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In four dimensions, the most general metric admitting two commuting Killing vectors and a rank-two
Killing tensor can be parametrized by ten arbitrary functions of a single variable. We show that picking a
special vierbein, reducing the system to eight functions, implies the existence of two geodesic and share-
free, null congruences, generated by two principal null directions of the Weyl tensor. Thus, if the spacetime
is an Einstein manifold, the Goldberg-Sachs theorem implies it is Petrov type D, and by explicit
construction, is in the Carter class. Hence, our analysis provides a straightforward connection between the
most general integrable structure and the Carter family of spacetimes.
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I. INTRODUCTION AND DISCUSSION

The Kerr-(A)dS solution was discovered by Carter
imposing the Einstein equations with a cosmological
constant on a family of metrics identified by the require-
ment of the separability of the Schrödinger and Hamilton-
Jacobi equations [1]. The mathematical structure behind the
Hamilton-Jacobi separability on a spacetime with two
Killing vectors is the existence of a Killing tensor (a
modern review on the subject can be found in [2]). The
most generalD-dimensional metric with a rank-two Killing
tensor and D − 2 commuting Killing vectors was found by
Benenti and Francaviglia [3]. In the same paper, it is
pointed out that the requirement of Schrödinger separability
is redundant and that the new metrics contain the Carter
metric as a special subcase.
The construction of the Carter form of the metric is

heuristically explained in the lectures given in the Les
Houches Ecole d’Eté de Physique Théorique [4]. Requiring
the separability of the Klein-Gordon equation with a mass
term, Carter ends up with an inverse metric of the form1

�
d
ds

�
2

¼ 1

Z

�
Δxð∂xÞ2 þ Δyð∂yÞ2

þ 1

Δx
½Zxð∂tÞ þ Cxð∂φÞ�2

−
1

Δy
½Zyð∂tÞ þ Cyð∂φÞ�2

�
; ð1Þ

withZ ¼ CyZx − CxZy. Themetric dependson four arbitrary
functions of the coordinates ðx; yÞ, namely fZy; Zx;Δy;Δxg.
Cx and Cy are constants. Indeed, the Carter ansatz (1) is a
special case of the Benenti-Francaviglia metric:

gab∂a∂b ¼
1

S1ðxÞ þ S2ðyÞ
½ðFij

1 ðxÞ − Fij
2 ðyÞÞ∂i∂j

þ Δ1ðxÞð∂xÞ2 þ Δ2ðyÞð∂yÞ2�; ð2Þ

where the indices a, b range over the coordinates fτ; σ; x; yg,
and the indices i, j run over fτ; σg. fFij

1 ¼ Fji
1 ; S1;Δig are

five arbitrary functions depending on x and fFij
1 ¼

Fji
1 ; S1;Δig are five arbitrary functions depending on y.

This is the most general metric possessing two commuting
Killing vector fields and a nontrivial Killing tensor. In the
particular case of the Lorentzian signature, it represents a
stationaryandaxisymmetric spacetime. In thispaperweshow,
by explicit calculation, that the system of equations of eight
arbitrary functions, generated by replacing (2) in the Einstein
equations with a cosmological constant, can be fully inte-
grated requiring only that

Fτσ
1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fττ
1 F

σσ
1

p
and Fτσ

2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fττ
2 F

σσ
2

p
: ð3Þ

Furthermore, special attention is given to the existence of
Killing-Yano (KY) tensors. In particular, we explicitly show
how these tensors can be quite helpful in the integration of
Einstein’s equation.Moreover,KYtensorshaveproved tobea
valuable tool in the study of black holes. Indeed, the analytic
integration of the geodesic equation [1] as well as the Klein-
Gordon and Dirac equations [5] in four-dimensional Kerr
spacetime is possible due to the existence of an integration
constant constructed using the nontrivial Killing tensor of
order two [6,7]. Since this Killing tensor is the square of aKY
tensor of order two [8], the integrability can be traced to the
existenceof aKYtensor.Likewise,KY tensorshaveproved to
play a central role in the integrability of higher-dimensional
black holes [9,10]. Indeed, the class of Kerr-NUT-(A)dS
spacetimes in arbitrary dimension admits a tower of KY
tensors that enables the analytical integration of the geodesic
equation [11,12] along with the Klein-Gordon [13] andDirac
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equations [14] in this background.KY tensors are also related
to the separability of gravitational perturbations in these black
holes [15,16].
The interplay between supersymmetry and KY tensors

has been discussed in the literature; see for instance [17].
Moreover, the Carter form of the metric has been used as
the seed to find spinning solutions in gauged and ungauged
supergravity [18]. The same form of the metric has been
used to study the existence of supersymmetric solutions
[19,20]. The more general class (2) fits, in the string frame,
the large family of rotating black holes which were recently
found in the Uð1Þ4 invariant sector of gauged N ¼ 8
supergravity in four dimensions [21–25]. When multiplied
by an arbitrary conformal factor, the metric (1) has been
shown to be integrable in the presence of a real scalar field
with an arbitrary scalar field self-interaction; the scalar field
potential is integrated a posteriori and singled out by the
form of the metric [26].
Therefore, it is worth having at hand a systematic

analysis of these Ansätze in general cases. The results of
Sec. II thus provide the conformal properties of the metric
(2) under the condition (3). Namely, without imposing a
field equation on the metric, the existence of geodesic and
share-free null congruences is established by explicit
construction. Later, using these conformal properties and
the Goldberg-Sachs theorem we impose the Petrov type D
condition on the metric. The remainder of the paper is
dedicated to the integration of the Einstein equations with a
cosmological constant, trying to be exhaustive in the
analysis of subcases and existence of peculiar geometrical
structures in every case.
The whole process can be done in the presence of a real

scalar field with an arbitrary self-interaction along the lines
of [26]. In this case, we found that the metric has to be
conformally flat and that the scalar field and the spacetime
are singular; we do not give the details of this result here.
The paper leaves the door open to follow the study of the
metric (2) without the condition (3). This is particularly
interesting in the case when the cosmological constant is
nonzero. No uniqueness theorem for the rotating black
holes exists for asymptotically (anti–)de Sitter space-
times [27].

II. THE CONFORMAL PROPERTIES
OF THE METRIC

If a four-dimensional spacetime possesses just two
independent Killing vector fields then one can build three
first integrals, two from the explicit symmetries and one by
the metric, which is a Killing tensor. Generally, these three
constants of motion are not enough for an analytical
integration of the geodesic equation. Nevertheless, if,
besides the two Killing vectors and the metric, the
spacetime has a nontrivial Killing tensor then one can
build one extra first integral and the integration by quad-
ratures of the geodesics is indeed possible. Moreover, this

extra symmetry can also lead to the integrability of the
Klein-Gordon and Dirac field equations in these back-
grounds, as it happens to be the case with Kerr metric [1,5].
Hence, we shall study the class of metrics with two
commuting Killing vectors and one nontrivial Killing
tensor of order two (2):

K ¼ −1
S1 þ S2

½ðFij
1 S2 þ S1F

ij
2 Þ∂i∂j þ Δ1S2ð∂xÞ2

− S1Δ2ð∂yÞ2�: ð4Þ

As we mentioned in the introduction, we will focus on the
particular case where the following vierbein exists:

Fij
1 ∂i∂j ¼ ½f1ðxÞ∂τ þ h1ðxÞ∂σ�2;

