into
play, since they are a necessary condition for the preser-
vation of part of the supersymmetry. In this sense, the
present article intends to provide a contribution for this
whole program.
Supersymmetry is a central piece of string theory.

However, no clear indication of supersymmetry has been
detected by the experiments yet. It is, nonetheless, too
soon to rule it out, since the scale of supersymmetry
breaking could take place at higher energies. There are
several models with broken supersymmetry predicting
deviations from the standard model that are currently
being tested in the Large Hadron Collider in CERN
[26,27]. One of the great features of supersymmetric
models, that is also being put to the test, is that they
could contain dark matter candidates in their spectra
[28,29]. In addition, supergravity also provides phenom-
enological models for the cosmological inflation [30,31].
In supersymmetric gauge theories, the knowledge of the
explicit expressions for Killing spinors is of fundamental
relevance, since the Killing spinors and Killing vectors
fields are essential for computing the supersymmetric
algebra. Therefore, the search for spacetimes possessing
Killing spinors and the explicit expressions for their
Killing spinors is certainly of relevance for the study of
these physical phenomena.
The outline of the article is the following. Section II sets

some conventions adopted in the rest of the work and
provides a basic review about the spinorial formalism and
the Killing spinor equation. In Sec. III, the six-dimensional
index spinorial formalism is introduced, which plays a
central role in this work. Particularly, it is shown how
differential forms and the Riemann curvature are repre-
sented in such notation. In the sequel, Sec. IV shows how
the equations satisfied by Killing-Yano and closed con-
formal Killing-Yano tensors are written in the index
spinorial approach. In addition, the Killing spinor equation
is also transcribed to the latter formalism. Then, in Sec. V,
all possible KY and CCKY tensors that descend from the
existence of a Killing spinor are constructed. The integra-
bility conditions that must be satisfied by the curvature in
order for a six-dimensional manifold to admit a Killing
spinor are presented in Sec. VI. In the same section, a brief
discussion about restrictions on the holonomy group is also
addressed. The main content of this article shows up in
Sec. VII, in which the Killing spinor equation is explicitly
integrated in some particular cases. In this section, the
Killing spinors in spaces of Lorentzian signature are
classified into two algebraic types. Moreover, we point
out some general prerequisites that must be satisfied by a
spacetime in order for it to possess a Killing spinor of a
particular type. Finally, the conclusions and prospects are
presented in Sec. VIII. Some supplementary material is
displayed in Appendixes A and B.
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II. KILLING SPINOR EQUATION

In this section we shall set the conventions adopted
throughout the article. Let ðM; gÞ be an n-dimensional
Riemannian manifold with the metric g being of arbitrary
signature. In this work we are mainly interested in local
results, so that most claims are valid only in a local patch
of M. Moreover, we shall consider solely the even-
dimensional case. In what follows, μ; ν; ρ;… stands for
coordinate indices of a local coordinate system fxμg whose
associated frame of vector fields will be denoted by
fEμ ¼ ∂μg; these indices run from 1 to n. On the other
hand, a; b; c;…, which also range from 1 to n, refer to the
indices that label the vector fields feag of a local frame such
that the mutual inner products are constant,

gðea; ebÞ≡ gab; where ∂μgab ¼ 0:

It will be assumed that ðM; gÞ admits a spin structure [32];
namely it has a well-defined spinorial bundle. The spinors
shall be denoted by greek letters in boldface, fψ; η;…g.
The Clifford action of a vector field V on a spinor field ψ
shall be written as V · ψ. Since the inner products of the
frame feag are constant, it is always possible to introduce a
local spinorial basis fξαg, with α; β; ς;… ranging from 1 to
2n=2, such that the representation of the Clifford operators
ea are constant, namely

ea · ξα ¼ ðγaÞβαξβ;

where the matrices γa are constant, ∂μðγaÞβα ¼ 0. In such a
basis, the spinorial representation of the coordinate frame
fEμg will be denoted by the matrices Γμ,

Eμ · ξα ¼ ðΓμÞβαξβ:

Here, indices enclosed by round brackets are supposed to
be symmetrized, while indices enclosed by square brackets
are skew-symmetrized. Thus, for example,

ΓðμΓνÞ ¼
1

2
ðΓμΓν þ ΓνΓμÞ ¼ gμν; ð1Þ

which stems from the very definition of Clifford algebra.
Analogously,

Γμν ≡ Γ½μΓν� ¼
1

2
ðΓμΓν − ΓνΓμÞ;

where we have adopted the usual definition Γμ1���μp≡
Γ½μ1 � � �Γμp�.
Since we are considering the case in which the dimen-

sion n is even, we can introduce the chirality matrix

ϒ ∝ γ1γ2 � � � γn;
where the proportionality constant is chosen in a way
that ϒ2 ¼ 1. This matrix splits the spinor bundle into two
sub-bundles of dimension 2

n−2
2 , according to the eigenvalue

of the spinor with respect to its action. Spinors with
eigenvalue 1 are called positive chirality Weyl spinors,
while those with eigenvalue −1 are called Weyl spinors of
negative chirality. Besides the chirality matrix, there are
some other matrices that play an important role in the
spinorial formalism, for instance, invertible matrices A, B
and C obeying the relations

AγaA−1 ¼ −γ†a; BγaB−1 ¼ γ�a; CγaC−1 ¼ −γta;

where γ†a, γ�a and γta stand for the Hermitian conjugate, the
complex conjugate and the transpose matrix of γa, respec-
tively. In particular, note that we can set C ¼ BA. The
matrix B enables the definition of a basis-independent
notion of complex conjugation of a spinor. Indeed, if ψ is a
spinor, its charge conjugate is defined by

ψ̄ ¼ B−1ψ�;

namely, its components are ψ̄α ¼ ðB−1ÞαβðψβÞ�. The main
feature of this definition is that ψ̄ and ψ transform in the
same way under the connected part (to the identity) of the
orthogonal group that preserves the metric gab. Further, by
means of the matrix C, one can define an inner product
between spinors that is also invariant under the action of the
latter group:

hψ;ϕi ¼ ψ tCϕ ¼ ψαCαβϕ
β: ð2Þ

Using this product one can, in addition, define the follow-
ing other products that, likewise, are invariant under the
action of the connected part of the orthogonal group:

hψ;ϒϕi; hψ̄;ϕi; hψ̄;ϒϕi: ð3Þ

Generally, all these inner products are different and
independent. In particular, the inner product hψ;ϒϕi is
invariant under the action of the group PinðRnÞ, the
universal covering of the group OðnÞ. Note that since
hψ̄; ϕ̄i ¼ �hψ;ϕi�, it follows that hψ̄; ϕ̄i is not indepen-
dent from hψ;ϕi. Actually, no further inner products can be
generated in a trivial way.
Let ∇ denote the Levi-Cività connection of the tangent

bundle. Then, this connection can be uniquely extended to
the spinorial bundle if we assume that its extension is
compatible with the Clifford action as well as with the
natural inner products on the spinorial bundle [32,33]. We
shall denote this extension by the same symbol. More
precisely, the following Leibniz rules are assumed to hold:

∇aðV · ψÞ ¼ ð∇aVÞ · ψ þ V ·∇aψ and

∇ahψ;ϕi ¼ h∇aψ;ϕi þ hψ;∇aϕi; ð4Þ

where V is an arbitrary vector field while ψ and ϕ are
arbitrary spinor fields. If the covariant derivatives of the
frame vectors feag are given by
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∇aeb ¼ ωab
cec ð5Þ

then one can show that, in order for Eq. (4) to hold, the
spinorial connection must have the following action in the
spinorial frame:

∇aξα ¼ ðΩaÞβαξβ; where Ωa ¼ −
1

4
ωa

bcγbγc: ð6Þ

Thus, if ψ ¼ ψαξα is a general spinor then

∇aψ ¼ ð∂aψ
α þ ðΩaÞαβψβÞξα:

Using indices, as done henceforth, the latter equation is
written as

∇aψ
α ¼ ∂aψ

α þ ðΩaÞαβψβ:

Additionally, the covariant derivative of an object with
lower spinorial index, namely a section in the dual spinor
bundle, is given by

∇aζα ¼ ∂aζα − ðΩaÞβαζβ:

The derivative of objects with several spinorial indices
follows trivially from the latter equations. For instance,

∇aNα
β ¼ ∂aNα

β þ ðΩaÞαςNς
β − Nα

ςðΩaÞςβ
⇒ ∇aN ¼ ∂aN þ ½Ωa; N�; ð7Þ

where the spinorial indices have been omitted in the latter
identity and ½Ωa; N� stands for the commutator of the
“matrices” Ωa and N. In particular, since ∂aγb ¼ 0, it
follows that the derivative of the Clifford operators γa is
given by

∇aγb ¼ ½Ωa; γb� ¼ ωab
cγc;

which resembles Eq. (5), as it should. On the other hand,
when computing the covariant derivative of Γμ, one must
account for the covariant derivative of both the vectorial
index μ and the omitted spinorial indices. Pleasantly, it
turns out that these contributions cancel each other, so that

∇μΓν ¼ 0:

Further, from the definition of the operators A, B and C, the
following relations can be easily obtained:

AΩa ¼ −Ω†
aA; BΩa ¼ Ω�

aB; CΩa ¼ −Ωt
aC:

These properties are of relevance for proving that the
defined extension of the Levi-Cività connection satisfies
the Leibniz rule with respect to the inner products defined
in Eqs. (2) and (3). Finally, before proceeding, let us point
out two important identities encompassing the Riemann

curvature of the manifold. First, it is possible to relate the
curvature of the spinorial connection to the Riemann tensor
as follows [32]:

ð∇μ∇ν −∇ν∇μÞψ ¼ 1

4
Rμν

ρσΓρσψ: ð8Þ

Further, if D ¼ Γμ∇μ is the Dirac operator, then, manipu-
lating the latter relation, it follows that

D2ψ ¼ ∇μ∇μψ −
1

4
Rψ; ð9Þ

where R stands for the Ricci scalar.
A nonzero spinor field ψ is said to be a Killing spinor

whenever there exists a constant α such that the following
equation holds:

∇μψ ¼ αΓμψ: ð10Þ

We shall call the constant α the eigenvalue of the Killing
spinor, since it is, essentially, the eigenvalue under the
action of the Dirac operator. Indeed, Eq. (10) trivially
implies 1

nDψ ¼ αψ. Now, taking the covariant derivative of
the above equation and using Eq. (8), it is straightforward to
arrive at the following integrability condition:

Rμν
ρσΓρσψ ¼ −8α2Γμνψ: ð11Þ

The latter relation turns out to be equivalent to the
following integrability conditions:

R ¼ −4α2nðn − 1Þ;
�
Rμν −

R
n
gμν

�
Γνψ ¼ 0;

CμνρσΓρσψ ¼ 0; ð12Þ

where Rμν is the Ricci tensor while Cμνρσ denotes the
conformal curvature, the so-called Weyl tensor. In particu-
lar, the first of these relations implies that the constant α
must be either real or purely imaginary, depending on the
sign of the scalar curvature. Further, in a space whose Ricci
scalar vanishes, the Killing spinor must be covariantly
constant. Moreover, applying Γσ on the left of the second
identity in Eq. (12) and using the fact that in the Euclidean
signature the matrices Γμ admit a Hermitian representation,
one can check that in this signature, the manifold is an
Einstein manifold [34]. Nonetheless, in non-Euclidean
signatures, it is perfectly possible for a non-Einstein
manifold to admit a Killing spinor.
From the relation ϒΓμ ¼ −Γμϒ, valid in even dimen-

sions, and from the fact that ϒ is covariantly constant it
follows that, given a Killing spinor ψ, one can construct
another Killing spinor whose eigenvalue has opposite sign.
More precisely, if ψ obeys Eq. (10) then
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~ψ ≡ϒψ ⇒ ∇μ ~ψ ¼ −αΓμ ~ψ:

Therefore, in even dimensions, Killing spinors with non-
zero eigenvalue (α ≠ 0), come in pairs with their eigen-
values differing by the sign. In particular, this implies that a
Killing spinor with nonzero eigenvalue cannot be chiral.
Now, let us see that if ψ is a Killing spinor with eigenvalue
α then its conjugate, ψ̄, is a Killing spinor with eigenvalue
α�. In order to attain this result, one must realize that
∇μψ� ≠ ð∇μψÞ�, which stems from the fact that the
spinorial connection Ωa is not real. Indeed, one can easily
check that

ð∇μψÞ� ¼ ∇μðψ�Þ þ ðΩ�
μ − ΩμÞψ�:

Thus, assuming that ψ obeys Eq. (10), it follows that

∇μψ̄ ¼ ∇μðB−1ψ�Þ ¼ ðΩμB−1 − B−1ΩμÞψ� þ B−1∇μðψ�Þ
¼ B−1½ðBΩμB−1 −ΩμÞψ� þ∇μðψ�Þ�
¼ B−1½ðΩ�

μ − ΩμÞψ� þ∇μðψ�Þ�
¼ B−1ð∇μψÞ� ¼ B−1ðαΓμψÞ� ¼ α�Γμψ̄;

which is the desired result.
It is a simple matter to prove that every Killing spinor

obeys the twistor equation,

∇μψ ¼ 1

n
ΓμDψ: ð13Þ

However, the converse is not true in general. For instance, a
twistor can be chiral, while a Killing spinor with nonzero
eigenvalue cannot. Nonetheless, in the special case of an
Einstein manifold, one can always use a twistor to generate
a Killing spinor [34]. More precisely, if χ is a twistor in an
Einstein manifold then the spinors

ψ� ≡ χ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðn − 1Þ
−nR

r
Dχ

are Killing spinors with eigenvalues

α ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−R
4nðn − 1Þ

s
: ð14Þ

However, it is worth stressing that, generally, for manifolds
that do not obey the Einstein condition, the existence of a
twistor does not imply the existence of a Killing spinor.
One of the main practical utilities of the Killing spinors is

that they can be used to generate symmetry tensors which,
eventually, lead to conservation laws as well as to the
integrability of field equations using the manifold as a
background. Indeed, if ψ is a Killing spinor then each of the
tensors

hψ;Γμ1μ2���μpψi; hψ;Γμ1μ2���μpϒψi;
hψ̄;Γμ1μ2���μpψi and hψ̄;Γμ1μ2���μpϒψi ð15Þ

is either a Killing-Yano (KY) tensor or a closed conformal
Killing-Yano (CCKY) tensor. For instance, let us take the
derivative of the first of these skew-symmetric tensors:

∇νhψ;Γμ1���μpψi ¼ hαΓνψ;Γμ1���μpψi þ hψ;Γμ1���μpαΓνψi
¼ αψ tðΓt

νCΓμ1���μp þ CΓμ1���μpΓνÞψ
¼ αψ tCð−ΓνΓμ1���μp þ Γμ1���μpΓνÞψ: ð16Þ

Then, by means of the Clifford algebra, one can prove that

−ΓνΓμ1μ2���μp þΓμ1μ2���μpΓν¼
(
−2Γνμ1μ2���μp ifp is odd;

−2pgν½μ1Γμ2���μp� ifp is even:

Therefore, defining

Yμ1μ2���μp ≡ hψ;Γμ1μ2���μpψi;

it follows from Eq. (16) that if p is odd then

∇νYμ1μ2���μp þ∇μ1Yνμ2���μp ¼ 0;

namely the tensor Y is a Killing-Yano tensor. On the other
hand, if p is even the following equation holds,

∇νYμ1μ2���μp ¼ 2gν½μ1hμ2���μp�;

where hμ1���μp−1 ≡ −phψ;Γμ1���μp−1ψi;

which means that Y is a closed conformal Killing-Yano
tensor or, equivalently, its Hodge dual is a Killing-Yano
tensor. The proof that the other tensors in (15) are either a
KY or a CCKY tensor goes in a completely analogous
fashion. However, the tensors in (15) are not all indepen-
dent from one another. Indeed, apart from a multiplicative
constant, the Hodge dual of hψ;Γμ1���μpψi is equal to
hψ;Γν1���νn−pϒψi, so that they both generate the same
conservation laws. Moreover, some of these tensors might
be identically zero. It seems that one of the first works to
explicitly construct symmetry tensors using Killing spinors
was Ref. [11], in which covariantly constant spinors were
used to generate the covariantly constant differential forms
that define Euclidean manifolds of special holonomy.
Conformal Killing-Yano tensors generated by twistors have
been considered in Ref. [35] and their generalizations for
connections with totally skew-symmetric torsion have been
investigated in Ref. [36]. The use of these symmetry tensors
in the context of supergravity has also been contemplated in
the literature [7].
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III. SPINORS IN SIX DIMENSIONS

Now it’s time to move on to the specific case of
interest in this article, namely six-dimensional manifolds.
Although one can obtain several relevant results about
spinors without specifying the dimension, as illustrated
in the preceding section, it turns out that many features
of spinors are highly dependent on the dimension.
Therefore, it is always fruitful and illuminating to stick
to a particular dimension and explore its particularities in
full detail. Indeed, this was the path taken by Penrose
when he introduced the two-component spinors in four
dimensions [10]. Unarguably, this two-component for-
malism played an important role in the understanding of
several results in four-dimensional general relativity.
Given this motivation, the aim of this work is to take
advantage of the spinorial index notation valid specifi-
cally in six dimensions in order to exploit the subject of
Killing spinors. A detailed introduction to the spinorial
index formalism in six dimensions is available in
Ref. [37]. Previous accounts of such formalism have
also appeared in the literature in the context of conformal
field theories [38,39]; see also [40]. Moreover, this
approach has been used to investigate the Kerr theorem
in six dimensions [41]. The index spinorial formalism in
five dimensions has also been worked out in the literature
[42]; see also [43].
The key to find how spinors should be represented in

six dimensions is to note that SpinðR6Þ, the double
covering of SOð6Þ, is isomorphic to SUð4Þ. Therefore,
a chiral spinor must transform into a four-dimensional
representation of SUð4Þ. There are two such representa-
tions: the representation that associates to each element
U ∈ SUð4Þ, the usual 4 × 4 unitary matrix UA

B of unit
determinant, and the representation that associates to
U ∈ SUð4Þ, a matrix ~UA

B that is the transposed inverse
of UA

B, where the indices A; B;C;… range from 1 to 4.
All other four-dimensional representations are related
to one of these two by similarity transformations. Thus,
the objects ψA and ψA that transform under the action
of U ∈ SUð4Þ as

ψA⟶
U

UA
Bψ

B; ψA⟶
U ~UA

BψB ð17Þ

are the desired chiral spinors. More precisely, we shall
say that ψA is a spinor of positive chirality while ψA has
negative chirality. Therefore, a general spinor, also called
a Dirac spinor, is given by a pair ψ ¼ ðψA;ψAÞ. It is
worth stressing that, generally, the components ψA and
ψA are totally independent from each other, summing 8
complex degrees of freedom for the Dirac spinor ψ. Note
that the scalar ψAψA is invariant under the action of
SUð4Þ and, thus, invariant under SpinðR6Þ.
Now, let us define the symbols εABCD and εABCD to be

such that

εABCD ¼ ε½ABCD�; ε1234 ¼ 1 and

εABCD ¼ ε½ABCD�; ε1234 ¼ 1:

Then, due to the fact that the matrices UA
B and ~UA

B have
unit determinant, it follows that these totally antisymmetric
symbols are invariant under the actions of SUð4Þ.
Therefore, these objects might be related to the metric of
the Euclidean space, as the metric is invariant under the
action of SOð6Þ. Due to this relation, one concludes that the
spinorial representation of a vector Va in six dimensions is
given by an object with two spinorial indices that are skew-
symmetric, VAB ¼ V ½AB�, so that the following relation
holds,

gabVaZb ¼ 1

2
εABCDVABZCD;

where the factor of 1=2 was chosen for convenience. Note
that the objects VAB ¼ V ½AB� have 6 degrees of freedom,
just as the vectors Va. In the same fashion as one can use
the metric gab and its inverse gab to lower or raise vectorial
indices, a pair of skew-symmetric spinorial indices can also
be lowered or raised by means of the symbols εABCD and
εABCD:

Va ¼ gabVb⇔VAB ¼ 1

2
εABCDVCD and

Va ¼ gabVb⇔VAB ¼ 1

2
εABCDVCD: ð18Þ

It is worth stressing that, differently from the four-dimen-
sional case, in six dimensions there is no natural way to
raise or lower a single spinorial index.
Just as SOð6Þ vectors are represented in the spinorial

formalism by VAB ¼ V ½AB�, other tensors also transform
according to specific spinorial representations. For in-
stance, let us obtain the spinorial representation of a
bivector, namely a skew-symmetric tensor of rank 2,
Bab ¼ B½ab�. From what we have just seen, it follows that
the bivectors in six dimensions are represented in the
spinorial formalism by objects BABCD such that

BABCD ¼ B½AB�½CD� and BABCD ¼ −BCDAB:

However, one can check that these objects are in one-to-one
correspondence with the objects of the form BA

B that have
vanishing trace, BA

A ¼ 0. Indeed, the “isomorphism” map
is given by BA

B ¼ εADCEBDCEB. Therefore, we can say
that, in the six-dimensional spinorial formalism, bivectors
are traceless objects with one index up and one index down.
Table I compiles the spinorial representation for some
tensors of interest. An analogous table is available in
Ref. [37], to which the reader is directed in order to grasp
its details.
In what follows, we shall use the basis fχpg for

expressing the spinors of positive chirality, where the
components of the spinors of this basis are
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χ 1 ↔ δA1 ; χ 2 ↔ δA2 ; χ 3 ↔ δA3 ; χ 4 ↔ δA4 ;

while the basis adopted for spinors of negative chirality will
be the dual basis fζpg, whose components are

ζ1 ↔ δ1A; ζ2 ↔ δ2A; ζ3 ↔ δ3A; ζ4 ↔ δ4A:

By means of these bases we can build the following
independent vector fields that form a frame for the tangent
bundle:

eAB1 ¼ χ½A1 χ
B�
2 ; eAB2 ¼ χ½A1 χ

B�
3 ; eAB3 ¼ χ½A1 χ

B�
4

eAB4 ¼ χ½A3 χ
B�
4 ; eAB5 ¼ χ½A4 χ

B�
2 ; eAB6 ¼ χ½A2 χ

B�
3 : ð19Þ

Lowering the skew-symmetric pairs of spinorial indices, we
find that

e1AB ¼ ζ3½Aζ
4
B�; e2AB ¼ ζ4½Aζ

2
B�; e3AB ¼ ζ2½Aζ

3
B�

e4AB ¼ ζ1½Aζ
2
B�; e5AB ¼ ζ1½Aζ

3
B�; e6AB ¼ ζ1½Aζ

4
B�:

ð20Þ
The inner products of the vector fields of this basis are

gðei; ejÞ ¼ 0; gðei; ejþ3Þ ¼
1

2
δij;

gðeiþ3; ejþ3Þ ¼ 0; ð21Þ

with the indices i and j running from 1 to 3. In particular, all
vector fields in this basis are null, so that we shall refer to it
as a null frame. The reality conditions of this frame are
related to the signature of the metric [44]. For instance, in
the Lorentzian case the reality condition is given by [45]

e�1 ¼ e1; e�4 ¼ e4; e�2 ¼ e5; e�3 ¼ e6; ð22Þ

which can be easily verified by means of constructing a null
frame out of a real Lorentz frame whose metric is
diagð−1; 1; 1; 1; 1; 1Þ. In order for the reality condition
(22) to hold, one can assume that the charge conjugation of
the spinors in the basis are given by