Fij
2 ∂i∂j ¼ ½f2ðyÞ∂τ þ h2ðyÞ∂σ�2: ð5Þ

Then, defining Sðx; yÞ ¼ S1ðxÞ þ S2ðyÞ along with the
vector fields

l ¼ 1ffiffiffiffiffiffi
2S

p ½f2∂τ þ h2∂σ þ
ffiffiffiffiffiffi
Δ2

p ∂y�; ð6Þ

n ¼ 1ffiffiffiffiffiffi
2S

p ½f2∂τ þ h2∂σ −
ffiffiffiffiffiffi
Δ2

p ∂y�; ð7Þ

m ¼ 1ffiffiffiffiffiffi
2S

p ½f1∂τ þ h1∂σ þ i
ffiffiffiffiffiffi
Δ1

p ∂x�; ð8Þ

m̄ ¼ 1ffiffiffiffiffiffi
2S

p ½f1∂τ þ h1∂σ − i
ffiffiffiffiffiffi
Δ1

p ∂x� ð9Þ

we have that the metric can be written as2

gab ¼ −2lðanbÞ þ 2mðam̄bÞ: ð10Þ

So, we have that fl; n;m; m̄g is a null tetrad, namely the
only nonvanishing inner products between the vectors of
this basis are

lana ¼ −1 and mam̄a ¼ 1:

The advantages of using a null tetrad frame have been
advocated by Newman and Penrose in the classical
Ref. [28] and endorsed by numerous posterior results that
benefited from the Newman-Penrose formalism. Using the
latter frame, the Killing tensor (4) can be conveniently
written as

Kab ¼ −2S1ðxÞlðanbÞ − 2S2ðyÞmðam̄bÞ: ð11Þ

2As usual, indices enclosed by round brackets are fully
symmetrized. For instance, nðambÞ ¼ 1

2
ðnamb þmanbÞ.
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The nice thing about this specific null tetrad is that, if we
use the metric to transform the vector fields fl; n;m; m̄g
into 1-forms, one can check that the following relations
hold:

dl ∧ l ∧ m ¼ 0 and dm ∧ l ∧ m ¼ 0; ð12Þ

dl ∧ l ∧ m̄ ¼ 0 and dm̄ ∧ l ∧ m ¼ 0; ð13Þ

dn ∧ n ∧ m ¼ 0 and dm ∧ n ∧ m ¼ 0; ð14Þ

dn ∧ n ∧ m̄ ¼ 0 and dm̄ ∧ n ∧ m̄ ¼ 0: ð15Þ

According to the Frobenius theorem, the first of these four
relations guarantees that the surfaces orthogonal to
Spanfl;mg form a locally integrable foliation of the
manifold. However, since the vectors fl;mg are both null
and orthogonal to each other, it follows that these orthogo-
nal surfaces are tangent to Spanfl;mg itself. Since the
tangent vectors to these surfaces are all null, and the
maximum dimension of a null subspace in four dimensions
is two, we say that Spanfl;mg is a maximally isotropic
integrable distribution. Analogously, the three remaining
relations in (14) imply that Spanfl; m̄g, Spanfn;mg and
Spanfn; m̄g are also maximally isotropic integrable dis-
tributions. In the Lorentzian case this is tantamount to
saying that the vector fields l and n are both geodesic and
shear free [29]. Before proceeding, it is worth stressing that
the vector fields m and m̄ are complex conjugated to each
other only in the Lorentzian signature, in which case the
functions f1, h1, f2 and h2 are real whereas Δ1 and Δ2 are
positive. In other signatures the null tetrad obeys different
reality conditions, as exemplified in Sec. VA.
Now, without loss of generality, one can write the

functions f1, h1, f2 and h2 as follows:

f1ðxÞ ¼
−P1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1ðxÞΔ1ðxÞ

p ;

h1ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1ðxÞΔ1ðxÞ
p ; ð16Þ

f2ðyÞ ¼
P2ðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2ðyÞΔ2ðyÞ
p ;

h2ðyÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2ðyÞΔ2ðyÞ
p : ð17Þ

With these definitions the metric (2) has the following line
element:

ds2 ¼ S

�
−A2Δ2

ðP1 þ P2Þ2
ðdτ þ P1dσÞ2

þ A1Δ1

ðP1 þ P2Þ2
ðdτ − P2dσÞ2 þ

dx2

Δ1

þ dy2

Δ2

�
: ð18Þ

In order to integrate Einstein’s equation for the metric (18), it
is useful to take advantage of the Goldberg-Sachs theorem.
In its original version [30], such a theorem states that a Ricci-
flat four-dimensional spacetime admits a geodesic and shear-
free null congruence if, and only if, the Weyl tensor is
algebraically special according to the Petrov classification
with the repeated principal null direction being tangent to the
shear-free congruence. Since the Weyl tensor, as well as the
geodesic and shear-free property of a null congruence, are
invariant under conformal transformations, it was soon
realized that the Ricci-flat hypothesis could be weakened
and replaced by a conformally invariant condition [31]. In
particular, it was proved that the Goldberg-Sachs theorem
also holds in the presence of a cosmological constant. Later,
a version of the Goldberg-Sachs theorem valid in four-
dimensional manifolds of arbitrary signature was also proved
[32]. Particularly, in non-Lorentzian signature the concept of
geodesic and shear-free null congruence might be replaced
by an integrable distribution of isotropic planes. Regarding
the metric investigated here, (18), we have seen that the null
vector fields l and n are geodesic and shear free. Therefore,
the Goldberg-Sachs theorem guarantees that whenever
Rab ¼ Λgab holds, with Rab denoting the Ricci tensor, l
and n will be repeated principal null directions of the Weyl
tensor. In particular, this means that the Petrov type of the
Weyl tensor isD. So, imposing theWeyl tensor of the metric
(18) to be type D represents no constraint if Einstein’s
vacuum equation with a cosmological constant is assumed.
Thus, our next step is to impose the type D condition to the
metric (18).

Denoting the Weyl tensor by Cabcd, in the Lorentzian signature the components of the Weyl tensor can be assembled in
the following five complex scalars3 [28,33]:

Ψþ
0 ≡ Cabcdlamblcmd; Ψþ

1 ≡ Cabcdlanblcmd; Ψþ
2 ≡ Cabcdlambm̄cnd ð19Þ

Ψþ
3 ≡ Cabcdlanbm̄cnd; Ψþ

4 ≡ Cabcdnam̄bncm̄d: ð20Þ

3In the Newman-Penrose formalism [28], these scalars are generally written in terms of spinors. If ΨABCD is the spinorial
representation of the Weyl tensor, and if oA is the spinor associated to the real null vector field l and ιA is the spinor associated to n, it
follows that Ψþ

0 ¼ ΨABCDoAoBoCoD, Ψ
þ
1 ¼ ΨABCDoAoBoCιD, Ψ

þ
2 ¼ ΨABCDoAoBιCιD, Ψ

þ
3 ¼ ΨABCDoAιBιCιD, Ψ

þ
4 ¼ ΨABCDι

AιBιCιD;
namely the subscripted numbers labeling the Weyl scalars represent the number of contractions of the spinorial representation of the
Weyl tensor with the spinor ιA.
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Computing these scalars for the metric (18) we find that
Ψ0 ¼ 0 ¼ Ψ4, which means that l and n are principal null
directions of the Weyl tensor. In this case, the type D
constraint amounts to imposing that bothΨ1 andΨ3 vanish.
However, one can check that for this line element the
relation Ψ1 ¼ Ψ3 holds, so that we just need to impose that
Ψ1 vanish. Solving this constraint, we find that the Petrov
type of metric (18) isD if, and only if, A1 and A2 can be put
in the following form:

A1ðxÞ ¼
ðP0

1Þ2
4ðb1P1 þ η1Þðb2P1 þ η2Þ

;

A2ðyÞ ¼
−ðP0

2Þ2
4ðb1P2 − η1Þðb2P2 − η2Þ

; ð21Þ

where P0
1 and P

0
2 stand for the first derivatives of P1ðxÞ and

P2ðyÞ respectively, whereas b1, b2, η1 and η2 are arbitrary
constants. Note that if b2 ≠ 0 then one can always absorb a
multiplicative factor in the other constants and make
b2 ¼ 1. In spite of such freedom, for reasons of aesthetic
symmetry, we shall not take advantage of this possibility. It
is worth stressing that the above expressions are not valid if
either P1 or P2 is a constant function, since in this case A1

or A2 would vanish according to (21), which would imply
that the determinant of the metric vanishes. Indeed, one can
check that if P0

1 ¼ 0 andP0
2 ≠ 0 then, in order for the metric

to be type D, the function A1ðxÞ can be arbitrary while
A2ðyÞ might be given by

A2ðyÞ ¼
cðP0

2Þ2
ðP1 þ P2Þ2

ðP1 ¼ constantÞ; ð22Þ

with c being a nonzero constant. Analogously, if P0
2 ¼ 0

and P0
1 ≠ 0 then, in order for the Petrov classification to be

type D, the function A2ðyÞ can be arbitrary while A1ðxÞ
might be given by

A1ðxÞ ¼
cðP0

1Þ2
ðP1 þ P2Þ2

ðP2 ¼ constantÞ: ð23Þ

Finally, if P1 and P2 are both constant then the metric (21)
is automatically type D. In forthcoming sections Einstein’s
equation for the metric (21) will be fully integrated and the
typeD condition will be helpful for the achievement of this
goal. We shall separate our analysis into three cases
depending on whether the functions P1ðxÞ and P2ðyÞ are
constant or not.
As an aside, it is worth noting that along these calculations

to impose the typeD condition it was implicitly assumed that
the signature is Lorentzian. In the non-Lorentzian case the
self-dual and the anti-self-dual parts of the Weyl tensor are
not related to each other by complex conjugation, so that
besides the five Weyl scalars defined in (20) one must also
consider following other five scalars [33]:

Ψ−
0 ≡ Cabcdlam̄blcm̄d; Ψ−

1 ≡ Cabcdlanblcm̄d; Ψ−
2 ≡ Cabcdlam̄bmcnd ð24Þ

Ψ−
3 ≡ Cabcdlanbmcnd; Ψ−

4 ≡ Cabcdnambncmd: ð25Þ

In spite of this further complication in the non-Lorentzian
case, one can check that the above restrictions for the
functions A1ðxÞ and A2ðyÞ also imply that the anti-self-dual
part of the Weyl tensor is type D; namely the Weyl scalars
Ψ−

0 , Ψ
−
1 , Ψ

−
3 and Ψ−

4 vanish simultaneously. Thus, for an
arbitrary signature, the conditions (21), (22) and (23) imply
that the algebraic type of theWeyl tensor is ðD;DÞ according
to the generalized Petrov classification [33].

III. INTEGRATING EINSTEIN’S EQUATION FOR
THE GENERAL CASE

In the present section let us deal with the general case in
which P1ðxÞ and P2ðyÞ are both nonconstant functions. In
this case, one can define new coordinates x̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

P1ðxÞ
p

and
ŷ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

P2ðyÞ
p

and then judiciously redefine A1, Δ1, A2 and
Δ2 in such a way that, omitting the hats, the line element
(18) becomes

ds2 ¼ S

�
−A2Δ2

ðx2 þ y2Þ2 ðdτ þ x2dσÞ2

þ A1Δ1

ðx2 þ y2Þ2 ðdτ − y2dσÞ2 þ dx2

Δ1

þ dy2

Δ2

�
: ð26Þ

The goal of this section is to solve Einstein’s vacuum
equation for the metric (26); namely we shall integrate the
equation

Rab ¼ Λgab: ð27Þ
As explained in the preceding section, if (27) holds then the
algebraic type of the Weyl tensor for the metric considered
here isD, so that the functions A1 and A2 are given by (21).
In particular, since we have chosen a gauge in which P1ðxÞ
and P2ðyÞ are x2 and y2 respectively, it follows that

A1ðxÞ ¼
x2

ðb1x2 þ η1Þðb2x2 þ η2Þ
and

A2ðyÞ ¼
−y2

ðb1y2 − η1Þðb2y2 − η2Þ
: ð28Þ

It is worth noting that if S ¼ x2 þ y2 and A1 ¼ 1 ¼ A2

(b1 ¼ 0 ¼ η2 and η1 ¼ 1 ¼ b2), the above line element
reduces to the canonical form of Carter’s metric [1].
Particularly, assuming S ¼ x2 þ y2 along with A1 ¼ 1 ¼
A2 and then solving Einstein’s vacuum equation with a
cosmological constant we are lead to a Kerr-NUT-(A)dS
metric [34]. In the present article, we shall go one step
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further and integrate Einstein’s vacuum equation with a
cosmological constant for the full metric (26), with
S ¼ S1ðxÞ þ S2ðyÞ, A1ðxÞ, A2ðyÞ, Δ1ðxÞ and Δ2ðyÞ being,
in principle, arbitrary functions.
Einstein’s vacuum equation, Ra

b ¼ Λδab, implies that
Rx

y ¼ 0 which, in turn, is equivalent to the following
differential equation:

4xyðS1 þ S2Þ2 ¼ ðx2 þ y2Þ2 dS1
dx

dS2
dy

: ð29Þ

Working out the general solution of (29) yields

S1ðxÞ ¼
b3x2 þ η3
b4x2 þ η4

; S2ðyÞ ¼ −
b3y2 − η3
b4y2 − η4

; ð30Þ

where b3, b4, η3 and η4 are arbitrary constants. Now,
inserting (28) and (30) into the equation Rablalb ¼ 0 one
can see that one of the following relations must hold:

b4η1 − b1η4 ¼ 0 or b4η2 − b2η4 ¼ 0: ð31Þ

Assuming that b4 ≠ 0, we can set b4 ¼ b1 in (30) by
redefinition of the other integration constants. Thus, it
follows that, up to a permutation of the integration con-
stants, b4 ≠ 0 and Rablalb ¼ 0 implies η4 ¼ η1. Therefore,
the conformal factor S1ðxÞ þ S2ðyÞ is given in terms of the
functions

S1ðxÞ ¼
b3x2 þ η3
b1x2 þ η1

; S2ðyÞ ¼ −
b3y2 − η3
b1y2 − η1

: ð32Þ

Assuming that (28) and (32) hold we have that the
following eight components of Einstein’s vacuum equation
are immediately satisfied:

Rablalb ¼ Rabnanb ¼ Rabmamb ¼ Rabm̄am̄b ¼ 0; ð33Þ

Rablamb ¼ Rablam̄b ¼ Rabnamb ¼ Rabnam̄b ¼ 0: ð34Þ

Hence, it just remains to integrate the equations
Rabmam̄b ¼ Λ and Rablanb ¼ −Λ, which yield a coupled
system of linear differential equations for Δ1ðxÞ and Δ2ðyÞ
whose general solution is

Δ1ðxÞ ¼
I1J1
x2

�
d1I

3=2
1 J1=21 þ d2I21 þ d3I1J1

þ Λ
3b21

b1η3 − b3η1
b2η1 − b1η2

�
;

Δ2ðyÞ ¼
I2J2
y2

�
d4I

3=2
2 J1=22 − d2I22 − d3I2J2

−
Λ
3b21

b1η3 − b3η1
b2η1 − b1η2

�
; ð35Þ

where the d’s are arbitrary constants and I1, I2, J1 and J2
represent the following functions:

I1ðxÞ ¼ b1x2 þ η1; J1ðxÞ ¼ b2x2 þ η2; ð36Þ

I2ðyÞ ¼ b1y2 − η1; J2ðyÞ ¼ b2y2 − η2: ð37Þ

Thus, we have completely integrated Einstein’s vacuum
equations with a cosmological constant for the metric (26),
the general solution being given by (28), (32), and (35).
Actually, this is, locally, the Kerr–NUT–de Sitter metric, as
can be seen by the change of coordinates ðx; yÞ → ðp; qÞ

x2 ¼ b−11

�
p2 −

b2
b1η2 − b2η1

�
−1

− b−11 η1;

y2 ¼ b−11

�
q2 þ b2

b1η2 − b2η1

�
−1

þ b−11 η1; ð38Þ

and a relabeling of the integration constants.