χ̄ 1 ¼ χ 2; χ̄ 2 ¼ −χ 1; χ̄ 3 ¼ −χ 4; χ̄ 4 ¼ χ 3

ζ̄1 ¼ ζ2; ζ̄2 ¼ −ζ1; ζ̄3 ¼ −ζ4; ζ̄3 ¼ ζ4:

ð23Þ

Adopting these conjugation rules is tantamount to assume
Lorentz signature, which can be checked by means of using
(19) along with (23) and then comparing with (22).
In what follows, the covariant derivative of a Dirac

spinor ψ ¼ ðψA;ψAÞ will be written as

∇ABψ
C ¼ ∂ABψ

C þ ðΩABÞCDψ
D and

∇ABψC ¼ ∂ABψC − ψDðΩABÞDC; ð24Þ

where ðΩABÞCD is the spinorial connection and ∂AB stands
for the partial derivative. For instance, ∂34 denotes the
partial derivative along the vector field e4, in accordance
with Eq. (19). For more details about this spinorial
connection, see Appendix B.
Since the Riemann tensor is skew-symmetric in its

two pairs of indices, Rabcd ¼ R½ab�½cd�, it follows, from
the bivector representation shown in Table I, that the
Riemann tensor is given in the spinorial formalism by
RA

B
C
D, where RA

A
C
D ¼ 0 and RA

B
C
C ¼ 0. Thus, the

analogue of Eq. (8) in this index notation is [40,41]

εGABCð∇AB∇CD −∇CD∇ABÞψE ¼ 4RG
D
E
Fψ

F: ð25Þ

The torsionless property of the connection implies that the
action of the curvature operator on the scalar χEλE must
vanish, from which one concludes that

εGABCð∇AB∇CD −∇CD∇ABÞψE ¼ −4RG
D
F
EψF: ð26Þ

Just as the Riemann tensor can be decomposed into its
irreducible parts with respect to the local action of the
orthogonal group, the same can be done for its spinorial
analogue. More precisely, this decomposition is given by

4RA
C
B
D ¼ ΨAB

CD þ ΦAB
CD −

1

60
RðδACδBD − 4δADδ

B
CÞ;
ð27Þ

TABLE I. The first column gives the tensorial representation according to SOð6Þ. For instance, Sab denotes a
traceless symmetric tensor of rank 2, while the object Cabcd is any tensor with the same algebraic symmetries of a
Weyl tensor. The second column gives the spinorial representation for each tensor of the first column. The third
column gives the algebraic symmetries that must be satisfied by the spinorial indices.

SOð6Þ representation Spinorial representation Algebraic symmetries

Va VAB VAB ¼ V ½AB�
Sab ¼ SðabÞ, Saa ¼ 0 SABCD SABCD ¼ S½AB�½CD�, SABCD ¼ 0

Bab ¼ B½ab� BA
B BA

A ¼ 0

Tabc ¼ T ½abc� ðTAB; TABÞ TAB ¼ TðABÞ, TAB ¼ TðABÞ
Cabcd ¼ C½cd�½ab�, Ca

bad ¼ 0 CAB
CD CAB

CD ¼ CðABÞðCDÞ, CAB
CB ¼ 0
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where ΨAB
CD represents the Weyl tensor, ΦAB

CD stands for
the traceless part of the Ricci tensor and R is the Ricci
scalar. In accordance with Table I, the algebraic symmetries
of the latter objects are the following:

ΨAB
CD ¼ ΨðABÞðCDÞ; ΦAB

CD ¼ Φ½AB�½CD�;

ΨAB
CB ¼ 0 ¼ ΦAB

CB: ð28Þ

Now that we have set the conventions and introduced the
spinorial index formalism in six dimensions, it is time to
present the main results of this work. To the best of the
authors’ knowledge, the results of the following sections
are original and have not appeared elsewhere.

IV. SYMMETRY EQUATIONS
IN SIX DIMENSIONS

The goal of this section is to obtain how the equations
obeyed by Killing-Yano (KY) tensors, closed conformal
Killing-Yano (CCKY) tensors and Killing spinors are
transcribed to the spinorial formalism using the index
notation presented in the previous section.
The cases of a Killing vector field Y and a closed

conformal Killing vector H are quite simple. These fields
obey the following equations respectively,

∇aYb þ∇bYa ¼ 0 and ∇aHb ¼ 2hgab;

where h is some scalar function. Therefore, if YAB andHAB
are the spinorial representations of these fields, it is
immediate to conclude that the spinorial equations satisfied
by these fields are

∇ABYCD þ∇CDYAB ¼ 0 and ∇ABHCD ¼ hεABCD;

ð29Þ

where the equivalence gab ∼ 1
2
εABCD, that comes from

Eq. (18), has been taken into account. An equivalent
way to write the equation satisfied by a Killing vector
field is ∇aYb ¼ Bab, where Bab ¼ B½ab� is some bivector.
For lack of any other option, due to the necessary arrange-
ment of indices, the spinorial analogue of the latter equation
must be given by

∇ABYCD ∝ δ½C½AB
D�

B�;

where the traceless object BD
B is the spinorial representa-

tion of the bivector Bab; see Table I. The proportionality
multiplicative factor missing in the previous relation can be
chosen to be 1 by absorbing it into the bivector BD

B.
Now, let us obtain how the equation of a CCKY tensor

of rank 2 is written in the spinorial formalism. If H is a
closed conformal Killing-Yano bivector then there exists
some 1-form hc such that the following equation holds:

∇aHbc ¼ 2ga½bhc�: ð30Þ

In particular, the exterior derivative of H vanishes. If HA
B

and hAB are the spinorial representations of Hab and ha
respectively, then the most general way to arrange the
spinorial indices to assure that the derivative of HA

B is
linear in hAB is

∇ABHC
D ¼ aεABDEhCE þ bδC½AhB�D þ cδCDhAB;

where a, b and c are constants. However, due to the identity

εABDEVCE ¼ 2δC½AVB�D þ δCDVAB;

valid for any vector VAB, it follows, without loss of
generality, that one can set a ¼ 0 while redefining b and
c. Assuming this and noting that HC

C ¼ 0, one concludes
that b ¼ 4c. Then, the remaining multiplicative constant
can be absorbed in hAB. In conclusion, if HA

B is a CCKY
bivector then there exists some hAB ¼ h½AB� such that the
following relation holds:

∇ABHC
D ¼ δC½AhB�D þ 1

4
δCDhAB: ð31Þ

In particular, the latter equation implies that ∇AðBHA
CÞ ¼ 0

and ∇AðBHCÞ
A ¼ 0 which, holding simultaneously, means

that the exterior derivative of the bivector HA
B vanishes

[40], as it should.
On the other hand, if Y is a bivector obeying the KY

equation then there exists some 3-vector T such that

∇aYbc ¼ Tabc:

Thus, the covariant derivative of Y is proportional to a 3-
vector T. In the spinorial formalism, a 3-vector is repre-
sented by a pair of symmetric objects with two spinorial
indices, ðTAB; TABÞ, where TAB is related to the self-dual
part of the 3-vector, while TAB represents the anti-self-dual
part. The bivector Yab is represented by the traceless object
YA

B. Therefore, in order for the expression ∇ABYC
D to be

skew-symmetric in the pair of indices AB and traceless in
the pair CD, one must have

∇ABYC
D ¼ 2δC½ATB�D þ εABDETEC: ð32Þ

The freedom on the choice of the constant coefficients that
could appear has been absorbed into the definitions of TAB

and TAB. As a consistency check, one can verify that the
divergence of YC

D vanishes as it should. Indeed, the
condition of vanishing divergence is given by ∇A½BYA

C� ¼
0 [40], which is satisfied whenever Eq. (32) holds, since
TAB and TAB are both symmetric. At this point it is worth
stressing that just as the components ψA and ψA of a Dirac
spinor ψ ¼ ðψA;ψAÞ are totally independent from each
other, the components TAB and TAB of a general 3-vector
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T ¼ ðTAB; TABÞ are also independent. Indeed, TAB and TAB
have 10 components each, which sums up the 20 compo-
nents of a 3-vector in six dimensions.
Now, if H is a closed conformal Killing-Yano tensor of

rank 3, then it follows that there exists some bivector h such
that

∇aHbcd ¼ 2ga½bhcd�:

Thus, if ðHAB;HABÞ is the spinorial representation of the 3-
vector H, and hAB is proportional to the spinorial repre-
sentation of the bivector h, then it follows, for lack of other
algebraic possibilities, that

∇ABHCD ¼ aδðC½Ah
DÞ

B� and ∇ABHCD ¼ bδ½AðCh
B�
DÞ:

In order for the 3-vector H to have vanishing exterior
derivative one must set a ¼ b, so that ∇ABHAC ¼ ∇ACHAB
[40]. Moreover, the remaining freedom on the collective
multiplicative factor can be absorbed in the definition of
hAB. Thus, ðHAB;HABÞ is a CCKYof rank 3 if, and only if,
there exists some bivector hAB such that

∇ABHCD ¼ δðC½Ah
DÞ

B� and ∇ABHCD ¼ δ½AðCh
B�
DÞ: ð33Þ

Since every KY tensor is the Hodge dual of some CCKY,
and since the Hodge dual of the 3-vector ðHAB;HABÞ is the
3-vector ðHAB;−HABÞ, we conclude that if Y ¼ ðYAB; YABÞ
is a KY 3-vector it satisfies the equation

∇ABYCD ¼ δðC½AB
DÞ

B� and ∇ABYCD ¼ −δ½AðCB
B�
DÞ

ð34Þ

for some bivector BA
B. Apart from a multiplicative con-

stant, such bivector is the Hodge dual of the exterior
derivative of Y. Note that it is pointless to present the
spinorial equations satisfied by KY and CCKY tensors of
higher ranks, since the latter are just the Hodge dual of one
of the previous tensors and, therefore, do not lead to new

conservation laws. For example, a KY tensor of rank 4 is
the Hodge dual of a CCKY tensor of rank 2, while a CCKY
tensor of rank 4 is the Hodge dual of a rank 2 KY tensor.
Finally, let us obtain how the Killing spinor equation is

represented in the index formalism. In order to accomplish
this, one must recognize that the Clifford action of a vector
field V in a spinor ψ ¼ ðψA;ψAÞ is given by

V · ψ ¼ ð2VABψB;−2VABψ
BÞ; ð35Þ

as one can check noting that in such a way the Clifford
algebra of Eq. (1) is properly satisfied. Then, if ψ ¼
ðψA;ψAÞ is a Killing spinor of eigenvalue α, namely
∇aψ ¼ αγaψ, one concludes that

∇aψ
C ¼ 2αðeaÞCDψD and ∇aψC ¼ −2αðeaÞCDψD:

ð36Þ

Thus, since the vectorial index a can be replaced by a
skew-symmetric pair of spinorial indices, and since
ðeaÞμðebÞμ ¼ δba, the following equivalences hold:

ðeaÞAB ↔ ðeCDÞAB ¼ δ½AC δ
B�
D ;

ðeaÞAB ↔ ðeCDÞAB ¼ δ½CAδ
D�
B

Hence, the Killing spinor equation can be written as

∇ABψ
C ¼ 2αδC½AψB� and ∇ABψC ¼ −2αδ½ACψB�: ð37Þ

An equivalent form of writing these equations can be
obtained by means of raising and lowering the derivative
indices in Eq. (37), after which one obtains the following
equations that might be satisfied by a Killing spinor:

∇ABψC ¼ αεABCDψD and ∇ABψC ¼ −αεABCDψD:

ð38Þ

Table II sums up the spinorial form of the symmetry
equations that we have seen in this section.