IV. KILLING-YANO TENSORS

A totally skew-symmetric tensor of rank p,
Ya1a2���ap ¼ Y ½a1a2���ap�, is called a Killing-Yano (KY) tensor
of order p whenever it obeys the following generalization
of the Killing vector equation:

∇aYb1b2���bp þ∇b1Yab2���bp ¼ 0: ð39Þ
By means of a KY tensor one can build objects that are
conserved along the geodesic motion. Indeed, if Ya1a2���ap is
a Killing-Yano tensor and Ta is an affinely parametrized
geodesic vector field, Ta∇aTb ¼ 0, then the tensor
TaYab2���bp is constant along each geodesic curve tangent

to T. As a consequence, the scalar Ya
c2���cpYc2���cpbT

aTb is
also conserved along the geodesics tangent to T. This, in
turn, means that the symmetric tensor

Qab ¼ Ya
c2���cpYc2���cpb ð40Þ

is a Killing tensor of order two. Thus, to each KY tensor is
associated a Killing tensor of order two, although the
converse generally is not true, as we shall see. Because of
this, one can say that KY tensors are, in a sense, more
fundamental than Killing tensors. Physically, this is cor-
roborated by the fact that classical symmetries associated to
KY tensors are preserved at the quantum level, whereas
those associated to Killing tensors generally are not [35]. In
this section we shall investigate whether the Killing tensor
of our metric (26) is the square of a Killing-Yano tensor. For
a detailed discussion of KY tensors in four-dimensional
spacetimes the reader is referred to [36,37].
Since ∂τ and ∂σ are Killing vector fields and the metric is

covariantly constant, it follows that the most general
Killing tensor of order two in a manifold with line element
(18) is given by
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Q ¼ αK þ βgþ γij∂i∂j; ð41Þ

where K is given by (4); g is the metric tensor; and the
coefficients α, β and γij ¼ γji are arbitrary constants. Now,
for simplicity, let us neglect the terms ofQ coming from the
symmetrized products of Killing vectors, i.e., set γij ¼ 0.
Then, using (10) along with (11) leads us to

Qab ¼ αKab þ βgab

¼ −2ðαS1 þ βÞlðanbÞ − 2ðαS2 − βÞmðam̄bÞ: ð42Þ

The goal of the present section is to look for the existence of
a Killing-Yano tensor whose square has the form of the
Killing tensor (42). In this section we shall work with the
general metric (26) without restricting the functions A1, A2,
Δ1,Δ2, S1 and S2. In particular, Einstein’s equation will not
be assumed to hold.
Since a KY tensor of order one is just a Killing vector

and, in four dimensions, a KY tensor of order four is a
constant multiple of the volume-form, it follows that the
only nontrivial Killing-Yano tensors are the ones of order
two and three. Let us first consider the possibility of Q
being the square of a KY tensor of order three. In this case,
Q would have the following form [38]:

Qab ¼ ξaξb − ðξcξcÞgab; ð43Þ

where ξa is a conformal Killing vector. However, expand-
ing the vector ξ in the null tetrad basis and then inserting
into (43) one can easily see that (43) is equal to (42) only in
the trivial case in which ξa ¼ 0 and α ¼ 0 ¼ β. Thus, a
nonzero Q cannot be the square of a KY tensor of order
three. It remains to check whether Killing tensor Q in (42)
is the square of a KY tensor of order two.
If a bivector Yab is such that its square has the algebraic

form ofQ in Eq. (42) then it might have the following form:

Y ¼ −Φ1l ∧ nþ iΦ2m ∧ m̄ ð44Þ

where

ðΦ1Þ2 ¼ αS1 þ β and ðΦ2Þ2 ¼ αS2 − β: ð45Þ

Since the integrability condition for the existence of a
Killing-Yano tensor of order two implies that the Petrov
type of the Weyl tensor is D, N or O, we can restrict
ourselves to these cases. Nevertheless, since the Weyl
scalars of the metric (18) are such that Ψ0 ¼ Ψ4 ¼ 0 it
follows that the type N is forbidden. Then, using the fact
that the type O can be seen as a special case of the type D,
we conclude that a necessary condition for Y to be a KY
tensor is that the Weyl tensor should be at least type D.
Therefore, without loss of generality, we can assume (28) to
hold whenever the space with metric (26) admits a KY
tensor. Then, by means of integrating the Killing-Yano

equation for the bivector (44) in a space with the general
metric (26) along with (28), we see that: besidesΦ1 and Φ2,
we have that the functions S1 and S2 appearing in the metric
are also constrained, which can be grasped from the relation
(45). The final result is that Y is a KY tensor if, and only if,
the functions Φ1, Φ2, S1 and S2 are given by

Φ1ðxÞ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x2þη2
b1x2þη1

s
; Φ2ðyÞ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−b2y2þη2
b1y2−η1

s
ð46Þ

S1ðxÞ ¼
b3x2 þ η3
b1x2 þ η1

; S2ðyÞ ¼ −
b3y2 − η3
b1y2 − η1

; ð47Þ

where c, b3 and η3 are arbitrary constants,4 whereas the
constants b1, b2, η1 and η2 are the ones appearing in (28). It
is interesting noting that the functions S1 and S2 compatible
with the existence of a KY tensor of order two are exactly
equal to the ones found while solving Einstein’s vacuum
equation; see (32). In particular, this means that the
requirement of the existence of a Killing-Yano tensor in
a space with line element (26) implies that the eight
components (34) of Einstein’s vacuum equation are sat-
isfied. This hints that often the geometrical requirement of
the existence of a KY tensor might be quite helpful in
integrating Einstein’s vacuum equation. Particularly, (47)
implies that all the vacuum solutions found in Sec. III are
endowed with a Killing-Yano tensor. Indeed, it is well
known that all type D Ricci-flat spacetimes possessing a
nontrivial Killing tensor also have a KY tensor [8]. The
results of this section illuminate the possibility that the
latter fact can be extended from Ricci-flat to Einstein
spacetimes, namely to the case of nonzero cosmological
constant.
The square of the Killing-Yano tensor Y, Qab ¼ Ya

cYcb,
is given by

Qab ¼ −2ðΦ1Þ2lðanbÞ − 2ðΦ2Þ2mðam̄bÞ: ð48Þ

Comparing (11) and (48) we conclude that in order to have
K ¼ Q the relations ðΦ1Þ2 ¼ S1 and ðΦ2Þ2 ¼ S2 must both
hold. However, in general we cannot manage to choose the
constant c appearing in (46) to be such that the latter
conditions are satisfied, which leads us to the conclusion
that generally there is no KY tensor whose square is the
Killing tensor K. Instead, the square of the KY tensor Y is a
linear combination of K and g, as anticipated in Eq. (42).
Note that the functions Δ1 and Δ2 are not constrained by

the Killing-Yano equation. So, there are nonvacuum typeD

4Besides the solution displayed in Eqs. (46) and (47), one also
has a solution if the replacements b1 ↔ b2 and η1 ↔ η2 are
performed in (46) and (47). However, since this other solution can
be obtained from the previous one just by a redefinition of
constants that are not fixed yet, we shall consider that they
represent the same solution.
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spacetimes that admit the existence of a KY tensor, which is
already clear in Carter’s metric [1,34]. What maybe is not
so clear in the literature and is clarified by our results is that
there are type D spacetimes admitting a nontrivial Killing
tensor that do not admit KY tensors. Indeed, if A1 and A2

are given by (28) and the functions S1 and S2 are not of the
form displayed in (47) then the spacetime with metric (26)
is type D and possesses a nontrivial Killing tensor but does
not admit a KY tensor.

V. INTEGRATING EINSTEIN’S EQUATION
WHEN P0

1 ≠ 0 AND P0
2 ¼ 0

In the previous sections we considered the metric (18) in
the general case when both functions P1 and P2 are
nonconstant. Now, we shall investigate the cases in which
at least one of these functions is constant. Particularly, the
aim of the present section is to study the case of P0

1 ≠ 0 and
P0
2 ¼ 0. More precisely, we shall fully integrate Einstein’s

vacuum equation with a cosmological constant and look for
the existence of Killing-Yano tensors in these solutions.
Note that it is needless to consider the analogous case
P0
1 ¼ 0 and P0

2 ≠ 0, inasmuch as such a case can be easily
obtained from the case P0

1 ≠ 0 and P0
2 ¼ 0 by interchang-

ing the coordinates x and y.
Since in this section it will be assumed that P1ðxÞ is

nonconstant, it follows that we can redefine the coordinate
x, along with the functions A1 and Δ1, in such a way that
P1ðxÞ ¼ 1

x − p2, with p2 denoting the constant value of the
function P2ðyÞ. Then, using this gauge choice, the line
element (18) becomes

ds2 ¼ S

�
−x2A2Δ2ðdτ þ ðx−1 − p2ÞdσÞ2

þ A1Δ1x2ðdτ − p2dσÞ2 þ
dx2

Δ1

þ dy2

Δ2

�
ð49Þ

where S ¼ S1ðxÞ þ S2ðyÞ. Furthermore, using the coordi-
nate ϕ ¼ 1

l ðτ − p2σÞ instead of τ, the line element assumes
the following form:

ds2 ¼ S

�
−A2Δ2ðdσ þ xldϕÞ2 þ x2A1Δ1l2dϕ2

þ dx2

Δ1

þ dy2

Δ2

�
; ð50Þ

where l is a nonzero constant introduced for future
convenience. Now, let us integrate Einstein’s vacuum
equation for the above line element.
As explained in Sec. II, a necessary condition for the

above metric to be a solution of Einstein’s vacuum equation
is that the Weyl tensor might have Petrov type D.
According to (23), the type D condition holds if, and only
if, A1 takes the following form:

A1ðxÞ ¼
1

l2x2
: ð51Þ

Inserting (51) into (50) and then computing the Ricci tensor
we find that

Rx
y ¼

3Δ1S01S
0
2

2ðS1 þ S2Þ3
; ð52Þ

where, as usual, the primes denote that the function
is being differentiated with respect to its variable. Then,
imposing Ra

b ¼ Λδab we conclude that the right-hand side
of (52) must vanish. Thus, either S1ðxÞ or S2ðyÞ might be
constant. In principle, one could also have that either S1ðxÞ
or S2ðyÞ is constant. However, assuming S2ðyÞ to be
constant we find that Rablalb does not vanish as it should.
Therefore, we conclude that S2ðyÞ should be a nonconstant
function, while S1ðxÞ is a constant that we shall denote by
s1. Thus, the conformal factor Sðx; yÞ should be just a
function of y:

Sðx; yÞ ¼ s1 þ S2ðyÞ ¼ SðyÞ: ð53Þ

Now, without loss of generality, let us choose the coor-
dinate y in such a way that

SðyÞ ¼ y2 þ n21 ð54Þ

with n1 being a constant. Since the value of n1 can be
shifted by means of redefining the coordinate y, in what
follows it will be assumed that n1 ≠ 0. Then, assuming (54)
and imposing that Rablalb vanish it follows that A2ðyÞmust
be given by

A2ðyÞ ¼
4y2

ð4n21n22 − l2 þ 4n22y
2Þðn21 þ y2Þ2 ; ð55Þ

with n2 being an integration constant. Postponing
the special case n2 ¼ 0 to the forthcoming section,
let us assume n2 ≠ 0. In the latter case we can choose
the nonzero parameter l to be equal to 2n1n2, in which case
we have

A2ðyÞ ¼
1

n22ðn21 þ y2Þ2 : ð56Þ

Once assumed the latter expression for A2, the eight
components of Einstein’s vacuum equation displayed in
(34) are immediately satisfied. Finally, imposing the
equation Rabmam̄b ¼ Λ we find that the functions Δ1

and Δ2 should have the following general form:

Δ1ðxÞ ¼ −a2x2 þ a1xþ a0; ð57Þ
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Δ2ðyÞ ¼
�
n41 − 2n21y

2 −
1

3
y4
�
Λþ a2ðy2 − n21Þ þ by;

ð58Þ
with a0, a1, a2 and b being integration constants. In
particular, b is related to the Arnowitt-Deser-Misner
(ADM) mass of the solution. In conclusion, the general
solution of Einstein’s vacuum equation with a cosmological
constant for the metric (18) with P2 constant and P1

nonconstant is given by the equations (50), (51), (54),
(56), (57) and (58). It turns out that such solution possesses
four Killing vector fields. Indeed, defining
ω ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ 4a0a2

p
, it can be verified that the following

vector fields generate isometries:

χ1 ¼ − sinðωϕÞ n1n2ð2a0 þ a1xÞ
ω

ffiffiffiffiffiffi
Δ1

p ∂σ

þ sinðωϕÞ 2a2x − a1
2ω

ffiffiffiffiffiffi
Δ1

p ∂ϕ þ cosðωϕÞ
ffiffiffiffiffiffi
Δ1

p ∂x ð59Þ

χ2 ¼ cosðωϕÞ n1n2ð2a0 þ a1xÞ
ω

ffiffiffiffiffiffi
Δ1

p ∂σ

− cosðωϕÞ 2a2x − a1
2ω

ffiffiffiffiffiffi
Δ1

p ∂ϕ þ sinðωϕÞ
ffiffiffiffiffiffi
Δ1

p ∂x; ð60Þ

in addition to the obvious Killing vector fields χ3 ¼ ∂ϕ

and χ4 ¼ ∂σ.
Since S ¼ S1 þ S2 ¼ s1 þ S2, it follows that we can

absorb the constant s1 into the function S2 so that instead of
using the functions S1 and S2 one could equivalently use
~S1ðxÞ ¼ 0 and ~S2ðyÞ ¼ s1 þ S2 ¼ S. Thus, besides the
Killing tensor (11), we expect that the tensor