TABLE II. The first column presents the type of tensor, where KY stands for Killing-Yano tensor and CCKY denotes a closed
conformal Killing-Yano tensor. In the second column, the spinorial equations satisfied by the objects of the first column are shown. The
third column displays the constraints that might be satisfied by the objects that appear in the right-hand side of the spinorial equations.

Type of symmetry Equations satisfied Constraints

KY of rank 1 ∇ABYCD ¼ δ½C½AB
D�

B� BA
A ¼ 0

KY of rank 2 ∇ABYC
D ¼ 2δC½ATB�D þ εABDETEC TAB ¼ TðABÞ; TAB ¼ TðABÞ

KY of rank 3 ∇ABYCD ¼ δðC½AB
DÞ

B�; ∇ABYCD ¼ −δ½AðCB
B�

DÞ BA
A ¼ 0

CCKY of rank 1 ∇ABHCD ¼ hεABCD ×
CCKY of rank 2 ∇ABHC

D ¼ δC½AhB�D þ 1
4
δCDhAB hAB ¼ h½AB�

CCKY of rank 3 ∇ABHCD ¼ δðC½Ah
DÞ

B�; ∇ABHCD ¼ δ½AðCh
B�
DÞ hAA ¼ 0

Killing spinor ∇ABψ
C ¼ 2αδC½AψB�; ∇ABψC ¼ −2αδ½ACψB� ×
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There are some advantages of writing the preceding
symmetry equations using spinorial indices. For example,
the integrability conditions necessary for these equations to
admit a solution are generally easier to obtain and under-
stand in this spinorial formalism, as has proved to be the
case in four dimensions. Moreover, these equations might
be more easily integrated. For instance, in four-dimensional
spacetimes, when one assumes that the Petrov type of the
Weyl tensor is D it is immediate to verify that there are two
null directions that play a distinguished role and that some
Newman-Penrose coefficients vanish, which facilitates the
integration of Einstein’s vacuum equation. Indeed, due to
the latter fact, Kinnersley has been able to fully integrate
Einstein’s vacuum equation for type D spacetimes [46].
Particularly, in this article, we will exploit the index
formalism introduced above in order to integrate the
Killing spinor equation.

V. CONSTRUCTING SYMMETRY TENSORS
FROM A KILLING SPINOR

A useful profit of using the index notation introduced in
the previous sections is that one can easily guess whether a
symmetry can be used to generate another symmetry. The
spinorial indices are like small building blocks that can be
combined in order to construct tensors that might carry a
relevant geometrical significance. In this section we will
illustrate this fact by constructing symmetry tensors out of a
Killing spinor, in the spirit of Eq. (15).
Let ψ ¼ ðψA;ψAÞ be a Killing spinor with eigenvalue α;

namely Eqs. (37) and (38) are satisfied. The first combi-
nation that we can form with this spinor is the scalar ψAψA.
Computing its derivative, we have

∇ABðψCψCÞ ¼ 2αδC½AψB�ψC − αψCεABCDψ
D ¼ 0:

Therefore, the scalar ψAψA must be constant. Next, note
that one can use the Killing spinor to build the object ψAψB
that resembles a bivector. However, generally, it is not
traceless. But, subtracting its trace we end up with YA

B ¼
ψAψB − 1

4
ðψCψCÞδAB which, is, indeed, a bivector. Then,

taking its covariant derivative, we find

∇CDYA
B ¼ ∇CD

�
ψAψB −

1

4
ψEψEδ

A
B

�
¼ ∇CDðψAψBÞ

¼ 2αδA½CψD�ψB − αεCDBEψ
AψE:

Comparing the latter relation with Eq. (32), we conclude
that YA

B is a Killing-Yano bivector whose exterior
derivative is proportional to the 3-vector ðTAB; TABÞ ¼
ðψAψB;−ψAψBÞ. Finally, using the Killing spinor one
can construct 3-vectors of the form ðc1ψAψB; c2ψAψBÞ,
where c1 and c2 are constants. Computing the derivative of
this 3-vector we find that

∇ABðψCψDÞ ¼ c1δ
ðC
½AY

DÞ
B� and

∇ABðψCψDÞ ¼ −c2δ
½A
ðCY

B�
DÞ:

Therefore, taking c1 ¼ c2 ¼ 1 we conclude that
ðψAψB;ψAψBÞ is a KY 3-vector, while its Hodge dual
ðψAψB;−ψAψBÞ, obtained by taking c1 ¼ −c2 ¼ 1, is a
CCKY tensor of rank 3.
Note that, although we have been able to construct KY

tensors of ranks 2 and 3 using the Killing spinor ðψA;ψBÞ,
no vector field has been built. Indeed, it is not hard to get
convinced that there is no natural way to construct a vector
using just one Killing spinor, since a vector has a skew-
symmetric pair of spinorial indices and this cannot be
designed using just the indices of one spinor along with the
natural objects εABCD and δAB. In particular, this observation
implies that, in six dimensions, the relations

hψ;Γμψi ¼ 0 and hψ;Γμϒψi ¼ 0

are valid for any spinor ψ, which can be checked after
introducing a representation for the matrices γa. This
example illustrates very well how the index notation
adopted here can be used to anticipate results that, other-
wise, would not be obvious.
Although we cannot build a Killing vector field using

just the Killing spinor ψ, it is possible to construct vector
fields if we use the conjugated spinor, ψ̄, along with the
spinor ψ itself. Indeed, if ðψA;ψAÞ is a Killing spinor with
eigenvalue α and ðψ̄A; ψ̄AÞ is its conjugate, then it is
obvious that the following vector fields can be built:

VAB ¼ ψ ½Aψ̄B� and ~VAB ¼ ψ ½Aψ̄B�:

Despite these vector fields being neither Killing vectors
nor closed conformal Killing vectors, it is straightforward
to check that the following combinations of them are

K AB
� ¼ VAB∓ ~VAB:

By the same token, one can also define the following useful
scalars, bivectors and 3-vectors respectively:

F� ¼ ψEψ̄E∓ψ̄EψE;

B�A
B ¼ ðψAψ̄B � ψ̄AψBÞ −

1

4
δABðψCψ̄C � ψ̄CψCÞ;

ðT AB
� ; T �

ABÞ ¼ ðψ ðAψ̄BÞ;�ψ ðAψ̄BÞÞ:

In the case of a real eigenvalue α, one can verify, after some
algebra, that these objects obey the following differential
equations:
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∇ABFþ ¼ −4αK−AB

∇ABF− ¼ 0

∇ABK CDþ ¼ −4αδ½C½AB
D�
−B�;

∇ABK−CD ¼ −
α

2
FþεABCD;

∇ABB C
þD ¼ −2αð2δC½AT −

B�D þ εABDET EC
− Þ;

∇ABB C
−D ¼ −4α

�
δC½AKþB�D þ 1

4
δCDKþAB

�
;

∇ABT CD
� ¼ 2αδðC½AB

DÞ
þB�; ∇ABT �

CD ¼ ∓2αδ½AðCB
B�
þDÞ:

These equations, along with Table II, imply that, when α is
real, the tensors Kþ, Bþ and T þ are Killing-Yano tensors
of rank 1, 2 and 3 respectively, whereas the tensorsK−, B−
and T − are closed conformal Killing-Yano tensors of rank
1, 2 and 3 respectively. Moreover, the scalar F− is constant.
On the other hand, if the eigenvalue α of the Killing spinor
ψ is purely imaginary then the roles of these tensors are
interchanged; namely K−, B− and T − are Killing-Yano
tensors while Kþ, Bþ and T þ are closed conformal
Killing-Yano tensors. Moreover, for imaginary α, the scalar
Fþ is constant, whereas F− ceases to be constant. The
results of this section are summed up in Table III.

VI. INTEGRABILITY CONDITIONS FOR THE
KILLING SPINOR EQUATION

In the present section, we shall obtain the integrability
conditions for the Killing spinor equation. Suppose that
ψ ¼ ðψA;ψAÞ is a Killing spinor with eigenvalue α, so that
Eq. (37) holds. Then, due to the identity (25), it follows that

4RG
D
F
Eψ

E ¼ 2ð∇GC∇CD −∇CD∇GCÞψF

¼ 4α2δ½GD ψF� − 6α2δFDψ
G:

Now, taking the symmetric and skew-symmetric parts of
this equation in the pair of indicesGF, we eventually arrive
at the following integrability conditions that must be
satisfied by the curvature in order for the space to admit
a Killing spinor:

R ¼ −120α2; ΦAB
CDψ

D ¼ 0; ΨAB
CDψ

D ¼ 0:

ð39Þ
These constraints are the counterparts of the integrability
conditions presented in Eq. (12). Likewise, working out the
integrability condition associated to the negative chirality
part of the Killing spinor, it follows that

ΦAB
CDψB ¼ 0; ΨAB

CDψB ¼ 0: ð40Þ
As explicitly demonstrated in the following section, these
integrability conditions represent strong constraints on the
types of manifolds that support a Killing spinor field.
It is well known that the Lie algebra of the holonomy

group associated to a connection is determined by
the curvature of this connection; this is the content of the
Ambrose-Singer theorem. More precisely, if Rα

β is the
curvature 2-form of some connection on a fiber bundle, and
if B is a simple bivector tangent to a plane in a tangent
space, then the interior product of the latter into the former,
iBRα

β, is the generator of the holonomy transformation
associated to an infinitesimal loop contained in the plane
tangent to B. In the case of the spinorial bundle of a six-
dimensional space, the action of the Lie algebra generator
associated to the parallel transport of a spinor along an
infinitesimal loop in the plane tangent to the bivector BA

B
can be written in the index formalism as follows:

ðϕA;ϕAÞ ↦ ðBD
CRC

D
A
Bϕ

B;−BD
CRC

D
B
AϕBÞ:

Therefore, using the integrability conditions obtained in the
present section along with Eq. (27), it follows that the

TABLE III. This table describes the symmetry tensors that can be constructed out of a Killing spinor ψ ¼
ðψA;ψAÞ with eigenvalue α. In the above table ψ̄ ¼ ðψ̄A; ψ̄AÞ is the charge conjugate of ψ . Here, KY stands for
Killing-Yano tensor and CCKY denotes a closed conformal Killing-Yano tensor. Since ψ̄ is also a Killing spinor, it
follows that the second, third and fourth objects of this table remain symmetry tensors if we replace ψ by ψ̄.

Type of symmetry Spinorial form

Constant scalar ψAψA
KY of rank 2 ψAψB − 1

4
ðψCψCÞδAB

KY of rank 3 ðψAψB;ψAψBÞ
CCKY of rank 3 ðψAψB;−ψAψBÞ
Constant scalar ψAψ̄A þ α�

α ψ̄
AψA

KY of rank 1 ψ ½Aψ̄B� − α�
2α ε

ABCDψCψ̄D

KY of rank 2 ðψAψ̄B þ α�
α ψ̄

AψBÞ − 1
4
δABðψCψ̄C þ α�

α ψ̄
CψCÞ

KY of rank 3 ðψ ðAψ̄BÞ; α
�
α ψ ðAψ̄BÞÞ

CCKY of rank 1 ψ ½Aψ̄B� þ α�
2α ε

ABCDψCψ̄D

CCKY of rank 2 ðψAψ̄B − α�
α ψ̄

AψBÞ − 1
4
δABðψCψ̄C − α�

α ψ̄
CψCÞ

CCKY of rank 3 ðψ ðAψ̄BÞ;− α�
α ψ ðAψ̄BÞÞ
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action of the previous Lie algebra generator on a Killing
spinor ðψA;ψAÞ is given by

ðψA;ψAÞ ↦ −2α2ðBA
Bψ

B;−ψBBB
AÞ: ð41Þ

Thus, it can be promptly recognized that if the eigenvalue α
vanishes then the Killing spinor is left invariant by the
action of the holonomy group. Since the nontrivial repre-
sentations of the group SOðp; 6 − pÞ have no fixed points,
it follows that the Riemannian holonomy group must be
special in such a case; namely the holonomy is a proper
subgroup of SOðp; 6 − pÞ. Nevertheless, if α is nonvanish-
ing then the holonomy group is not necessarily special.
These features are not exclusive of six dimensions. Indeed,
in any dimension the existence of a covariantly constant
spinor reduces the holonomy while the existence of Killing
spinors with nonvanishing eigenvalue generally is not
associated with the reduction of the Riemannian holonomy.
For instance, the n-dimensional sphere Sn has several
Killing spinors with nonvanishing eigenvalue but its
holonomy group is the full SOðnÞ. Although no excep-
tional result about the holonomy has been obtained in this
paragraph, it is worth pointing out that Eq. (41) can be of
great value on the investigation of the holonomy of six-
dimensional manifolds admitting Killing spinors. This, in
turn, is of relevance to determine the possible number of
unbroken supersymmetries on spontaneous compactifica-
tions [47].

VII. INTEGRATING THE KILLING
SPINOR EQUATION

The aim of the present section is to integrate the Killing
spinor equation in a six-dimensional manifold of
Lorentzian signature. We shall not consider the quite
special case of a covariantly constant spinor; namely we

will assume that the eigenvalue α is nonvanishing. In
particular, this assumption implies that the spinor is non-
chiral. One of the reasons for omitting the case α ¼ 0 is that
simpler such cases have already been quite scrutinized
before [11,12,14]. However, it is worth pointing out the
interesting fact that, in manifolds with Euclidean metrics, it
is possible to rescale the metric in such a way that a Killing
spinor with imaginary eigenvalue1 corresponds to a parallel
spinor on the cone over the original manifold [13,48].
Therefore, in such cases, the study of a Killing spinor with
nonzero eigenvalue reduces to the analysis of a covariantly
constant spinor in a manifold with one more dimension.
But, here, we will work in the Lorentzian signature and the
eigenvalue α can be either real or imaginary, so that this
approach cannot be used.
In what follows, we shall look for solutions for the

equations

∇ABψ
C ¼ 2αδC½AψB� and ∇ABψC ¼ −αεABCDψD;

ð42Þ

namely the Killing spinor equation, in the Lorentzian
signature when α ≠ 0. Our choice of signature is imple-
mented by the use of the reality conditions (22) and (23).
The first advantage of using the index formalism adopted
here is that one can, straight from the beginning, simplify
the algebraic form of the spinor ðψA;ψAÞ by means of using
Lorentz transformations to properly align the spinorial
frame. Indeed, in Eqs. (A13) and (A14) of Appendix A
it has been shown that if ðψA;ψAÞ is a nonchiral spinor then
one can always manage to choose the spinorial frame in
such a way that this spinor field assumes one of the
following algebraic forms:

�
ψ ¼ ðχ 1; fζ4Þ → if ψAψA and ψAψ̄A both vanish

ψ ¼ ðχ 1; f1ζ1 þ f2ζ2Þ → if at least one of the scalarsψAψA and ψAψ̄A is nonvanishing;
ð43Þ

where f is a real function while f1 and f2 are complex
functions. Furthermore, we can check that we must assume
f2 ≠ 0. Indeed, contracting Eq. (42) with ψAψ̄B we find
that

ψAψ̄B∇ABψ
C ¼ αðψCψ̄AψA − ψ̄CψAψAÞ and

ψAψ̄B∇ABψC ¼ 0:

Then, by means of contracting the first of these relations
with ψ̄C and using the charge conjugated version of the
second identity above, we conclude that

ψAψ̄B∇ABðψCψ̄CÞ ¼ αðψ̄Cψ
Cψ̄AψA − ψ̄Cψ̄

CψAψAÞ:
Therefore, if ψCψ̄C is identically zero then ψAψA must
vanish, since we are assuming α ≠ 0. In terms of the second
standard form in Eq. (43), this means that if f2 ¼ 0 then
f1 ¼ 0, which yields a chiral spinor and, therefore, requires
α ¼ 0. Thus, the condition f2 ¼ 0 is inconsistent with
the hypothesis α ≠ 0. Additionally, in accordance with
Table III, it follows that the scalar ψAψA is constant, so that
we can set f1 equal to some constant. Moreover, from

1The sign conventions adopted here for the Clifford algebra
[see Eq. (1)] are different from the ones adopted in [13,48].
Therefore, what here is called an imaginary eigenvalue actually
means a real eigenvalue in those references.
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the same table, it follows that ψAψ̄A þ α�
α ψ̄

AψA is also
constant, which means that the imaginary part of αf2 is
constant. Therefore, we can always suppose that the Killing
spinor has one of the following simple forms:

ψ ¼ ðχ 1; fζ4Þ or ψ ¼
�
χ 1; c1ζ1 þ

1

α
ðhþ ic2Þζ2

�
;

ð44Þ
where f and h are real functions, c2 is a real constant and c1
is a complex constant. In addition, h and c2 cannot be
simultaneously zero. In the sequel, we shall try to integrate
the Killing spinor equation for these two algebraic types
of spinors. At this point, it is worth highlighting that,
for the Lorentzian signature, the study of these two
possibilities is exhaustive.

A. Killing spinors of the type ðχ 1; f ζ4Þ
Let us start trying to integrate the Killing spinor equation

for the first algebraic type in Eq. (44); namely let us impose
that ψ ¼ ðχ 1; fζ4Þ is a Killing spinor with eigenvalue α.
Then, its charge conjugate ψ̄ ¼ ðχ 2; fζ3Þ is a Killing spinor
with eigenvalue α�, where the fact that f is a real function
has been used. Therefore, the components of the Killing
spinor and its conjugate are given by

ψA ¼ δA1; ψA ¼ fδ4A and

ψ̄A ¼ δA2; ψ̄A ¼ fδ3A: ð45Þ
Since, for this algebraic type of Killing spinor, all possible
scalars that could be built using ψ and ψ̄ vanish, it follows

that the geometric structures descendant from this Killing
spinor have a null character. For instance, the Killing vector
field constructed from these spinors has a vanishing norm.
Inserting the components (45) in the integrability condi-
tions (39) and (40), one verifies that the only components of
the Weyl tensor that can be different from zero are the nine
components Ψij

pq, where i; j ∈ f1; 2g and p; q ∈ f3; 4g.
According to the Coley, Milson, Pravda and Pravdová
(CMPP) classification [49,50], which is a generalization of
the Petrov classification for higher dimensions, this implies
that the algebraic type of the Weyl tensor is either N or O
[37], with e1 being the repeated principal null direction.
This could be anticipated from the fact that Weyl tensors
of type N are generally associated with null structures, as
exemplified by the pp-wave spacetime. Analogously, the
integrability conditions imply that the unique component
of the object ΦAB

CD that can be nonvanishing is Φ12
34,

which means that the only possible obstruction for the
spacetime to be Einstein comes from the component

S44 ¼
�
Rμν −

1

6
Rgμν

�
e4μe4ν

of the traceless part of the Ricci tensor. Thus, a spacetime
admitting a Killing spinor of the first type displayed
in Eq. (44) is an Einstein manifold if, and only if, S44
is zero.
Inserting these components in the Killing spinor

equation (42) and its conjugated version, and then using
Eq. (24), we are led to the following restrictions over the
spinorial connection:

ðΩABÞC1 ¼ 2αfδC½Aδ
4
B�; ðΩABÞ4C ¼ δ4C

1

f
∂ABf þ α

f
εABC1;

ðΩABÞC2 ¼ 2α�fδC½Aδ
3
B�; ðΩABÞ3C ¼ δ3C

1

f
∂ABf þ α�

f
εABC2: ð46Þ

In particular, the first and the last of the above relations
imply

ðΩ34Þ31 ¼ αf and ðΩ34Þ31 ¼
α�

f
⇒ f2 ¼ α�

α
: ð47Þ

Since f is a real function, it follows from the latter equation
that αmust be real, which, due to (14), means that the Ricci
scalar is negative. Therefore, we have proved the following
interesting result: In a six-dimensional Lorentzian mani-
fold, the Killing spinor equation can admit a solution
ðψA;ψAÞ such that both ψAψA and ψ̄AψA vanish only if the
curvature scalar is negative. For instance, asymptotically de
Sitter spacetimes cannot admit this type of Killing spinor. It
is worth stressing the central role of the index notation in
the proof of the latter statement, as this result would be

much harder to obtain otherwise. Thus, we can assume that
α is real in Eq. (46). In this case, Eq. (47) implies that
f ¼ �1. By means of a Lorentz transformation, we can
always make the sign of f positive. Therefore, our Killing
spinor might have the form ψ ¼ ðχ 1; ζ4Þ and its eigenvalue
is real, so that Eq. (46) provides the following restrictions
on the spinorial connection:

ðΩABÞC1 ¼ 2αδC½Aδ
4
B�; ðΩABÞ4C ¼ αεABC1;

ðΩABÞC2 ¼ 2αδC½Aδ
3
B�; ðΩABÞ3C ¼ αεABC2: ð48Þ

Apart from the obvious skew-symmetry ðΩABÞCD ¼
−ðΩBAÞCD, these equations impose that the only
components of the spinorial connection that can be non-
vanishing are
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8>><
>>:

ðΩ14Þ11 ¼ ðΩ41Þ33 ¼ ðΩ24Þ21 ¼ ðΩ34Þ31 ¼ ðΩ13Þ12 ¼ α;

ðΩ43Þ42 ¼ ðΩ23Þ22 ¼ ðΩ32Þ44 ¼ ðΩ24Þ43 ¼ ðΩ13Þ34 ¼ α;

ðΩABÞ13; ðΩABÞ14; ðΩABÞ23; ðΩABÞ24;
ð49Þ

where the components in the last line of (49) are not constrained by Eq. (48), so that each of these components are, at this
stage, arbitrary. Thus, integrating the Killing spinor equation for a spinor of the form ψ ¼ ðχ 1; ζ4Þ amounts to finding the
most general metric such that the nonvanishing components of the spinorial connection are the ones displayed in Eq. (49).
By means of the results presented in Appendix B, it follows that Eq. (49) is tantamount to imposing that the only
components of the tangent bundle connection ωab

c that can be different from zero are the following:

8>><
>>:

ω31
1 ¼ −ω34

4 ¼ ω33
3 ¼ −ω36

6 ¼ ω61
1 ¼ −ω64

4 ¼ ω66
6 ¼ −ω63

3 ¼ ω26
2 ¼ −ω25

3 ¼ α;

ω23
2 ¼ −ω25

6 ¼ ω43
4 ¼ −ω41

6 ¼ ω46
4 ¼ −ω41

3 ¼ ω53
5 ¼ −ω52

6 ¼ ω56
5 ¼ −ω52

3 ¼ α;

ωa4
3 ¼ −ωa6

1; ωa4
2 ¼ −ωa5

1; ωa4
5 ¼ −ωa2

1; ωa4
6 ¼ −ωa3

1;

ð50Þ

where the skew-symmetry ωabc ¼ −ωacb has been used.
For instance, the latter property implies that ωa3

2 ¼ −ωa5
6.