K2ab ¼ −2~S1ðxÞlðanbÞ − 2~S2ðyÞmðam̄bÞ

¼ −2SðyÞmðam̄bÞ ð61Þ

should also be a Killing tensor. Indeed, this can be readily
verified. However, it turns out that this new Killing tensor
does not lead to new conserved charges, which can be
grasped from the fact that K2 is just a linear combination of
K and the metric, K2 ¼ K − s1g. Moreover, the latter
Killing tensor is reducible, in the sense that it can be
written in terms of symmetrized products of Killing
vectors. Indeed, one can check that

Kab
2 ¼ 4a0n21n

2
2

ω2
χða4 χ

bÞ
4 þ 2a1n1n2

ω2
χða4 χ

bÞ
3 −

a2
ω2

χða3 χ
bÞ
3

− χða1 χ
bÞ
1 − χða2 χ

bÞ
2 : ð62Þ

The solution found in this section also possesses a Killing-
Yano tensor given by

Y ¼ n1l ∧ nþ iym ∧ m̄; ð63Þ

whose square is K2 þ n21g.
Regarding the interpretation of the latter metric, the

existence of four Killing vectors hints at the existence of
spherical symmetry and that such a solution might be a
generalization of the Schwarzschild metric. Indeed, if
a2 ≠ 0, it follows that the Killing vector fields

~χ1 ¼
1

a2
χ1;

~χ2 ¼
1ffiffiffiffiffi
a2

p χ2;

~χ3 ¼ −
1

Λ
ffiffiffiffiffi
a2

p
�
χ3 −

a1n1n2
a2

χ4

�
; ð64Þ

generate the SOð3Þ Lie algebra

½ ~χi; ~χj� ¼ εij
k ~χk; ð65Þ

with εijk denoting the usual Levi-Cività symbol. Therefore,
in the case a2 ≠ 0, the isometry group is SOð3Þ ×R, with
χ4 spanning the center of the algebra. This gives a clue that
the Taub-NUT solution with a cosmological constant might
be contained in the class of metrics that we have just found.
Indeed, assuming a1 ¼ 0 and defining new coordinates

ft; y; θ;φg by σ ¼ n2t, x ¼
ffiffiffiffi
a0
a2

q
cos θ and φ ¼ − ffiffiffiffiffiffiffiffiffiffi

a0a2
p

ϕ

we have that the metric can be written as

ds2 ¼ −
Δ2

y2 þ n21

�
dt −

2n1
a2

cos θdφ

�
2

þ y2 þ n21
Δ2

dy2

þ y2 þ n21
a2

ðdθ2 þ sin2θdφ2Þ; ð66Þ

withΔ2ðyÞ given by (58). Making a2 ¼ 1 andΛ ¼ 0we get
the Taub-NUT solution in the form presented in [39], with
n1 being the NUT parameter and −b=2 being the mass. On
the other hand, in the special case in which a2 ¼ 0, the
isometry Lie algebra is not the direct sum of an Abelian
algebra and a semisimple Lie algebra. Indeed, in such a
case we have that

½χ1;χ3� ¼
a1
2
χ2;

½χ2;χ3� ¼ −
a1
2
χ1;

½χ1;χ2� ¼ 2n1n2χ4; ð67Þ

with all other commutators being zero.

A. The special case n2 ¼ 0

Now, let us consider the special case in which the
integration constant n2 vanishes. In such a case, Eq. (55)
gives
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A2ðyÞ ¼
−4y2

l2ðn21 þ y2Þ2 : ð68Þ

Assuming the latter expression for A2, the eight compo-
nents of Einstein’s vacuum equation displayed in (34) are
immediately satisfied. Finally, imposing the equation
Rabmam̄b ¼ Λ we find that the functions Δ1 and Δ2 might
have the following general form:

Δ1ðxÞ ¼ −a2x2 þ a1xþ a0 ð69Þ

Δ2ðyÞ¼
b
y2

−
Λ
2

�
n41þn21y

2þ1

3
y4
�
þa2

4
ð2n21þy2Þ; ð70Þ

One can check that the functions A2 and Δ2 can be
conveniently written in terms of the function SðyÞ as
follows:

A2ðyÞ ¼ −
�
S0

lS

�
2

;

Δ2ðyÞ ¼
1

ðS0Þ2
�
~bþ a2S2 −

2

3
ΛS3

�
; ð71Þ

where ~b≡ ð4b − a2n41 þ 2
3
Λn61Þ is a constant that replaces

the arbitrary constant b. It is worth pointing out that the
functions A2 andΔ2 as written in (71) provide a solution for
Einstein’s vacuum equation irrespective of the choice of
coordinate y. Thus, if we use (71) it is not necessary to
assume that SðyÞ is given by (54). As we shall see in the
sequel, it turns out that the metric given by (50), (51), (69),
and (71) is quite special, since it admits a covariantly
constant bivector whose square is the metric.
But, before proceeding, note that since A1 and A2 have

opposite signs it follows that this metric cannot have
Lorentzian signature. Indeed, by means of studying the
reality conditions [33] of the null tetrad (8), one can see that
if l2 < 0 the signature is split (neutral), while if l2 > 0 we
have that the signature is Euclidean for Δ1Δ2 > 0 and split
for Δ1Δ2 < 0. Furthermore, the bivectors l ∧ n and m ∧ m̄
are both real if l2 < 0 and both imaginary if l2 > 0.
Therefore, it is useful to separate our analysis into
two cases.
Let us start by considering the case l2 > 0. In this case

we have that the following real bivector is covariantly
constant:

Ω ¼ −iðl ∧ nþ ϵm ∧ m̄Þ; ð72Þ

where ϵ ¼ �1, depending on the function S and on the
patch of the coordinate x. More precisely, we have

ϵ ¼ Sign

�
x
S0

S

�
¼ �1: ð73Þ

The bivector Ω is anti-self-dual if ϵ ¼ 1; namely its Hodge
dual is equal to the negative of itself, whereas if ϵ ¼ −1 it
follows that Ω is self-dual; i.e., its Hodge dual is equal to
itself.5 Since we have that ΩacΩcb ¼ −δab, we say that the
tensor Ω is an almost complex structure. Note that the
vectors l, m, n and m̄ are eigenvectors of Ω with
eigenvalues �i,

Ωa
blb ¼ ila;

Ωa
bnb ¼ −ina;

Ωa
bmb ¼ −iϵma;

Ωa
bm̄b ¼ iϵm̄a: ð74Þ

Moreover, irrespective of the sign of ϵ, the eigenspaces ofΩ
form integrable distributions. Indeed, as a consequence of
(14), it follows that the isotropic planes generated by
fl;mg, fn; m̄g, fl; m̄g and fn;mg are all tangent to
integrable foliations. Because of this, we say that such
almost complex structure is integrable [40]. Then, since Ω
is a closed form, dΩ ¼ 0, this 2-form is named a Kähler
form. Thus, the solution found here is a Kähler metric.
Particularly, if Λ ¼ 0 we end up with a Ricci-flat Kähler
metric, also known as a Calabi-Yau manifold. In addition,
this space is also endowed with the following real con-
formal Killing-Yano tensor,

C ¼ iSðyÞ ðl ∧ n − ϵm ∧ m̄Þ; ð75Þ

which is a self-dual bivector if ϵ > 1 and anti-self-dual
if ϵ < 1.
On the other hand, if l2 < 0 we have that the real

covariantly constant bivector is given by

Ω̌ ¼ l ∧ n − ϵm ∧ m̄; ð76Þ

with ϵ given again by (73). In this case we have that
Ω̌acΩ̌cb ¼ δab, so that Ω̌ is called an almost paracomplex
structure [41]. Because of the integrability of the eigen-
planes of this paracomplex structure we say that it is
integrable. Furthermore, since Ω̌ is a closed form this 2-
form is named a para-Kähler form, so that the metric
represents a para-Kähler manifold [41]. When l2 < 0 we
also have that the following real bivector,