Recall that ωabc is defined by ωabc ¼ ωab
dgdc ¼

gð∇aeb; ecÞ, which comes from Eq. (5).
Now let us try to find a metric whose Levi-Cività

connection obeys the constraints shown in Eq. (50). As
a first step toward this goal, let us note that, since ψAψA

vanishes, it follows that the chiral spinors ψA and ψA are
pure spinors whose associated maximally isotropic distri-
butions are integrable. Indeed, the vector fields that
annihilate the chiral spinor ψA under the Clifford action
are the ones that have the form VAB ¼ ψ ½AϕB� for some
spinor ϕB, as can be easily checked using (35).
Analogously, the vector fields that annihilate the negative
chirality spinor ψA are the ones that have the form VAB ¼
ψ ½AξB� for some spinor ξB. Now, using the Killing spinor
equation (37) satisfied by ðψA;ψAÞ, it follows that

ψAϕB∇ABψ
C ∝ ψC and ψAξB∇ABψC ∝ ψC;

which means that the maximally isotropic distributions
generated by ψA and ψA are both integrable [33]. These
distributions are the ones generated by fe1; e2; e3g and
fe1; e2; e6g respectively. Analogously, since ðψ̄A; ψ̄AÞ is
also a Killing spinor and ψ̄Aψ̄A ¼ 0, it follows that the
spinors χ 2 and ζ3 generate integrable distributions, which
are spanned by fe1; e5; e6g and fe1; e3; e5g respectively.
The fact that these four totally null distributions are
integrable can also be verified directly from Eq. (50).
Now, since the intersection of two integrable distributions
is also an integrable distribution, we conclude that the
distributions spanned by fe1; e2g, fe1; e3g, fe1; e5g and
fe1; e6g are all integrable.

Inasmuch as e1 is a real vector field in the Lorentzian
signature, we can always introduce a real coordinate u to be
the parameter along the orbits of e1, so that we can set

e1 ¼ ∂u:

Then, due to the fact that the distribution generated by
fe1; e2g is integrable, it follows from the Frobenius theorem
that there exists a coordinate z such that

e2 ¼ U2∂u þ Z2∂z;

where U2 and Z2 are functions. Note that U2, Z and z are
generally complex, since, in the Lorentzian signature, e2 is
a complex vector field. Likewise, the fact that the distri-
bution generated by fe1; e3g is integrable implies that there
exists a complex coordinate w such that

e3 ¼ U3∂u þW3∂w;

withU3 andW3 being complex functions. Moreover, due to
the reality conditions of Eq. (22), we conclude that

e5 ¼ U�
2∂u þ Z�

2∂z� and e6 ¼ U�
3∂u þW�

3∂w� :

Finally, e4 can have the following general form:

e4 ¼ V4∂v þ U4∂u þ Z4∂z þW4∂w þ Z�
4∂z� þW�

4∂w� ;

where v is a real coordinate and V4 and U4 are real
functions, whereas Z4 and W4 are complex functions. In
principle, the functions that appear as coefficients of the
above vector fields can depend on all six coordinates
fu; v; z; z�; w; w�g. However, according to Table III, the
vector field ψ ½Aψ̄B� − 1

2
εABCDψCψ̄D is a Killing vector field.

Since the latter vector field is 2χ ½A
1 χ B�

2 ∼ 2e1 ¼ 2∂u, it
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follows that the above functions cannot depend on the coordinate u. Furthermore, computing the Lie brackets ½e2; e3�,
½e2; e4�, ½e2; e5� and using that

½ea; eb� ¼ ðωab
c − ωba

cÞec
along with Eq. (50), we obtain that the functions W3 and V4 do not depend on the coordinates z and z�, while Z2 cannot
depend on z�. So, it is tempting to look for solutions that do not depend on z and z�. After imposing (50) and making some
minor simplifying assumptions along the integration process, we have found that a particular solution of this type is given
by the following functions:

8>><
>>:

U2 ¼ 0; Z2 ¼ i ðw
2þw�2Þ
hðvÞ ;

U3 ¼ α ðw2þw�2Þ
w ½Fðv; y1Þ þ iGðv; y2Þ�; W3 ¼ −α ðw2þw�2Þ

2w ;

U4 ¼ ðw2 þ w�2Þ4gðvÞ; V4 ¼ 2ðw2 þ w�2Þ2; Z4 ¼ 0; W4 ¼ 0;

where hðvÞ, gðvÞ, Fðv; y1Þ, Gðv; y2Þ are arbitrary real functions of their arguments and y1 is the real part of the complex
coordinate w whereas y2 is the imaginary part of w,

y1 ¼
1

2
ðwþ w�Þ; y2 ¼

1

2i
ðw − w�Þ:

Once we have these functions at hand, we can find the coordinate form of the metric. Indeed, due to the inner products (21)
it follows that the inverse of the metric is given by

g−1 ¼ 2ðe1 ⊗ e4 þ e4 ⊗ e1 þ e2 ⊗ e5 þ e5 ⊗ e2 þ e3 ⊗ e6 þ e6 ⊗ e3Þ:

Then, inserting the coordinate form of these vector fields and computing the inverse, we end up with the following line
element:

ds2 ¼ −1
4

gdv2 þ 1

ðw2 þ w�2Þ2
�
1

2
dudvþ h2dzdz� þ 4ww�

α2
dwdw� þ ðF þ iGÞdvdwþ ðF − iGÞdvdw�

�
: ð51Þ

Now, let us discuss the symmetry tensors of this spacetime. As anticipated, the Killing vector field generated by the Killing
spinor, using the results of Table III, is given by e1. Besides, it is obvious that ∂z and ∂z� are also Killing vectors. The closed
conformal Killing vector presented in Table III is identically zero for the Killing spinor ðχ 1; ζ4Þ. The KY tensor of rank 2
ψAψB − 1

4
ðψCψCÞδAB and its complex conjugate are respectively given by

Y1 ¼ e1 ∧ e2 and Y1 ¼ e1 ∧ e5;

where∧ denotes the skew-symmetric tensor product of the vector fields and multiplicative constants have been omitted. The
remaining KY bivector and the closed conformal Killing-Yano bivector, presented in the bottom half of Table III, are
respectively given by

Y2 ¼ e1 ∧ ðe3 − e6Þ and H ¼ e1 ∧ ðe3 þ e6Þ:

Further, the Killing-Yano 3-vectors extracted from the same table are given by

T1 ¼ e1 ∧ e2 ∧ ðe3 − e6Þ; T1 ¼ e1 ∧ e5 ∧ ðe6 − e3Þ and T2 ¼ e1 ∧ e2 ∧ e5:

The Hodge dual of these three Killing-Yano 3-vectors are CCKY 3-vectors.
It is worth stressing that the metric (51) is not an Einstein metric. This is not in contradiction with the existence of a

Killing spinor, since only in Euclidean signature does the existence of a solution for the Killing spinor equation require the
manifold to be Einstein, as emphasized before. In the particular case in which the functions F andG do not depend on v, the
Einstein condition can be easily solved and is given by choosing
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gðvÞ ¼ −
2

3α2hðvÞ
d2

dv2
hðvÞ;

F ¼ Fðy1Þ and G ¼ Gðy2Þ; ð52Þ

where hðvÞ, Fðy1Þ and Gðy2Þ remain arbitrary real func-
tions of their arguments. This solution for Einstein’s
equation in the presence of a negative cosmological
constant is not conformally flat and, therefore, comprises
a nontrivial solution. By means of computing the Riemann
tensor of this metric, it has been checked that the
Riemannian holonomy group of this spacetime is
SOð1; 5Þ. Concerning the isometry group, it follows that
in general this solution admits only the three obvious
Killing vector fields ∂u, ∂z and ∂z� . However, in the
particular case in which hðvÞ2 is a quadratic function of
v it follows that one further Killing vector field shows up,
whose expression is given by

h2∂v þ
1

4
w
dh2

dv
∂w þ 1

4
w� dh

2

dv
∂w�

−
�jwj4
α2

d2h2

dv2
þ dh2

dv
ðy1Fðy1Þ − y2Gðy2ÞÞ

�
∂u;

where, again, y1 and y2 are the real and imaginary parts
of the coordinate w, respectively. Therefore, in general,
the spacetime defined by Eqs. (51) and (52) has a three-
dimensional Abelian isometry group. However, in the
special case in which h2 is a quadratic function of v, it
turns out that the isometry group is enhanced and becomes
a four-dimensional Abelian group.

B. Killing spinors of the type ðχ 1;cζ1 þ f ζ2Þ
Now it is time to analyze the Killing spinor equation

for spinors whose algebraic form can be chosen to be
ψ ¼ ðχ 1; cζ1 þ fζ2Þ. At the beginning of the present
section, we have already argued that in order for ψ to
be a Killing spinor with nonvanishing eigenvalue, cmust be
a constant and f must take the form f ¼ 1

α ðhþ ic2Þ, where
h is a real function, c2 is a real constant, and jfj2 ≠ 0. As a

consequence of the latter constraint, one can check that the
integrability conditions (39) and (40) for ψ and its charge
conjugate, ψ̄ ¼ ðχ 2; c�ζ2 − f�ζ1Þ, yield the following con-
straints on the curvature

ΨAB
Cj ¼ ΦAB

Cj ¼ 0 ¼ ΨAj
CD ¼ ΦAj

CD;

where j ∈ f1; 2g and A;B;C;D ∈ f1; 2; 3; 4g. In particu-
lar, this means that the only component of the traceless part
of the Ricci tensor that could be different from zero is
Φ34

34. However, due to the traceless condition (28), it
follows that the latter component must also vanish.
Therefore, we arrive at the interesting conclusion that a
six-dimensional Lorentzian manifold possessing a Killing
spinor ψ ¼ ðψA;ψAÞ such that either ψAψA or ψAψ̄A is
nonvanishing, is, necessarily, an Einstein spacetime.
Regarding the Weyl tensor, the only components that
can be nonvanishing are Ψpq

p0q0 , where p; q; p0; q0 ∈
f3; 4g. Thus, according to the CMPP classification
[49,50], the algebraic type of the Weyl tensor is either D
orO, with e1 and e4 being repeated principal null directions
[37]. TypeD spacetimes are quite special from the physical
point of view, since all spacetimes in the Kerr-NUT-(A)dS
family of black holes, in arbitrary dimensions, have this
algebraic type in the CMPP classification [50].
Particularly, combining these results with the ones

obtained in the previous subsection, it follows that in order
for a spacetime to admit both algebraic types of Killing
spinors its CMPP classification must be O; namely the
Weyl tensor vanishes, it must be an Einstein manifold, and
its Ricci scalar must be negative. Therefore, the only
spacetime that could possibly admit both algebraic types
of Killing spinors is anti–de Sitter (AdS). Indeed, at the end
of this subsection it is shown that this possibility is realized;
namely AdS6 spacetime admits both types of Killing
spinors.
Inserting the spinor ψ ¼ ðχ 1; cζ1 þ fζ2Þ into the Killing

spinor equation (42) as well as its charge conjugate, which
is a Killing spinor with eigenvalue α�, leads to the
following constraints over the spinorial connection:

ðΩABÞC1 ¼ 2αcδC½Aδ
1
B� þ 2αfδC½Aδ

2
B�; cðΩABÞ1C þ fðΩABÞ2C ¼ αεABC1 þ δ2C∂ABf;

ðΩABÞC2 ¼ 2α�c�δC½Aδ
2
B� − 2α�f�δC½Aδ

1
B�; c�ðΩABÞ2C − f�ðΩABÞ1C ¼ α�εABC2 − δ1C∂ABf�:

Manipulating these equations, we eventually conclude that the only components of the spinorial connection ðΩABÞCD that
can be different from zero, apart from the skew-symmetry in the indices AB, are the following ones:
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8>>>>>>>><
>>>>>>>>:

ðΩ12Þ11 ¼ ðΩ32Þ31 ¼ ðΩ42Þ41 ¼ αf; ðΩ12Þ22 ¼ ðΩ13Þ32 ¼ ðΩ14Þ42 ¼ α�f�;

ðΩ21Þ21 ¼ ðΩ31Þ31 ¼ ðΩ41Þ41 ¼ αc; ðΩ12Þ12 ¼ ðΩ32Þ32 ¼ ðΩ42Þ42 ¼ α�c�;

ðΩ24Þ23 ¼ ðΩ32Þ24 ¼ αf�
jcj2þjfj2 ; ðΩ14Þ13 ¼ ðΩ31Þ14 ¼ α�f

jcj2þjfj2 ;

ðΩ24Þ13 ¼ ðΩ32Þ14 ¼ αc�
jcj2þjfj2 ; ðΩ13Þ24 ¼ ðΩ41Þ23 ¼ α�c

jcj2þjfj2 ;

ðΩABÞ33; ðΩABÞ34; ðΩABÞ43; ðΩABÞ44;

ð53Þ

where the components in the last line of the above list are arbitrary. In addition, we find that the function f must satisfy the
following differential constraints:

∂1f ¼ α�ðjcj2 þ jfj2Þ; ∂2f ¼ 0; ∂3f ¼ 0; ∂4f ¼ α; ∂5f ¼ 0; ∂6f ¼ 0; ð54Þ
where the indices subscribed on the partial derivatives are with respect to the null frame. For instance, ∂1 ¼ eμ1∂μ.
Particularly, note that the function f cannot be constant; otherwise we would have α ¼ 0 and the Killing spinor would be
covariantly constant.
By means of Eq. (53) along with Eq. (B3), one can straightforwardly obtain the tangent bundle connection, ωab

c. For
instance, in the particular case in which c ¼ 0, we have that the only components of the tangent bundle connection that can
be different from zero are the following ones:

8>>>>>>>>><
>>>>>>>>>:

ω51
5 ¼ −ω52

4 ¼ ω61
6 ¼ −ω63

4 ¼ αf; ω21
2 ¼ −ω25

4 ¼ ω31
3 ¼ −ω36

4 ¼ α�f�;

ω54
5 ¼ −ω52

1 ¼ ω64
6 ¼ −ω63

1 ¼ α
f ; ω24

2 ¼ −ω25
1 ¼ ω34

3 ¼ −ω36
1 ¼ α�

f� ;

ω12
2 þ ω13

3 ¼ αf − α�f�; ω15
5 þ ω16

6 ¼ −ðαf − α�f�Þ;
ω11

1 ¼ −ω14
4 ¼ αf þ α�f�; ωa1

1 ¼ −ωa4
4 ¼ 0 if a≠1;

ωa2
2 þ ωa3

3 ¼ 0 if a≠1; ωa5
5 þ ωa6

6 ¼ 0 if a≠1;
ωa5

6 ¼ −ωa3
2; ωa2

3 ¼ −ωa6
5:

ð55Þ

The other components of the tangent bundle connection not appearing in (55) must all be zero in order for the manifold to
admit a Killing spinor of the form ψ ¼ ðχ 1; fζ2Þ. Moreover, when c ¼ 0, Eq. (54) requires that the function f satisfy the
following differential conditions:

∂1f ¼ α�jfj2; ∂2f ¼ 0; ∂3f ¼ 0; ∂4f ¼ α; ∂5f ¼ 0; ∂6f ¼ 0: ð56Þ
A particular solution of the constraints (55) and (56) is given by a spacetime whose line element is given by

ds2 ¼ −f2dt2 þ 1

f2
dr2 þ r2ðdzdz� þ dwdw�Þ; ð57Þ

where f ¼ fðrÞ ¼ 2αr, with the eigenvalue α assumed to be real. The coordinates t and r are real, while z and w are
complex. The latter metric is Einstein, with negative Ricci scalar, and conformally flat; i.e., it describes the anti–de Sitter
spacetime. In these coordinates, the null frame is given by

e1 ¼
1

2
ðf2∂r þ ∂tÞ; e2 ¼

1

r
∂z; e3 ¼

1

r
∂w;

e4 ¼
1

2

�
∂r −

1

f2
∂t

�
; e5 ¼

1

r
∂z� ; e6 ¼

1

r
∂w� : ð58Þ

By means of Table III, along with the fact that the Killing spinor has the form ψ ¼ ðχ 1; fζ2Þ, one can find the following
Killing-Yano tensors of rank 1, 2 and 3:

Y1 ¼ ðe1 − f2e4Þ; Y2 ¼ fe2 ∧ e3; Y3 ¼ fðe2 ∧ e5 þ e3 ∧ e6Þ; Y4 ¼
1

f
Y1 ∧ Y2; Y5 ¼

1

f
Y1 ∧ Y3;

where the fact that α was assumed to be real has been used. Note that the Killing vector field Y1 is just ∂t. Using the same
table, we also arrive at the closed conformal Killing-Yano tensors below:
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H1 ¼ ðe1 þ f2e4Þ; H2 ¼ fe1 ∧ e4;

H3 ¼
1

f
H1 ∧ Y2:

Although we have only worked out the symmetries
associated with the Killing spinor ψ ¼ ðχ 1; fζ2Þ, it is worth
stressing that there are other Killing spinors in AdS6
spacetime. Indeed, it is well known that the maximally
symmetric spaces also have the maximum number of
Killing spinors, which is the number of components of a
Dirac spinor [51]. Thus, in the six-dimensional case, the
AdS spacetime with Ricci scalar given by R ¼ −120α2
admits eight independent Killing spinors with eigenvalue α.
Furthermore, there are 8 other spinors with eigenvalue −α.
Indeed, integrating the Killing equation (42) in the AdS6
background, using the coordinates (57) and the null frame
(58), one can check that the most general Killing spinor
with eigenvalue α is given by

ψ ¼ ðc1χ 1 þ c2χ 2 þ c3fχ 3 þ c4fχ 4;−c2fζ1

þc1fζ2 − c4ζ3 þ c3ζ4Þ; ð59Þ

where c1, c2, c3 and c4 are arbitrary complex constants, so
that the general solution is labeled by eight real parameters.
Regarding the most general solution with eigenvalue −α, it
can be obtained by acting with the chirality operator ϒ on
the previous spinor, which yields

~ψ ¼ ϒψ

¼ ðc1χ 1 þ c2χ 2 þ c3fχ 3 þ c4fχ 4; c2fζ1 − c1fζ2

þ c4ζ3 − c3ζ4Þ: ð60Þ

Computing the scalars that can be constructed from the
general Killing spinor (59), one finds

ψAψA ¼ 0;

ψ̄AψA ¼ −ψAψ̄A ¼ fðjc1j2 þ jc2j2 − jc3j2 − jc4j2Þ:

Therefore, the Killing spinors of Eq. (59) such that jc1j2 þ
jc2j2 ¼ jc3j2 þ jc4j2 are of the algebraic type treated in
Sec. VII A, although in the basis adopted in (59) it is not
possible to see that these Killing spinors have the form
ðχ 1; ζ4Þ. Thus, in the AdS6 spacetime there are spinors of
both algebraic types described in (43).
Likewise, it is a simple matter to integrate the Killing

spinor equation in the de Sitter (dS) background. In the
latter case the Ricci scalar is positive, so that the eigenvalue
α must be imaginary. The metric of dS6 spacetime with
Ricci scalar R ¼ 120jαj2 ¼ −120α2 can written as follows:

ds2 ¼ −jhj2dτ2 þ 1

jhj2 dx
2 þ τ2ðdzdz� þ dwdw�Þ;

where h ¼ hðτÞ ¼ 2ατ with α being imaginary. Then,
adopting the null frame

e1 ¼
1

2
ðh2∂τ − ∂xÞ; e2 ¼

1

τ
∂z; e3 ¼

1

τ
∂w;

e4 ¼
1

2

�
∂τ þ

1

h2
∂x

�
; e5 ¼

1

τ
∂z� ; e6 ¼

1

τ
∂w� ;

one can check that the most general solution for the Killing
spinor equation with eigenvalue α is given by

ψ ¼ ðb1χ 1 þ b2χ 2 þ b3hχ 3 þ b4hχ 4;

− b2hζ1 þ b1hζ2 − b4ζ3 þ b3ζ4Þ; ð61Þ

where b1, b2, b3 and b4 are arbitrary complex constants.
Besides these eight linearly independent Killing spinors
with eigenvalue α, the dS6 spacetime also possesses
eight Killing spinors with eigenvalue −α, the latter being
given by

~ψ ¼ ϒψ

¼ ðb1χ 1 þ b2χ 2 þ b3hχ 3 þ b4hχ 4; b2hζ1

− b1hζ2 þ b4ζ3 − b3ζ4Þ: ð62Þ

The scalars constructed from the spinor (61) are given by

ψAψA¼0; ψ̄AψA¼ψAψ̄A¼hðjb1j2þjb2j2þjb3j2þjb4j2Þ:

Therefore, since ψ̄AψA ≠ 0, no Killing spinors of the dS6
spacetime are of the first type described in (43). Indeed, we
have proved in Sec. VII A that spinors of the latter type
cannot occur in a spacetime whose curvature scalar is
positive.

VIII. CONCLUSIONS

After reviewing the spinorial calculus and its index
notation in six dimensions, we have obtained how the
equations satisfied by Killing-Yano (KY) tensors and
closed conformal Killing-Yano (CCKY) tensors are repre-
sented in the latter formalism. Moreover, it has been shown
how the Killing spinor equation is transcribed to the index
approach. These results are summarized in Table II. Then,
we have taken advantage of the index formalism to
construct all possible symmetry tensors that descend from
the existence of a Killing spinor, as summed up in Table III.
In addition, in Sec. VI we have expressed the integrability
conditions necessary for the existence of a Killing spinor in
terms of the spinorial representations of the Weyl tensor,
the traceless part of the Ricci tensor and the Ricci scalar.
Although, at first, it may seem that the index notation is
clumsier than the usual abstract approach, it actually has
several advantages. Indeed, once one gets used, the index
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notation illuminates and facilitates the spinorial manipu-
lations. For instance, the cumbersome Fierz identities are
unnecessary in such an approach, since these identities are
naturally built in the index notation.
The power and the usefulness of the six-dimensional

index formalism has been made more explicit in Sec. VII,
in which the Killing spinor equation in the Lorentzian
signature has been integrated in some cases. Indeed, we
have taken advantage of the index approach to classify the
possible algebraic forms that a Killing spinor can have in
two categories, as shown in Eq. (44). This humble
classification allowed us to start the integration process
from a simple ansatzwithout losing generality. Particularly,
we have proved that in order for a spacetime to admit a
Killing spinor its Weyl tensor must have one of the
following three algebraically special types according to
the CMPP classification: (1) type O, namely the Weyl
tensor vanishes; (2) type N; (3) type D. Moreover, in the
case of a type N Weyl tensor, the scalar curvature must be
negative, while in the case of type D the spacetime must be
an Einstein manifold. Further, in Eq. (51), we have
presented a type N class of spacetimes, with four arbitrary
functions in the metric, that possesses a Killing spinor and,
therefore, admits a whole tower of hidden symmetries
represented by KY and CCKY tensors. Even imposing the
Einstein condition for the latter class, there remain three
arbitrary functions in the metric; see Eq. (52). Finally, the
Killing spinor equation has been fully integrated in the dS6
and AdS6 spacetimes. Each of these maximally symmetric
spacetimes admits 16 Killing spinors, half of them having
eigenvalue α while the other half have eigenvalue −α,
where α ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
−R