Č ¼ SðyÞ ðl ∧ nþ ϵm ∧ m̄Þ; ð77Þ

is a conformal Killing-Yano tensor.
In addition to these geometrical objects, the space

described here admits four null bivectors that are solutions

5It is worth recalling that, locally, the distinction between self-
dual and anti-self-dual forms is just a matter of convention, since
by multiplying the volume-form by −1 these labels get inter-
changed.
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of source-free Maxwell equations irrespective of the sign of
the constant l2:

Bþ
1 ¼ 1

S0
ffiffiffiffiffiffiffiffiffiffiffi
Δ1Δ2

p m̄ ∧ n; Bþ
2 ¼ 1

S0
ffiffiffiffiffiffiffiffiffiffiffi
Δ1Δ2

p l ∧ m; ð78Þ

B−
1 ¼ 1

S0
ffiffiffiffiffiffiffiffiffiffiffi
Δ1Δ2

p m ∧ n; B−
2 ¼ 1

S0
ffiffiffiffiffiffiffiffiffiffiffi
Δ1Δ2

p l ∧ m̄: ð79Þ

The bivectors Bþ
1 and Bþ

2 are self-dual, while B−
1 and B−

2

are anti-self-dual. Since these bivectors are closed and
coclosed we say that they obey the source-free Maxwell
equations. Actually, since the energy-momentum tensor
associated to these Maxwell fields is zero, we can say
that they provide solutions to Einstein-Maxwell
equations.
In order to find possible singularities of the space it is

useful to take a look at some curvature invariant scalars,
i.e., scalars that are constructed from full contractions of the
curvature and its derivatives. Note, for instance, that the
Weyl scalars are not curvature invariants, since they depend
on the choice of the null tetrad basis. However, the
following scalars are true curvature invariants:

RabcdRabcd ¼
16

3
Λ2 þ 24

�
~b
S3

�2

; ð80Þ

RabcdRcdefRef
ab ¼

80

9
Λ3 þ 48

�
~b
S3

�2

− 48

�
~b
S3

�3

; ð81Þ

where Rabcd stands for the Riemann tensor. Note that these
scalars diverge in the points in which the function SðyÞ
vanishes, hinting at the existence of singularities in these
points. Nevertheless, it is interesting noting that these
divergences cease to exist if the constant ~b vanishes.
With the aim of understanding the meaning of the condition
~b ¼ 0 let us compute the Weyl scalars of this space.
Since the space considered in the present section is

type ðD;DÞ according to the generalized Petrov classi-
fication, with l ∧ m, n ∧ m̄, l ∧ m̄ and n ∧ m being
repeated principal null bivectors [40], it follows that the
only Weyl scalars that can be different from zero are Ψþ

2

and Ψ−
2 . One can check that their values depend on the

sign of the parameter l2. Indeed, if l2 > 0 we find that

Ψþ
2 ¼ −ð1þ ϵÞΛ

6
þ ð1 − ϵÞ

~b
2S3

and

Ψ−
2 ¼ −ð1 − ϵÞΛ

6
þ ð1þ ϵÞ

~b
2S3

: ð82Þ

So, if ~b ¼ 0 and ϵ ¼ 1 the space is self-dual, meaning
that only the self-dual part of the Weyl tensor is
different from zero, whereas if ~b ¼ 0 and ϵ ¼ −1 the
space is anti-self-dual. Analogously, if Λ ¼ 0 the space

is anti-self-dual for ϵ ¼ 1 and self-dual for ϵ ¼ −1. On
the other hand, if l2 < 0 the values of Ψþ

2 and Ψ−
2 are

interchanged. More explicitly, if l2 is negative we have
that

Ψþ
2 ¼ −ð1 − ϵÞΛ

6
þ ð1þ ϵÞ

~b
2S3

and

Ψ−
2 ¼ −ð1þ ϵÞΛ

6
þ ð1 − ϵÞ

~b
2S3

: ð83Þ

Thus, when l2 < 0 and ϵ ¼ 1 the space is self-dual if
Λ ¼ 0 and anti-self-dual if ~b ¼ 0. Analogously, if
l2 < 0 and ϵ ¼ −1 the space is anti-self-dual if Λ¼0

and self-dual if ~b ¼ 0. So, we conclude that the
condition ~b ¼ 0 that avoids the divergence of the
curvature invariants (80) and (81) means geometrically
that the Weyl tensor is either self-dual or anti-self-dual.

VI. INTEGRATING EINSTEIN’S EQUATION
WHEN P0

1 ¼ 0 AND P0
2 ¼ 0

The aim of the present section is to integrate Einstein’s
vacuum equation for the metric (18) in the special case in
which the functions P1ðxÞ and P2ðyÞ are both constant. In
what follows we shall denote these constants by p1 and p2

respectively. In this case, we can redefine the coordinates x
and y along with the functions Δ1, Δ2, A1 and A2 in such a
way to make Δ1ðxÞ ¼ 1 and Δ2ðyÞ ¼ 1. Adopting these
redefined coordinates we end up with the following line
element:

ds2 ¼ S

�
−A2

ðp1 þ p2Þ2
ðdτ þ p1dσÞ2

þ A1

ðp1 þ p2Þ2
ðdτ − p2dσÞ2 þ dx2 þ dy2

�
ð84Þ

where S ¼ S1ðxÞ þ S2ðyÞ. As anticipated in Sec. II, this
metric is typeD regardless of any restriction on the functions
A1 andA2. Now, computing the Ricci tensor we find thatRx

y

is given by the expression (52)withΔ1ðxÞ ¼ 1. Therefore, in
order for Einstein’s vacuum equation with a cosmological
constant to be satisfied, either S1ðxÞ or S2ðyÞ must be
constant. One could also have that both functions are
constant, but let us postpone the analysis of this case. So,
let us assume that S1ðxÞ is a constant denoted by s1 and that
S2ðyÞ is a nonconstant function ofy.6 For future convenience,
let us define the function HðyÞ:

HðyÞ ¼ S1=4 ¼ ½s1 þ S2ðyÞ�1=4: ð85Þ

6The opposite case, in which S2 is constant and S1 is non-
constant can be obtained from the case S01 ¼ 0 and S02 ≠ 0 by
means of interchanging the coordinates x and y.
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Then, imposing thatRablalb vanish and assumingHðyÞ to be
nonconstant, we find that A2ðyÞ must have the following
general form:

A2ðyÞ ¼ a2
ðH0Þ2
H6

; ð86Þ

with a2 being an arbitrary nonzero constant. Assuming (86),
we have that the eight components of Einstein’s vacuum
equation displayed in (34) are satisfied. It remains to impose
Rabmam̄b ¼ Λ and Rablanb ¼ −Λ. The first of these con-
ditions implies that A1 is given by

A1ðxÞ ¼ a1cos2ð2bxþ cÞ; ð87Þ

where a1, b and c are constants. Inserting this expression for
A1 into Rabmam̄b ¼ Λ yields the following differential
equation for H:

H00 ¼ H

�
b2 −

Λ
4
H4

�
: ð88Þ

One can also prove that if (88) holds then the remaining
equations Rabmam̄b ¼ Λ and Rablanb ¼ −Λ are both
obeyed. Particularly, if Λ ¼ 0 the general solution of (88)
is given by