4nðn−1Þ
q

. The explicit forms of these Killing

spinors are given in Eqs. (59), (60), (61), and (62).
The main physical applications of this work are related to

supergravity and string theories, inasmuch as the existence
of a Killing spinor in a solution is necessary for the
preservation of part of the supersymmetry. The existence
of unbroken supersymmetries, in turn, guarantees the
stability of the ground state on a spontaneous compacti-
fication, although it is not a necessary condition [16]. We
have investigated the existence of Killing spinors especially
in Lorentzian six-dimensional manifolds, which is of
relevance for supergravity models and effective theories
in six dimensions. A natural continuation of this work that
we intend to pursue in the near future is to analyze theories
in the presence of matter fields, in which case the
connection adopted in the Killing spinor equation differs
from the spinorial extension of the Levi-Cività connection
by terms depending on gauge potentials and their field
strength. Another path to be taken in a future work is to
study compact six-dimensional manifolds of Euclidean
signature possessing Killing spinors, which are suitable
to be used as internal spaces on compactifications of ten-
dimensional fundamental theories.
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APPENDIX A: LORENTZ TRANSFORMATIONS
IN THE SPINORIAL FORMALISM

The aim of this appendix is to display all transformations
of the spinorial basis fχ 1; χ 2; χ 3; χ 4g that preserve the
metric. The key to accomplish this is to note that, apart
from the multiplicative factor of 1=2, the metric of the
space is represented by εABCD, which, raising the indices,

can be written as εABCD ¼ χ½A1 χ
B
2 χ

C
3 χ

D�
4 . Therefore, preserv-

ing the metric is tantamount to preserving the skew-

symmetric combination χ½A1 χ
B
2 χ

C
3 χ

D�
4 . The most general

transformation of the basis that does this job is a compo-
sition of the following five transformations:

χ 1 ↦ χ 1; χ 2 ↦ χ 2 þ a1χ 1;

χ 3 ↦ χ 3 þ a2χ 1; χ 4 ↦ χ 4 þ a3χ 1; ðA1Þ

χ 1 ↦ χ 1 þ b1χ 2; χ 2 ↦ χ 2;

χ 3 ↦ χ 3 þ b2χ 2; χ 4 ↦ χ 4 þ b3χ 2; ðA2Þ

χ 1 ↦ χ 1 þ c1χ 3; χ 2 ↦ χ 2 þ c2χ 3;

χ 3 ↦ χ 3; χ 4 ↦ χ 4 þ c3χ 3; ðA3Þ

χ 1 ↦ χ 1 þ d1χ 4; χ 2 ↦ χ 2 þ d2χ 4;

χ 3 ↦ χ 3 þ d3χ 4; χ 4 ↦ χ 4; ðA4Þ

χ 1 ↦ z1z2z3χ 1; χ 2 ↦
z1
z2z3

χ 2;

χ 3 ↦
z2
z1z3

χ 3; χ 4 ↦
z3
z1z2

χ 4: ðA5Þ

Where the parameters zi, ai, bi, ci, di are 15 arbitrary
complex parameters. The transformation (A1) preserves
the spinor χ 1. This spinor is the pure spinor associated
to the maximally isotropic distribution generated by the
null vectors fe1; e2; e3g. Therefore, these vector fields are
preserved by the transformation (A1). Such transformation
is the six-dimensional analogue of the so-called null
rotation in four dimensions. Likewise, the transformations
(A2), (A3) and (A4) preserve the maximally isotropic
distributions associated to the pure spinors χ 2, χ 3 and
χ 4, respectively, and should also be understood as null
rotations. Finally, the transformation (A5) implements a
scaling on the vector fields of the null frame; this is the
analogue of the boost transformation in four dimensions.
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However, not all these transformations preserve the conjugation relations (23) that assure the Lorentzian signature.
Indeed, in order for such conjugation relations to remain valid, these parameters must satisfy some reality conditions. For
instance, if

z1 ¼ z�1; z2z�2 ¼ 1; z3z�3 ¼ 1;

while the other parameters are zero, we have an orthogonal transformation that preserves the Lorentzian signature. A
convenient way to write the transformations that preserve both the inner products and the Lorentz signature is a composition
of the following three transformations:

�
χ 1 ↦ λðeiϕ1 cos θ1χ 1 þ eiϕ2 sin θ1χ 2Þ; χ 2 ↦ λð−e−iϕ2 sin θ1χ 1 þ e−iϕ1 cos θ1χ 2Þ;
χ 3 ↦

1
λ ðeiϕ3 cos θ2χ 3 − eiϕ4 sin θ2χ 4Þ; χ 4 ↦

1
λ ðe−iϕ4 sin θ2χ 3 þ e−iϕ3 cos θ2χ 4Þ;

ðA6Þ

χ 1 ↦ χ 1 þ aχ 3 þ bχ 4; χ 2 ↦ χ 2 þ b�χ 3 − a�χ 4; χ 3 ↦ χ 3; χ 4 ↦ χ 4; ðA7Þ

χ 1 ↦ χ 1; χ 2 ↦ χ 2; χ 3 ↦ χ 3 − cχ 1 þ dχ 2; χ 4 ↦ χ 4 þ d�χ 1 þ c�χ 2; ðA8Þ

where the ϕ’s, θ’s and λ are real parameters, while a, b, c, d are complex, forming a total of 15 real variables, as it should be,
since the Lorentz group SOð1; 5Þ has 15 generators. These transformations on the basis of positive chirality spinors
induce a modification on the dual basis of negative chirality spinors. The latter transformations can be obtained from
the following relations:

ζ1A ¼ εABCDχ
B
2 χ

C
3 χ

D
4 ; ζ2B ¼ εABCDχ

A
1 χ

C
3 χ

D
4 ; ζ3C ¼ εABCDχ

A
1 χ

B
2 χ

D
4 ; ζ4D ¼ εABCDχ

A
1 χ

B
2 χ

C
3 : ðA9Þ

Indeed, inserting Eqs. (A6), (A7) and (A8) into Eq. (A9), we eventually arrive at the following transformation rules
respectively:

�
ζ1 ↦ 1

λ ðe−iϕ1 cos θ1ζ1 þ e−iϕ2 sin θ1ζ2Þ; ζ2 ↦ 1
λ ð−eiϕ2 sin θ1ζ1 þ eiϕ1 cos θ1ζ2Þ;

ζ3 ↦ λðe−iϕ3 cos θ2ζ3 − e−iϕ4 sin θ2ζ4Þ; ζ4 ↦ λðeiϕ4 sin θ2ζ3 þ eiϕ3 cos θ2ζ4Þ;
ðA10Þ

ζ1 ↦ ζ1; ζ2 ↦ ζ2; ζ3 ↦ ζ3 − aζ1 − b�ζ2; ζ4 ↦ ζ4 − bζ1 þ a�ζ2; ðA11Þ

ζ1 ↦ ζ1 þ cζ3 − d�ζ4; ζ2 ↦ ζ2 − dζ3 − c�ζ4; ζ3 ↦ ζ3; ζ4 ↦ ζ4: ðA12Þ

These Lorentz transformations can be quite useful for simplifying the algebraic form of spinors. For instance, let
ψ ¼ ðψA;ψAÞ be a general spinor with ψA ≠ 0. Then, without loss of generality, one can always align our spinorial basis
in such a way that ψA ¼ χA1 . Thus, a spinor that is nonchiral can always be written as

ψ ¼ ðχ 1; f1ζ1 þ f2ζ2 þ f3ζ3 þ f4ζ4Þ:

Then, if either f1 or f2 is different from zero, namely ψAψA ≠ 0 or ψAψ̄A ≠ 0, one can get rid of the coefficients f3 and f4
by a proper choice of frame. Indeed, performing the transformations (A8) and (A12) with

c ¼ f2f�4 − f�1f3
jf1j2 þ jf2j2

and d ¼ f�2f3 þ f1f�4
jf1j2 þ jf2j2

;

it follows that the spinor ψ is written in the new frame as

ψ ¼ ðχ 1; f1ζ1 þ f2ζ2Þ: ðA13Þ

Therefore, we have proved that given an arbitrary nonchiral spinor ψ if either ψAψA ≠ 0 or ψAψ̄A ≠ 0 then one can always
align the spinorial frame in such a way that ψ assumes the algebraic form presented in Eq. (A13). This represents a great
simplification in the algebraic form of the spinor, which, otherwise, would have eight coefficients instead of just two.
Analogously, if ψ is a nonchiral spinor such that both ψAψA and ψAψ̄A vanish then it is always possible to conveniently
align the spinor in such a way that
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ψ ¼ ðχ 1; fζ4Þ: ðA14Þ

Moreover, one can always absorb the complex phase in f by properly choosing the parameter ϕ3 in (A10). Thus, we can
assume that f is a real function.

APPENDIX B: THE SPINORIAL CONNECTION

Since the chirality matrix ϒ is covariantly constant, it follows that the covariant derivative preserves the chirality of a
spinor. Therefore the covariant derivative of a spinor of positive chirality ψA is another spinor of positive chirality, so that
the covariant derivative keeps the spinorial index up:

∇ABψ
C ¼ ∂ABψ

C þ ðΩABÞCDψD: ðB1Þ

Analogously, the down index of a spinor of negative chirality is also kept down by the action of the covariant derivative.
More precisely, we have that

∇ABψC ¼ ∂ABψC − ðΩABÞDCψD: ðB2Þ

The latter expression can be extracted from (B1) by using the Leibniz rule along with the fact that ψAψA is a scalar, so that

∇ABðψCψCÞ ¼ ∂ABðψCψCÞ:

The relation between the spinorial connection ðΩABÞCD and the connection of the tangent bundle ωab
c can be found by

means of Eq. (6), once a representation for the matrices γa has been introduced. For this purpose, let us present a specific
representation of the null frame feag, i.e. a frame whose mutual inner product relations are the ones presented in Eq. (21).
Choosing the spinorial basis to be fχ 1; χ 2; χ 3; χ 4; ζ1; ζ2; ζ4; ζ4g, it follows from the definitions (19) and (20) and from the
identity (35) that the null frame has the following matrix representation:

γ1 ¼

2
6666666666666664

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

3
7777777777777775

; γ4 ¼

2
6666666666666664

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
7777777777777775

;

γ2 ¼

2
6666666666666664

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

3
7777777777777775

; γ5 ¼

2
6666666666666664

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
7777777777777775

;
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γ3 ¼

2
6666666666666664

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
7777777777777775

; γ6 ¼

2
6666666666666664

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

3
7777777777777775

:

Inserting this representation into Eq. (6), that relates the spinorial connection with the tangent bundle connection, we
eventually arrive at the following expression for the object ðΩABÞCD:

ðΩaÞCD ¼

2
6666664

−1
2
ðωa4

4 þωa5
5 þωa6

6Þ −ωa5
3 ωa4

3 −ωa4
2

ωa2
6 −1

2
ðωa4

4 −ωa5
5 −ωa6

6Þ −ωa4
5 −ωa4

6

−ωa1
6 ωa1

2 1
2
ðωa4

4 −ωa5
5 þωa6

6Þ −ωa5
6

ωa1
5 ωa1

3 ωa2
3 1

2
ðωa4

4 þωa5
5 −ωa6

6Þ

3
7777775

ðB3Þ

where it is worth recalling that ωab
c is defined by the relation ∇aeb ¼ ωab

cec and that ωabc ¼ −ωacb. The conversion
between the vectorial index a in ðΩaÞCD and the spinorial indices AB in ðΩABÞCD is easily done by means of Eq. (19). Thus,
for example, Eq. (B3) yields

ζ4Að∇23χ
A
1 Þ≡ ζ4Að∇6χ

A
1 Þ ¼ ðΩ6Þ41 ¼ ω61

5 ¼ ω6
4
2 ¼ −ω62
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