HðyÞ ¼ a3eby þ a4e−byðΛ ¼ 0Þ; ð89Þ

wherea3 anda4 are arbitrary constants. It isworth noting that
if either a3 or a4 vanishes then Ψ2 ¼ 0 and the space is flat.
For Λ ≠ 0, any nonconstant solution for the nonlinear
differential equation (88) will generate a metric that is a
solution of Einstein’s vacuum equation. This solution turns
out to admit the following Killing-Yano tensor:

Y ¼ iH2m ∧ m̄: ð90Þ

Note that we can easily get rid of some constants in the
solution (84) by means of redefining the coordinates as
follows:

~τ ¼
ffiffiffiffiffi
a2

p ðτ þ p1σÞ
p1 þ p2

;

~σ ¼ 2

ffiffiffiffiffi
a1

p ðτ − p2σÞ
p1 þ p2

;

~x ¼ 2xþ c
b
þ π

2b
;

~y ¼ 1

2
½HðyÞ�2: ð91Þ

With these coordinates, the solution just obtained is given by

ds2 ¼ −
�
H0

H

�
2

d~τ2 þ
�
H0

H

�
−2
d~y2

þ ~y2ðd~x2 þ sin2ðb~xÞd ~σ2Þ; ð92Þ
with HðyÞ being a nonconstant solution of (88). Although
(88) is a nonlinear differential equation,we can transform this
equation into a linear equation by means of using the
coordinate ~y. Indeed, defining Fð~yÞ≡ ðH0

HÞ2 we find that
(88) is equivalent to the differential equation

~y
dF
d~y

þ F ¼ b2 − Λ~y2; ð93Þ

whose general solution is�
H0

H

�
2

¼ Fð~yÞ ¼ b2 −
2m
~y

−
Λ
3
~y2; ð94Þ

where m is an integration constant. Therefore, the solution
givenby (92) alongwith (88) is just the Schwarzschild-(A)dS
spacetime with a possible conical singularity. In terms of
these coordinates the null tetrad (8) is given by

l ¼ −
1ffiffiffiffiffiffi
2F

p ðFd~τ − d~yÞ; ð95Þ

n ¼ −
1ffiffiffiffiffiffi
2F

p ðFd~τ þ d~yÞ; ð96Þ

m ¼ −
~yffiffiffi
2

p ðsinðb~xÞd ~σ − id~xÞ; ð97Þ

m̄ ¼ −
~yffiffiffi
2

p ðsinðb~xÞd ~σ þ id~xÞ: ð98Þ

In particular, by means of (90) and (97), we arrive at the
following expression for the Killing-Yano tensor in these
new coordinates:

Y ¼ 2~y3 sinðb~xÞd~x ∧ d ~σ: ð99Þ

A. The case S1 and S2 constant

In order to obtain (86) it was assumed that S2ðyÞ is
nonconstant. Now, it is time to consider the case when the
functions P1, P2, S1 and S2 are all constant, in which case
the component Rablalb is automatically zero and there is no
constraint over A2ðyÞ at this stage. Actually, one can check
that the eight components (34) of Einstein’s vacuum
equation are already satisfied. Then, the remaining equa-
tions Rabmam̄b ¼ Λ and Rablanb ¼ −Λ provide nonlinear
differential equations for A1 and A2 respectively whose
general solutions are

A1ðxÞ ¼ a1cos2ðx
ffiffiffiffiffiffi
sΛ

p
þ b1Þ and

A2ðyÞ ¼ a2cos2ðy
ffiffiffiffiffiffi
sΛ

p
þ b2Þ; ð100Þ
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where the a’s, the b’s and s≡ S are constants. The above
solution is valid only for Λ ≠ 0. Instead, if Λ ¼ 0 the
equations Rabmam̄b ¼ Λ and Rablanb ¼ −Λ imply that
A1ðxÞ and A2ðyÞ are quadratic polynomials of x and y
respectively, but in this case it turns out that the spacetime is
flat. Indeed, this can be grasped from the fact that the only
nonvanishing Weyl scalars in the general case are

Ψþ
2 ¼ −

Λ
3

and Ψ−
2 ¼ −

Λ
3
; ð101Þ

so that if Λ ¼ 0 then the Ricci tensor and the Weyl tensor
are both identically zero, which implies that the space is
flat. Hence, let us just consider the case of a nonzero
cosmological constant. The results of this paragraph lead to
the conclusion that the metric (84) with S being a nonzero
constant and the functions A1 and A2 given by (100) is a
solution of Einstein’s vacuum equation with cosmological
constant Λ. Such solution turns out to admit the following
two Killing-Yano tensors:

Y1 ¼ l ∧ n; Y2 ¼ −im ∧ m̄: ð102Þ

A convenient choice of coordinates for the solution
considered in the present subsection is

τ̂¼
ffiffiffiffiffiffiffiffiffiffi
sΛa2

p
p1þp2

ðτþp1σÞ; σ̂¼
ffiffiffiffiffiffiffiffiffiffi
sΛa1

p
p1þp2

ðτ−p2σÞ ð103Þ

x̂ ¼ x
ffiffiffiffiffiffi
sΛ

p
þ b1 −

π

2
; ŷ ¼ y

ffiffiffiffiffiffi
sΛ

p
þ b2 −

π

2
: ð104Þ

With these coordinates,we conclude that thegeneral solution
of Einstein’s vacuum equation for the metric (84) with both
functions S1 and S2 being constant is given by

ds2 ¼ 1

Λ
½−sin2ðŷÞdτ̂2 þ dŷ2 þ dx̂2 þ sin2ðx̂Þdσ̂2�: ð105Þ

The latter space is just the product of the two-dimensional
(anti–)de Sitter space with a sphere of radius Λ−1=2,
ðAÞdS2 × S2. This space can be seen as a double Wick
rotated version of theNariai spacetime [42]. In terms of these
new coordinates, the KY tensors of Eq. (102) are given by

Y1 ¼
sinðŷÞ
Λ

dŷ ∧ dτ̂; Y2 ¼
sinðx̂Þ
Λ

dx̂ ∧ dσ̂: ð106Þ
Since the spaces ðAÞdS2 and S2 are maximally symmetric
spaces of dimension two it follows that they both admit three
independent Killing vectors. Therefore, the metric (105)
should have six Killing vector fields. Indeed, one can check
that the following six 1-forms are independent Killing fields:

k1 ¼ sin2ðx̂Þdσ̂; ð107Þ
k2 ¼ sinðσ̂Þdx̂þ sinðx̂Þ cosðx̂Þ cosðσ̂Þdσ̂; ð108Þ
k3 ¼ cosðσ̂Þdx̂ − sinðx̂Þ cosðx̂Þ sinðσ̂Þdσ̂; ð109Þ

k4 ¼ sin2ðŷÞdτ̂; ð110Þ

k5 ¼ sinhðτ̂Þdŷþ sinðŷÞ cosðŷÞ coshðτ̂Þdτ̂; ð111Þ

k6 ¼ coshðτ̂Þdŷþ sinðŷÞ cosðŷÞ sinhðτ̂Þdτ̂: ð112Þ

It turns out that theKilling tensors generated by the square of
the Killing-Yano tensors Y1 and Y2 are reducible; namely
they can be written as a linear combination of symmetrized
products of the Killing vectors. Indeed, defining Q1ab ¼
Y1a

cY1cb and Q2ab ¼ Y2a
cY2cb, it is easy to check that

Qab
1 ¼ 1

Λ
½kða6 kbÞ6 − kða5 k

bÞ
5 − kða4 k

bÞ
4 �

and Qab
2 ¼ −

1

Λ
½kða1 kbÞ1 þ kða2 k

bÞ
2 þ kða3 k

bÞ
3 �: ð113Þ
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